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A Comparative Analysis of 30 Bonus-Malus Systems

Abstract
The automobile third party insurance merit-rating systems of 22 countries are simulated and compared, using
as main tools the stationary average premium level, the variability of the policyholders' payments, their
elasticity with respect to the claim frequency, and the magnitude of the hunger for bonus. Principal
components analysis is used to define an “Index of Toughness” for all systems.
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EDITORIAL AND ANNOUNCEMENTS 

EDITORIAL 

ACTUARIES AND FINANCIAL ECONOMISTS 

At the recent AFIR Colloquium in Orlando there were two meetings which gave me 
cause to think. I disagreed with the ideas being put forward, and I realised why I 
disagreed and why I prefer my own views to those being put forward. Let me 
explain. 

The introductory lecture was given by Professor Stephen Ross. His theme was 
the effect of  'survivorship '  on studies of  manager performance. If you consider 
only fund managers that have been in business for the whole of  a given period, you 
miss out those that have ceased business during the period. Since they may have 
ceased business because their performance was poor, the performance of  the 
survivors is biased upwards. The same would be true of  companies, though 1 do not 
recollect Ross saying this. 

Ross then drew an analogy with rivers. Records of the level of  the water in the 
Nile have been kept for millenia. The level appears to be statistically stationary. 
But, Ross argued, this was because the Nile was a survivor: river levels were more 
like random walks, but if the water level got too low the river dried up and if it got 
too high it became a lake (laughter). The Nile had been a survivor. 

This analogy, though entertaining, does not support Ross 's  case, but it does 
support a different case. Over the few millenia we are taking about no major rivers 
have either dried up or become lakes. It is indeed in the nature of  the water level in 
rivers to rise and fall, sometimes seasonally, and with more or less randomness, but 
still around some sort of central position. (Over geological time things may have 
been different.) 

But so it is also with many investment time series. The dividend yield on 
ordinary shares seems to rise and fall about a central position, which varies from 
country to country but is typically in the 3% to 5% range. Interest rates too are 
stationary in the long run. The evidence for this also stretches back for millenia, as 
recorded by Sidney Homer (A history of interest rates: 2000 B.C. to the present, 
1963). 

The stationarity of  dividend yields on shares is an example of the statistical time 
series concept known as cointegration, about which an increasing number of papers 
and books are appearing. The logarithms of share prices and of share dividends are 
cointegrated, so their difference, the logarithm of the yield, is stationary. The 
stationarity of  dividend yields seems to have been first modelled by the Maturity 
Guarantees Working Party of  the Institute of  Actuaries and the Faculty of  Actuaries 
in Britain in the late 1970s (see Journal of the Institute of Actuaries. 107, 101-212, 
1980), I~ut it is now becoming recognised by other authors. 

A technical difficulty is that a random walk, whether pure or modified (i.e. an 
I(I)  series in the terminology of  cointegration) has very similar short-run behaviour 
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150 EDITORIAL 

to a stationary autoregressive model (an I(0) series) with a rather slow mean 
reversion. Similarly, it is not possible to distinguish, in the short run, between a 
continuous Brownian motion and an Ornstein-Uhlenbeck process. 

It is interesting that empirical time series investigation of  stock market data on 
the eastern side of  the Atlantic seems to have been more prolific than on the 
western side. This is not just because more actuaries have been involved in it, but it 
is at least partially so. Actuaries have longer memories and longer time horizons 
than some others in the investment market, and they should be able to make a 
helpful contribution to the world-wide discussion about investment modelling. 

I am grateful to Stephen Ross for his analogy: but I submit that it supports my 
case better than it does his. 

The second discussion in Orlando that I wish to refer to was one in which a 
number of  papers on option pricing were discussed. One, by J. Ph. Jousseaume, 
made the useful distinction between what I shall call the 'actuarial value'  of  an 
option, and the 'arbitrage value' .  For this purpose assume that the price of the 
underlying security performs a logarithmic Brownian motion, and consider the 
value of  a European option. The distribution of the price of  the security at the 
exercise data is Iognormal, and it is easy to calculate the expected value of  the 
option at this date. The formula involves the mean drift of the security price as well 
as the standard deviation. This expected value at maturity can then be discounted at 
some chosen interest rate to give a present value. This is the way actuaries 
traditionally calculate present values of  contingerit payments. 

If we then follow the no-arbitrage line of  argument, we substitute risk-neutral or 
martingale probabilities for the true probabilities. We replace the mean drift of  the 
share price by the risk-free interest rate (with possibly also a term 02/2, depending 
on our definitions). We also use the risk-free interest rate for discounting, and we 
then obtain the Black-Scholes option pricing formula. 

The no-arbitrage argument has gained great weight in recent years, and in the 
discussion Elias Shiu described it as ' the fundamental theorem of asset pricing'.  

Why, then, do I think that the no-arbitrage argument is based on a fundamental 
misconception ? First, the assets that most source investors, i.e. individuals, hold are 
not readily 'tradeable: these include private houses, pension rights and insurance 
policies. The financial intermediaries, those institutions whose liabilities are 
insurance policies and pension rights, equally cannot trade their liabilities. If these 
liabilities include options (which may be implicit or explicit) the intermediaries 
cannot necessarily set up a hedge portfolio with which to match these liabilities. 
They therefore have to consider the matching of  assets and liabilities in a more 
traditional actuarial way, allowing for the possibility of  mismatching, and allowing 
also for additional reserves to cover the risks of  mismatching. Thus they need to 
value the options included in the liabilities using the actuarial value rather than the 
arbitrage value. 

But even when trading is possible, as in many investment markets, pe r f ec t  
arbitrage is not possible. The problem is volume. In the derivation of the 
Black-Scholes diffential equation, it is asumed that the writer of  a call option can 
set up a hedge portfolio by buying a suitable fraction of  a share, and that this does 
not affect the price of the security. 
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It is plausible that the writing and hedging of a single option on an IBM share 
does not affect the price of IBM shares. But if the purchaser of the option asks for 
sufficiently many billion options, then the writer's hedging could only be done by 
putting forward a take-over bid for the company. 

A fuller description of the process would include an additional term in the 
Black-Scholes differential equation, reflecting the change in the price of the security 
as a result of the hedging operation. This would make the equation more realistic, 
but a great deal harder to solve, because information about the sensitivity of share 
prices to volume demanded does not seem to have been readily modelled, although 
it has no doubt been investigated empirically. 

The Maturity Guarantees Working Party that I have already referred to made 
essentially the same point when it was proposed to it that what is now called 
'portfolio insurance' would allow life offices to offer policyholders an implicit put 
option on unit-linked contracts. The idea that life offices, in large volumes, could 
adopt a policy of selling shares when share prices were falling, without making 
them fall further, was considered by the Working Party to be unrealistic. Whether or 
not the stock market crash of October 1987 was caused by computer trading of 
portfolio insurance seems uncertain, but there is no doubt about the direction in 
which such trading would operate. 

The question of volume is of relevance for the supervision of options markets. 
While many intermediaries may be able to balance their books appropriately, there 
must be source purchasers of options, and end writers who have not hedged ; these 
may have cover in the form of matching securities or matching cash, but their 
ability to write options is limited by the cover they have available. The writer of 
uncovered options, like any insurance company writing risks that are not reinsured, 
requires additional solvency reserves. 

This is not just an academic point. The solvency of the whole market in options 
trading would be threatened by the insolvency of any major payer. It is important 
that supervision is considered in an actuarial way, taking account of liquidity, 
mismatching and the solvency reserves that should be required. 

This brings me to my third subject, one which was not inspired by any particular 
discussion at Orlando. The Capital Asset Pricing Model is an equilibrium model of 
the market, based on many assumptions, some of which can readily be relaxed 
without destroying the model, but others which seem to be both fundamental to it 
and mistaken. The three obstructions seem to me to be tradeability, numeraires and 
time horizons. 

I have already noted that the personal assets of most individuals are not readily 
tradeable, nor are they readily sub-divisible; individuals therefore have very 
restricted investment opportunities. Life offices and pension funds consequently 
have substantial non-tradeable liabilities, which are not the same for all institutions. 
If they include their particular liabilities in a portfolio selection model, even if all 
the other assumptions of the CAPM are maintained, different institutions may well 
end up with different efficient frontiers (and not just different optimum portfolios 
along the same frontier). 

Different investors and different institutions may also work using different 
numeraires. This may be because they work in different currencies, or because some 
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work in ' rea l '  and others in ' nomina l '  terms. The numeraire may be a matter of 
choice, or it may be directed by the liabilities. The life office with fixed money 
liabilities may well find a different efficient frontier from the pension fund whose 
liabilities are index-linked annuities, even if all other things are equal. 

Time horizons may also be influenced by the liabilities. A mature pension fund 
may have a shorter horizon than a growing one, just as an older investor may have a 
shorter time horizon than a younger one. Fund managers who are judged on their 
quarterly performance may have even shorter time horizons. It may be possible to 
reconcile these different approaches by appealing to the uniformity of successive 
periods, but if my first proposition holds, that many investment series are stationary 
and autoregressive and thus are not independent from period to period, then a longer 
time period is not just a succession of identical shorter ones. The variance does not 
increase proportionately with time and the efficient frontier varies with the time 
horizon. 

These three features lead me to conclude that any satisfactory equilibrium model 
needs to take account of  the volume of investment in each sector, the volume 
committed to each type of  non-traded liability, the volume using different 
numeraires, and the volume using different time horizons. The concepts are the 
same as those of  'market  segmentation'  in the bond market, different sectors of 
which may be dominated by investors with different tax positions or different 
'preferred habitats' of  duration or maturity date. 

The equilibrium positions in such a model, taking account of  volume, is much 
harder to find, and the elegant results derived from the CAPM may not be so 
readily forthcoming. 

But actuaries should be among those who can recognise the individuality of  each 
particular investment institution, and can adjust concepts of  efficiency to match the 
requirements of each institution. We should not throw out the baby with the 
bathwater. Although I am criticising the naive CAPM applied on a global scale, the 
portfolio selection paradigm is undiminished, and may even be strengthened when it 
is realised that each institution has its own efficient frontier, and cannot necessarily 
rely on ' the market '  finding the frontier for it. 

In a debate at the Institute of  Actuaries in London in March 1993 (see Journal of  
the hTstitute of Actuaries, 120, 393-414, 1993), I proposed the motion that "this 
house believes that the contribution of actuaries to investment could be enhanced by 
the work of  financial economists". ! was ably seconded by Jirn Tilley, and the 
opposing point of  view was put forward by Terry Arthur and Robert Clarkson. I 
should like to propose to readers of  ASTIN Bulletin and to members of AFIR that 
the reverse proposition is also true, that "the work of financial economists in 
investment could be enhanced by the contribution of  actuaries". Let us see more 
papers to support this proposition in the pages of ASTIN Bulletin. 

DAVID WILKIE 



THE 4th AFIR INTERNATIONAL COLLOQUIUM 

Disney World Orlando, the venue for the 4th AFIR Colloquium could not be more 
different from its predecessor, Rome. The organisers again made an inspired 
choice; the Colloquium being moved from the seat of one of the greatest 
concentrations of sights of artistic, architectural and historical interest in the world 
to the seat of one of the greatest concentrations of entertainment oriented, techical 
innovations. 

The entertainment laid on by the hosts reflected the venue. The social highlight 
undoubtedly was the final evening visit to MGM studios. Around one thousand of 
the world's actuaries defied their traditional "grey suited" reputation by walking 
through a full scale New York Street scene protected from the spectacular 
thunderstorm by bright yellow Mickey Mouse ponchos. Crowds of screaming girls 
with autograph books were hired to greet us at the entrance and boost our egos; a 
3-D Muppets Show, a trip on a Star Wars simulator and a spectacular fireworks 
display provided the memorable entertainement. 

The format of the meeting, entertainment apart, was somewhat different from its 
predecessor. The AFIR Colloqiuim was combined with the Casualty Actuarial 
Society Special Interest seminar and Society of Actuaries' Spring Meeting. The 
result of this was a total of 82 sessions a number of which ran in parallel. 

The Colloquium began with the main invited speaker Professor Stephen Ross of 
Yale University. He was there to defend the efficient market hypothesis and answer 
questions such as: do markets follow random walks ? Do they have inherent cycles ? 
Can we gain from fundamental investment analysis? Can we predict the success of 
good fund managers by looking at past performance? 

Stephen Ross explained how the apparent ability of fund managers to outperform 
consistently could be explained by "survivorship bias". A similar phenomenon 
explained why market prices appeared to form cycles. There is a tendency for 
market analysts to look at historical data for surviving stock markets. A stock 
market which has risen to enormous heights (due to hyper-inflation) or collapsed to 
nothing (due to economic collapse) will not be amongst those which survive to have 
their course analysed. In a similar way, river levels appear to be cyclical: in fact 
they are not; any river the level of which has moved out of the fixed bounds has 
either flooded or dried up. It is no longer a river. Analysts tend not to take a group 
of rivers and chart their courses forwards in history : they take a group of surviving 
rivers and look backwards. Inevitably, the surviving rivers will have levels which 
have moved in cycles. 

Many contributors debated the use of different risk measures or applied different 
risk measures to actuarial investment problems. The proponents of different risk 
measures fell into four "camps" .  Those who used traditional mean/variance 
approach to trading off risk and return ; those who preferred downside measures of 
risk; those who preferred "shortfall controls" (probability of underperforming a 
particular benchmark); and those who preferred the use of utility theory as a risk 
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management tool. The undercurrent of debate about risk measures went beyond the 
papers classified in that section. Some of the applied papers also contributed to the 
discussion on the measurement and control of investment risk. 

There were various papers on stochastic investment modelling ranging from a 
simple ARCH approach to the use of transfer functions and time series models and 
one which involved elements of chaos theory. The application of stochastic 
investment models in simulation also featured prominently in the proceedings, 
especially in the areas of asset-liability management and measuring the risk of 
insurer insolvency. 

A number of papers were submitted on the traditional stamping ground of 
immunization. One of the difficulties of immunization theory is the inability to deal 
with non-parallel yield curve movements. The problem was addressed in this 
section. Some demonstrated the wider fields potential of the profession by looking 
at credit risk, bank insolvency and money management. 

The papers in the sections on Option Princing Techniques and a number of 
papers in the sections on Financial Instruments and the Analysis of Products with 
Investment Guarantees were connected with option pricing. So many of the 
applications of option pricing are in the actuarial field ; it is clearly an area in which 
actuarial professions throughout the world need to take greater interest in both the 
theoretical and practical implications. 

Three reports were also presented from task forces and study groups. Society of 
Actuaries' Task Forces presented reports on the application of cash flow techniques 
to pension plans and on losses from credit risk events. The Finnish Insurance 
Modelling Group reported on the suitability of possible stochastic investment 
models in the light of data available from twelve countries. 

Finally, it was gratifying to have two contributions from Eastern Europe. Both 
discussed the Polish investment markets, one making pertinent comparisons with 
the Hungarian stock market. We hope that the proximity of the next two AFIRs to 
Eastern Europe will lead to more contributions from that area in both the technical 
and empirical subjects. 

Each AFIR Colloquium in recent years seems to have been held in a place with 
its own special history and attractions (albeit a short history in the case of Orlando). 
We look forward to the next AFIR Colloquium in Brussels, the home of the 
European Union, in 1995. 

PHILIP BOOTH 
STEVEN HABERMAN 
ALEN ONG 



XXVth ASTIN COLLOQUIUM 
CANNES, FRANCE, 11-15 september 1994. 

The 25th Astin Colloquium was held at the Noga Hilton Hotel in Cannes. The 
Colloquium was attended by 163 participants with 43 accompanying persons from 
22 countries. A welcoming cocktail took place on the Sunday evening at the 
terrasse Panorama of the Noga Hilton. 

BjOrn AJNE, the Chairman of Astin, presided the opening ceremony on Monday 
morning. Lionel MOREAU, chairman of the organizing committee, and Pierre 
PETAUTON, chairman of the scientific committee, gave some precisions about the 
sessions format. Welcoming addresses were delivered by Mr J. LONGUET represent- 
ing Mr M. MOUILLOT, mayor of Cannes, and by Mr BERTON, chairman of the 
lnstitut des Actuaires Franqais and also representing the chairman of the lnstitut des 
Sciences Financi~res et de l'Assurance de Lyon. 

First invited lecture 

Just after the opening ceremony, Mr D. KESSLER, chairman of the F6d6ration 
Fran~:aise des Soci6t6s d'Assurance, gave the first invited lecture on the topic 
"L'Actuaire et l'6volution des assurances non-vie". Mr KESSLER detailed the 
factors explaining the results of the French non-life insurance companies over the 
last years and examined the new challenges emerging in the non-life insurance 
market. 

First session: Great risks (topic nr  3) 

This session, held during the remainder of monday morning, was chaired by C. 
STOOP and D. SKURNICK, Ch. LEVI reported on the four presented papers. 

Z. BENABBOU and C. PARTRAT proposed an alternative to the truncation of the 
very big claims amounts commonly used for the tariff construction. This alternative 
consists in using a mixture of two distributions for modelling the claims amounts, 
the first distribution corresponding to ordinary claims, the second to exceptionnally 
big claims. W. HI')RLIMAN spoked about the hedging through a reinsurance 
agreement of the liabilities of an insurer under contracts with a claims dependent 
bonus provision. S. BERNEGGER, F. KRIETER, P. MEYER and A. BLOCH presented a 
risk model pemitting the derivation of the fluctuation loading for cat-portfolios with 
correlated layers and the breaking down of the overall loading between the different 
reinsurance contracts. J. P. CASANOVA and E. DUBREUIL explained the mechanism 
of catastrophe insurance futures and options sold on the Chicago Board of Trade, 
and the strategies available to an insurer for hedging his liabilities through these 
futures and options. 
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Second session : Financial stability of  a non-life insurance company 
(topic nr 1) 

This session held on Monday afternoon was chaired by D. BLANCHARD and T. 
CLARKE, R. DE LAROULLERE reported on the four presented papers. B. AJNE and E. 
JOHANSSON developed expressions for the expected value and the variance of the 
undiscounted and discounted claims reserves in a model allowing for stochastic 
variations in both the payment pattern and the interest rate. A. RENSHAW and R. 
VERRALL presented a generalised linear model for claims reserving producing the 
same results as the chain ladder technique. L. TRAN VAN LIEU insisted that any 
tariff decision has to be analysed with reference to the principles of modern 
corporate finance. J. JANSSEN presented a dynamic stochastic ALM model with 
assets and liabilities splitted into possibly correlated segments. 

