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Abstract

Callable bond indentures contain provisions that allow the issuing entity to retire the bond at a predetermined
price before the maturity of the bond.! As such a callable bond is often viewed as a combination of an
otherwise identical but non-callable bond and an option to call that bond. The writer of the call option is the
holder of the bond, and the buyer of the call is the stockholder of the issuing corporation. Thus, the price of a
callable bond is the value of the straight bond less the value of the call provision.
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THE VALUATION OF CALLABLE BONDS

Callable bond indentures contain provisions that allow the issuing entity
to retire the bond at a predetermined price before the maturity of the
bond.! s such a callable bond is often viewed as a combination of an
otherwise identical but non-callable bond and an option to call that bond.
The writer of the ecall option is the holder of the bond, and the buyer of the
call is the stockholder of the issuing corporation. Thus, the price of a
callable bond is the value of the straight bond less the value of the call
provision,

But note that, unlike a detachable warrant on a bond, the call provision
is not a separable option in the sense that it could trade in the market.
Additionally, the comparison between the call on a bond and the call on a
common stock can be misleading. To see this, recall that the holder of an
American call on a common stock that pays no dividends will exercise it only
at maturity. Prior to maturity, arbitrage arguments show that the call is
more valuable unexercised than exercised. It is thus better to sell the call
than exercise it,

The value of the call feature on a bond derives from the issuer's option
to call the bond and refinance at a lower cost. Extant literature discusses
the value of the call loosely in terms of the present value of the expected
gain from refinancing. However, the call option feature on a bond is quite
different from a stock option. For example, since the bond price converges to
par at maturity, the value of the right to call a bond must converge to zero
at maturity. Moreover, delay in exercising a call after rates have declined
carries with it the risk that rates may again increase and extinguish the
refinancing opportunity, as well as the carrying cost of paying higher

coupons. Indeed, Brennan and Schwartz (19774) conclude that after the call



protection period, an issuer should exercise the call as soon as there is any
gain at all from exercising,

Immediately upon the expiration of the call protection period, there
would be a positive gain from exercising the call if interest rates have
declined sufficiently. After the expiration period, the story is quite

different if trading is continuous and if bond prices follow a continuous

path. Under these conditions, the following section shows that the gain from
exercising a call after the call protection period is zZero, or more precisely,
approaches zero as the trading interval approaches zero. This result follows
from the assumed continuity of the path of bond prices. Intuitively, with
continuous trading and continuity in price movements, the issuer will exercise
the call whenever there is any profit at all, and in the limit, this profit
becomes arbitrarily small,

Yet, in a strategy of continually calling and reissuing new callable
bonds, the right to call a bond has a significant effect upon the time pattern
of coupon payments.2 Each time an issuer calls such a bond, the issuer is
able to issue an otherwise identical bond, but with an infinitesimally lower
coupon. If the issuer can play this game sufficiently often, the series of
infinitesimal reductions in coupons can "add up" to a finite reduction in the
coupon.3 Thus, if there are two bonds identical in all respects except that
one is callable, the coupon on the callable bond must be greater than the
coupon on the non-callable bond to induce an investor to hold the ecallable
bond.

In effect, the strategy of repeatedly calling and reissuing new callable
bonds is like "marking to market" changes in interest rates, but only in
favorable directions. After the call protection period, the value of the eall

provision arises not from the exercise of a single call, but rather from a



strategy that allows the issuer to capture over time successively lower
coupons.

In section II, we contrast the dynamic strategy with the continucus time
model of Brennan and Schwartz (19774, 1977B). The penultimate section
presents some numerical examples to illustrate the dynamic nature of call
provisions and the simultaneous effects of interest rate uncertainty and call
provisions on the price and duration of coupon bearing bonds. The details of
the numerical approximation used to value the bond are contained in the
Appendix, along with a discussion of the errors in such numerical

approximations. The paper concludes with some brief remarks,

I. VALUING THE CALL PROVISION

To begin, consider a bond with one period to maturity. There are N
equally spaced decision points during the period. Time is measured by the
remaining time to maturity or alternatively by the number of decision points
that remain to maturity. Thus time 1 or decision point N refers to the
beginning of the period and time 0 or decision point O the end. Since the
concern of this paper is with the theoretical pricing of a callable bond, we
assume perfectly functioning capital markets with no taxes or trading costs.
Moreover, we assume away any risk of default.

The state of the system at any instant in time is characterized by the
variable r, defined over the interval [0,=). Subsequently, it will be assumed
that r is the instantaneous risk free rate and follows a Weiner process,
However, it is not necessary at this point to make this assumption,

If the current state is r at decision point n, define pn(r, m, k/N) as
the contingent state price of one dollar to be received at decision point
(n - k) if the state at that time is m. The following assumes that the state

prices are invariant to n, so that the subseript can be dropped. Finally, we
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assume that p is twiece differentiable with respect to r, once differentiable
with respect to k/N, 3p/ar is negative, and 0 < p < 1.

