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Estimating Adverse Selection Costs in a Market with Genetic Testing 
for Breast and Ovarian Cancer 
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3641 Locust Walk 
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Tel: 1 (215) 898-7765 
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Abstract: Using data from the medical literature on age-specific and family-history specific 
incidence rates, we develop double-decrement models to evaluate the actuarial impact of a family 
history of breast cancer or ovarian cancer, and the impact of a positive test for the BRCA gene 
mutation. Increased forces of mortality are derived. It is found that females with some family 
histories of cancer and/or the presence of the BRCA mutation cannot be accepted at standard 
rates; depending on underwriting practice, most cases could be accepted at substandard rates. 
Then a Markov model is built to evaluate the likely effect of adverse selection resulting from 
women taking a genetic test without informing their insurer and consequently modifying their 
insurance purchase behavior. It is concluded that, at current testing rates, adverse selection 
should not be a major source of concern if companies apply strict underwriting rules, requesting 
cancer history and age at onset for all first degree relatives. 

Keywords: Term Insurance, Breast and Ovarian Cancer, Genetic Testing, Adverse Selection 

First draft - submitted February 15,1999 

-181- 



1. Genetic Testing and the Fear of Adverse Selection 

Adverse selection is a major source of concern for insurance companies because asymmetric 
information could result in huge underpricing. The recent developments in the Human Genome 
Project, while exciting from a biological standpoint, have further increased insurer fears about 
this issue. In many jurisdictions, insurers are not allowed to ask for results of genetic testing. 
Several years ago, the gene mutations which affect the likelihood of developing breast and 
ovarian cancer were discovered; commercial tests to detect the presence of these gene mutations 
are now available. Women who learn through genetic tests that they are at higher risk of death 
for breast or ovarian cancer may purchase more insurance, which to them looks inexpensive 
since it is priced at rates set for average risks. Women who learn they are at lower risk after a 
negative test may purchase less insurance. These two forces combine to increase the aggregate 
mortality of the purchasers of insurance. If insurers do not have access to the test results, they 
are unable to identify which women are at higher risk and which are not. They have to increase 
premiums for everyone, driving those at lower risk out of the pool. This creates a spiral of 
increasing prices and decreasing number of policies issued, that may threaten the financial 
solvency of the insurer. 

The debate about insurer access to genetic screening information has industry 
representatives pointing to the risk of adverse selection. They advocate mandates which require 
that all test results provided to individuals also be made available to insurers. This insurers’ 
request for a “level playing field” contrasts with opposite efforts by consumer groups to increase 
the privacy protection of genetic information. Consumers are concerned that test information 
may find its way to employers and result in employment and social discrimination. They fear 
that the use of genetic testing by insurers could result in the creation of a biological underclass of 
uninsurable individuals. 

The issue is highly emotional and very political. Underlying conflicts in fundamental 
values have prompted legislators to regulate the use of genetic testing. Wisconsin was the first 
state to introduce a genetic testing law in 1992. Seventeen states now have enacted laws 
prohibiting insurers of different types from using genetic information in their underwriting 
decisions. As of early 1998, over 200 bills have been proposed in various state legislatures 
throughout the country that try, in one way or another, to limit insurers’ access to and use of 
genetic information (Jones, 1998.) 

Until very recently, the actuarial profession had not contributed much to the debate. This 
situation is changing as both the Institute of Actuaries and the Academy of Actuaries now have a 
genetic testing task force. The December 1998 issue of the North American Actuarial Journal is 
devoted entirely to the proceedings of the 1998 Bowles Symposium on genetic technology and 
underwriting. This issue contains a pioneering paper by Macdonald (1998), who uses a Markov 
model to estimate the impact of adverse selection. Macdonald does not refer to any particular 
disease or genetic test, and the parameters of his models are consequently estimated rather 
crudely. In this paper, we use Macdonald’s seminal approach to quantify the impact of a family 
history of breast and/or ovarian cancer, and the impact of a positive test for the BRCAl and 
BRCX! gene mutations. In section 2, we restate the main results of a working paper (Lemaire et 
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al, 1999), that estimates the effect of family history and gene mutations on forces of mortality 
and on the costs of term insurance. In section 3, a Markov model is presented to evaluate the 
financial consequences of adverse selection. Section 4 concludes, 

2. Increased Forces of Mortality in the Presence of a Family History of Breast or Ovarian 
Cancer, or in the Case of a BRCA Mutation. 