Third session: Financial stability of  a non life insurance company 
(continued) 

This session, hold on the remaining of Monday afternoon, was chaired by J.P. 
CASANOVA and M. GOOVAERTS, P. PETAUTON reported on the three presented 
papers. 

W. HORLIMANN examined different stability criteria with respect to equity and 
technical premiums of an insurance company, L, CENTENO and J, ANDRADE E SILVA 
used the BiJhlmann-Straub model to calculate the solvency ratio for some 
Portuguese non-life insurance companies. D,A. STANFORD and K.J. STROINSKI 

developed recursive algorithms for computing ruin probabilities at claim instants in 
the classical Poisson model with phase type distributed claim amounts. The method 
extends to the case of gamma distributed inter-claim times. 

Second invited lecture 

The second invited lecture was given by Professor Paul EMBRECHTS on Wednesday 
morning. Professor EMBRECHTS evidenced the necessity of filling the gap between 
theory and practice in actuarial science. In fact there must be a constant interaction 
between these two poles: new questions faced by the practitionners are the source 
of development of new techniques by the theoricians. Conversely, new techniques 
are to be brought to the practitionners facing the new questions. Professor 
EMBRECHTS illustrated this interactive process by some examples (application of lt6's 
calculus in the field of insurance futures; robust statistics based on a generalisation 
of Taylor 's expansion applied in Credibility theory...). 

Fourth session: risk selection and setting premium rates (topic nr 2) 

This session, hold on the remaining of wednesday morning, was chaired by M.C. 
CHEYMOL and C. PATRICK, Ph. MARIE-JEANNE reported on the presented papers. F. 
BOULANGER developed a bonus-malus system for policies with several correlated 
covers. 

F. BOULANGER and L. TRAN VAN LIEU considered the problem of determining an 
optimal premium rate taking into account the elasticity of the demand for insurance. 
J. LEMAIRE and H. Zl simulated and compared with respect of four different 
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measures the bonus-malus systems in force in 22 countries for third party liability 
automobile insurance; they used factor analysis to define an "index of thoughness". 
E. LEVAY exemplified the use of historical data in modelling UK motor business. G. 
RAMACHANDRAN adressed the problem of determining premium rebates for deduc- 
tibles which take into account fire protection measures adopted by the insured. 

Fifth session: risk selection and setting premium rates (continued) 

This session, hold oll wednesday afternoon, was chaired by Ph. PICCARD and T. 
HOYLAND, J.L. BESSON reported on the five presented papers. F. BOULANGER 
advocated the use of the gamma distribution with random mean for estimating the 
claim size distribution. D. DANNENBURG compared different credibility estimators in 
the Hachemeister's regression credibility model. W. HURLIMANN established a 
result by SCHMITTER about the maximal stop-loss variance; he then examined the 
stop-loss retention minimising the total variance after reinsurance when the cedent 
and the reinsurer use the same variance principle. A. RENSHAW formulated the two 
components of the claims process, frequency and severity, by postulating two 
separate generalised linear models; this makes available other distributions than the 
classical Poisson distribution for frequencies and the gamma distribution for 
severities. O. HESSELAGER developed recursions for certain bivariate counting 
distributions and the con'esponding compound distributions. 

Sixth session: Speaker's Corner 

This session, held on thursday morning, was heavily filled with twelve communi- 
cations. Unfortunately only a few authors gave a written version of their talk. The 
authors and the titles of their talks are listed hereunder. 

ASTIN General  Assembly 

The general assembly was held on Wednesday afternoon. It was confirmed that the 
next colloquium will take place in Louvain (Belgium) in September 1995, just after 
the Centenary International Congress of the I.A.A. The following ASTIN collo- 
quium will be held in Copenhagen from 1 to 5 September 1996. The 1997 
colloquium is expected to take place in August in Cairns, Australia, just before the 
Centenary of the Institute of Actuaries of Australia. 

B. AJNE resigned from his duties of chairman. He will be replaced by J. 
STANARD. The viceChairman will be J. RANTALA. 

An enquiry form about the format of the ASTIN colloquia was distributed and 
answered by the participants during the colloquium. Some first results from that 
enquiry were commented by J. STANARD. The answers will of course need a further 
detailed analysis. 

Social p rogramme 

The social prograrn consisted of a concert given on Monday evening in the Noga 
Hilton by the group "Les  solistes de Cannes" and by the pianist David LEVy, and a 
full day tour on Tuesday: we visited a retrospective devoted to G. BRAQUE at the 
Foundation Maeght, the beautiful I lth century fortified town of Saint-Paul- 
de-Vence and the Fragonard perfume factory in Grasse. The colloquium dinner took 
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place on Wednesday evening at the Hrtel Martinez on the Croisette. During the 
dinner, B. AJNE and P. PETAUTON made an assault of poetry; hereafter are their 
respective contributions. With this second experience, after a first one in Cam- 
bridge, the organizers of the forthcoming colloquia should consider to devote a 
session to actuarial poems (this should of  course not inhibit the poetic accents 
usually emerging from most of  the scientific papers). 

There was un Colloque en Cannes 
Petauton et Moreau made it fun 
Many others be praised 
Hard problems we faced 
Non-life studies are not zero-one. 

(B. MN~) 

Si j ' r tais  un pobte et si j ' r tais  galant 
J'aurais dO cette nuit complimenter les dames. 
Croyez que j 'eusse aimer possrder ce talent, 
Pour crlrbrer ici la beaut6 de la femme. 
Laissez-moi, je vous prie, essayer de rimer 
Sur un sujet moins noble, un souvenir d'actuaire. 
Drjh 1'6t6 dernier, notre coll~gue aimr, 
L ' rminent  Bjorn Sundt, Ih-bas darts l 'Angleterre 
Nous avait dit un soir un aimable sonnet, 
Lass6 de corriger les formules inexactes. 
C'rtait  un parapluie qu 'on nous avait donne 
Qui fur I'inspiration et provoqua cet acte. 
Pourtant l 'objet lh-bas n'rtait  pas singulier 
Et voilh qu 'en Provence on pleure son absence. 
Si le plus real chauss6 c 'est  bien le cordonnier, 
L'assureur en ce jour manque de prrvoyance. 
Une ombrelle eut au moins 6vit6 les prpins. 
Sommes-nous ~. l'abri dans cette salle d 'at tente? 
Noyrs sous un sprinkler et sans maillot de bain 
Est une circonstance, il est vrai peu frEquente, 
Mais dont on aurait dO 6valuer le coot. 
Mais craignant de lasser votre aimable patience, 
Et prenant en piti6 les anglophones h bout, 
J'arrEte en cet instant mon riot d ' incohrrences 
Et mon propos de fin ne sera plus qu'un souhait 
De mathEmaticien qui voit la triste 6poque. 
Puisse le monde enfin, devenir a jamais 
Beau comme un throrrme h la fin d 'un colloque. 

(P. PETAUTON) 
Warm thanks are due to L. MOREAU, P. PETAUTON and their organizing and 
scientific committees for this very successfull colloquium. 

J.M. Reinhard, Bruxelles 
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ABSTRACT 

The recursive algorithm of HESSELAGER (1994) is extended to a more general class 
of counting distributions, which includes SUNDT'S (1992) class as well as all the 
mixed Poisson distributions discussed by WILLMOT (1993). 

KEYWORDS 

Compound distributions; recursions; mixed Poissons; Sichel; Beta; Generalized 
Pareto; Inverse Gamma. 

I. INTRODUCTION 

In the collective risk model, compound distributions are used extensively in 
modeling the total claim for an insurance portfolio: 

N 

(l) s =  ~ xi ,  
i=1  

where the claim sizes Xt's are independent and identically distributed and 
independent of the claim frequency N. 

If the claim frequency N has a probability function (p.f.) {Po,Pl . . . .  }, and the 
claims sizes {X t , X 2 . . . .  } have a common p.f. : 

f , . = P r { X = x } ,  x = 0 , 1  . . . . .  

then the total claim S has a compound distribution with a p.f. 
c c  

(2) g.~= Y~ ~*" P,,L~ • 
n = 0  

Since PANJER (1981), many resursive algorithms have been derived for a broad 
class of claim frequency distribtions (see WmLMOT and PANJER, 1987; SUNDT, 
1992; WmLMOT, 1993; and others). 

• The authors are grateful to the editor and the referees for their helpful comments.  
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HESSELAGER (1994) recently considered a class of  claim frequency distributions 
satisfying : 

(3) P . -  P , , - i ,  n = 1, 2 . . . .  
Z~ = 0 b i  n i 

for some positive integer k, and derived recursions for the related compound 
distributions. For some counting distributions such as Generalized Waring, Hyper- 
geometric and Polya-Eggenberger, Hesselager 's  method is more efficient than the 
ones provided by WmLMOT and PANJER (1987). However, Hesselager 's  class (3) 
does not include many other counting distributions such as Sichel, Poisson-Beta, 
Poisson Generalized Pareto, Poisson Inverse Gamma,  Poisson Transformed Gamma 
and Poisson Transformed Beta (see WILt.MOT, 1993). 

In this paper, we extend Hesselager 's  recursive scheme to a broader family of  
counting distributions, which includes al the counting distributions which satisfy a 
finite order homogeneous recursion with polynomial coefficients. All the mixed 
Poisson distributions in WILLMOT (1993) are of  this type (where the non- 
homogeneous terms can be eliminated). 

2 .  R E C U R S I O N S  F O R  T H E  E X T E N D E D  C L A S S  O F  C O U N T I N G  D I S T R I B U T I O N S  

Assume that the claim frequency N has a p.f. {Po, Pl . . . .  } satisfying: 

( 4 )  bin p,,= aj, i ( n - j ) '  p, ,_j ,  n = c , c +  1 . . . .  
i = 0  j =  i = 0  

where c is a positive integer and p,, = 0 for n < 0. 
HESSELAGER (1994) introduced the following auxiliary functions 

( 5 )  gi, .,- = ~ n i P , , f ,  .* ' ,  x = O, 1 . . . .  ; ( i  = O, I . . . .  ) 
I1 = 0  

(with 0 ° =  I) and defined the vector 

g.," = (go . . . . . . . . .  gk, .0 ' .  

Note that go,, is the p.f. for the total claim distribution of S in.(2). 
Before we generalize Hesselager's result, we first introduce another auxil iary 

function : 

c - I  k s c - I  k 

i r ~n . f  ~n (6) o(x)= Z Z bi, - Z Z Z a,.,(,,-j)"p,,_, . . . .  
n =  I i = 0  j =  I n = j  i = 0  

where c- i .Z .=j  is zero i f j  > c -  1. By letting a0. i=  -b~  the expression for .Q(x) may 
be written as 

s c -  I k 

2 Z ,,.,(,,-J)'p,,-,f,*°. 
j = 0  n = J  i = 0  
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Note that'_Q(x) does not depend upon the values of  ~'.,.. In the special case of  
k = s = c = 2 ,  we have 

2 

(7) -Q(x)=Ptf,. ~ bi-Pof,.al.o. 
i=0  

As in HESSELAGER (1994), let m be the smallest integer for which f,,, > 0. 

Theorem 1. For the claim frequencies in (4), the compound distribution 9x = 9o..~ 
can be evaluated by the following recursive method: 

(8) ~.,. = L -  '7~, x _> m V 1, 

where 

(9) ( 1 - mix 0 ... 

L 
0 I - mLr ... 

' 5 =  

(bo-l~=,aj.ofd) (b,-.Zj:=,aj. lfd) . . . . . .  

and 7., = (to . . . . . . . .  ttk..O' is given by 

,x { } ~1 m + y y - x ( 1 0 )  t , . x = - -  f , . + y  g ~ + ,  . . . .  ., + - -  g~ . . . . .  :, , 

f m  ~ X X , =  

x k s 

(11) tk.x= E E E aj. ify *jgi.. ,--x+Q(x), 
3 , = 1  i = 0  j = l  

with starting values 

gi. o = Z,, = o n p,  fo ,  i = 0  . . . . .  k; 

g,..,. = O, 

0 
0 

(bk - Yj =, a~, ~-fd) 

i < k ;  

i = 0  . . . . .  k; x = l  . . . . .  m - 1 .  

P roo f :  Let F(z)= Z.~'=0fiz ~ be the probability generating function for the claim 
size distribution. 

d 
From the identity - -  [F(z)"]  = nF(z)"-i  F' (z), we have 

dz 

(12) [ 1 O= ~ o  (n+ l ) -Y  - I A . f ~ . .  
. = X 

Multiplying (12) by p,,n' and summing over n -> 0 yields 

(13) 
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By omit t ing the zero terms corresponding to y = 0 . . . . .  m -  I and taking out the 
terms involv ing  ~., ,  we get for i < k, 

m 
(14) gi..,- - - -  g~+ ~..~ = t~ ..... 

x 

where t ..... is g iven in (10). 
Note that f,.*" - Y" ¢ , : c , u , - J )  f o r j = l ,  , s .  • - -  y = 0 J y  J a - ~  . . . .  
Mult ip ly ing  the left-hand side of  (4) by f,*", mul t ip ly ing  the j - th  term of  the 

: * J r  *{"-J) and sum m ing  over  n > c, we obtain the r ight-hand side of  (4) by Z~. = 0J:. s.,--.~, , 
relation (for x -> I) : 

k ' k "  r i r ~ t l  
b , g , . x  - o i n  p , : . , .  : 2 ~ a, ,f,,*'J g, .... y 

i = 0  n = l  t=0  y=0  i = 0  j = l  

S C~I k 
Y+ 2 aj ,(,, "' r ,  , -- - J )  P n - j J x  ' 

j =  I n = j  i = 0  

By collect ing the leading terms involv ing  g ...... we get 

(15) b , -  aj. ifl; gi..,. 
i = 0  j =  

' k k = Z aj.i~,*J g i . x - , , + O ( x ) ,  x - -  > 1, 
y = l  i = 0  j = l  

where .Q(x) is as defined in (6). 
From equat ions  (14) and (15), we obta in  the l inear equat ions  (8). 

R e m a r k  1 : 
recursions : 

[ ]  

As a special case, for m = 0 (i.e. f0 > 0), we have the fol lowing 

v y-+ } 
(16) gi . . ,  : T -  ~ fy  g t + l  x - v  -I- - -  g i . . , - . , ,  , i < k; 

.to .,= I X 

I 
(17) gk..,. = x 

a "J gi..~ + S2 (x) aj ,  i,1~, * j  gi ,  r - y + j. iJO T b i  " 
:.:1 i=0 j=~  i=0 j=~ 

R e m a r k  2 :  HESSLAGER'S (1994) recursive formula can be recovered from (8) as 
a part icular case of s = c = I. 

3. EXAMPLES OF MIXED POISSON DISTRIBUTIONS 

Mixed Poisson distr ibut ions are natural candidates  for model ing  the claim frequency 
for heterogenous risk portfolios. WILLMOT (1993) considered various mixed Poisson 
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distributions and derived recursions for their probabili ty functions. Some of  the 
mixed Poisson distributions belong to the Pearson system (see ORD, 1972, p. 8) and 
WH.LMOT (1993) derived recursions for their compound distributions. However,  
many mixed Poisson distributions, which are not in the Pearson system, belong to 
the generalized class (4). So our generalized recursive procedure can be used in the 
calculation 'of the compound distributions for these mixed Poisson frequencies. 

E x a m p l e  1 : The Sichel distribution is obtained by mixing the Poisson mean over 
the General ized Inverse Gaussian. WmLMOT (1993) derives a recursion for this 
mixed Poisson p.f. (for n = 2, 3 . . . .  ) 

(18) (1 + 2fl) n ( n -  l)p,,  = 2 f l ( n -  1) (n + 2 -  1)p ,_  i + , u 2 p , - 2 ,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  b, = - ( 1  +2/3),  

a,.o = O, at.i = 2fl2, 
99 

a2, 0 =/A",  a l l  = O, 

b 2 =  1 +2 /3 ;  

a l ,  2 = 2,8; 

"/2,2 = O. 

E x a m p l e  2 :  The Poisson Beta is obtained by mixing the Poisson mean over the 
Beta distribution. WILLMOT (1993) derives a recursion for this mixed Poisson p.f. 
(for n = 2, 3 . . . .  ) 

(19) n ( n -  l)p,,  = ( n -  1 ) ( n - 2 + k t + o t + f l ) p , , _  t - , u  ( n -  2 + o0p, ,_2,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  b~ = - 1, 

a<o=O,  al.  I = p t + o t + f l - l ,  

a2, 0 = - / . to t ,  a2, I = - t t ,  

b 2 =  I ;  

a l , 2 =  1; 

• a2. 2 = 0. 

E x a m p l e  3 :  The Poisson Generalized Pareto is obtained by mixing the Poisson 
mean over the Generalized Pareto. WmLMOT (1993) derives a recursion for this 
mixed Poisson p.f. (for n = 2, 3 . . .)  

(20) n ( n -  1)p,, = ( n -  I) ( n -  1 - O t - l t ) p , , _ l  + l . t ( n - 2 + f l ) p , , _ 2 ,  

which corresponds to (4) with k = s = c = 2 and 

b 0 = 0 ,  bl = - 1 ,  b2 = 1 ;  

al.0 = 0, al .  I = - (or +/.t), at.2 = 1 ; 

az.o=/~fl, az.i =/~, a2.2 = 0. 

E x a m p l e  4 :  The Poisson Inverse Gamma is obtained by mixing the Poisson 
mean over the Inverse Gamma. WmLMOT (1993) derives a recursion for this mixed 
Poisson p.f. (for n = 2, 3 . . . .  ) 

(21 ) n (n - 1) p,, = 01 - 1 ) (n - I - or) p,, _ + ~Pn - 2, 
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which corresponds to (4) with k = s = c = 2 and 

b0=O, b l =  - 1 ,  

al ,  0-~ O, a l ,  I = - o g ,  

a2, 0 = i f ,  a2, I = 0, 

b 2 = l ;  

al .2= I; 

a2, 2 = 0. 

Remark:  In all the above examples .Q(x) vanishes, which simplifies equa- 
tion (8). However, ~. becomes a singular matrix at x = m, so the recursive 
evaluation by (8) should start with initial values {g0 . . . . .  ~,,}. Other mixed Poisson 
distributions in the generalized class (4) are Poisson Transformed Gamma and 
Poisson Transformed Beta (see W1LLMOT, 1993). 