Now consider an agent who wishes to borrow $100 at decision point N. One
alternative is to issue a non-callable bond paying a continuous coupon at the
rate c. If the current state variable is k, the agent would then set ¢ so
that the current value of the bond is 100.

Another alternative is to issue a bond that is immediately callable at
100. This represents a somewhat unrealistic case, but helps to highlight the
role of the call feature. Most bonds issued at their call price are only
callable after some period of time, or, if immediately callable, are issued at
a discount from their ecall price. Yet, there is certainly some coupon rate
that would cause an investor to be indifferent between buying the non-callable
or the callable bond. Let this rate be 8. In general, we use a hat to
indicate that a variable corresponds to a callable bond.

The following discussion uses dynamic programming techniques to determine
¢ and ;. After developing the general formulas, we then take the limit of a
Sequence as N approaches infinity.

Determining the coupon ¢ for a non-callable bond with a current value of
$100 is straightforward. Let B(n/N, r|N) be the price of the bond with n
decision points or time t = n/N to maturity, given that the state at time n is

r. With one step to maturity, we have
BON, r|N) = [ [p(r, m, 1/8) 100 + [ p(r, m, <) ¢ dt ]dm, (1)

where the region of integration for m is (0, =) and for t is [0, 1/N]. A&t

step n, we have

Bn/N, r|N) = [ [p(r, m, 1/N) B((n-1)/N, mIN) + [ p(r, m, t) cdr]dm (2)



If the current state at N is k, the agent then sets ¢ to equate B(1, k[N) to
100.

Let ﬁ(n/N, r|N)} be the value of the callable bond at decision point n,
given that the state at point n is r. Using dynamic programming, we begin at
point 1, or equivalently one decision point prior to maturity. Were the bond

not called at point 1, the value of the callable bond would be

FOUN, rN) = [ [p(r, m, 1/N) 100 + | p(r, m, 1) e dt]dm (3)

At time 1, the optimal decision is to call the bond if f(1/N, r|N) > 100 for a
"gain" to the issuer is F(1/N, r|N) - 100. To raise the 100 dollars necessary
to call the bond, the issuer could issue a new bond at time 1/N maturing at
time 0, but with a lower coupon than ;. Thus, the value of the callable bond
at time 1/N is

BOI/N, ©|N) = min [£(I/N, v|N), 100] . ()

The term "gain" is enclosed in quotes since there really is no gain in that
the lender would have already taken this gain into account in setting ;. This
"gain" could equivalently be viewed as the "loss" from not following an
optimal strategy.

At time 2 the value of the callable bond, if not called at time 2 but

optimally called at time 1, is
£2/M, r|N) = [ [p(r, m, 1/N) BOI/N, m|N) + [ p(r, m, 1) ¢ dt ]dm (5)

As at time 1, the optimal decision at time 2 is to call the bond if
£(2/N, r|[N) > 100 for a "gain" of [(£(2/N, r|N) - 100]. Thus, the value of the

callable bond at time 2 is

B(2/N, r|N) = min [£(2/N, r|N), 100] . (6)



Just as at time 1, the issuer who calls a bond at time 2 can finance the ecall

by reissuing another bond.

In general at step n, the value of a callable bond following an optimal

call strategy is given by

ﬁ(n/N, riN) = min [f(n/N, r{N), 100] , (7)

where £(n/N, r|N) is the value of the callable bond at time n if not called at
time n but following an optimal call strategy at every step from n-1 to 1.”
The "gain" from exercising the call is f(n/N, r|N) - 100. The ; that equates
£{1, r[N) to 100 is the required coupon.

For later reference note that, if called, the bond ceases to exist, and a
new bond could be issued. Assuming that securities are correctly priced, the
exact provisions of the new bond are a matter of indifference to the issuer as
long as the new bond has a value of $100. For example, the borrower could
issue a new callable bond with a slightly lower coupon, the lower coupon being
a reflection of the "gain" to the issuer from calling the bond.

Alternatively, the borrower could issue a non-callable bond with, in a sense
to be discussed below, a more favorable ecoupor,

With discrete decision points, the "gain" from exercising a call on a
bond is f(n/N, r|N) - 100, a positive number. However, if f moves
continuously over time, this "gain" approaches zero as the time between each
decision approaches zero or equivalently the number of equally spaced decision

points per interval of time approaches infinity. Specifically,

Theorem: Assume that r follows a Weiner process, state prices p are
defined as above, t = n/N, where n and N are predetermined integers such that

ne(1, N] and r is such that the call will be exercised for a gain G of



[£(r, r]kN) - 100] > 0, so that the call will be exercised. Then, in the

limit of the sequence as k approaches infinity, G approaches zero.