This section summarizes recent work by Lemaire et al (1999), who provide an actuarial insight in 
the genetic testing debate by quantifying the impact of family history of breast cancer (BC), 
ovarian cancer (OC), and BRCAIR mutations on forces of mortality and on term life insurance 
costs. 

The vast majority of BC and OC is the result of diet, lifestyle, environmental exposures, 
social interactions, and other factors, known and unknown. For instance, a late age at first 
childbirth and an early first menstruation slightly increase the likelihood of developing BC (Gail 
et al, 1989.) Women with more pregnancies, or longer use of oral contraceptives, or who 
underwent tubal litigation or hysterectomy, have a reduced probability to develop OC (Hartge et 
al, 1994.) However, some cancers are inherited. A small percentage of women (estimates range 
from one woman out of 833 to one out of 100) has a dominant mutated gene called BRCAl or 
BRCA2 (Ford et al, 1995.) Women with a BRCA mutation are at extreme risk to develop BC or 
OC. Estimates of the probability to develop either of these cancers by age 70 are as high as 
0.945 (Easton et al, 1995.) 

Approximately one in nine women in the United States will develop BC in her lifetime; 
one in forty will die from the disease (American Cancer Society, 1992.) Probabilities to develop 
BC, as a function of age and family history, have been obtained by Claus et al. (1994). For 
instance, Table 1 indicates the predicted cumulative probability of BC for a woman who has a 
mother or sister affected, by age of onset of this first-degree relative. Onset is defined as the 
moment BC is diagnosed. 

Table 1. Cumulative Probability of BC for a Woman who has One First-Degree Relative 
Affected with BC, by Age of Onset of the Affected Relative 
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Survival probabilities exhibit exponential decay: the annual probability that a woman 
affected with BC will die from the disease is 0.036, irrespective of the time since diagnosis and 
age at onset (SEER Cancer Statistics Review, 1973-1995, and authors’ calculations.) 

OC is less prevalent, but deadlier: 1.8% of women will get the disease. The risk is 
multiplied by 5.4 in the presence of family history (Hartge et al, 1994). Survival rates are low, 
but improving. In 1973, only 59.9% of the women who developed OC survived the first year 
after diagnosis. The five-year survival rate was 36%, the 20-year rate 30.1%. In 1992, 78.3% of 
affected women survived their first year with OC (SEER Cancer Statistics Review, 1973-1995). 
Applying Taylor’s separation method to OC survival rates (Taylor, 1977), the present-day tive- 
year survival rate was estimated to be 50.9%, and the 20-year rate 36.3%. 

Estimates of the penetrance (the percentage of those with the gene mutation who will 
develop BC) of BRCAl/2 vary from 56% to 85%, as there is a huge ethnic diversity in the sites 
of mutations. This wide range of estimates is typical of the medical cancer literature. We wish 
our estimates of increased forces of mortality and term premiums to be conservative thorn the 
insurer’s perspective, i.e. our figures should err on the high side rather than on the low side. 
Therefore, an average penetrance of 65% was selected, as a conservative (Lowden, 1998). 
BRCA mutations not only increase the probability of developing BC, they also lead to earlier 
cancers. The Cancer and Steroid Hormone Study, 1980-82, estimated that the age at onset of BC 
for women without the mutation is normally distributed around a mean of 68.99 years and a 
standard deviation of 15.39. With BRCA mutations, the mean age at onset drops to 55.435, 
while the standard deviation is unaffected (Claus et al, 1994.) 

Estimates of the likelihood to develop OC for a woman with a BRCA mutation vary 
widely, from 11% to 84%, depending on the type of mutation, the specific allele of BRCAl, and 
the population under. study (Easton et al, 1995, Ford et al, 1994, Struewing et al, 1997). An 
average of 40% seems conservative. 