It is noted that SUNOT'S (1992) class is a particular case of  (4) when k =  1. 
However, when k = 1, Sundt's recursion involves only g0 .... while recursion (8) 
requires both g0..~ and gl.x. In the same way, for mixed Poisson distributions in the 
Pearson system, Willmot 's  recursive method (see WILLMOT, 1993) is simpler than 
recursion (8) in evaluating their compound distributions. On the other hand, when 
k ~- 2, as in the earlier examples of  this section where k = s = c = 2, the recursion 
(8) is more efficient than the ones given in WILLMOT and PANJER (1987). 

The numerical aspects such as stability concerns of  the recursion (8) need further 
study. 
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FOR DISCOUNTING ACTUARIAL FUNCTIONS 
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ABSTRACT 

Two approaches used to model interest randomness are presented. They are the 
modeling of the force of interest accumulation function and the modeling of the 
force of interest. The expected value, standard deviation and coefficient of skewness 
of the present value of annuities-immediate are presented as illustrations. The 
implicit behavior of the force of interest under the two approaches is investigated by 
looking at a particular conditional expectation of the force of interest accumulation 
function. 

KEYWORDS 

Force of interest; Force of interest accumulation function; White Noise process; 
Wiener process; Ornstein-Uhlenbeck process; Present value function; Annuity- 
immediate. 

I. INTRODUCTION 

A wide variety of stochastic processes have been used to model interest randomness 
in the present value function and other actuarial functions. Not only are different 
processes used but they are also used in different ways. Two approaches that are 
used in existing literature are, firstly, the modeling of the force of interest 
accumulation function (see, for example, DEVOLDER (1986), BEEKMAN and FUEL- 
LING (1990, 1991, 1993), DE SCHEPPER et al. (1992a, 1992b), DE SCHEPPER and 
GOOVAERTS (1992)), and secondly, the modeling of the force of interest (see, for 
example, PANJER and BELLHOUSE (1980), DHAENE (1989), FREES (1990), PARKER 
(1992, 1993a, 1993b, 1994), NORBERG (1993)). The particular assumption that the 
forces of interest are independent and identically distributed (i.e. a White Noise 
process) will be seen to have an equivalent process for the force of interest 
accumulation function. IID interest notes have been used by WATERS (1978, 1990), 
DUFRESNE (1990) and PAPACHRISTOU and WATERS (1991) among others. 

Although in the deterministic situation the two approaches are equivalent, they 
are truly different in the stochastic situation. 

In this paper, we compare these two approaches for some simple Gaussian 
processes (see PARKER (1993C) for an earlier version presented at the XXIV ASTIN 
Colloquium). In Section 2, we define the random present value function and give an 
expression for its moments about the origin. 

ASTIN BULLETIN, Vol. 24. No. 2. 1994 
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In Section 3, we present two stochastic processes, namely, the Wiener process 
and the Ornstein-Uhlenbeck process, for the force of interest accumulation function. 
The following section presents three stochastic processes, the White Noise, Wiener 
and Ornstein-Uhlenbeck processes, for modeling the force of  interest. 

In Section 5, we find the first three moments about the origin of  the random 
present value of  a n-year annuity-immediate of  equal payments of  I. Some 
illustrations are presented in Section 6. Section 7 takes a closer look at an implicit 
difference between the two approaches. Finally, Section 8 summarizes the find- 
ings. 

2. PRESENT VALUE FUNCTION 

Let 6~ denote the force of interest at time s and let y(t) denote the force of interest 
accumulation function at time t. We then have 

I' 
(1) y(t) = d.,. ds. 

0 

The random present value at time 0 of  a payment of  1 at time t is given by 
-y ( t )  

e 

Assuming that y(t) is Gaussian, then the present value function is log-normally 
distributed with parameters E[-y ( t ) ]  and V[y(t)], and its ruth moment about the 
origin is : 

(2) E[(e-Y~t))"]=E[e ..... Y~')] = exp { - m .  E[y(t)]+.5m 2. V[y(t)]} 

(see, for example, AITCHISON and BROWN (1963, p. 8)). 
In the next section we will use two Gaussian stochastic processes to model the 

force of  interest accumulation function. And, in the following section, Section 4, we 
will look at three Gaussian stochastic processes to model the force of  interest. 

3. MODELING THE FORCE OF INTEREST ACCUMULATION FUNCTION 

A first approach to consider interest randomness is to model y(t) ,  the force of  
interest accumulation function. Here we present a Wiener process with deterministic 
drift 6 and an Ornstein-Uhlenbeck process also with deterministic drift 6. 

3.1. Wiener process 

Let y(t) be the sum of a deterministic drift of  slope 6 and a perturbation modeled 
by a Wiener process. That is 

(3) y ( t ) = 6 . t + o .  W~, 

where o - >  0 and W t is the standardized Wiener process. 
It can be shown that the expected value and autocovariance function of  y( t )  are 

given by 

(4) E[y(t)] = 6. t, 
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and 

(5) cov [ y ( s ) , y ( t ) ]  = 02 .  min (s, t ) .  

(see ARNOLD (1974, Section 3.2)). 

3.2. Ornstein-Uhlenbeck process 

Let y (t) be the sum of a deterministic drift of  slope 6 and a perturbation modeled 
by an Ornstein-Uhlenbeck process. That is 

(6) y ( t )  = 6 .  t + X ( t ) ,  

where X ( t )  is an Ornstein-Uhlenbeck process with parameters ot _> 0 and a -> 0 and 
with an initial condition X ( 0 ) =  0. Therefore, 

(7) dX (t) = - or. X (t) dt + o dW~. 

Using the results of  ARNOLD (1974, p. 134), one can obtain the expected value 
and autocovariance function of y ( t )  as defined in (6) and they are given by 

(8) E [ y ( t ) ]  = 6 • t ,  

'and 

0 2 
(9) cov [ y ( s ) , y ( t ) ]  = • ( e - ~ ' - " ) -  e - "< '+ ' ° ) ,  s <- t 

2o~ 

o r  

(lo) 

where 

(11) 

cov [ y ( s ) , y ( t ) ]  = O  z .  ( e - ' ~ ( ' - ° -  e-"< '  +")), s -< t 

(7 2 
p2 = 

2o~ 

4. MODELING THE FORCE OF INTEREST 

A second approach to model interest randomness is to model 6.,., the force of  
interest. Here we present a White Noise process, a Wiener process and an 
Ornstein-Uhlenbeck process. Note that the three processes will be defined so that 
they start at 6, not at the origin. 

4.1. White Noise process 

Let the force of interest be a White Noise process with mean 6 and variance o 2. 
That is, for t > 0, 

(12) 6, ~ N ( 6 ,  cr2). 

The forces of  interest are therefore modeled by Gaussian, independent and 
identically distributed random variables. Note that, in continuous time, White Noise 
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is not a physical process but a mathematical abstraction (see KARLIN and TAYLOR 
(1981, p. 343)). 

One may consider, in some sense, that the White Noise process is the derivative 
of  the Wiener process (see, for example, ARNOLD (1974, p. 53) of  KARLIN and 
TAYLOR (1981, p. 342)). (This indicates that assuming a stochastic process for y ( t )  
does not necessarily imply that a meaningful physical process for 6, exist). 

Then, y( t ) ,  as defined in (1), is a Wiener process with expected value 

(13) E[y( t )]  = 6 .  t, 

and autocovariance function 

(14) cov [ y ( s ) , y ( t ) ]  = 02 .  min (s, t ) .  

(see, for example, ARNOLD (1974, Section 3.2)). 
Therefore, the model presented above is merely an alternative description of the 

Wiener process for the force of interest accumulation function presented in 3.1. 

4.2. Wiener process 

A second model for the force of  interest is the Wiener process. Let the force of 
interest be defined as 

(15) 6 , = 6 + 0 .  W,, o_>0.  

Adapting the results in Section 3.1 we find that the expected value and 
autocovariance function of this process are 

(16) El6,] = 6,  

and 

(17) cov [6s,  6,11 = 0 2. min (s, t ) .  

Then, from the definition of y( t )  (see (1)), it follows that y( t )  is normally 
distributed with expected value 

(~8) 

and autocovariance function 

(19) covly(s),y(t)l=ISy 
0 0 

which gives 

(20) 

Ely ( t ) ]  = 6 .  t, 

cov [6.,  6v] du dr, 

coy [y (s), 3' (t)] = 0 2 • (s 2 t/2 - s3/6), s --< t. 

4.3. Ornstein-Uhlenbeck process 

As a third model for the force of  interest we consider an Ornstein-Uhlenbeck 
process. Let the force of  interest be defined by the following stochastic differential 
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equation 

(21) d 6 , =  - O / ( 6 t - 6 ) . d t + a . d W t  o ~ O ,  a - > O ,  

with initial value 60 = 6 (see, for example, ARNOLD (1974, p. 134)). 
Then, it can be shown that the expected value of 6, is 

(22) E 16,] = 6 ,  

and that its autocovariance function is 

0 2 
(23) cov [6s,  6,] = • ( e -  ' ~ ' -  s)_ e -  '~ '  + "+)), s -< t. 

2O/ 

Again, we will denote a2/2o~ by 0 z. 
The force of interest accumulation function, y (t), is therefore a Gaussian process 

with expected value 

(24) 

and autocovariance function 

0 2 
(25) c o v [ y ( s ) , y ( t ) ] = - -  

E l y ( t ) ]  = 6 .  t ,  

min (s, t) + 
O/2 

G 2 
+ - -  [ _ 2 + 2 e - ~ ' S + 2 e  -~ ' ' _  e - ,~ l , - . , ~_e -~O+s) ] .  

2o/3 

(see, for example, PARKER (1994, Section 6)). 
Note that the two models considered in Section 3 and the three models 

considered in this section have all been defined such that their expected values of  
the force of interest accumulation function are the same (i.e. E [ y ( t ) ]  = 6 • t) .  What 
varies over the models is the variance o f y ( t )  and the expected response in a given 
situation. This will be discussed further in Section 7. 

5. ANNUITY-IMMEDIATE 

We now consider a n-year annuity-immediate contract. Let aT be the present value 
of n equal payments of  1 made at the end of each of the next n years. Then, we 
have 

(26) a T =  ~ e -~'~') 
t= l  

We now consider the first three moments of  aT using its assumed true probability 
distribution so that all moments have their usual interpretations. Note however that 
the expected value will be different than the market price of  the annuity which 
requires that such price be in equilibrium for any purchasing strategy (see 
BUHLMANN (1992)). 
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The expected value of  aT may be obtained in the following way:  

(27) E[a~l = E e -Y(') = E[e -Y(')I, 
t t = l  

where from equation (2), 

(28) E[e-YI'I] = e x p  { - E[y(t)]  +.5.  V[y(t)J} . 

The particular values for EI.y(t)] and V[y(t)] were given in Sections 3 and 4 for 
different modeling approaches and different stochastic processes. 

The second moment about the origin of  aT may be shown to be equal to 

n t l  

(29) E[ (a~ - l )2 ]  = ~., ~ E[e-Y(')-Y('°]. 
t = l  s = l  

Similarly, the third moment about the origin of  a,,n is given by 

(30) E[(a,,~)3.] = E E E[e- ' ( ° -Y~S- , , ( r ) ] .  
t = l  s = l  r = l  

In order to evaluate the expected values to be summed in (29) and (30), one 
simply notes that the exponential random variables involved are log-normally 
distributed. For example, 

e - y~'~ -Y~")-Y~ - A (u, fl), (31) 

where 

(32) 

and 
(33) 

u = - E [ y ( t ) ] -  E [ y ( s ) ] -  E ly ( r ) ] ,  

fl = V[y(t)] + V[y(s ) ]  + V[y(r)] + 2  cov [ y ( t ) , y ( s ) ]  + 

+ 2 cov [ y ( t ) , y ( r ) ]  + 2  cov [ y ( s ) , y ( r ) ] .  

Therefore, from (2), we have: 

(34) E[e - Y(')- ~'(~)-Y~r).l = exp {p + .5 • fl}. 

6. ILLUSTRATIONS 

As a way to illustrate the different approaches and the different stochastic processes 
considered in this paper, we will evaluate their expected values, standard deviations 
and coefficients of skewness (see, for example, MOOD, GRAYBILL and BOES (1974, 
pp. 68, 76)) of  aT,  for certain values of  the parameters. 

Some expected values are found in Table 1. Results are presented for values of  
the parameters 6 set at .06 and .1 in each process. For the White Noise and Wiener 
processes, we let the parameter a take the values .01 and .02. For the Ornstein- 
Uhlenbeck process, the parameter oe is chosen to be .17 (this is the value obtained 
by BEEKMAN and FUELLING (1990, p. 186) from certain U.S. Treasury bill returns). 
We let the parameter p take the values .01 and .02 which correspond to cr equal 
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.01 • ( .34) .5 and  .02 • ( .34) ~ respec t ive ly .  Th i s  is cons i s t en t  wi th  s o m e  o f  the va lues  

used by BEEKMAN and FUELLING (1990,  T a b l e s  1 and  2). 

It shou ld  be po in ted  out  tha t  an e s t ima t ion  p rocedu re  for  f i nd ing  the va lues  o f  the  

d i f fe ren t  pa rame te r s  f rom a data  set o f  past  in teres t  rates wou ld  genera l ly  p roduce  

d i f f e ren t  va lues  o f  the  e s t ima tes  o f  the p a r a m e t e r s  o,  ot or p d e p e n d i n g  on  the 

m o d e l i n g  app roach  used and  on  the s tochas t i c  p rocess  chosen .  T h e  es t ima to r s  o f  the 

p a r a m e t e r  6,  however , ,  are l ikely to be rough ly  the s ame  in all cases  c o n s i d e r e d  

here.  U s i n g  the s ame  p a r a m e t e r s  unde r  bo th  a p p r o a c h e s  is be l i eved  to be  

appropr i a t e  to i l lustrate  cer ta in  d i f f e rences  b e t w e e n  these  two approaches .  

TABLE I 

EXPECTED VALUE OF a~" 1 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener : 

O-U: 6 
.06 
.06 
.10 
.lO 

• 06 .01 4.1920 7.2983 1 1 . 3 0 5 7  1 3 . 5 0 6 1  14.7143 
.06 .02 4.1938 7.3038 1 1 . 3 2 0 2  1 3 . 5 2 8 9  14.7435 
• 10 .01 3.7418 6.0118 8.2246 9.0390 9.3387 
.10 .02 3.7433 6.0161 8.2337 9.0511 9.3524 

P 
.17 .01 4.1915 7.2967 1 1 . 3 0 1 3  1 3 . 4 9 9 1  14.7052 
.17 .02 4.1919 7.2975 1 1 . 3 0 2 7  1 3 . 5 0 0 8  14.7071 
.17 .01 3.7413 6.0106 8.2218 9.0353 9.3346 
.17 .02 3.7417 6.0113 8.2228 9.0364 9.3357 

Modeling the force of interest 

I1 

5 10 20 30 40 

Wiener: 

O-U: 6 
.06 
.06 
.10 
.10 

.06 .0 I 

.06 .02 

.10 .01 

.10 .02 

P 
.17 .01 
.17 .02 
.17 .01 
.17 .02 

4.1943 7.3273 1 1 . 5 9 2 5  1 4 . 4 8 6 3  17.0285 
4.2030 7.4217 1 2 . 6 1 4 0  1 9 . 5 8 8 0  48.6888 
3.7437 6.0327 8.3788 9.4388 10.0567 
3.7510 6.1008 8.9232 1 1 . 3 9 4 8  18.0414 

4.1920 7.3007 1 1 . 3 2 2 1  1 3 . 5 4 1 0  14.7658 
4.1938 7.3135 1 1 . 3 8 6 2  1 3 . 6 7 0 2  14.9531 
3.7417 6.0135 8.2336 9.0548 9.3586 
3.7432 6.0229 8.2703 9.1151 9.4331 

O-U: Ornstein-Uhlenbeck 

F r o m  T a b l e  I, one  can  see that  the expec t ed  va lue  of  a ~  does  not  d e p e n d  very  

m u c h  on  the  m o d e l i n g  app roach  used nor  does  it d e p e n d  on  the  p a r a m e t e r s  of  the  

process ,  excep t  for  the  p a r a m e t e r  6, o f  course.  T h e  W i e n e r  process ,  for  n larger  than  

say 20,  w h e n  used to mode l  the force  o f  interest ,  is ano the r  excep t ion .  



174 GARY PARKER 

Table  2 presents some  standard devia t ions  o f  a,,q. It indicates that for a g iven  

stochastic process  and a g iven  mode l ing  approach,  the standard deviat ion is more or  
less proport ional  to the parameter  a (or P). It would  appear  that adjust ing the 

parameters  o f  a model  cannot  produce s imilar  standard deviat ions  to those o f  a 

different  model  for all n since the standard deviat ion exhibits  s ignif icant ly  different  
patterns depending  on the mode l ing  approach and/or  stochastic process selected. 

TABLE 2 

STANDARD DEVIATION OF O~ 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener: 

O-U: 

.06 .01 .0605 .1342 .2623 .3503 .4053 

.06 .02 .1211 .2687 .5258 .7028 .8137 

.10 .0l .0530 .1058 .1734 .2037 .2160 

.10 .02 .1061 .2118 .3476 .4085 .4332 

b ~ p 
.06 .17 .01 .0258 .0457 .0645 .0705 .0724 
.06 .17 .02 .0517 .0913 .[291 .1411 .1448 
.10 .17 .01 .0228 .0368 .0463 .0479 .0482 
.10 .17 .02 .0456 .0736 .0926 .0959 .0964 

Modeling the force of interest 

tl 

5 l0 20 30 40 

Wiener: 

O-U: 

.06 .01 .1251 .5171 1.9640 4.2762 8.6273 

.06 .02 .2515 1.0710 5 . 1 4 5 7  2 7 . 4 2 3 9  1111.8356 

.10 .01 .1073 .3880 1.1483 1.9504 2.9114 

.10 .02 .2157 .8019 2 . 8 9 6 8  1 0 . 1 2 6 6  240.2379 

6 a p 
.06 .17 .01 ,0576 .1968 .5294 .7975 .9767 
.06 .17 .02 ,1152 .3952 1.0736 1.6334 2.0169 
.10 .17 .01 ,0495 .1495 .3263 .4202 .4610 
.10 .17 .02 ,0991 .3001 .6604 .8563 .9433 

O-U: Ornstein-Uhlenbeck 

For example ,  we can compare  the standard deviat ions  o f  a,,-q produced by the 
Orns te in -Uhlenbeck  model  with parameters  d = .06, o~ = .17 and /9 = .02 for the 

force o f  interest accumula t ion  function,  with those produced by the Ornstein-  
Uh lenbeck  model  with parameters  6 = . 0 6 ,  o t = . 1 7  and p = . 0 1  for the force o f  
interest. Then the standard deviat ions  presented for n = 5 are roughly the same 
(.0517 compared  to .0576) while  for n = 40, the latter (.9767) is a lmost  7 t imes 
larger than the fo rmer  (.1448). Mul t ip ly ing  the value o f / 9  in the former  by 7 would  
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produce  s imilar  s tandard devia t ions  for n = 40 but then the s tandard  devia t ion  in the 

fo rmer  model  would  be about  7 t imes  larger than in the latter model  for  n = 5. 