Proof: If bond is not called at t but optimally called at decision
points after 1, the bond price f at t would follow a Weiner process. This
statement follows from an application of Ito's Lemma and from noting that the
assumption that p is twice differentiable with respect to r insures that f is

twice differentiable.d TIp
dr = u(r)dt + o(r)dz,

where dz is a Weiner Process and dt = -dt. The application of Ito's Lemma and

substituting (dr)? yields
df = [—f + u{r)f + 102(r)f ]dt + a(r)f dz
n r 2 rr r '

Since f is a Weiner process, the price f is almost surely continuous at
t. Thus, for any level of gain ¢ > 0, there will exist a k > 0 such that
for any integer k > k , £(t, r|kN) - 100 < ¢ except for price paths with

measure zero. Q.E.D.

This theorem is really not very surprising. The "gain" from not
exercising the call is a mirror image of the "loss" from not following one
possible optimal strategy of reissuing a new callable bond with a slightly
lesser coupon. In a short enough period of time in which prices change
continuously, this loss can be made arbitrarily small. This theorem shows
that the "gain" from exercising the call is always positive but approaches
zero as the number of trading intervals approaches infinity.

A corollary is that the reduction in the coupon on a newly issued

callable bond is always positive but approaches zero as the number of trading



intervals approaches infinity. Even though in the limit the change in coupon
at each exercise of a call is zero, the reduction in coupon over a finite
period from repeatedly reissuing new callable bonds is f‘inite.6

The total reduction in the coupon over time is the sum of the reductions
associated with each exercise. If the issuer exercises the call sufficiently
often, loosely speaking an infinite number of times, the sum of the
infinitesimal reductions can "add up" to a finite reduction. Except for its
probabilistic nature, this problem is conceptually similar to a certain game
played N times. At each play, the player receives a gain of 1/N. As N
approaches infinity, the gain per play approaches zero, but the overall gain
is always one.

This discussion leads to the following:

~

Theorem: The coupon rate ¢ on a callable bond with no call protection is
greater than the coupon rate ¢ on an otherwise identical non-callable bond.

Proof': Consider the following strategy: Issue a callable bond with no
call protection, call it when there is any profit at all, and issue a new
callable bond with an infinitesimally smaller coupon. Repeat this strategy
over and over again. Thus will be captured any favorable changes in coupon
rates,

Now, we show that no investor would participate in this strategy if

; e, If 8 < ¢, the non-callable bond dominates. If ; = ¢, over a finite

period of time, there is a probability greater than zero that the state
variable r will decrease by a sufficient amount so that 8 on the newly issued
callable bonds will be less than the original ; or ¢ by a finite amount.

Thus, ¢ must be sufficiently greater than e¢ to induee an investor to purchase

the callable bond since the investor realizes that there is some probability



that over time the coupon on the repeatedly reissued callable bonds will be

less than ¢ by a finite amount. Q.E.D.

Since the coupon on a callable bond would initially exceed the coupon on
a non-callable bond with the same initial value, a borrower who continually
calls and reissues callable bonds must believe that there is some possibility
that the coupon associated with the series of callable bonds will ultimately
be less than the coupon for the non-callable bond that could have originally
been issued. If this were not the case, the borrower would prefer the non-
callable bond. Section IIIA presents a numerical example that illustrates
this anticipated decrease in the coupon,

It is instructive to examine the effect of issuing a non-callable bond
instead of a callable bond to fund the call. What makes it optimal to eall a
callable bond is that the state variable has changed so as to increase the
price of the eallable bond above $100. The same change in the state variable
will also cause the price of the non-callable bond to increase. Thus, the
borrower can finance the call by issuing a non-callable bond with a coupon
rate somewhat less than ¢, the original rate on a non-callable bond. In the
limit, the difference between ¢ and the new coupon for a non-callable bond
will approach zero. But this is precisely the point. A single exercise of a
call has no value in the limit. It is the strategy of continuing calling and

reissuing a new callable bond that gives value to the right to call a bond.

IT. RELATION TO PREVIOUS WORK
Previous research uses numerical analysis to estimate the value of a
callable bond. 1In this section we demonstrate the equivalence of the analysisg
of the value of the call provision in the previous section to these numerical

techniques. A4s an illustration, we consider the pioneering work of Brennan



and Schwartz (1977B). They begin with a continuous time model of bond price
dynamies, approximate the model with finite differences, and then recursively
solve the set of difference equations to estimate the value of the bond. The
following briefly reviews the essential features of the model of Brennan and
Schwartz for a non-callable bond. Subsequently we discuss incorporation of
the call feature,
Define the following:

T the time to maturity of the bond, where 1 = 0 at maturity;

¢ the instantaneous rate of coupen payments per par value of 100;

r the instantaneous risk free rate of interest,

Let the interest rate r follow the stochastic process
dr = u(r)dt + o(r)dz, (8)

where dz is a Gauss-Weiner process, with E(dz) = 0 and E[dzz] = dt, and
dt = -dt. Further, if money exists, the nominal interest rate eannot be

negative. This latter condition is satisfied if lim o{r) = 0 and x(0) 2> 0.
r+0

The drift term w(r) in (8) can take various forms. Cox, Ingersoll and
Ross (1985) assume that u(r) takes the form of a mean reverting process,
k(r - 8), where « and 0 are constants. Brennan and Schwartz (1977) assume
that r follows a martingale in which u(r) = 0, a special case of the mean
reverting process.