Based on these medical estimates, an actuarial model was built to evaluate the increased 
death probability of a woman with a family history of BC or OC, or with a BRCA mutation, and 
the resulting increase in the net single premium of term insurance. First the survival probabilities 
for females given by the US Decennial Life Tables for 1989-91, published by the US Department 
of Health and Human Services, were fitted to a Makeham distribution. Then excess forces of 
mortality were calculated using a double-decrement model, and fitted with a quadratic function. 
Table 2 presents the p-ratio, the ratio of the force of mortality with family history or a gene 
mutation to the baseline force of mortality, for a 30-year-old woman. 
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Table 2: p-ratios with a family history of BC or OC, or with the BRCA mutation, for a 30-year- 
old woman (FDR = first-degree relative; SDR = second-degree relative; age at onset for BC: 20- 
29 

It is seen that excess mortality can exceed 100% in some cases of family history of BC, 
and 225% for a woman with a BRCA mutation. While some females with a family history of 
cancer can be accepted at standard rates, others need to be quoted sub-standard rates. Depending 
on the underwriting policy of the company, females with the gene mutation can possibly be 
covered, at a rate incorporating a severe mortality surcharge. Note that the common assumption 
that a given disease simply multiplies forces of mortality by a multiplicative constant (constant 

frailty hypothesis) does not apply in the case of BC and OC. Table 3, extracted from 
Brackenridge and Elder (1998), shows that these mortality increases are comparable, or even 
higher, than increases resulting from common diseases. 

Table 3. Mortality Ratios for Common Diseases 

1 DISEASE IM 
Systolic blood pressure 

Smoking Average (men) 1.70 
Smoking 40 cigarettes/day (men) 2.00 
HIV 35-year-old male 50.00 
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3. Adverse Selection Costs 

3.1. Markov Model 

A continuous time, discrete state, Markov model is developed here to represent the actuarial 
environment of genetic screening. The model, shown in Figure 1, decomposes the natural 
history of an individual into a series of discrete states, that decompose term insurance purchasing 
and genetic testing decisions. At all times, every individual is assigned to one and only one state. 
Transitions from one state to another can occur at any time. At time 0, a woman may be in either 
State 1 or State 2. A woman in State 1 has not been tested from BRCA mutations and has no 
insurance. A woman in State 2 has not been tested, but has insurance. From State 1, seven fUure 
states are possible: She can remain untested and purchase insurance (State 2); she can test 
negative and buy insurance (State 4); she can test positive and buy insurance (State 5); she can 
test negative and remain uninsured (State 12); she can test positive and remain uninsured (State 
13); she can die before getting tested or becoming insured (State 14); or she can remain untested 
and without insurance (State 1). Correspondingly, eleven t%ture states are possible from State 2. 
Each state is represented by an ellipse in Figure 1. The possible transitions from one state to 
another are represented by arrows. Most transitions have cash flow implications. Transitions 
into States 2 and 4 through 11 imply insurance premium payments. We assumed that policies are 
purchased through net single premiums. Transitions from States 2 and 4 through 11 into State 14 
imply insurance benefit payments. 

One Markov model can be defined for every single age of the population under study at 
time 0, and for every possible family history. We shall consider three initial ages (30, 40, and 
50) and four family histories (no BC or OC in the family; one FDR with OC; one FRD with BC, 
onset age 20 to 29; two FDR with BC, onset ages 20 to 29 for both), resulting in 12 subgroups or 
12 different Markov models. At time zero, women are assumed to be unaffected by BC and OC. 

We shall assume that the demand for insurance is inelastic to price. If this is not the case, 
the determination of the forces of transition would be very complex, as they are expected to 
change over time. If adverse selection occurs, more individuals at higher risk will purchase 
insurance, purchase insurance with larger benefit amounts, or hold onto that insurance for longer 
periods, increasing the financial exposure of insurance companies. That should drive insurance 
premiums up. In turn, this should decrease the transition probabilities into states that reflect 
insurance coverage (States 4 through 1 l), because higher costs will drive some women out of the 
market. To the extent that this increase in premiums preferentially drives out women who test 
negative or remain untested, which is what insurance companies fear, premiums will continue to 
rise in the spiral of adverse selection. 