Similar  compar i sons  can be made  be tween  di f ferent  p rocesses  under  the same 

approach or  d i f ferent  approaches .  

This  sugges ts  that it is not poss ib le  to select  d i f ferent  mode l s  that would  be 

equiva len t  in the sense  of  p roduc ing  s imilar  s tandard devia t ions  for all n. 

The coef f ic ien t  o f  skewnes s  of  a ~  for the same four mode l s  are con ta ined  in 

Table  3. 

TABLE 3 

COEFFICIENT OF SKEWNESS OF a~" I 

Modeling the force of interest accumulation function 

5 10 20 30 40 

Wiener : 

O-U: 

.06 .01 .0481 .0640 .0841 .0963 .1040 
• 06 .02 .0963 .1282 .1686 .1932 .2087 
.10 .01 .0530 .0616 .0772 .0844 .0876 
.10 .02 .0946 .1233 .1547 .1693 .1757 

6 e p 
.06 .17 .01 .0197 .0202 .0185 .0171 .0165 
.06 .17 .02 .0394 .0404 .0370 .0343 .0330 
.10 .17 .01 .0194 .0198 .0183 .0176 .0175 
.10 .17 .02 .0389 .0395 .0366 .0353 .0349 

Modeling the force of interest 

I1 

5 10 20 30 40 

Wiener: 

O-U: b 
.06 
.06 
.10 
.10 

o 
.06 .01 .1338 .3488 .9732 2.1347 6.5145 
.06 .02 .2690 .7266 2.8689 56.9320 1.3 x 105 
.10 .01 .1311 .3336 .8718 1.7175 4.0382 
.10 .02 .2636 .6940 2.5013 41.5591 1.2 x l0 s 

a 0 
.17 .01 .0585 .1205 .2157 .2773 .3166 
.17 .02 .1172 .2421 .4379 .5693 .6564 
.17 .01 .0573 .1154 .1961 .2383 .2580 
.17 .02 .1148 .2318 .3977 .4874 .5311 

o-u  : Ornstein-Uhlenbeck 

The  coef f ic ien t  o f  skewnes s  also exhibi t s  s ignif icant ly  d i f fe rent  pat terns  depend-  

ing on the model  cons idered .  This  suppor ts  the observa t ion  made  earl ier  that no two 

mode l s  can be seen as equivalent .  
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7. IMPLICIT BEHAVIOR OF THE FORCE OF INTEREST 

Clearly, modeling the force of interest accumulation function has quite different 
implications on the random present value function and other actuarial functions than 
modeling the force of interest. Basically, when modeling the force of interest, it is 
6~ that varies according to the chosen stochastic process. When modeling y(t),  then 
6s varies so that y (t) follows the chosen stochastic process. Those differences have 
already been illustrated by the standard deviation and coefficient of skewness of 
a,,-q. Another useful way of illustrating the differences between the two approaches 
is to look at the conditional expected value of y( t )  given y(s) and 6.,. for s < t. This 
conditional expectation will provide some insight into the implicit behavior of each 
process. 

7.1. Modeling the force of interest accumulation function 

The conditional expected value of y( t )  given y(s)  and 6., for s < t when y(t)  
follows an Ornstein-Uhlenbeck process may be obtained in the following way. 

Using (6), we have 

(35) E[y( t )  l y ( s )=X,  6 s = e l = E [ 6 . t + X ( t )  1 6 . s +  X ( s )= x ,  6.~=e] 

(36) = 6 .  t+ E[X(t)  l X(s )= x - 6 .  s, ds=~],  

since X(t) lX(s)  is independent of 6~ for s < t from the Markovian property of X(t),  
then 

(37) E[y( t ) ly(s)  = x, 6,.= e] = 6 • t + E[X(t)IX(s)  = x -  6 • s], 

which is [see, for example, BEEKMAN and FUELLING (1990, Section 2)] 

(38) E[y( t ) l y ( s )=x ,  6 . , = e ] = 6 . t + ( x - 6 . s ) . e  - '~'- '1, s < t .  

One can proceed in a similar way to find the corresponding result when the lbrce 
of interest accumulation function is modeled by a Wiener process. 

7.2. Modeling the force of interest 

The conditional expected value of y ( 0  given y(s)  and 6~ for s < t when b.~ follows 
an Omstein-Uhlenbeck process may be obtained in the following way. 

Using (I), we have 

If 1 (39) E[.y(t) l y ( s ) = x , b . , = e ] = E  brdrJ 6rdr=x ,b . , .=e  
0 0 

(40) = E d,. dr + dr dr J dr dr - x, 6.,. = e 
0 s 0 
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and conditioning on y(s)=x, (40) becomes 

[I I ] (41) E[y(t) ly(s)=x,d,=e]--x+E drdr I d,,du=x,d.~.=e 
.~, 0 

I [ I  ] (42) =x  + E cSrl d , , du=x ,  dr =e dr. 
s 0 

From the Markovian property of the process, ~r I 6, with r > s is independent of all 
values of d, for u < s, we then have 

I' 
(43) E[y(t) ly(s)=x,d~=e]-x + E[drld~-eldr. 

s 

Finally, adapting the result for the conditional expectation of an Ornstein- 
Uhlenbeck process found in ARNOLD (1974, p. 134), we may write (43) as 

I' (44) E[y(t)fy(s)=x, 6~=e]--x + 6+(e-6).e-~(r-')dr. 
s 

(45) = x + d ( t - s ) + ( e - d ) . t l -  e-~( ' -s)  / 

We can proceed similarly to find the corresponding conditional expectations 
when the force of interest is modeled by a White Noise or a Wiener process. 

Table 4 summarizes these results and those obtained earlier in this paper. 

TABLE 4 

SUMMARY OF RESULTS ABOUT y ( t )  

Process E l y ( t ) ]  V l y ( t ) l  E [ ) , ( t ) l ) , ( s )  =.r. O, = el 

Modeling the force of interest accumulation function 

Wiener ~ • t ~r 2.  t x + 6 ( t - s )  

O-U 6 . t p2 . ( I - e -  2"') b . t + ( x -  b . s ) . e - ' ' ( ' - ' ~  

Modeling the force of interest 

Wiener 6 .  t a 2. t313 x + e ( t - s )  

( 1  e - ' ~ l ' - ' ~ )  2 0 2 t  02 e _ 2,:,,) 
O-U . 6 . t  - -  + - - ( - 3 + 4 e - " ' -  x + 6 ( t - s ) + ( e - 6 )  - - - -  

a 2 a  
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We note from Table 4, as mentioned earlier, that the expected value o f y ( t )  is the 
same for all four models presented. Also, as noted earlier, the variances are quite 
different from one model to another. The salient feature of Table 4, however, is the 
fact that when modeling the force of  interest accumulation function, the conditional 
expectation of  y ( t )  given y ( s )  and di s does not depend on the values of  6.,. But 
when modeling the force of  interest, this conditional expectation does depend on the 
value of  65 . 

In order to illustrate the possible implications of  the conditional expected values 
of  y ( t )  presented in Table 4, we now consider the Consumer Price Index (CPI) for 
Canada for the 1960-1992 period (see Canadian Institute of  Actuaries (1993, 
Table IA)). Here, the CPI plays the role of  the force of interest. 

The results presented in Sections 2.2 and 6.4 of  PANDIT and Wu (1983) were 
used to estimate the parameters of  the different models. The estimator for 6 is 
.05335. The estimator of  the parameter ~ when modeling the force of i_nterest 
accumulation function is .01955, and when modeling the force of  interest, it is 
.05389. 

Using these values, the expected values of  y(t) ,  t > 10, given y ( 1 0 ) =  .2771 and 
6~0 =.0131 were computed. The results are presented in Figure 1 where t = 0 
corresponds to 1960. It is difficult to determine from this figure whether the fact 
that some models do not use the value of  6~o makes a significant difference. 

t ' ' ' ' I ' ' ' ' I ' ' r ' t ' ' ' ' I ' ' ' ' t 

3 -  

2 . 5  

2 

1 . 5  

1 

0 . 5  

0 
I . . . .  ! , J i J I I I i i [ i I i i I J i i i I 

0 i0 20 30 40 50 
FIGURE [. Conditional Expected Value oI" ~(t) given y(10) and 0 , , .  

{.v(s)}.l°= 0 with y(10) = .2771 61o= •0131 
b,: W-N 6=.05335  or y ( t ) :  Wiener ,5=.05335 

y( t ) :  O-U 0= .05335  ~ = .01955 
• . .  6,: Wiener 6 = •05335 

- • - 6,: O-U b = •05335 a = •05389 
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Figure 2 presents the expected values of 6,, t > 10, given y ( 1 0 ) =  .2771 and 
6]0 = .0131. This last figure clearly indicates a possible implication resulting from 
modeling the force of interest accumulation function instead of the force of interest. 
That is, an expected value of the force of interest, in the immediate future, which 
can be significantly different from its current value. 

0.06 

0 . 0 5  

0.04 

0.03 

0.02 

0.01 

la,l',°.o 
6, :  W-N 

y( t ) :  O-U 
b,: Wiener 
6, :  O-U 

I ' ' ' ' I  . . . .  i ' ' ' ' l ' ' ' ' l ' ' ' ' l  

? ......... - .................... 
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/ '  
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FJt;Ux|~ 2. Condit ional  Expected Vulue of  ~), given .v110) and 0 m .  

with 3' (10) = .2771 b io = .013 I 
= .05335 or y (t) : Wiener b = .05335 

6 = .05335 ~ = .01955 
6 = .05335 

= .05335 ot = .05389 

8. REMARKS AND SUMMARY 

It should be noted that the numerical values presented in Tables 1 and 2 of this 
paper are not entirely comparable with those in BEEKMAN and FUELLING (1990, 
1991). BEEKMAN and FUELLING (1990, 1991) study the continuous annuity, ~ ,  and 
we chose to study the annuity-immediate, aT. The choice of a discrete annuity was 
made in order to avoid errors involved in doing numerical integrations that would 
have been needed for the continuous annuity for some of the models considered. 

In this paper, we have studied different models under two approaches to model 
the interest randomness. An annuity-immediate was used to present some illustra- 
tions. 

As measured by the agreement of the expected values, standard deviations and 
coefficients of skewness, no two models can be seen as equivalent, even if one 
would try to select particular values of the parameters. The one exception to this is 
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that a Whi te  Noise  process  for the force o f  interest is equiva len t  to a Wiener  process 
for the force of  interest accumula t ion  function. 

Further,  when mode l ing  the force o f  interest accumula t ion  function,  def ined as 
y ( t ) ,  the condi t ional  expec ted  value of  y ( t )  given  y ( s )  and 6s ,  s < t, does  not 

depend on the value o f  the force  o f  interest at t ime s. However ,  when mode l ing  the 

force of  interest, the expec ted  value o f  y ( t )  given  y ( s )  and 6~, s < t, does depend 

on the value o f  the force o f  interest at t ime s. 
Finally,  another  advantage  to using one o f  the models  presented for the force o f  

interest is that they are special  cases  o f  one-fac tor  interest  rate term structure 

models .  This  means  that the work  that has already been done in f inance could be 
used by actuaries interested in arbi t rage-free  pricing. 
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A MARKOV MODEL FOR LOSS RESERVING 

BY OLE HESSELAGER 

University of Copenhagen, Denmark 

A B S T R A C T  

The claims generating process for a non-life insurance portfolio is modelled as a 
marked Poisson process, where the mark associated with an incurred claim 
describes the development of that claim until final settlement. An unsettled claim is 
at any point in time assigned to a state in some state-space, and the transitions 
between different states are assumed to be governed by a Markovian law. All claims 
payments are assumed to occur at the time of transition between states. We develop 
separate expressions for the IBNR and RBNS reserves, and the corresponding 
prediction errors. 

K E Y W O R D S  

IBNR and RBNS reserves; marked point process; Markov chain; martingale. 

I .  INTRODUCTION 

HACHEMEISTER (1980) suggested to represent the information about an unsettled 
claim by modelling the development as the realization of a (discrete-time) Markov 
chain. The predicted future claims cost for a particular claim then depends on the 
current state of the claim, and the state space represents the possible types of 
information which the company may have (or want to consider) during the 
development process.. In this paper we adopt the ideas of HACHEMEISTER (1980) and 
describe the development of a claim from occurrence until final settlement as the 
realization of a time-inhomogeneous, continuous-time Markov chain. We extend the 
description by also modelling the claim occurrences - -  by a time-inhomogeneous 
Poisson process. This makes it possible to establish separate reserves for the pure 
IBNR (Incurred But Not Reported) claims and the RBNS (Reported But Not 
Settled) claims. 

The reserving (or prediction) problem is conveniently formulated within the 
framework of marked (Poisson) point processes, which was advocated in the 
context of claims reserving by ARJAS (1989), and further developed by NORBERG 
(1993). In this context it is then assumed that the marks consist of the realization of 
a Markov chain together with the claims payments, which are assumed to occur at 
the times of transition between different states. 

The present paper gives a time-continuous version of HACHEMEISTER'S (1980) 
model. Our way of modelling the claims payments, however, differs from that of 
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HACHEIMEISTER (1980), and hence also our formulas for the IBNR and RBNS 
reserves. In particular, the formulas given for the prediction errors, which are used 
to assess the quality of  the IBNR and RBNS reserves, appear to be new. 

2. THE MODEL 

Consider  a portfolio which has been observed during some time interval [0, r],  
where r represents the present moment. We denote by K ( t )  the number of  claims 
incurred during [0, t], and by 0 <  T I < T 2 < ... the corresponding times of  
occurrence. With the ith claim we associate a mark Zi ,  which describes the 
development  of  that claim until final settlement• The marks are constructed as 

Zi = Z C~l , 

where {Z°)}, > 0 is a family of  random elements. For the claims generating process 
we assume that 

(a) {K( t )} ,~0  is a Poisson process with intensity { ~ ( t ) } , > 0 ,  and {Z"~},_>0 are 
mutually independent and independent of  { K ( t ) } ,  _> o. 

A claim is at any point in time after occurrence assigned to one of at most 
countable many states, 5. Different states in the set ,5 represent different types of  
information about the claim which the company may have. During the development 
process a claim may change state as new information becomes available, and 
(partial) payments may be made at the times of  transition between states. We want 
the mark Z, to carry the information about how the ith claim is classified in the 
course of  time, and also payments being made on that claim. Thus, we let 

Z (t)= { {S ( t ) (u ) }u_>o ,  {Y~t,l , j}j=l, 2 ..... m - c n ,  m , n ~ S } ,  

where S¢ ' ) (u )  ~ 5 denotes the state at time t + u of  a claim incurred at time t, and 
y(t) denotes the payment made upon the j th  transition from m to n. / t i n ,  j 

For a claim incurred at time t, transitions from m to n occur at time epochs 
t + _,.,,,II (') j ,  t + '-'m.,t I (') 2, " - - ,  say. The payments Y¢')_,.,,, j are regarded as marks correspon- 
ding to the point process 0 < t / ( ' )  < i~(,~ < and are constructed as ~ l t l l l ,  ] I " - t l t l l l ,  2 " " " 

y(t) . = y(t) ( l l(O 
m n , j  -- I t l t l  \ - - l ? l ~ , j . ,  

where { Y,~,I (u)},  > 0 is a family of random elements. For the development  process 
we assume that 

(b) {S ~')(u)}, > 0 is a t ime-inhomogeneous Markov chain with transition probabil- 
ities 

p,,,, (u, v) = P (S  ~t) (v) = n] S ~'~ (u ) = m ) ,  

and intensities 

2, ,~(u) = lim p, . .  (ll,  II + h) /h .  
II --~ O +  
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The amounts { -,,,,Y°) (u)}, ,  ~ o are mutually independent for all m ¢ n ~ .5 and 
u - > 0 ,  and are independent of {S°)(u)}~_>0 with cumulative distribution 
function 

Fm,,(yl  u = P (Y%I, (u )  --< y ) .  

Remark  2.1. According to assumption (b), the distribution of  the mark Z (t) 
corresponding to a claim incurred at time t does not depend on time t. This 
assumption could be dropped without any consequences for the following - -  except 
that the intensities 2m,(u)  and the distributions F.,, ,(ylu) would then carry 

2 .... ( u ) = ) . . , . ( t + u )  topscript t. A particular dependence on time t is that where (') 
depends on calendar time t + u rather than waiting time u since occurrence of  the 
claim. This may be a reasonable specification e.g. for transitions corresponding to 
the settlement of  RBNS claims (see Examples 2 and 3 below). It is a different 
matter that the statistical estimation becomes more difficult in such cases. In fact, 
since the claims reserving problem is concerned with payments made at time epochs 
t + u > v, one will at time r only be able to estimate the relevant intensities 
2,,,,(t + u) if some parametric assumption is being made. []  

Example  1. 