If the expectation hypothesis holds, the Markovian property of r implies
that the price of the bond at time t will be a function of only
tand r, B{t, r). Using Ito's lemma and the pure expectations hypothesis,7
Brennan and Schwartz show that the price of a default-free bond must satisfy

the partial differential equation
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! 02(r)3m +u(r)B - rB-B_ +c=0 (9a)

with the following boundary conditions:

Maturity Date: At maturity, the value of the bond will be the par value,

so that

B(0, r) = 100 (9b)

Zero Interest Rate: A natural boundary occurs when the interest rate is

zero, Setting r = 0 in (9a) yields
BT(T, 0) = ¢ - u(O)Br(T, 0) (9¢)

Infinite Interest: As the interest rate approaches infinity, the bond

(except at maturity) will have a value of zero. This condition is captured by

lim B(t, r) =0, t > 0 (9d)
P+
The solution to (9) can be approximated by numerical techniques. The
appendix contains a detailed discussion of the approach used by Brennan and
Schwartz, Briefly, first define s = 1/(1 +r), 0 <s <1,
b(t, s) = B{1, r) and o(s) = o(r) and transform (9) in terms of s.
Approximate each unit of time by N equal subintervals and the state variable s
by M + 1 points equally spaced on the closed interval 0 to 1. After
substituting the finite difference approximations for the partial derivatives,
the difference equations developed by Brennan and Schwartz can be rewritten in
a form similar to equation {2) of the prior section (see the Appendix).8
To incorporate the call provision of a bond, Brennan and Schwartz propose
the boundary condition

B{t, r) < 100, 0 ¢ t < T, (10}

- 11 -



where o is the time to maturity at which a bond can first be called and the
call price is 100. They implement this constraint in their numerical

approximation in exactly the same way as the call provision is incorporated in
the previous section. Namely, they begin at n = 1 and if B{1/N, r|N) > 100,
they set the value of the bond to 100, and so on. Thus, the constraint acts
as an absorbing barrier since the implementation of their numeriecal

approximation properly allows for the retirement of a callable bond upon
exercise of the call. At that point, the issuer can finance the call by
raising an additional $100 in the financial markets. 3

The discussion above highlights an important facet of the process giving
rise to the call's value that is masked, however, by the bond price dynamics
as posited in the differential equation (9a). Note that equation {9a) is
defined over all r and all tr > 0. In contrast, as shown in the last section,
when an issuer exercises a call and finances the call with a new issue, the
new issue will in some sense have more favorable terms than the issue
called. Thus, whenever the bond is called, the differential equation (9a)
changes. The possibility that an issuer can change the basic stochastic
process governing the borrowings is what gives value to the right to call a
bond. This possibility of changing the stochastic process is of much broader
application. For example, Majd and Pindyck (1987) model the decision to delay
an incremental investment on an ongoing project as the ability to alter the

stochastie process underlying the value of the investment.

ITI. SOME NUMERICAL EXAMPLES
This section presents some numerical examples to illustrate the effect of
call features and interest rate uncertainty on the prices, coupons and
duration of callable bonds. The current price of a bond is a function of the

coupon, the time to maturity, the call provisions, the current state, and the

- 12 -



uncertainty about future states. Thus, the pricing relationship implicitly
involves six variables. To provide some comparative staties, we generally
hold four of the six variables constant, vary one of the other two, and record
the value of the remaining variable. To simplify the call provisions, we

assume that the bond is callable at 100, so that the time to first call fully

describes the call feature of a bond. Assume also that the risk free rate

follows a diffusion process with u(r) = 0 and o{r) = /ro. 10

The first subsection explores the effect of call features on current and
future coupons. The second subsection shows that bond prices of callable
bonds do not always increase with increases in the uncertainty about future
interest rates in contrast to the results of Cox, Ingerscll, and Ross (1985)
for non-callable bonds. The third subsection examines the effect of interest
rate uncertainty on the duration of both callable and non-callable bonds.

A, The Call Feature and Bond Coupons

In our discussion of the origin of the value for a call provision in
section I, we measured the value of the call option as the difference between
the coupon rate for a callable bond and the coupon rate for an otherwise-
equivalent non-callable bond, We now demonstrate this numerically. Assume a
borrower requires $100 for 20 years. The coupon that the borrower must pay
today depends on the current riskfree rate r, the uncertainty in this rate,
and the call provisions.