3.2. Thiele ‘s Equations 

Assume that the population is subdivided into subgroups, according to family history of OC or 
BC. Following the notation of Macdonald (1998), the (continuous time) force of transition at 
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time t from State j to State k, for subgroup i, is denoted ,D:,‘,” (in the sequel superscript i will be 
omitted.) 

For each State, we wish to calculate, under a variety of assumptions, the actuarial present 
value of future payments, incorporating mortality and interest. This expected value, called the 
benefit reserve, is a liability to the company. The insurer is indifferent between paying the 
benefit reserve and insuring the risk. As the reserves for the various States are dependent, their 
values can only be found by solving a set of differential equations, Thiele’s equations for benefit 
reserves. One differential equation can be written for each State for which there is an outward 
transition. The equation for Statej, is written: 

where 
y,(‘lj Benefit reserve for Statej at time f 

vWk 
t Benefit reserve for State k at time t 

4 Force of interest at time t 

jk 4 Payment due upon transition from Statej to State k. 

ik 
Pt Force of transition from Statej to State k at time t. 

The interpretation of the differential equation is as follows: at all times, the reserve increases 
through interest accrual. Upon a transition from j to k, a benefit b,!’ might be paid. In our case 
this would only happen for a transition into State 14, when a death benefit is to be paid to an 
insured individual. Switching from State j to State k also implies the release of the reserve for 
State j and acquiring the reserve for State k. 

This set of differential equations can be solved backward recursively, using the boundary 

conditions (1j.i _ V, 1 - 0, where t* is the ending time for the period under consideration. In other 
words, the insurance company, at time t*, needs no longer to hold funds aside for this policy, 
because the policy term and the corresponding financial obligations have ended. 

The benefit reserve is the expected value of future payments. Higher order moments can 

also be computed. Norberg (1995) has shown that y (‘I’ the moment of order q about the origin 
for State j, is the solution of the set of differential equations 

k:j 
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Variances, coefficients of variations, and Pearson skewness coefficients can then easily be 
calculated from these moments. 

We are interested in the implicit cost of adverse selection, the cost of adverse selection 
and genetic testing in the market. To calculate this, we first solve the differential equations, 
assuming no allowed use of genetic testing by insurers. Women flow through the system at the 
base case transition rates and experience mortality at rates based only on their family history, the 
information which the insurer uses for pricing purposes. This gives us the expected present value 
of costs in the “no genetic testing” case. We then solve the same differential equations, assuming 
genetic testing and allowing women to flow through the system at the same base case transition 
rates. However, the transition rates will now be mortality rates corresponding to the woman’s 
BRCA status, if she is tested (baseline mortality if negative, BRCA mortality if positive,) and to 
her family history, if she remains untested. This gives us the expected present value of costs, in 
the genetic testing - full information case. The ratio of these two measures yields the implicit 
cost of adverse selection, the ratio of what the true risk is to what is claimed and charged. 

Implicit Cost of Adverse Selection = 
EV( full information) 

EV(allowable information) 

3.3. Initial Behavioral Assumptions 

Estimates are necessary for each force of transition. Transitions into State 14 (Dead) 
reflect mortality, which we estimate using the procedure outlined in section 2. These mortality 
rates differ by age, family history and BRCA status. The other transitions involve a combination 
of testing behavior, test results and insurance purchasing behavior. Reasonable base case 
estimates for these transitions will be assumed, erring on the side of cautiousness 

The following behavioral transition intensities were selected for our benchmark 
calculations. 

l Rate ofinsurancepurchasepy From industry figures (ACLI, 1997) this rate was estimated 
to be 5%. 

l Rate of genetic testing r. Very few women get tested presently: only 250 women have been 
tested at the University of Pennsylvania since the test became available, late in 1996. The 
test is very expensive ($2,400) and not covered by medical insurance. The price of the test is 
not expected to decrease dramatically, as one laboratory owns the patent. To be on the 
conservative side, a rate of 5% was selected. 