0 ~ IBNR 

In the simplest possible model, 

~o~ (u) 1 ~ ,-,-, Sett led 

it is assumed that a claim is settled at the time of  notification. Let W be the waiting 
time until notification, and let G ( u )  = P (W -< u). With only two states, 5 = {0, zl }, 
where 0 ~ IBNR and Z l -  Settled, this model is trivially Markov, and the rate of 
settlement is 20,d (u) = G '  (u) / ( l  - G (u)). [ ]  

E x a m p l e  2. Consider the model, 

0 IBNR ~01 (u) ~'lzx (u) ~ 1 ~ RBNS .~ A ~ Sett led 

where the reporting as well as the settlement of claims is subject to a delay. The 
assumption (b), that the intensities ~,,,, depend on u, the time elapsed since 
occurrence, may seem inadequate as far as 2j~ is concerned. The management 
might want to assume that the rate of  settlement for RBNS claims is determined by 
the amount of  resources which are allocated to claims handling department,  and that 
2 ~zl should therefore depend on calendar time t + u. As pointed out in Remark 2.1 
above, this is also possible Within the current framework. One could take 

~%{ ( u )  = ~-o, (u). 
2%~ (u) = 20zl (t + u ) ,  
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in which case the rate of reporting depends on waiting time u since occurrence and 
the rate of  settlement depends on calendar time t + u. []  

Example  3. Consider the following example, inspired by HACHEMEISTER (1980). 
In some lines of  business, with the possibility .of having very large claims, it is 
customary that the claims handling department at the time of  notification reviews 
the details concerning a claim and makes an estimate whether the ultimate claim 
amount is likely to exceed some prescribed limit, say DDK 200.000. If so, a case 
reserve (RBNS) is calculated for this claim. The company may later receive new 
information which causes it to revise the initial estimate. A claim which at the time 
of  notification was judged to exceed the prescribed limit may then be re-classified 
as a " s m a l l "  claim, and vice versa. Obviously the model could be refined by 
introducing more states, representing different intervals for the individual estimate 
(case reserve) for a claim. 

0 ~ IBNR Z.21 (u) 

~0z ( u ) ~  

| rxa 

Reported ; 
n o  

case reserve 

2 

• (u) 

~'t2 (u) J 
S ~ ( u )  

Reported ; 
case reserve 

A ~ Settled 

[] 

For a claim incurred at time t we shall need the following quantities, 

l ,~')(u) = ! ( S ¢ ' ) ( u )  = m) ,  the indicator of  the event that the claim occupies state 
m a t  time t + u ,  

(t) 
Nm, , (u ) .  the number of  direct transitions from m to n during [t, t + u], 
- - u  y ( t  ) . ( t)  ' f f~ ' )=a ({S~ ' ) (u )}0_~< . ,  {_ . , , , . j ,  j I . . . . .  = N . , , , ( u ) } ) ,  the history generated 

during [t, t + u] by the claim, 

Ym,, (u )  = E -tonY(t) (U), the average claim amount paid at time t + u if a transition 
from m to n occurs at that time, 

2 y(t) o , . , , ( u )  = Var _.,,, (u), the variance on the claim amount paid at time t + u if a 
transition from m to n occurs at that time. 
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We shall also make use of  the fact that 

(2.1) (tl l ( t )  (,) d N , . , , ( u )  = (u - ) 2 . , , , ( u )  _,. du + d M  ,,,,7 (u ) . 

where u denotes the left-hand limit, and all (t) - M , , . , ( u )  for m, n e  5 and m ~ e n  are 
mutually orthogonal zero-mean martingales with respect to the internal history of  
the process {S(')(u)}. _> 0 (see e.g. ANDERSEN et al. (1985)). Because {S C') (u)}. > o 
is stochastically independent of the claim amounts according to assumption (b), it is 

(t) also true that M . , , , ( u )  is a zero-mean martingale with respect to the filtration 
{ HI, ')}, ,  _> o. Furthermore. 

(2.2) Var ~') [dM,,m (u ) l  M'c.t_ > ] =/~')  (u - ) 2, .n (u )  d u .  

Let X( t ) (u ,  v) denote the total payment made during ]t + u, t + v] in respect of  a 
claim incurred at time t. We may write X('J(u, v) as 

(2.3) X <') (u, v) = ~ Y~,I (~) dN}~, ) (~) .  
m ~ n I t  

We make the convention that 0 e S, and that this state represents IBNR claims. 
Also A e 5,  and A is an absorbing state representing fully settled claims. With this 
convention the number of claims incurred during [0, t], which at time r are 
classified as IBNR and RBNS claims, respectively, can be written as 

I (2.4) K/BNR (t) = /0 c~) (r -- S)  d K  ( s ) ,  
0 

I (2.5) KRBNS(t) = [l -- i0(')(~ -- s )  -- i f f ) ( r  - S)] d K ( s ) ,  
0 

and the corresponding outstanding (at time r) claims payments are 

I (2.6) XmNR ( t )  = X ('~ (r - s, oo) d K m u g  ( s ) ,  
0 

I (2.7) XRSNS(t)  = X ( ' ) ( r  - s, oo) dKRBus (S ) .  
0 

In Section 4 we derive expressions for the IBNR and RBNS reserves, defined as 
the expected claims payments Xmue(r) and XRnNS(r)  given the available informa- 
tion at time r, and the corresponding prediction errors. Before we proceed to do so, 
we shall in Section 3 derive the required moments of  the future payments 
X ( ' ) ( r - s , ~ )  in respect of  a single claim. 

3. FUTURE PAYMENTS ON A SINGLE CLAIM 

Consider the claims payments X ( ' ) ( u ,  ~ )  in respect of  a single claim incurred at 
time t, as defined in (2.3). We shall derive expressions for the conditional moments 
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of X°)(u,  oo), given the individual history H,I ') of  that claim. Since all quantities 
considered here are functions of  the mark Z (t) corresponding to a claim incurred at 
time t, and the distribution of Z ('1 does not depend on t according to assumption (b), 
we may in this section omit the superscript (t). 

Consider the conditional distribution of X (u, oo) given H,,. By the independence 
assumed in (b), the information about past claim amounts Y,,,,, (v) for v < u may be 
omitted from the history H,,. From the Markov property it furthermore follows that 
the only information contained in H,, about the future development of  {S(v)} is the 
present state S(u).  Thus, 

(3.1) E [X(u, ~)l  H,,] = E [X(u, ~)l  S(u)]  := V(ul S(u)) ,  

(3.2) War [X(u, oo)l H , , ] = V a r [ X ( u , ~ ) l S ( u ) l : = i - ' ( u l S ( u ) ) .  

With X(u, oo) given by (2.3) we obtain by independence of {S.(u)},,_>0 and 
{ Y,,,, (u)},  > 0. and by use of  the decomposition (2.1), that 

(3.3) V(u l j )  = E [X(u, oo)1S(u) = j ]  

t l  I1 u 

_-xl 
i l l  ~ I t  I t  

__xf 
m ~ Ii ii 

E (Ym,,(~)l S(u)  = j )  E (dN,,,,, (~)I S(u)  = j )  

y,,,,, (~) E [I,,, (~ - ) Z,,,,, (~) + dM,,,, (~)l S (u) = j ]  

y,,,,, (~) &,,, (u, ~) 2,,,, (~) d~, j ~ S ,  

where the latter equality in (3.3) follows by noting that 

E [dM,,,,, (~) ] S (u) = j ] = E { E [dM,,,n (~) [ H,,] ] S (u) = j } = 0 

for ~ >- u, because {M,,,n (u)},, ~_ 0 is a martingale with respect to the history of that 
claim. 

For the purpose of deriving formulas for the variance functions F ( u l j )  in (3.2), 
we shall find it convenient to work will the loss corresponding to ]u, v], defined as 

(3.4) L(u, v) = X (u, v) + V(v] S ( v ) ) -  V(u] S(u)) .  

The loss as defined in (3.4) plays a key role in connection with results of  
Hattendorff-type in life-insurance (e.g. PAPATRIANDAFYLOU ~ WATERS, 1984) due 
to the fact that {L(u, v)},>,, is a zero-mean martingale with respect to Hv} , z , , .  
This is most easily seen by writing 

L (u, v) = E [X (0, oo) ] Hv] - E [X (0, ~)1 H, ] ,  v -> u, 

which for u -< ~ -< v shows that 

E (L(u, v)l He) = E {E [X(0 ,~ ) I  Hv]l H~] - E  IX(0, ~)l  H,,] 

• = E [X(0, ~) l  H~] - E IX(0, oo)1 H , I  = L(u, ~) 
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Because of (3.4), with v = ~,  and because the increments of  a martingale are 
uncorrelated, we may then calculate the conditional variance (3.2) as 

(3.5) Var (X (u, ~)15/,) = Var (L (u, o~)1 '2-/,,) 

= Var (L (d~)l H,,),  
Lt 

where L(d~) is a short-hand for the loss corresponding to an infinitesimal interval 
containing ~'. An expression for Vat (L(d~)l H,,) may be obtained using calcula- 
tions similar to those in NORBERG (1992). According to (3.4) it holds that 

(3.6) L (d~) = ~ Y.,,, (~) dN,.,, (~) + dv(~l S (#)). 
tn  .~ t l  

By writing 

V(~] S(~)) = ~ lm(~) V(~] m), 
m 

we obtain that 

Since /m (~) increases by one if a transition into state m is made at time ~ and 
decreases by one if a transition out of state m is made at that time, we may write 

(3.8) dl m(~)= ~ dN,,,,,(~) - ~ dN,,,.(~). 
I I  :?1 ~ m 11 : i l  .~t~l 

The reserve V(~l m) is a prospective reserve for a Markov model, as used in 
classical life-insurance mathematics, in the present case, the reserve (3.3) contains 
no interest or premium payments, and Thiele 's  differential equation then 
becomes, 

d 
(3.9) - - V ( ~ ' l m ) = -  ,~, ~.,,,,(~)rm,,(~), 

d~ .... ~,, 

where 

(3. I 0) r,,,,, (¢) = y,,,, (~) + V (# I ,,) - V (¢1 m) 

denotes the (expected) sum at risk at time ~'. Combining (3.7) with (3.8) and (3.9) 
yields 

dv(~l S(~)) = ~ V(~i m) (dU,,,.(~)-dU,.,,(~)) - !,,,(~) ~., . (~)  r,,,.(~)d~ 
Ill  ~- I1 

= ~ ( v  (~l , )  - v (~l m)) aN,,,, (~) - i,,, (~) x m,, (~) ~.,., (~) d~. 
i n  ~¢ tl 
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Integrating (3.6) from u to v with dV(~] S(~)) given above, we then arrive at the 
expression 

(3.1 I) L(u. v) = ~ [Y,,,, (~) + V(~I n) - V(~I m)] dN,,,,(~)- 

- ~ /., (~) ~.,,, (~) r..° (~) d~. 
m r~ rJ Lt 

Since the latter integral in (3.1) is an ordinary Lebesgue integral, we may here 
replace /,,,(~) with its left-hand limit I , , ,(~-),  which allows the alternative 
expression 

(3.12) L(u,v)  " ~ Y,..(~)dN,,,,,(~) + ~ r,,,,,(~)dM,,,,,(~), 
t t I X :  11 tA I11 ~ n II 

where M,,.,(~) is the martingale (2.1) and 

Y,,,,, (~) = r,,,,, (~)  - y.,,, (~). 

For the purpose of calculating the conditional variance (3.5), the expression 
(3.12) is useful. 

The terms Y,,~, (~) dN,,,,, (~) are mutually uncorrelated given M~, as a consequence 
of assumption (b), and 

Var [ Y,,~ (~) dN,,,, (~)l M,,] = E [ Y,,,, (~)2 dN,,,, (~)21 H,] 
2 = a.,,,(~)ps(.j,, ,(u, ~) ,L,,,,(~) d~. 

The terms r,,,,,(~)dMm,,(~) are mutally uncorrelated because the martingales 
M,.,, (~) are, and by use of (2.2), 

Var [ r,,,,, (~) dM.,,, (~)l H,,] = r,,,,, (~)2 Ps <.)., (u. ~) ~.,,,,, (~) d~. 

Finally, the terms Y.,.(~)dN.,.(~) and r, . .(~)dM.,.(~) are uncorrelated as a 
consequence of assumption (b). From (3.5). (3.12) and the above expressions we 
then obtain that the variance functions l ' ( u l j )  appearing in (3.2) can be expressed 
a s  

F (3.13) F ( u l j ) =  ~, pj,,,(u,~)2,,,.(~)[cr2..,(~)+r,,,.(~)2]d~. 

In the context of life insurance, variance formulas analogous to (3.13) were 
obtained by RAMLAU-HANSEN (1988) for a Markov model and by NORBERG (1992) 
in a more general counting process, framework. However, in life insurance the size 
of the benefits is specified in the insurance contract, and these are consequently 

2 considered as deterministic. The variance o,,,,,(~) does therefore not appear in the 
formulas of RAMLAU-HANSEN (1988) and NORBERG (1992). 
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R e m a r k  3.1. To obtain tables of  V(u[j) and F(ul j )  from (3.3) and (3.13), 
respectively, one has to calculate first the transition probabilities Pjm(U ,V) by 
solving Kolmogorov ' s  differential equations. A computationally more convenient 
approach is to calculate V(ulj)  directly by solving Thiele 's  differential equation 
(3.9) with boundary conditions V(~lj)=0. In practice one will of course use a 
boundary condition V(u .... I j)=0, where Um~x is chosen such that all claims are 
fully settled within the first Um~x time units after occurrence. Comparing (3.3) and 
(3.13) shows that the formula (3.13) can be obtained from (3.3) by replacing the 

2 average claim amount y,,,,(~) by o,,,,,(~)+ r,,,,,(~) z. Taking the derivative with 
respect to u it then follows that I ' (ulj)  satisfies a Thiele 's  differential equa- 

2 ( t t )+ rm, , (u)  2 replaces Ym,,(u) also in this case. Thus, tion (3.9), except that o .... 

d 
(3.14) - -  F(u l j )=  - ~ 2 . / , , ( u ) I o j 2 , , , ( u ) + r j , , , ( u ) 2 + F ( u l m ) - F ( u l j ) ] ,  

du ,,,:m ~j 

and V(ulj)  as well as F(ul j )  may be calculated without necessarily calculating the 
transition probabilities. [] 

4 .  CLAIMS RESERVES 

By time 'r we have registered all known (reported) claim occurrences during [0, ~], 
and for a reported claim incurred at time t, say, we have also registered the 
individual history .q-:~t_) t of  that claim from the time of occurrence up tO present 
time r. Let -q'r denote the collection of this information. 

The IBNR and RBNS reserves at time v are defined as 

(4. ! ) V/iNn (r) = E (Xmg g (OI .,w0, 

(4.2) VrBNS(r ) = E (XRBNS(OI YO,  

where XtBNR(t) and XRBNS(t) are defined in (2.6) and (2.7). The corresponding 
prediction errors are denoted by 

(4.3) Fmu R (r) = Var (Xmu r 0:)l F~), 

(4.4) FRBNS (T) : War (XRBNS (r)[ Fr)- 

Considering RBNS claims, the occurrences {KRBuS(t) }o<,_< ~ are known from 
Fr, and from (2.7) we then obtain 

(4.5) VRBm(~) = E ( X ( ' ) ( r -  t, ~)1 f~)  dKRBNS(t). 
o 

By assumption (a) the conditional expectation appearing in (4.5) depends only on 
the history .~-/'~'.~, of  that particular claim, and from (3.1) we then have, 

(4.6) VrBNS(O = V(~" - t[ S (') (~ - t)) dKRBNS(t), 
o 
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where V(ul j )  is the reserve (3.3). By independence of  the marks corresponding to 
different claims we also have, 

FRRNS (3) = I 
0 

:If 

(4.7) Var [X(t)(r - t, ~)1 ZT] dKRBNS(t) 

F(3 - t[ S(° (3 -  t ) ) dKnaNs(t ), 

where F(ul j )  is defined in (3.13). Note that the integrals in (4.6), (3,13) simply 
represent summation over those claims which are RBNS at time 3. Thus, the RBNS 
reserve (4.6) is obtained by adding the reserves V(u I j) corresponding to the current 
states and durations for the RBNS claims at time r. 

From (2.4) and (2.5) we note that { KmNR (t) } 0 -<, -~ ~ and { KRBNS (t) } 0 --<, <- T are 
obtained as a marker dependent partition of  the Poisson process {K(t)}. From 
NORBERG (1993, Theorem 2) it then follows that the marked point processes 
corresponding to { KiBNR (t) }0 ~t -< r and {KRBNS (t)}o -~ t-< ~ are independent and 
(again) Poisson. The Poisson rate corresponding to IBNR claims is given by 

[liBUg (l) ---- ~ (t) P (S (t) (3 - t) = 0) = u (t) P00 (r - t) 

and the mark corresponding to an IBNR claim incurred at time t is distributed 
according to the conditional distribution of  Z (') given that S ( ' ) ( 3 -  t ) =  0. Since the 
history 7T is generated by reported claims (only), it then also follows that XmNR(t) 
is independent of  f~ ,  and from (4.1), (2.6) we obtain that 

(4.8) 

and 

VIBNR (3) = E XiBNR (27) 

PteNR (t ) E (XC'~ (r - t, ~ ) 1 S ( ° ( r  - t) = 0) dt :Ji 
:Ji PInNR(t) V ( r -  tl 0) dt, 

(4.9) FIBNR (r) = Var Xm,vR (r) 

= ~l~NR(t) E(X~'~(~--t,~)2[S('~(~--t)=O)dt 
0 

= ,UmNR (t) [F ( r  - t t 0) + V(r - t l 0) 2] dt. 
0 

We have now derived formulas for the IBNR and RBNS reserves (4.6), (4.8), 
and the corresponding prediction errors (4.7), (4.9), expressed in terms of  the 
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reserve- and variance functions (3.3) and (3.13). The total reserve is (of course) the 
sum of  IBNR and RBNS reserves. Because the marked point processes correspon- 
ding to {K/t~,vR(t)} and {KRBNS(t)} are stochastically independent, it also holds that 
the prediction error corresponding to the total reserve is obtained by adding the 
prediction errors corresponding to the IBNR and RBNS components.  

Remark  4.1. If V(ulj) and F ( u l j )  are calculated directly by solving Thiele's 
differential equation as advocated in Remark 3.1, one also needs an expression for 
P00(O, u) in order to calculate (4.8) and (4.9). However, since state 0 is strongly 
transient, we have the expression 

If  } poo(O,u)=exp - ~ 2o,,,(~)d~ • 
0 m~O 

[] 
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A B S T R A C T  

The method of Esscher transforms is a tool for valuing options on a stock, if the 
logarithm of the stock price is governed by a stochastic process with stationary and 
independent increments. The price of a derivative security is calculated as the 
expectation, with respect to the risk-neutral Esscher measure, of the discounted 
payoffs. Applying the optional sampling theorem we derive a simple, yet general 
formula for the price of a perpetual American put option on a stock whose 
downward movements are skip-free. Similarly, we obtain a formula for the price of 
a perpetual American call option on a stock whose upward movements are 
skip-free. Under the classical assumption, that the stock price is a geometric 
Brownian motion, the general perpetual American contingent claim is analysed, and 
formulas for the perpetual down-and-out call option and Russian option are 
obtained. The martingale approach avoids the use of differential equations and 
provides additional insight. We also explain the relationship between Samuelson's 
high contact condition and the first order condition for optimality. 
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Esscher transform; perpetual American call option; perpetual American put option; 
perpetual down-and-out American call option; perpetual American strangle; perpe- 
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I. INTRODUCTION 

The option-pricing theory of BLACK and SCHOLES (1973) is perhaps the most 
important development in the theory of financial economics in the past two decades. 
A fundamental insight in advancing the theory is the concept of risk-neutral 
valuation introduced by Cox and Ross (1976). Further elaboration on this idea was 
given by HARRISON and KREPS (1979), HARRISON and PLISKA (1981) and others 
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under the terminology of equivalent martingale measure. It is now understood that 
the absence of arbitrage is "essent ia l ly"  equivalent to the existence of an 
equivalent martingale measure, and some authors (DYBVlG and Ross, 1987; 
SCHACHERMAYER, 1992) call this the Fundamental Theorem of Asset Pricing. 