Table 1 contains the coupons required for various combination of ¢ and
r. In all of these comparisons, we adjust the price of the bhond to maintain
the coupon on a 20-year non-callable bond at 10 percent. For example, if o is
0.10 and r is 0.165, a 20-year non-callable bond with a coupon of 10 percent
would have a current price of $80. To borrow $100, the agent would need to

issue 1.25 bonds.
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The required coupon increases as the call protection period decreases
(Table 1). For example, if ¢ is 10% and the current value of r is 13.2%, the
borrower could finance $100 at a coupon rate of 10 percent using a non-

callable bond. Alternatively, holding ¢ and r constant, the borrower could
issue $100 at a coupon rate of 18.4% using an immediately callable bond. With
a call protection period of 5 years, the coupon is 14.1%4, and with a call

protection period of 10 years, the coupon is 12.3%. As would be expected, the
inerease in the coupon for a bond with call provisions is less when the bond
is selling at a discount.

In section I, we stated that a borrower who issues a callable bond
anticipates that the coupon on successively reissued callable bonds may
gradually decrease over time and may ultimately be less than the coupon from
originally issuing a non-callable bond. To illustrate this effect, we perform
a simulation to compare the coupon from issuing a non-callable bond with the
distribution of possible coupons from issuing and reissuing immediately
callable bonds. The specific scenario illustrated in Figure 1 compares the
coupon on a five-year non-callable bond with the distribution of future
coupons associated with a strategy of calling and reissuing new callable bonds
Wwith continually lower coupons.11

The initial value of r is 7%, and ¢ in /ro is 15. Under these
assumptions, the coupon on a five-year non-callable bond issued at par 1is
6.5%, and the coupon on a five-year immediately callable bond is 12.22%. Over
time, there is an increasing probability that the coupon on the reissued
callable bonds will be less than the coupon on the non-callable bond. Some
readers may feel that the probability of coupons near zero 1s unrealistically
large. The reason for this possibly large probability is that under the

martingale process employed in this simulation, zero is an absorbing barrier
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for the state variable r. A mean-reverting process with the same ¢ would lead
to lesser probabilities of coupons near zero.
B. Prices of Coupon Bonds and Interest Rate Risk

Cox, Ingersoll, and Ross show that the derivative of the price of a non-

callable zero-coupon bond with respect to ¢ is positive. Since a non-callable

coupon-paying bond can be viewed as a portfolio of zero-coupon bonds, the same

result applies to such bonds. This section shows numerically that this
positive derivative of price with respect to o does not generalize to callable
bonds.

Numerically, we generate prices for a 20-year bond with a coupon of 10
percent as a function of the current interest rate and o ranging from 0.0 to
0.35. As expected, the prices of non-callable bonds increase with interest
rate risk for any level of r (Figure 24).

This result, however, does not always hold for callable bonds. At the
extreme, the price of a bond that is immediately callable at 100 is negatively
related to o for interest rates less than about 11.75 percent, and positively
related to o at rates greater than 11.75 percent (Figure 2B}. This pattern
persists for bonds with a call protection period of five years, although the
relationship is greatly dampened (Figure 2C).

The intuition behind these results is the following: Consider a non-
callable bond in which r is constant over time and equal to the coupon, In
this case of certainty, the price of the bond will be a convex function of r
Now, introduce some uncertainty about the future value of r. Before prices
adjust, Jensen's inequality shows that the expected price of the bond at the
next decision point is now greater than the current price of the bond. Since
the coupon is still the same, the expected holding period return has

increased, violating the pure expectation hypothesis assumed in the Brennan-
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Schwartz model. To conform to the pure expectation hypothesis, the price of
the existing hond must incr'ease.12 Since in a certain world, the price of a
callable bond is not a convex function of r, Jensen's inequality is not
applicable, and the price of a callable bond does not necessarily increase
with increases in interest rate uncertainty.

C. Duration

Traditional measures of duration assume that future interest rates are
known and often that the term structure is flat. As such, holding maturity
and coupon constant, the price of a bond is a function only of the

continuously compounded riskfree rate r, P{(r). The total differential of P is
dP = P dr . (1)

Rearranging (11) yields the usual duration measure

5 . B
== *"77 (1)

With uncertain interest rates, the price of a bond will be a function of
r and o (r), P(r, ofrj)). To define a comparable measure of duration in an
uncertain world requires explicit assumptions as to what is held constant.

For example, if o(r) = v/ro, the total differential of P is

i} 1 .-} 3
dP = Prdr + PG or °dr + Po(r)r do . (13)

{r) 2

Holding the overall level of risk constant, (do(r) = 0) results in the
standard duration measure (12}. Alternatively, setting de = 0, results in the

duration measure
_Eiﬁl (14)
This duration measure accounts for the direct effect on bond prices of
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interest rate changes, as well as the indirect effect of changes in r on
prices through the level of uncertainty about interest rates. That is, in a
world of uncertainty, changes in the level of the state variable r have both
direct and indirect effects, and there is no longer an obvious single measure

of duration as in a world of certainty.