l Force of interest. Denoted as 6, we assume a force of interest of 5%. 
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Test results. The probability p that a test result will be positive depends on the sub-group: a 
woman with two first-degree relatives affected by BC is much more likely to have the BRCA 
gene than a woman with no family history of the disease. The value of this probability is 
found by introducing the constraint that expected benefits need to be equal in the two cases: 
(1) no genetic testing; and (2) women get tested but their insurance purchase decisions are 
not affected. This results in p=O.O05 for a woman with no family history, p=O.OS for a 
woman with one first-degree relative affected with OC, age at onset unknown. For a woman 
with one first-degree relative affected with BC, onset age 20-29, p=O.15; for a woman with 
two first-degree relatives affected with BC, both with onset age 20-29, p=O.40. 

Insurance benefits. The baseline amount of term insurance is assumed to be $1. A woman 
buying “less insurance” always reduces her benefit amount from $1 to $0.50; for a woman 
buying “more insurance,” we consider increased benefit amounts of $2, $4, or $10. A 
woman lapsing her insurance policy ceases to be insured. 

Insurance purchase probabilities. Insurance decisions are assumed to occur shortly after the 
test result is provided. Benchmark probabilities were selected as follows: 

’ If uninsured and test positive: P(buy insurance) = 0.25 
P(not buy) = 0.75 

’ If uninsured and test negative: P(buy insurance) = 0.03 
P(not buy) = 0.97 

’ If insured and test positive: 

’ If insured and test negative: 

P(more insurance) = 0.27 
P(same insurance) = 0.70 
P(less insurance) = 0.02 
P(lapse policy) = 0.01 
P(more insurance) = 0.02 
P(same insurance) = 0.75 
P(less insurance) = 0.18 
P(lapse policy) = 0.05 

Transition rates are then obtained by multiplying the appropriate rates and probabilities. For 

instance, pi.” =r*(l-p)*0.97. 

3.4. Costs of Adverse Selection, by Family History 

The model was run, using the initial behavioral assumptions, for the four family histories under 
consideration. 
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Table 4. Implicit costs of adverse selection for a Woman with No Family History of BC or OC, 
Insured at Onset. 

Adverse selection only has a minuscule impact for a woman who has no family history of BC or 
OC. This is due to the fact that the probability of having the gene, for a woman with this 
particular family history, is only 0.005. Insurance companies should not be overly concerned 
with restrictions of the use of genetic testing information for women with no family history. 

Table 5. Implicit costs of adverse selection for a Woman with One First-Degree Relative 
Affected with OC, Age at Onset: Unknown, Insured at Onset. 
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For a woman with one first-degree relative with OC, potential adverse selection costs are 
non-negligible, as they exceed 10% in some cases. We reach a similar conclusion as Macdonald 
(1998): the main costs of adverse selection do not result from the lapsing behavior of the women 
who test negative; it results from the women who select very high benefit levels following a 
positive test. 

The longer the duration of the policy, the higher the adverse selection costs. Obviously, 
longer terms give women more opportunities to get tested and make insurance-related decisions, 
and more time to develop OC or BC and die. 

Adverse selection costs are always higher for an initial age of 40. Women who are 
cancer-free at the age of 30 are unlikely to develop BC or OC before the age of 50, and even 
more unlikely to die from the disease during that 20-year period. Women who are 50 at time 
zero are more prone to develop cancer than women who are 10 years younger, but it is also much 
more probable that they die from other causes, so that the adverse selection cost, which is a ratio, 
is lower. 

Table 6. Implicit costs of adverse selection for a Woman with One First-Degree Relative 
Affected with BC, Age at Onset: 20-29, Insured at Onset. 
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Table 7. Implicit costs of adverse selection for a Woman with Two First-Degree Relatives 
Affected with BC, Ages at Onset: 20-29, Insured at Onset 

Adverse selection costs are the highest in the last two cases, reaching 20% in some cases. There 
is a substantial probability that the gene mutation is present in the family in the two cases; 
consequently the result of the test provides a lot of information. 