Under the assumption that the logarithm of the stock price is governed by a 
stochastic process with stationary and independent increments, one may determine 
such an equivalent martingale measure by a time-honored technique in actuarial 
science - -  the Esscher transform (ESSCHER, 1932). An Esscher transform induces 
an equivalent probability measure on such a stock-price process. The risk-neutral 
Esscher parameter (which is unique) is determined so that the stock price, 
discounted by the risk-free interest rate less the dividend yield, becomes a 
martingale under the new probability measure. The price of a derivative security is 
the supremum of the expected discounted payoffs, where the expectation is taken 
with respect to this equivalent martingale measure and the discounting is calculated 
using the risk-free interest rate. 

The pricing of American options with a finite expiration date has been a 
challenging problem in the field of financial economics. A main difficulty is the 
determination of the optimal exercise boundary. Some papers on American options 
in the past decade are BENSOUSSAN (1984), MACMILLAN (1986), BARONE-ADESI 
and WHALEY (1987), OMBERG (1987), KARATZAS (1988), JAILLET, LAMBERTON and 
LAPEYRE (1990), KIM (1990), JACKA (1991), CARR, JARROW and MYNENI (1992), 
MYNENI (1992), CHESNEY, ELLIOT and GIBSON (1993), LAMBERTON (1993), HULL 
and WHITE (1993), and TILLEY (1993). In this paper we study the pricing of 
American options without expiration date by means of the Esscher transform and 
the optional sampling (stopping) theorem. This is a more tractable problem because 
the optimal exercise boundary of a perpetual American option does not vary with 
respect to the time variable. We derive a simple, yet general formula for the price of 
a perpetual American put option on a stock whose downward movements are 
skip-free (jump-free). Similarly, we obtain a formula for the price of a perpetual 
American call option on a stock whose upward movements are skip-free. In the 
appendix, we present a family of stochastic processes for modeling such stock-price 
movements. This family includes the Wiener process, gamma process and inverse 
Gaussian process, and combinations of such processes. 

Under the classical assumption that the stock price is a geometric Brownian 
motion, the general perpetual American contingent claim is analysed, and formulas 
for the perpetual down-and-out call option and Russian option are obtained. The 
martingale approach avoids the use of differential equations and provides additional 
insight. We also explain the relationship between Samuelson's high contact 
condition and the first order conditions for optimality. 

2. THE RISK-NEUTRAL ESSCHER TRANSFORM 

Let S(t) be the price of a stock at time t, t ~ 0. We assume that the process, 
{X(t)},_~ o, defined by 

(2.1) S(t)=S(O)e x(n, t>--O, 
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is one with stationary and independent increments. Let 

(2.2) F(x, t) = Pr [X(t) _< x], t _> 0 ,  

be the distribution of the random variable X(t), and 

(2.3) M(z, t) = E [e~X(')], t --> 0 ,  

its moment generating function. Under a mild continuity condition (BREIMAN, 1968, 
Section 14.4), 

(2.4) M (z, t) = [M (z, 1 )] ', t .~ 0.  

While the Esscher transform of a random variable is a well-established concept, 
in this paper we consider the Esscher transform of a stochastic process which 
satisfies (2.4). The Esscher transform (parameter h) of  {X(t)} t ~_ 0 is again a process 
with stationary and independent increments; the modified distribution of  X(t)  is 
n o w  

F(x, t; h) = Pr [X(t) ~ x; h] 

f l  e hy dF(y,  t) 

f l _ 1 e hy dF (y, t) .  
M(h, t) oo 

The corresponding moment generating function is 

(2.5) 

It follows from (2.4) that 

(2.6) 

M(z, t; h) - 
M ( z + h , t )  

M(h, t) 

:F 
M(z,t;h) L M(h~) J 

= [M(z, 1; h) ] ' .  

Because the exponential function is positive, the old and new measures have the 
same null sets, i.e., they are equivalent probability measures. The appropriate 
parameter h = h* is determined according to the principle of  risk-neutral valuation 
(Cox and Ross,  1976), or, using the terminology of  HARRISON and KREPS (1979) 
and HARRISON and PLISKA (1981), we seek h=h*  to obtain an equivalent 
martingale measure. 

In this paper we assume that the risk-free force of interest is constant, and it is 
denoted by 6. We also assume that the market is frictionless and trading is 
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continuous. There are no taxes, no transaction costs, and no restriction on 
borrowing or short sales. All securities are perfectly divisible. Furthermore, we 
assume that the stock pays a continuous stream of dividends, at a rate proportional 
to its price, i.e., there is a nonnegative constant p such that the dividend paid 
between time t and t + dt is S ( t ) p d t .  The parameter h = h* is chosen so that the 
process {e - (a-p) '  S ( t ) } ,  _> o is a martingale with respect to the probability measure 
corresponding to h*. In particular, 

(2.7) 

hence, by (2.1) and (2.6), 

S(O) = E[e  - (~-p) '  S ( t ) ;  h*] ; 

e (a-o)' = E[eX('); h*] 

= [ M ( 1 ,  1 ; h * ) ] ' ,  

or  

(2.8) In [M(1, 1; h*)] = 6 - p .  

The Esscher measure corresponding to the parameter h* is called the risk-neutral 
Esscher measure. The price of a derivative security, whose payments depend on 
{S (t)}, is calculated as a discounted expected value, where the expectation is taken 
with respect to the risk-neutral Esscher measure. 

Under some regularity conditions, equation (2.8) has a unique solution. To see 
this, consider the function 

The formula 

g(h)  = In [M(I ,  I ; h)] = In  [M(I +h ,  l ) ] - l n  [M(h, 1)]. 

d 
- -  E [ X ( I ) ;  h] = Var  [ X ( l ) ;  hi  
dh 

shows that E [ X ( I ) ;  h] is an increasing function in h. Hence 

g'(h) = E [ X ( I ) ;  1 + h ] -  e [ X ( l ) ;  h] 

is positive, showing that g(h) is an increasing function. This proves the uniquencess 
of  the solution of  equation (2.8), which is 

g(h )  = 6 - p . 

To discuss the existence of  the solution, let M and m denote the right and left end 
point of the (essential) range of  X(i ) ,  respectively. (M may be + oo and m may be 
-oo). We may assume 

m + p < 6 < M + p ,  

o r  

m < 6  - p < M ,  
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because otherwise arbitrage would be possible. Let (a, b) denote the interval of 
values of h for which g(h) exists. Under some regularity conditions, 

lira g(h) =m,  lim g(h) =M, 
h $ a 11 ' "  b 

in which case (2.8) does have a solution. It should be noted that, although the 
risk-neutral Esscher measure is unique, there may be other equivalent martingale 
measures; see DELBAEN and HAEZENDONCK (1989) for a study on equivalent 
martingale measures of compound Poisson processes. 

The price of a derivative security is taken as the expectation of its discounted 
payoffs with respect to the risk-neutral Esscher measure. For example, consider a 
European call option on the stock with exercise price K and exercise date t, t > 0. 
Let /(.) denote the indicator function and K = In [K/S(O)]. The price of the option 
(at time 0) is 

(2.9) e-atE[(S(t) - K) l(S(t) > K); h*] 

= e-~'E[S(t) l(S(t)  > K);  h * ] - e - ~ ' K E [ I ( S ( t )  > K);  h*]. 

The second expectation in the right-hand side of (2.9) is 

Pr [S(t) > K;  h*] = 1 -F(K, t; h*). 

To evaluate the first expectation in the right-hand side of (2.9), note that, for each 
measurable function g(.), 

E[g(S(t )) e 'x(')] 
(2.10) E[g(S(t)); h] = 

E[e;'X(')] 

E[g(S(t)) S (t);'] 

E[S(t);'] 

With this formula, the following result can be proved. 

Lemma : Let h and k be two real numbers. Assume that the Esscher transforms of 
parameters h and h + k exist. Then, for each measurable function ~ (.), 

(2.11) E[S(t)k~p(S(t));h]=E[S(t)k;h]E[~p(S(t));h+k]. 

Applying the Lemma [with k=  I, ~p(x)=l(x> K) and h = h * ]  and (2.7), we 
obtain 

E[S(t) l(S(t) > K);  h*] = E[S(t); h*] E[I(S(t) > K);  h* + 1] 

= S(0) e (a-p)'  Pr [(S(t) > K) ;  h* + I] .  

Thus the price of the European call option is 

(2.12) S(O) e - ° t [ l -F (K , t ;h*  + l ) ] -Ke-a ' i l -F(K, t ;h*)] .  
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If {X(t)} is a Wiener process with variance per unit time o 2, then (2.12) (with 
(4.2) below) yields the expression 

o/ / ) _ _  - . ,  

where 9 ( . )  denotes the standardized normal distribution. For P = 0 this is the 
celebrated Black-Scholes  formula.  Formula (2.13) is the same as formula (53) in 
SMITH (1976). 

R e m a r k s  : 

(1) We assume that the stock pays dividends at a constant proportional rate p. If 
all dividends are reinvested in the stock, then each share of the stock at time 0 
grows to e p~ shares at time t; this gives an interpretation for formula (2.7), 

S(O) = E [ e -  ~ S ( t  ) eP' ; h*l. 

On the other hand, we can also consider the situation where none of the dividends 
are reinvested in the stock, leading to the intuitive formula: 

(2.14) S(0) = E e-~US(u) pdu  + e - ° ' S ( t ) ;  h* . 
0 

To prove (2.14), we interchange the order of expectation and integration on the 
right-hand side and apply the formula 

E | e -  O"S(u); h*] = e-P"S(O);  

thus 

R.H.S.  = S (0 e - p,, pdu  + e - p' 
0 

= s (o )  

= L.H.S. 

(2) Formula (2.12) may be used to price currency exchange options, with S ( t )  

denoting the spot exchange rate at time t, 6 the domestic force of interest and p the 
foreign force of interest. In this context, (2.13) is known as the Garman-Kohlhagen  

formula.  

3. PRICING PERPETUAL AMERICAN OPTIONS 

In this section, by applying the optimal sampling theorem, we derive pricing 
formulas for perpetual American put and call options on a stock. We make the 
assumptions about stock pricer and dividends that were introduced in the previous 
section. In addition, when pricing a perpetual American put option, we assume that 
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the downward movements of the stock price are skip-free. Similarly, when pricing a 
perpetual American call option, we assume that the upward movements of  the stock 
price are skip-free. Under these convenient assumptions, attractive formulas can be 
obtained. 

First, we consider a perpetual  American put option with exercise price K. We 
temporarily assume that K < S(0), so that an immediate exercise of  the option can 
be excluded. The owner of  this option exercises it according to some strategy: a 
stopping time T. Then, at time T, he will get 

( K -  S(T))+ , 

where x+ = Max (x, 0). Thus the value (at time O) associated with the strategy is 

(3.1) E [ e - a Y ( K -  s ( r ) ) +  . h* ] .  

To maximize this expression, we can limit ourselves to stationary strategies of  
the form 

(3.2) T L = inf {tls(t) -< L} ,  

where L _< K; the option is exercised the first time when (if ever) the price of  the 
stock falls below or equals the level L. The price of  the option is the maximal value 
of 

(3.3) E [e - arL (K - S (TL)) + ; h*].  

With the assumption that the stock-price process, { S ( t ) } t . ~ o  , is skip-free 
downwards, the stock price is equal to L at the time when the option is exercised, 
i.e., 

(3.4) L = S (TL) = S (0) e x(r'.) . 

For simplicity, denote the current stock price S(0) by S and expression (3.3) by 
V (S, L). Since L ..~ K, 

(3.5) V (S, L) = ( K -  L) E[e-aT~ ; h*].  

The expectation in (3.5) is a Laplace transform of T L and can be calculated by the 
following classical argument. 

Consider the stochastic process {e-a '+°x( ' )} , ->o.  For t <- T L, it is a bounded  
martingale with respect to the risk-neutral Esscher measure if the coefficient 0 is 
the negative solution of  the equation 

E[e  -a'+°x(') ' ,  h*] = 1,. 

or  

(3.6) M(O, I ; h*) = e a . 

Equation (3.6) has two (real) solutions; one is negative and the other is greater than 
one. To see this, consider the function 

dp(O) = M(O, I ; t2") = E[e  °xO)" h*].  
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Since 

~"(0) = E[X(I)  z e°X(I); h * ] > O ,  

the function ~ ( 0 ) i s  convex. Consequently, equation (3.6), 

~ ( 0 )  = e ~ , 

has at most two solutions. We note that 

(0) = I < e  ~ 

and, because of (2.8), 

Let us assume that 

and 

qb(l) = e  ~ - °  < e ~. 

Pr [X(l)  < 0] > 0 

Pr [X(l)  > 01 > 0 ,  

from which it follows that q~ (0)---) + oo for 0 ~ - ~  and for 0 ~ + oo. Thus 
equation (3.6) has two solutions, 00 < 0 and 0t > 1. 

By the optional sampling theorem, we have 

E[e-aTL+°°x(Ti); h*] = 1 , 

which, because of (3.4), becomes 

(3.7) E[e- '~r" ;  h *] = / ~ / - ° '  

Applying (3.7) to (3.5) yields, for S -> L and K > L, 

(3.8) V(S, L ) = ( K - L ) ( ~ )  -°°. 

For a given current stock price S, we seek the maximal value of (3.8) by varying 
the option-exercise boundary L. Let V L denote the partial derivative of V with 
respect to L. Solving the equation 

VL(S, L) = 0 

yields the optimal exercise boundary 

L = L - - - - - 0 °  K. 
I - 0o 

(3.9) 

Thus the maximal value is 

V(S, E) = - -  
I - 0 o  S -Oo)J  
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This is the price of the perpetual American put option provided that S -> L. For 
S < L, the option is exercised immediately and the price is simply K - S. Hence the 
option price is 

,+00[ °° if S~-/.~ 
(3.10) S ~  - 00)_1 

K - S  if S < L  

It may seem surprising that 6 and/9 do not appear in (3.10). However, they were 
used to determine 0o. 

Next we study the pricing of a perpetual American call option with exercise price 
K, and we temporarily assume that K > S. For M ~. K, let 

TM= inf {t lS(t) -> M } (3.11) 

and 

(3.12) 

With 

W(S, M) = E[e -aTM (S(TM)- K)+ ;h*] .  

the assumption that the stock-price process, {S(t)}t_>0, is skip-free 
upwards, the stock price is equal to M at the time when the option is exercised, i.e., 
S(TM) =M. Since M -> K, formula (3.12) becomes 

(3.13) W(S, M) = (M - K) E[e -rTM ; h*]. 

The expectation in (3.13) is evaluated in the same way as above, except that we 
now use 01, the positive root of (3.6), to make sure that {exp [ - 6 t  + O~ X(t)]} is a 
bounded martingale (with respect to the risk-neutral Esscher measure) for t --< TM. 
The resulting formula is 

(3.14) E[e-aT";h*.l=lfMI °' . 

For given current stock price S, the maximal value of 

(3.15) 

is attained at 

(3.16) 

and 

W ( S , M ) = ( M - K ) ( ~ - )  °' 

M=/~----01 K, 
0 1 - I  

K [S(O,-I)] °' 
(3.17) W(S,/Q)= 0 . ~ l  L K ~  

This gives the price of the perpetual American call option provided S --< A~. For 
S > M, the option is exercised immediately and the price is simply S - K. Thus the 
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option price is 

(3.18) 
K [ S ( O . - I ) ]  °' 

"b~'-~-] L" "K~ if S-<,,Q 

S - K  if S > , Q .  

Remarks: As the dividend yield p tends to 0, the coefficient 0~ tends to 1, the 
optimal exercise boundary /Q tends to oo, and the price of the perpetual American 
call option tends to S, the current stock price. These limiting results can be verified 
by direct calculations: for p =0, 0~ = !, (3.15) reduces to 

(3.19) W(S,M)=(I  - ~-)S,  M--> K. 

Since this is a strictly increasing function of M, its supremum is not attained for a 
finite value of M, and the maximal value (the value of the option) is S. Thus, if 
/9 = 0, the perpetual American call option will never be exercised, but nevertheless 
it has a positive value. To avoid this anomaly (to which INGERSOLL (1987, p. 373) 
refers as the problem of " inf ini t ies")  we might modify the payoff of the call 
option as 

[ ( S ( T ) -  K)+ ]4, 0 < a < I. 

Then 

which is maximal for 

S 
W(S, M) = (M - K) c~ - -  

M 

K 

1-or  

3.1. The high contact condition 

Each of (3.10) and (3.18), as a function of the current stock price S, has a 
continuous first derivative, because 

v(£,£) =K-£ ,  
(3.I.1) V s ( £ ,  E )  = - l ,  

W(.,Q, ,Q) = ]Q - K, 

and 
Ws(M, M)= 1. 

Formulas (3.1.1) and (3.1.2) are special cases of the so-called high contact 
condition (SAMUELSON, 1965); in the literature about optimal stopping problems 
(SmRAYAYEV, 1978, p. 160) the term is smooth pasting condition. SHEPP and 
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SHIRYAEV (1983) use the tenon the principle of smooth .fit and attribute it to 
Kolmogorov. (Shirayayev is the same person as Shiryaev). 

MERTON (1973, p. 171, footnote 60; 1990, p. 296, footnote 47) has derived the 
high contact condition as a first order condition necessary for optimality. (Merton 's  
proof is reformulated on page 189 of BREKKE and OKSENDAL (1991)). Under some 
weak conditions, the converse is also true - -  a solution proposal to an optimal 
stopping problem satisfying the high contact condition is in fact an optimal solution 
to the problem; a recent paper on this is BREKKE and OKSENDAL (1991). It is easy 
to check that condition (3.1.1) does determine the optimal exercise boundary L, 
while (3.1.2) determines ,,~. 