To examine the effects of interest rate risk on duration, we use the

numerical approximations for bond prices described in section II, and
calculate the duration, as defined by (14), of a twenty-year bond with a
continuously paid coupon of 10% per year for various call provisions, current
interest rate r, and uncertainty o. The results are reported in Figures 3A-C.

In the certainty case, the investor knows with certainty whether the bond
will be called. Thus, in a certain world the duration of a ecallable bond is
related to two distinct "maturity" dates: the actual maturity date, and the
date of first call. If the price today is less than $100, investors know that
the bond will not be called regardless of the call protection period. As a
consequence, the bond will behave as if it were a 20-year non-callable bond,
and the duration of the bond will be unrelated to the length of the call
protection period. If again ¢ = 0 but the price is greater than $100,
investors know that the bond will be called at the first call date, Thus, if
the bond has call protection for five years, it will behave like a five-year
bond and have a shorter duration than a bond with call protection for ten
years, and so on. If price equals $100 and ¢ = 0, duration is undefined.

Only when there is uncertainty regarding the future behavior of interest
rates will there be uncertainty as to whether a bond will be called. In this
case, duration will be a function of the probability of call. The probability
of a call is related to the difference between the current price of the bond,

the call price, and the uncertainty regarding the cocurse of future interest
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rates. In contrast to the certainty case, there is no longer a jump in
duration as the price rises above the call price; and duration as a function
of price becomes flatter as o increases. Intuitively, as uncertainty about

future interest rates increases, the current level of interest rates conveys
less information about the future level and, therefore, the probability of an

eventual call.

Finally, turning to the non-callable bond in Figure 3C, duration
increases monotoniecally with increases in price (or decreases in interest
rates)--a well known result. This relation is dampened in a world with
interest rate uncertainty. As interest rate risk increases, the duration of a

bond decreases.

ITI. Concluding Remarks

This paper explores the price behavior of callable bonds under the
assumption of perfect capital markets. Using dynamic programming techniques,
the paper shows that the call feature of a bond is quite different from the
usual type of option, such as a call on a common stock. After the call
protection period, the issuing firm will exercise a call whenever there is any
gain from exercising. In the limit, the gain from the exercise of a single
call is zero. Yet, by continually calling and reissuing a new callable bond,
an issuer can continually capture any favorable changes in interest rates and
thus change the time pattern of coupon payments. Some numerical examples were
presented to illustrate this process.

In elosing, it is important to note what this paper did not address. In
a perfect capital market, any company would be indifferent between issuing a
callable or a non-callable bond. If a call feature of a bond alters the time
pattern of coupon payments, the coupon rate will adjust just enough to

compensate the lender. If there are transaction costs associated with
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exercising a call, however, the lender will always price a callable bond to be
indifferent between the callable bond and a non-callable bond. The issuer
thus will bear all of the costs associated with calling the bond. In this

case, callable bonds would never be issued. Yet, virtually all long-term
corporate bonds are issued with call provisions., This paper does not address
the very interesting and important question of why corporations issue callable

bonds if callable bonds entail greater transaction costs than non-callable

bonds.
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APPENDIX

Errors in the Numerical Approximation

Since analytical solutions to the differential equation (9) in the text

are known only for special cases, the solution is approximated by first
transforming it to a finite difference equation., In this appendix we
demonstrate the approach and then examine the errors in the numerical

approximation.

The approach requires that the state variable r be hounded. Since r is
unbounded from above, Brennan and Schwartz suggest the transformation
s=1/{(1+r), 0<s <1, and define b(t, 8) as B(t, r) and o(s) as o(r).

This transformation yields

142 32 - S
S 0 (r)bss + 870 (r)bs -

> b - bT +c =20 (a1)

with the revised boundary conditions:

b(0, s) = 100 (Maturity) (A1a)
bT(T, 1) = ¢ (Zero Interest) (A1b)
b(t, 0) =0 (Infinite Interest) (Ale)

Unlike r, the state variable s is bounded in the closed interval O to
1. They then approximate s by M + 1 points, equally spaced at increments of
h, and each unit of time by 1N + 1 points, equally spaced at increments of
k. Setting t to 1 makes this model identical notationally to the one in the
text.

Incorporating the boundary conditions (Ala)-(Ale), the set of finite

difference equations, at each point in time (n = 1, ..., 1™N), takes the form
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1 Y bn(1)
ay By Y5 7 by(2)

. . . N
LYRILYERE TRIALAS, 1)/
1 bn(M) i
where
y 2
o ksic (Si)
i 2h2
42
ks.o {s,) 1 -3
_ i i k.32
Bl =+ h2 + 5 si o (Si) + k ( 5,
k 32 k 4 2
Y. = - = 8.%0(s8,) ~ — (s.)
i h i 2h2 i
¢ = C/N

and C is the annual coupon,

bn—1(2) +cC
bn_1(M-1) +C
bn-1(M) +C

The coefficients @5y Bi' and v; are invariant with respect to time.