3.5. Introducing Fraud. 

The above tables assumed that women reported their family history truthfully. Now let us 
consider the impact of fraud. Assume a woman with 2 FDR with BC reports no family history, 
and the insurer fails to detect this fraud. 
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Table 8. Implicit costs of adverse selection for a Woman with Two First-Degree Relatives 
Affected with BC, Ages at Onset: 20-29, Insured at Onset, Who Claims no Family History of BC 
or OC. 

2 1.1469 1.2909 1.3704 1.3669 
50 4 1.1878 1.3865 1.5138 1.5339 

10 1.3090 1.6670 1.9305 2.0151 

Adverse selection costs are huge in this case. It is of crucial importance for insurance carriers to 
request detailed family information (including age at onset) during the underwriting process, and 
to investigate the applicant’s statements vigorously. 

3.6. Very Conservative assumptions. 

The benchmark behavioral hypotheses specified in 3.3. assumed a high degree of inertia. Most 
women did not change their insurance purchase behavior following the results of the test. We 
now assume major behavioral changes, decreasing the probability of keeping the same amount of 
insurance by 50% and adding 50% to each probability which affects the adverse selection. 

’ If insured and test positive: P(more insurance) = 0.77 
P(same insurance) = 0.20 

’ If insured and test negative: P(less insurance) = 0.67 
P(same insurance) = 0.25 

Table 9 shows adverse selection costs under this set of conservative assumptions, for a woman 
with one FDR with BC. As expected, the adverse selection costs are sizable. 
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Table 9. Implicit costs of adverse selection for a Woman with One First-Degree Relative 
Affected with BC, Age at Onset: 20-29, Insured at Onset. 
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3.7. Women uninsured at time zero. 

Finally, adverse selection costs are estimated for a woman uninsured at time zero (i.e., in State 1 
at t=O). As shown in table 10, costs are higher from State 1 than from State 2. This conclusion 
was also reached by Macdonald (1998): the population currently uninsured may lead to higher 
costs than the insured population. 

Table 10. Implicit costs of adverse selection for a Woman with One First-Degree Relative 
Affected with BC, Age at Onset: 20-29, Uninsured at Onset. 

3.8. Coejicient of variation; skewness coefficient 

All preceding results were obtained comparing mean costs under a variety of assumptions. Table 
11 shows standard deviations, coefficients of variation, and skewness coefficients, in one 
particular case. An increased benefit of 10 was selected to maximize the increase of the higher 
moments. Table 11 shows that the impact of genetic testing on second and third moments is 
quite limited. 
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Table 11. Mean, standard deviation, coefficient of variation, and skewness coefficient of the present value of claims, for a Woman 
with I First-Degree Relative affected with BC, Age at onset 20-29, Insured at Onset. Increased benefit = 10. 

50 S.D. .154149 .165657 .238732 .273345 .307314 .36043 1 .361884 .420125 
C.V. 8.5061 8.9019 6.1204 6.5508 4.8354 5.1627 3.9410 4.1776 
Skewness 24.3324 26.2882 17.9645 18.0224 13.6399 13.0250 10.8068 10.2973 

(No GT = use of genetic tests results not allowed) 



4. Conclusions 

All preceding results have been obtained under conservative assumptions. Also our calculations 
assume that genetic testing leads to no medical benefits in the form of improved risk reduction. 
There is some hope that women found to carry BRCA mutations can reduce their risk of BC 
mortality by increased mammogram surveillance, prophylactic mastectomy, or chemoprevention 
with tamoxifen. Therefore we believe that the figures in all tables of section are cautious upper 
bounds of adverse selection costs. The main conclusion is that these costs are certainly 
manageable for the insurance industry. Only in a few cases (20-year term, family history of BC 
with early age at onset) does the cost exceed 10%. The average cost in a portfolio is likely to be 
way below 10%. So the excess cost due to adverse selection is likely to be compensated by the 
overall decrease in mortality rates (a factor not introduced in our calculations) that stands at 0.5% 
per year these days. 

This conclusion only holds if companies apply very tight underwriting standards. In the 
application process, prospective insure& need to provide the detailed family history of all their 
first-degree relatives, with ages at onset of any cancer. Applicants’ statements need to be 
carefully checked by underwriters. If companies fail to correctly identify the family history of 
the applicant, adverse selection costs could become unbearable. 
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