We now derive a formula explaining how the high contact condition (3.1.1) and 
optimality for V(S, .) are related. Let 

(3.1.3) ~(S, L)=E[e-~TL;h*]. 

From (3.7) or simply by interpretation, it follows that, for 0 < x < S -  L, 

(3.1.4) 2(S, L) = 2 ( S ,  L + x ) 2 ( L  +x ,  L) 

(cf. Lemma 7.1 on page 243 of KARLIN and TAYLOR (1981)). Differentiating (3.1.4) 
with respect to x and setting x = 0 yields 

(3.1.5) 0 = 2L (S, L) + 2 (S, L) ~s (L, L) .  

Now, let 

(3.1.6) ~ (x )  = (K - x)+ 

denote the payoff  function. Then (3.5) becomes 

(3.1.7) V(S, L) = ~ ( L )  ,1, (S, L). 

Differentiating (3.1.7) with respect to L and applying (3.1.5) yields 

(3.1.8) VL(S, L) = ~' (L) ~ (S, L) + ~(L)  2 L (S, L) 

= ~ '  (L) 2 (S, L) - ~ (L) 2 (S, L) 2s(L,  L) 

= 2 (S, L) [~' ( L ) -  Vs(L, L)] .  

(Formula (3.1.8) can also be derived using (3.8)). Since ~ ( S , L )  is positive, 
Vt,(S,L)=O if and only if 

(3.1.9) Vs(L, L) = ~' (L ). 

Equation (3.1.8) shows explicitly that the optimal exercise boundary i does not 
depend on the current stock price S. We note that (3.1.7), (3.1.8) and (3.1.9) are 
valid for payoff  functions ~( . )  more general than (3.1.6). 

Similarly, one can derive the formula 

(3.1.10) WM(S, M) =/.t (S, M) [~ '  (M) - Ws(M, M)] ,  

where 
u (S, M) = E[e - 6r,; h*l .  
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4. LOGARITHM OF THE STOCK PRICE AS A WIENER PROCESS 

The stochastic process with stationary and independent increments and sample paths 
which are both skip-free upwards and downwards (i.e., continuous) is the Wiener 
process. In this section we assume that {X(t )} ,a0  is a Wiener process; this is the 
classical geometric Brownian motion model for stock-price m o v e m e n t s  (SAMUEL- 

SON, 1965; BLACK and SCHOLES, 1973). Let /.~ and o. 2 denote, respectively, the 
mean and variance of  {X(t)} per unit time. In terms of  a stochastic differential 
equation, the assumption is 

S ~  - + dt + o.dW (t ), t -~ 0 ,  

where {W(t)}, ~-o denotes the standardized Wiener process. 
Since 

M(Z, t) = exp [(,uz + ' /2o.2z2)t], 

it follows from (2.5) that 

In [M(z,  t; h)l = [(~ + ho.2)z + V2o.2z 2It .  

This shows that the transformed process has modified mean per unit time l.t + ho. 2 
and unchanged variance per unit time o. 2. From (2.8) we get 

(4.1) (/,t + h * o .  2) + Y2o. 2 = 6 - p .  

Thus to evaluate a derivative security, we use a Wiener process with mean per unit 
time 

~ + h* o.2 = 6 - p - V2 o. 2 . (4.2) 

From (3.6) we obtain 

(6 - p  - 1/2 o.2) 0 ÷ 1/20202 = 6 ,  

o r  

(4.3) o. 202 + (26 - 2 p - o. 2) 0 - 26  = 0.  

The roots of this quadratic equation are 

- ( 2 6 -  2 p - o .  2) - { ( 2 6 -  2 p - ( 7 2 ) 2 +  8 o 2 6  
0 0  - -  

2 a  2 
(4.4) 

and 

(4.5) 0,= 
-(26-2p-o. 2) + {(26-2p-o.2)2+8o.26 

2 o  2 

Formula (4.5) should be attributed to MCKEAN (1965, Section 3) who studied the 
pricing of perpetual warrants ; at that date of  course he did not solve the problem in 
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terms of the risk-neutral measure. With zero dividend yield (/9 = 0), formula (4.4) 
becomes 

- 2 6  
(4.6) 00 - , 

0 .2 

which was first given by MERTON (1973, Section 8; 1990, Section 8.8), who 
evaluated the perpetual American put option by adopting MCKEAN'S (1965) 
technique. Discussions on pricing perpetual American options can also be found in 
the books by KARLIN and TAYLOR (1975, p. 365), INGERSOLL (1987, p. 375) and 
LAMBERTON and LAPEYRE (1991, p. 82), and in the recent articles by KARATZAS 
(1988, p. 59, e.g. 6.7), KIM (1990) and JACKA (1991, Proposition 2.3). (In formula 
(9) of KIM (1990), the denominator I - f l  should b e / 3 -  1). 

In the finance literature, the formulas for pricing perpetual American options are 
usually derived as follows. Let D denote the value of a derivative security. It 
follows from the hedging argument first given by BLACK and SHOLES (1973) that D 
satisfies the partial differential equation 

(4.7) Vz 0.z S 2 Dss + (6 - 19) SDs - 6 D  + D, = O, 

subject to the appropriate boundary conditions. In the case of a perpetual option, we 
have D , = 0  and (4.7) becomes a homogeneous, linear, second-order ordinary 
differential equation in S, 

(4.8) V2o 2 S 2 Dss + (6 - p )  SD s - 6 D  = O. 

The function D = S o is a solution of (4.8) if the number 0 satisfies the quadratic 
equation, 

(4.9) 1 / 2 0 . : 0 ( 0 - I ) + ( 6 - 1 9 ) 0 - 6  = 0 ,  

which is the same as (4.3). Then any solution of (4.8) is of the form 

(4.10) D = c o S °° + ct S °' , 

where e 0 and cl ai'e independent of S. 
In this paper we use the martingale approach and avoid differential equations. 

Additional insight for (4.10) is provided in the following; see (4.1.16) below. 

4.1. Perpetual contingent claims 

In this section we consider the pricing of perpetual contingent claims with U-shaped 
payoff functions such as 

(4.1.1) 3z(x) = a l  (KI - x ) +  + a 2 ( x -  K2) + . 

For a I = a 2 =  1, the contingent claim may be called a perpetual  Amer ican  

strangle if K~ < K 2, and called a perpetual  Amer ican  straddle if Kt = K2. The 
assumption on {X(t)} remains that it is a Wiener process. 
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Let S = S(0) denote the current stock price. We consider exercise strategies 
arising from stopping times of the form 

TL.M = inf {t }S(t) = L  or S( t )  = M} ,  

where 0-<  L-< S-< M. The value of the contingent claim according to such a 
strategy is 

(4.1.2) 

Put 

(4.1.3) 

and 

(4.1.4) 

Then 

V(S, L, M)  = E[~(S(TL.  M ) )  e - a'tl ,,; h*] .  

2 (S, L, M)  = E[I(S(TL. M) = L) e -  0rL. , ;  t7"] 

u(S ,  L, M)  = E[I(S(TL.M) = M) e -aT).. ~,; h*] .  

(4.1.5) V (S, L, M)  = 7r (L ) 2 (S, L, M)  + ~ (M) ~ (S, L, M) .  

For 0 = 0o and 0 = 0t (the roots of  equation (4.3)), the process {e 
bounded martingale (with respect to the risk-neutral measure) 
Applying the optional sampling 
equations 

(4.1.6) 

and 

(4.1.7) 

respectively, from which we obtain 

theorem to these two 

173o j +.,S.L,M) = ,  

2 ( S , L , M ) ( L ' ~ ° ' + / u ( S , L , M )  = 1, 

(4.1.8) 2 (S, L, M) = 

and 

(4.1.9) fl (S, L, M) - 

- 6 , ÷ o x ( , ) }  is a 

for t --< TL. M . 
martingales yields the 

Note that 

(4.J.~o) 

M °, SO,,_ Mo,,SO~ 

M o, LOo _ MOoL o, 

S o, Loo _ sOo L o, 

M o, LO,,_ Moo L o, 

lim 2(S, L, M) = 
M .-..) ~ 
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which confirms (3.7), and 

(4.1.11) 

which is (3.14). 

lim B ( S , L , M ) =  
L+0 

The remaining problem is to optimize V(S, L, M), considered as a function of the 
exercise boundaries L and M. The first order conditions are 

VL(S, L,M) = 0  

and 
vM(s, E, ,0) = o. 

These conditions do not depend on S (as long as S is between L and M). At first this 
seems surprising, but it follows immediately from the formulas 

(4. I. 12) V L (S, L, M) = 2 (S, L, M) [~' (L ) - V s (L, L, M)] 

and 
(4.1.13) Vu(S, L, M) =u(S ,  L, M) [z~' (M) - Vs(M, L, M)],  

which generalize (3.1.8) and (3.1.10), respectively. Thus the first order conditions 
become 

(4.1.14) Vs(L, L lO) = x '  (I2) 

and 

(4.1.15) Vs(lO , 12, IQ) = x '  (lO), 

which are the high contact conditions. The optimal exercise boundaries/2 and ]Q are 
determined by solving (4.1.14) and (4.1.15) simultaneously. For L<-S  <-ffl, the 
price of the perpetual contingent claim is 

(4.1.16) V (S, L, M) = zr (£) 2(S, L, IQ) + ~(IQ) p (S, L, M) 

1 =(s°° S°')[~Oo ~0,  ~ ( ~ , )  • 

To prove (4.1.12), consider the identities 

2(S, L, M) = 2(S, L + x, M) 2(L + x, L, M) 

and 

k t ( S , L , M ) = I t ( S , L  + x , M ) +  2 (S ,L  + x , M ) I t ( L  + x , L , M )  

where 0 < x < S - L. Differentiating these equations with respect to x and setting 
x = 0 yields 

(4.1.17) 0 = 2t.(S, L, M) + 2 (S, L, M) 2s(L, L, M) 
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and 

(4. I.18) 0 = ~L (S, L, M) + 2 (S, L, M) A s (L, L, M),  

respectively. Differentiating (4.1.5) with respect L and applying (4.1.17) and 
(4.1.18), we have 

VL(S, L, M) = st' (L) 2 (S, L, M) + st(L) 2 L (S, L, M) + st(M) UL(S, L, M) 

= 2 (S, L, M) [st' (L) - st(L) 2 s (L, L, M) - st(M)/z s (L, L, M)] 

= 2 (S, L, M) [st' (L) - Vs(L, L, M)],  

which is (4.1.12). The proof of (4.1.13) is similar. 

Remarks: For general payoff functions, there might be several disjoint optimal 
non-exercise intervals. For a matrix derivation of the results in this Section, see 
Section 5 of GERBER and SHrU (1994). There are closed-form formulas for deferred 
perpetual American call and put options; see GERBER and SHIU (1993b). 

4.2. Perpetual down-and-out option 

In this section we consider the pricing of a perpetual "down-and-out"  American 
call option with exercise price K. The option contract becomes null and unexercis- 
able, if the stock price declines to the knock-out price L, L < K. When this occurs, a 
rebate or refund of amount R is given. For M _> K, it follows from (4.1.5) that the 
value of the strategy to exercise the call option when the stock price increases to M 
for the first time is 

(4.2. I) V ( S , L , M ) = R A ( S , L , M ) + ( M - K ) l z ( S , L , M ) ,  L_<S_<M. 

Note that the lower exercise boundary L is fixed, and the problem is to maximize V 
as a function of the upper exercise boundary M. 

We now consider the special case where the stock pays no dividends (hence 
01 = 1 and 00= -26 /o2 ) .  We shall show that the maximal value of (4.2.1) is 
obtained for M---> oo and that it is 

(4.2.2) V ( S , L , ~ ) = S + ( R - L ) I s I  -°'' 

/U = S + ( R - L )  

This result can also be found in MERTON (1973, (57); 1990, (8.57)) and INGERSOLL 
(1987, p. 372, (39)). 

For the proof we first observe that 2 (S, L, M) is an increasing function of M and 
hence the first term on the right-hand side of (4.2.1) is bounded by 
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The second term on the right-hand side of  (4.2.1) may be estimated as follows: 

(M - K) ~ (S, L, M )  = (M - K) 
SL °° - S °° L 

ML °° - M oO L 

= lim ( M - K ) ~ ( S , L , M ) .  
M .---~ ~ 

4.3. The Russian option 

Let M be a number such that M ~ S. Let 

(4.3.1) M ( t ) = m a x  {M, max [ S ( u ) l 0  --< u --< t ]} ,  

which can be interpreted as the historical maximum of the stock prices at time t. 
Note that the pair {S(t), M( t ) ;  l --> 0} is a homogeneous Markov process. The term 
"Russ ian  op t ion"  was coined by SHEPP and SHmAYAEV (1993) to describe a 
perpetual American option whose payoff is M(t ) ,  if it is exercised at time t, t -> 0. 
That is, the holder of  a Russian option has the privilege of  receiving the historical 
maximum of the stock prices up till when he chooses to exercise the option. The 
price at time 0 of  the option is the supremum, over all stopping times T >- 0, of  

(4.3.2) E [ e - ~ T M ( T ) ;  h*]. 

SHEPP and SHmYAEV (1993) show that there is a number/~, which depends only on 
6,/9 and a, such that (if S(0) >/~M) the optimal strategy is to exercise the option at 
the first time t when 

(4.3.3) S (t ) = IkM (t ) . 

Here we shall show how/k can be determined in a very transparent fashion. Let k 
be a number, 0 < k < 1. For a current stock price S = S(0) with kM-< S, we 
consider the strategy to exercise the option at the stopping time 

(4.3.4) T k = inf { t l S ( t )  = k M ( t ) } .  

The value of  this strategy is denoted by R(S,  M; k); we note that 

R ( S , M ; k ) = M R ( S / M ,  1 ;k ) .  

From this and the definitions (4.1.3) and (4.1.4) it follows that 

(4.3.5) R ( S , M ; k ) = M ~ ( S ,  kM, M ) + R ( M , M ; k ) i z ( S ,  kM, M )  

= M [ 2 ( S ,  kM, M ) + R ( I ,  I;  k ) u ( S ,  kM, M)] .  
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Applying (4.1.8) and (4.1.9), we obtain 

(4.3.6) R ( S , M ;  k ) = M [ ) t ( S / M , k ,  I ) + R ( I ,  I ; k ) p ( S / M , k ,  I).1 

M 
- - -  { [ ( S / M )  ° ' ' -  ( S / M )  °'] + R ( I ,  I ; k )  [k °" ( S / M )  °' - k °, (S /M)°"J} ,  

kOo _ k o, 

where R(I ,  1 ; k) needs to be determined by the boundary condition at S = M. This 
condition can be derived by the following heuristic argument. If the current stock 
price S is very close to M, we can be "a lmost  sure"  that the stock price will attain 
the level M (and hence that the maximum will be increased) before the option is 
exercised. Thus, if S is close to M, R(S,  M; k) does not depend on the exact value 
of M, 

(4.3.7) RM(M, M; k) = O. 

From this and (4.3.6) we get the condition 

- - { [ ( 1 - 0 0 ) - ( I - 0 j ) ] + R ( I ,  I ; k ) [ k ° " ( I - O O - k ° ' ( l - O o ) ] }  =O, 
1 

kOo _ k °, 

which yields 

0~  - 0o 
(4.3.8) R(1, l ;  k) = 

(1 - Oo)k ° ' -  (1  - OOk °° 

We substitute this expression into formula (4.3.6) and obtain after simplification the 
result that 

( I  - 0 0 )  ( S / M )  °' + (01 - 1)  (SIM)  °'' 
(4.3.9) R(S,  M; k) = M 

(1 - O o ) k  °' +(01 - I )k  °" 

Now it is clear that the optimal value of k is the one that minimizes the 
denominator, whose derivative is 

(1 - '00) 01k ° ' -  t + (Oi - 1) Ook °°- I 

Hence the optimal value is 

(4.3.10) /~=/0°(1 - 0 ' ) )  '/w' - °°) 

t e , ( l : ~ )  
and the price of the Russian option is 

(4.3,11) {M R(S'M;~) if ~M ~- S ~ M i f  S .~- kM ' 

Formulas (4.3.10) and (4.3.11) are equivalent to (2.3) and (2.4) of SHEEP and 
SMmYAEV (1993). 
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APPENDIX 

A1. Semi-continuous sample paths 

In the rest of  this paper, we consider the assumption that the sample paths of 
{S(t)},  or equivalently, those of {X(I)}, are skip-free downwards. (This assumption 
was used in deriving (3.10)). Then the following decomposition holds: 

(A. l . l )  X ( t ) = Y ( t ) + v 2 W ( t ) - c t ,  t>--O. 

Here, {Y(t)} is either a compound Poisson process with positive increments or the 
limit of  such processes; {W(t)} is an independent standardized Wiener process 
(with zero drift and unit variance per unit time); the last term, ct, represents a 
deterministic drift. The cumulant generating function of the random variable X(t) is 
of  the form 

(A.1.2) In [M(z, t)l = t (e ;~-  1) [ - dQ( x ) ] +v 2 z 2 1 2 - c z  , 
o 
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where Q(x) is some nonnegative and nonincreasing function with Q(oo)= 0. Note 
that, for each positive number e, the integral 

i oo (e ~ ' -  I) [-dQ(x)], 
e 

as a function in z, is the cumulant generating function of  a compound Poisson 
distribution with Poisson parameter 

and jump amount distribution 

P(x; e) - 

2 (e) = Q (e), 

Q (e) - Q (x) 
X>--/~. 

Q(e) 
For notational simplicity, we assume that 

- d O  ( x )  = q ( x )  dx 

for some nonnegative function q (x). Let ~ and cr 2 denote, respectively, the mean 
and variance of {X(t)} per unit time. Then 

(A.I.3) I~t=E[X(t)]=II ~ xq(x) dx-c]t, 

(A.I.4) a2t=Var[X(t)]= x2q(x) dx+v 2 t, 
0 

and 

I 
oo 

(A.1.5) E[(X(t)-ut) 3] = t x 3 q(x) dx. 
0 

In general, for n >-- 3, the n-th cumulant of  X(t) is given by 

t x" q (x) dx. 
0 

If follows from (2.5) and (A.I.2) that 

(A.1.6) l n [ M ( z , t ; h ) ] = l n [ M ( z + h , t ) ] - l n [ M ( h , t ) ]  

=t{I ] (e~- l)e'tr q(x)dx+v2z2/2-(c-v2h)z} • 



216 GERBER AND SHIU 

Thus the Esscher transform (parameter h) of  a process defined by (A.I. 1) is of  the 
same type, with the following modifications: 

(A.I.7) q(x )  ~ en~q(x),  

(A.I.8) v 2 ~ i, 2 (unchanged), 

(A.I.9) c --> c -  v2 h. 