Thus, system (A2) can be rewriftten in matrix form as

or

N no1 * ce)

where bj is the vector of bij's, A is a tridiagonal matrix of coefficients,

and e is a vector of ones. Beginning at j=1, solving (A3) recursively

provides the vector of prices at any point j.13
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In using numerical methods there is a complex trade-off among the
specific algorithms used, rounding errors, and the fineness of the time and
state variable grid as specified by k and h respectively. In the absence of
rounding er‘r‘ors,wf the error in the approximation declines as k and h

decrease. However, as the grid becomes finer, solving (43) recursively

requires more and more calculations, Due to the finite and fixed number of

significant figures in a number stored in a computer, there is always the
possibility that a caleculation will introduce rounding errors and that such
errors will propagate themselves in an explosive fashion through successive
iterations. This trade-off indicates the importance of the judicious choice
of h and k in using any numerical approximation.

One way to examine the interaction of a finer grid with the possible
introduction of rounding errors is to calculate the approximate values and
compare them with the true values. In earlier studies, k and h were picked
somewhat arbitrarily since the absence of a closed form solution precluded the
calculation of the correct values. However, closed form solutions are now
available for certain processes. As an example, Cox, Ingersoll and Ross
(1985) derive a closed form solution for a default-free zero-coupon bond under
the assumption that the standard deviation of the stochastic process
describing interest rate behavior, o(r), is +ro, where ¢ is a constant.
Specializing their solution to a martingale gives the price of a zero coupon

bond with t to maturity as

e-f(r)r

P{(t, r) = (Al)

2(8/210 1)

where f{t) = = 75 —
/2 o(e" %1y + 2/2¢
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In the special case in which o is zero, f{(t) = t and P(r, r) = e_rr, 1o

that r is the usual continuously compounded rate of discount. 12
For the purposes of this paper, we do not need to have precise estimates

of the stochastic return process, but we do need some rough range of plausible
values. The empirical work of Marsh and Rosenfeld {1983) suggests

that u(r) in (A4) is not much different from zero. The value of

o in /ro varies greatly from one time period to another and from one set of
data to another. Expressed in annual units, they find that ¢ ranges from .01
to .15. If r were to equal to 10 percent, /rs would thus range from .3
percent to 4,7 percent., Of note, their empirical work suggests that the log
model in which o (r) is ro better describes the return process than the model
used by Cox, Ingersoll, and Ross. Nonetheless, for exposition reasons, the
numerical calculations in this paper assume somewhat arbitrarily that o(r) is
/ra,

Equation (AY) allows an analysis of the behavior of the numerical
approximation to the bond value as a function of h and k. Table Al contains
the results of this experiment for o = 0 and .20 and r = .25 for both a one-
year and a twenty-year zero coupon bond.16 The approximation errors in Panel
A assume that o = 0, and in this case we report only one set of values for
each maturity. The reason is that, when ¢ = 0, all terms in (A2} involving h
drop out of the system., Thus, the approximated bond value is unrelated to the
fineness of the grid along the state variable dimension. The values in the
table represent the approximation error as a percent of the correct value.

For example, for a twenty-year bond with ¢ = 0, r = .25 and 1/k = 120, the
approximated bond value is 0.52% larger than the correct value of .006738.
One interesting feature of Panel A of Table A1 is that the approximated

values uniformly overstate the correct values when o = 0. This overstatement
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is unambiguously related to the approximation of the compounding process in
(A2). In this case of certainty, the tridiagonal matrix in {43) reduces to a

diagonal matrix and the estimated value of P(t, r) is given by

- (t/k)

P{t, r) = 100(1 + kr)~ (85)

A comparison of (A5) with (A1) with o = 0 shows that the estimated price

E will always exceed P if r > 0. Economically, the finite difference
approximation ignores the compounding of returns within each increment of time.

The calculations in Panel B of Table A1 assume that future interest rates are
uncertain and demonstrate how the errors change as a function of the number of
time increments per year (1/k), the size of the increments of the state variable
(h), and the maturity of the zero coupon bond. Generally, the percentage errors
for a one-year bond are less than those for a twenty-year bond.

For a one-year bond, most of the improvement in the approximation error
occurs with increases in the number of time increments per year. Importantly for
time increments of 60 or more per year, the approximation errors are very small--
uniformly less than 0.06 percent. For a given number of time increments per year,
there is little change in the percentage errors as the size of the increments in
the state variable (h) decreases.

In contrast, for a twenty-year bond, most of the improvement in the
approximation error occurs with decreases in the size of the increments of the
state variables (h). For a given value of h, the approximation error shows some
decrease as the number of time inecrements per year increases. Yet, the decreases
in the errors are not as great in magnitude as they are with decreases in the
increment for the state variable,

Although these calculation strictly apply only to the case in which

o(r) = /ro, they do suggest some generalizations. When there is no uncertainty as
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to the future course of interest rates, the approximation error will be only a
function of the number of increments per year. For maturities of twenty years,

the number of state variables becomes more important than the number of increments

per year as interest rate uncertainty increases.
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FOOTNOTES

'Some bonds are callable at 100 percent of par regardless of the length
of time to maturity., Other bonds are initially callable at a premium above
100 (for example 108), and this premium decreases over time at discrete
intervals until the call premium equals zero. The actual price at which the
call takes place is the stated call price plus accrued interest., Furthermore,
some bonds are callable before the normal call date provided the funds used to
call the bonds are not obtained from new borrowings at an interest rate lower
than a prespecified rate. The literature has generally ignored this
possibility of early call, and this paper will also ignore this possibility,

Additionally, even after the call protection period, the call eannot usually
be exercised immediately but only after a notification period, frequently a
month. Again, this paper will ignore this complication,

s noted, most prior work on callable bonds has been directed towards
valuing a single bond. A notable exception is Boyce and Kalotay (1979).

3an analogue to this type of game but in a certain world is a game that
is played n times and each time pays 1/n. As n approaches infinity, the gain
for each play approaches zero. Yet, the overall gain is 1.

uBrennan and Schwartz (1977A) argue that a firm will call its callable
bonds "at the point at which their uncalled value is equal to the call
price." Since they do not define the term "uncalled value," this statement of
behavior is not well defined. However, if f{n/N, r|N) is defined as the
uncalled value, this statement becomes well defined.

5The value of the callable bond B is not differentiable at r¥* given as
the solution of f(n/N, r*|N) = 100.

6Two individuals who have read this paper suggested that the "high
contact™ theorem of Merton (1973) could be used to derive these results
directly. Merton's theorem holds time constant and varies the state
variable. In contrast, this paper explicitly models the strategy of over time
repeatedly issuing new callable bonds and shows that in the limit the
reduction in the coupon approaches zero but is always positive, a result that
could not be obtained from Merton's theorem.

TThe pure expectations hypothesis states that the instantaneous expected
rate of return on default-free securities of all maturities is equal to the
instantaneously risk-free rate of interest, r. We also assume perfect capital
markets with no transactions costs, taxes or restrictions on short sales.

8To make equation (2) identical, one would have to apply the same
transformation to r as Brennan and Schwartz use and then approximate the new
state variable by M + 1 points.

91n contrast, the call constraint as posed in equation (10) is a
reflecting barrier and does not rscognize that the bond ceases to exist when
called. The numerical analysis implemented by Brennan and Schwartz, however,
does not formally impose equation (10} as the boundary condition.
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1OIn the examples that follow, unless stated otherwise, the numerical
algorithm is implemented with 1001 state variable increments (h = .001) and
120 time increments per year (k = 1/120). Coupons are paid "continuously" at
the end of each time increment with a value equal to C/120, where C is the
annual coupen. The appendix contains a detailed description of the algorithm
and its implementation. Although the discussion of numerical approximation
errors in the Appendix suggests that a coarser grid (along both the state
variable and time dimensions) than used here would suffice, we opt for greater

accuracy in reporting the main results,

Min implementing this simulation, the algorithm to calculate prices
assumed that there were 401 state variables and 120 increments per year. To

conserve computer resources, the simulation assumed that the bond could be

called only at the end of each menth, i.e., every tenth time increment. The

changes in the state variable were simulated 10 increments at a time by the

formula .
r10°F* /rr 5 X,

where s = .15//12, r is the value of r at time 1, and x is a unit normal

random variate. It will be recalled that the time at maturity is zero. The
simulation was repeated 1000 times, and coupons varied in inerements of
.001. Because of the discreteness of the return generating mechanism,

r. could become negative in which case it was set to 0.002,

121¢ there were liquidity premiums or if, in a general equilibrium model,
r varied directly with o, the total derivatives of the price of a non-callable
bond with respect to o could be of any sign.

13Press, Flannery, Teukolsky and Vetterling (1986) provide an algorithm
that utilizes this structure to solve (A3) for bj‘

1“lThe term "rounding errors"™ is a very loose term and can cover a host of
problems. For example, one of the most serious errors in computer operations
involves the addition of two numbers of substantially different magnitudes.
For example, if the computer stores four significant figures, the sum of 1000
and 0.001 will be stored as 1000. This type of "rounding errors" can
introduce substantial errors in solving simultaneous sets of equations such as
(a2).

15Using L'Hopital's rule, the limit of f(t) as o approaches zero
iz t. Thus, in this special ecase of ecertainty, (AY) reduces to the usual
formula where r is the continuously compounded rate of return,

16The values in Table A1 represent approximation errors for the value of
zero coupon bonds. Determining the error for a non-callable bond that pays
coupons every six months is straightforward. Since a non-callable coupon bond
can be decomposed into a series of zero coupon bonds and since the matrix A in
(A3) is the same for any zero coupon bond, one could obtain for any such
coupon paying bond, tables similar to those presented here by summing the
approximated prices of each of the appropriate zero-coupon bonds.
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