Furthermore, it follows from (A.1.6) that (2.8) and (3.6) can be written as 

(A.l.10) 

and 

( A . I . I I )  

I 
~ 1,2 

(e x -  1)  e h'x q(x) dx+ v 2 h  * = c + 6 - l0 - - -  

0 2 

f 
oo 1,,2 0 2  

(e °-~_ l)eh'." q ( x ) d r  + - -  - ( c - v 2 h * ) O = 6 ,  
o 2 

respectively. 

A2.  A par t i cu lar  f a m i l y  

For the model defined by (2.1) and (A.I . I ) ,  we now assume that v = 0 ,  i.e., 

S (t ) = S (O) e r( ')-c' ,  

and that 

(A.2.1) q ( x ) = a x ~ - I e  -bx, x > 0 ,  

where a > 0, a > - 1, and b > 0 are three parameters. In the context of  risk theory, 
DUFRESNE, GERBER and SHtU (1991) have considered such a q(x )  function. 

According to (A.I.7), for h < b, the Esscher transform of a process defined by 
(A.2.1) is a member of the same family, with b replaced by 

(A.2.2) b (h) = b - h.  

The moment generating function of  Y(t)  is 

~-~--~ ) if a = 0  

- 1 t if a ~ O  
t b ~ 
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Thus, for a=O, {Y(t)}t_> o is a gamma process;  for a > 0 ,  it is a compound 
Poisson process with Poisson parameter 

aF(a) 
2 (a, a ,  b) - 

b ~ 

and gamma jump density 

p(x; a, b) = 
b ~  

X o~ - I e - bx, 

F(a) 
x > 0 .  

For  - 1 <  ot < 0, the most prominent case is a = - I / 2 ,  where {Y(t)}t_> 0 is an 
inverse Gaussian process and the density function of  Y(t) is 

I - (  x~f~at)21 at exp ~ x > 0 
X 3 / 2  ' • 

b* = b(h*)  = b -  h* 

The condition for 

becomes 

b* c + b - p  
(A.2.4) - -  - e 

b * -  l 
if a = 0  

and 

I 1 c + ~  - p  
(A.2.5) - if o~ ¢ 0.  

( b * -  1) ~ b *~ aF(a) 

Solving (A.2.4) yields 

1 
(A.2.6) b* = 

l - e - ( c + ~  - p ) l a  ' 

which, with p = O ,  is formula (3.1.7) in GERBER and SHIU (1993a). In general, 
equation (A.2.5) does not yield a closed-form solution for b*. However,  if a = 1 
(exponential jump amounts), one finds 

4 o  
1 +  1 +  

c + 6 - p  
(A.2.7) b* = 

2 

A discussion of  the case where or= -V2 can be found in GERBER and Smu 
(1993a). 

For each fixed o~, we might determine the parameters, a, b and c, by the method 
of  moments. Thus we assume that we know u,  o and the third central moment of  
X( I ) ,  which we write as ~,a 3 (y being the coefficient of  skewness). Matching the 
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first three moments (by means of formulas (A.1.3), (A.1.4) and (A.I.5)) yields the 
equations : 

I ~ a F ( a +  1) 
IX= x q ( x ) d x - c -  b '~+l c ,  

0 

i 
oo a F ( a  + 2) 

0"2= x2 q ( x ) d x =  ba+2 ' 
0 

and 

I = a F ( a  + 3) 
yO3= x3 q ( x )  dx - ba+3 

0 

From these equations we obtain 

o~+2 
b -  

y a  

(to be replaced by b* for the evaluation of a derivative security), 

(a  + 2) ~ + 2 
(A.2.8) a = 

F(ot + 2) y~+ 2 oc~ ' 

and 

a + 2  a 
(A.2.9) c - ,u. 

o t + l  y 

These formulas generalize (and explain !) the formulas in Sections V.2 and V.3 of 
GERBER and Smu (1993a). We note that HESTON (1993) has independently 
introduced the gamma process for modeling stock-price movements ;  his for- 
mula (lOa) is the same as formula (4,1.7) of GERBER and S , lu  (1993a). 

A3. Formulas  for the negative root 

With the assumptions v = 0 and 

q ( x ) = a x a - l e  -bx, x ~ O ,  

equation ( A . I . I I )  becomes 

a (eO~-- l )eh"~X'~- Ie -b*dx- -cO-- - -6 ,  

0 

o r  

(A.3.1) I ~ (e °~-  1) x ~ - ~ e - b " ~ d x =  d + c O  

0 a 
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The  value o f  the integral in the left-hand side o f  (A.3.1.) can be read o f f  f rom 

(A.2.3). 
If  ot = 0, then (A.3.1) becomes  

b *  ~ + co 

(A.3.2) - -  = e  a 
b* - 0 

Subst i tut ing b* in (A.3.2) with formula  (A.2.6) yields 

- cola + 0 [ e  ~la - e - ~c - p~la] = e ~ l a .  (A.3.3) e 

By (A.2.8) and (A.2.9),  

I y2 

a 4 

and 

a 2 

For  example ,  a ssume that d = 0.1, 0 = 0, ju = 0.1, a = 0.2 and ~ = 1. Then  (A.3.3) 

becomes  

e - 30/40 -t- 0 [ e  1/40 - e - 3140] = e l / 4 0 ,  

f rom which we obtain 

00 = - 7 .559609675.  

Note  that, in the Wiene r  process model  (with 6 = 0.1 and a =  0.2), 00 = - 5  by 

formula  (4.6). 
If  c t ~ 0  and ot > - 1, then (A.3.1) becomes  

1 1 b + c O  
(A.3.4) - -  - - -  , 

( b *  - O )  ~ b *~' a F ( o t )  

where  b* is def ined by (A.2.5). In the special  case  where  a = 1, (A.3.4) s impl i f ies  

as  

1 1 b + c O  
(A.3.5) - -  - - - - ,  

b* - 0 b* a 

which is a quadrat ic  equat ion in 0, where  b* is g iven  by (A.2.7),  

27 
a -  

2 y 3 O r  

and 

3 a 
c -  - ~ .  

2 y 
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Now, consider  the zero d iv idend case (p  = 0), then the positive root of  (A.3.5) is 
0~ = I, and the negat ive root is 

0 o = - 6b*lc ; 

using the same numerical  values as above,  6 = 0.1, # = 0.1, o = 0.2 and y = 1; we 
obtain 

l +, di 
b * -  

2 

and 

O0 = - 7 . 7 5 4 1 6 5 5 1 .  
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ROBUST CREDIBILITY VIA ROBUST KALMAN FILTERING 

BY ERHARD KREMER 

Hamburg 

ABSTRACT 

Credibility theory is closely related to Kalman filtering. As a consequence, methods 
proposed for robustifying the Kalman filter can often be specialised to obtain robust 
credibility rating procedures. The application of one such method to several 
classical credibility models is shown in this paper. 

I. INTRODUCTION 

Credibility theory is a very old branch of risk theory and non-life insurance 
mathematics. Eearly results are by MOWBRAY (1914) and WHITNEY (1918). A 
theoretically elegant approach was given by BOHLMANN (1967) and BOHLMANN & 
STRAUB (I 970). 

The classical models presented by those authors can be generalised to regression 
models, hierarchical models and evolutionary models. Generalisations have been 
studies intensively in the actuarial literature over the past twenty years. Some key 
references are HACHEMEISTER (1975), TAYLOR (1979), SUNDT (1980, 1983), 
NORBERG (1980, 1986), KREMER (1988a, 1988b). 

In later years several authors have investigated ways of robustifying credibility 
rating methods. The aim of robustification is to limit the influence of extremely 
large claim amounts on the estimated premium. The reader is referred to, e.g. 
GISLER (1980), BOHLMANN et al. (1982), KREMER (1991), KONSCH (1992), GISLER 

REINHARD (1993). 
MEHRA (1973) pointed out that credibility estimation can be achieved by the 

Kalman filtering technique. DE JONG 8,.... ZEHNWIRTH (1983) explored the correspon- 
dence for the classical credibility models, and ZEHNWIRTH (1985) explored its 
implications for evolutionary models. 

Robust versions of the Kalman filter have been studies for some time, for 
example by MASRELIEZ & MARTIN (1977), MEINHOLD & SINGPURWALLA (1989) 
and CIPRA & ROMERA (1991). Due to the close relation between Kalman filtering 
and credibility theory, it is obvious that corresponding robust versions of credibility 
rating techniques can be derived. 'In the present paper we specialise the method 
proposed by CIPRA & ROMERA (1991) tO the three most important credibility 
models. The resulting robust credibility techniques turn out to be quite tractable. 

ASTIN BULLETIN. Vol. 24. No. 2, 1994 
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2. PRELIMINARIES 

Suppose that all probabilistic statements are based on a probability space (~ ,  A, P) 
and consider a risk during periods with indices i = l, 2, 3 . . . . .  n + 1. Assume that 
the claims behavior of  a risk over all periods can be described by a parameter 0. 
Suppose that the value of this parameter is unknown and interpret it as a realisation 
of  a random variable: 

0 : (~2, zl, P) ~ (O, r ) ,  

with the parameter space O and the a-algebra r on O. Let the observed claims 
amounts (or loss ratios) of  the risk be represented by the nonnegative random 
variables : 

Xi, with i = 1 , 2 , 3  . . . . .  n + l ,  

defined on (~2, zl, P). It is assumed that all X i lie in the Hilbert space L 2 of  
measurables, square integrable functions f (identified with the equivalence class of  
all 9 which are P-a.e. equal to f )  defined on zl with scalar product: 

( f l  ,f2 ) = E ( f |  ' f2) 

and norm : 

Ilfll = E ( f 2 )  '/2. 

In the given insurance context the conditional expectation 

mi = E(XiIO) 

is called the net  p r e m i u m  (or net  loss  rat io)  in period no. i. Then the credibility 
estimator is nothing else but the linear-affine prediction of  mn+~ from 
X~, X2 . . . . .  X,,. Defining the subspace An of  all linear-affine combinations 

f n = a 0  + ~ ai'Xi, 
i=1 

the credibility es t imator  is defined as the projection of  m n + t on A n, i.e. as the 
random variable m n + t ~ An with 

II mn+ i - rfin +~ 1[ -< 1[ mn +, -f , ,  II 

for all f,, ~ A n . 

In general the credibility estimator can be determined by solving certain normal 
equations. Under more. special model assumptions one can derive explicit formulas 
for the credibility estimator. Three special models are given in the Section 4. 
Especially in the regression model one can calculate explicit credibility estimators, 
see e.g. NORBERG (1980). 

It is well-known that the usual credibility estimators are not robust against 
extremely large claim amounts. This has led to attempts to contruct robust versions 
of  the classical credibility estimators. One method to robustify the credibility 
estimator was given by Gisler already in 1980. 
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Alternative robustifications, which also cover the general regression model, are 
given by KREMER (1991). 

3. ROBUST KALMAN FILTERING 

The KALMAN filter is a well-known instrument for recursive prediction in dynamic 
linear systems. A dynamic linear system is defined by the two stochastic linear 
recursions : 

X i = H i • b, + v i 

b i = F ,  • b i _ i + w i ,  

where X, is a p-dimensional stochastic vector of observations, Hi a known 
(pxq)-dimensional design matrix, b~ a q-dimensional stochastic parameter vector 
and F i a known (qxq)-dimensional transition matrix. The v~, wi are random 
disturbances with : 

E (vi) = O, 

e(v,  vf) = O, 

E ( v  i . vi T ) =  R i ,  

E(vi .  ~f)  = o, 

E (u,i) = 0, 

e(w,. w/) =o, 
g ( wi " w~) = ai 

iCj ,  

i¢~j 

where R i ,  Qi are known covariance matrices. The Kalman filter algorithm gives 
handy recursions for the optimal affine-linear predictor of bi from Xt, X2 . . . . .  Xi_ i- 
For more details see Section 3 in DE JONG et al. (1983). 

Like other standard methods the Kalman filter is not robust to outliers. As a 
consequence, several authors have proposed robust versions of the usual Kalman 
filter algorithm. Recently, a handy robutistification was proposed by Clean & 
ROMERA (1991). We give a brief summary of their result. 

Denote by /~i, the one-step ahead prediction of bi, based on the observations 
X~ . . . . .  X~_ ~, and define its error covariance matrix as 

Ci = E ( b i  - hi)  (b i  - bi)  T.  

For a given covariance matrix M, we define as M-i/2 any matric which satisfies 
M - l / 2  . M .  ( M - I / 2 ) T =  I. 

With this convention we now introduce the matrices 

Aiq×q = Ci-112,  

O i P × q = R i  - I / 2  H i ,  

and the random vectors 

p x l  = R i - I / 2  si 

p q ×  I = A i  " t~i 

X i ,  
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Note that, conditional on b~, the stochastic vector s~ has mean D~. b i and 
covariance matrix /. Further note that 

E ( p i  - m i  " b i )  ( P i  - A i  " b i )  T = ! .  

In the spirit of  M-Est imat ion ,  CIPRA & ROMERA (1991) propose to determine the 
updated estimate b~ of bi, given all observations X~ . . . . .  X~, as the solution of a 
minimisation problem, namely 

(3.1) minimise ~ p,k(pk,-a~r~.[~[)+ ~ p2 j ( s~ , . - 4~ . /~ )  
k = l  j = l  

Here Pt~ . . . . .  ,ol q >-- 0 and Pz~ . . . . .  P2q >- 0 are arbitrary robustifying functions, 
the k-th row of Ai is denoted by a~i, and the j-th row of D, is denoted by d r .  
Denote the derivatives of  the functions P by ~.  

It is seen that the resulting estimator /~i will be the result of  a compromise 
between the desire to minimise deviation from the one-step ahead prediction (note 
p~ - A~./~ = 0) and the desire to have/~[ reflect the information in the new data as 
represented by si. 

Having solved (3.1) to obta in /~ ,  one obtains the one-step ahead prediction to use 
in the next recursion by 

f~i + , = Fi+ l " t ~ .  

For bl one has the normal equations (see (2.8) in CIPRA & ROMERA (1991)): 

q p 

(3.2) ~ a~i" ~l,(Pki-a~'b~) + ~ d~.W2j(sy~-df.t~)=O. 
~ = l  j = t  

By approximating b~ by b~ (3.2) gives a certain approximate normal equation 

q P 

(3.3) ~ w~,i.a~,.(pk~-a~;.t~[) + ~ w2j~.df .(sj,-4iT.l~)=O 
k = l  j = l  

where the weights wl ~, w2ii are defined as:  

~2:(s1~ - d r .  hi) 
W 2 j  I = 

sji 7 dr. t~, 

So far for the general robustification of the Kalman-filter. Turn now to more 
practicable, special cases. 

It is reasonable to assume that the disturbances w, do not produce outliers. This 
results in the choice: 

~ul k (x) = x. 
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Furthermore one is willing to take: 

~2j (') = ~ ( ' )  

independent of  j,  e.g. : 

225 

f u n c t i o n  : 

~ n  (z) = z, for z -< c 

= c, for z > c,  

(3.4) 

where : 

(3.5) 

(3.6) 

Ci F i i- i = .Ci_ i  F ,  T +Qi  

C i  Hi r" Hi. Ci 
C / =  C, - 

Hi" Ci" HiT + Ri/ki 

!tt (Ri-I/2. ( X i  - H i • b , ) )  

(3.7) ki = 
Ri- I/2 . (X i _ Hi . t~i) 

Note that the 'ordinary '  Kalman filter is just (3.4)-(3.6) with ki = 1. 
For the special ~ = We one gets from (3.2) in case p = 1 the recurs/on : 

I R, ' /2"(X/-H/ ' I~i)  I 
(3.8) l~= bi+C/" Hir" Ri- 'n" ~H H--~ : C~:HIr--+-R~ 

Cipra & Romera propose to update Ct like in the original (nonrobust) Kalman- 
filter, i.e. : 

i - I  (3.9) Ci = F," Ci_ I " Fi r + Qi 

Ci. Hir. H i  Ci 
(3.10) C / =  C, - 

H i • C i • H/r+ Ri 

Obviously the resulting recursions are quite tractable. 

where c is a given positive constant. CIPRA & ROMERA (1991) propose tO take (3.2) 
in case of the Huber-function ~H for ~ and the approximation (3.3) in case of  
general ~.  For general ~ the .formula (3.3) gives the following recurs/on in case 
that p = 1 : 

f,i = b, + . . . . .  ( x , -  H/ .  ~/) 
H i . C i • Hi T + Ri [ki 

~2j (') = ~ H  (') 

In the practical case p = I one can choose the so called (one-sided) Huber -  
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4. ROBUST CREDIBILITY 

We consider three well-known credibility models. For each model the robustifica- 
tions (3.4)-(3.10) are presented, giving recursions for a robust credibility estima- 
tor. 

4.1. Biihlmann-Straub (1970) model 

Suppose that X I . . . . .  Xn+ t are conditionally independent given 0. There exist 
measurable functions 

It : (O , r ) - - . - ) ( IR ,  IB) 

(;2 : ( 0 ,  ~;) ---) (IR + , IB + ) 

such that: 

E (x~ I o) = ~ (o) 
Var (Xi I O) = o 2 (O)/V,., 

where Vi, i _> 1 are known volume measures. Explicit formulas for the credibility 
estimator th,,+~ can be found in the original article, equivalent recursions for it 
based on the classical Kalman filter in DE JONG et al. (1983). Obviously a dynamic 
linear model like in Section 3 is given with: 

p = 1, H i = 1, R i = ~72/V~. 

q =  1, F, = 1, Qi=O, 

where : 

One has : 

o0 2 = E ( o  2 ( 0 ) ) .  

bi = mi = I~ (0) 

E,, = ~ , ' : I  = ,~, ,  c,  = el_-,' 

implying from (3.4), (3.6), (3.7) in case of  general ~ :  

t C " V ~ ' k '  1 . (X~_rh~)  

cT .v , ,  k, 
C i  + 1 = C i  - 

G "  v~ . I~ + a 2 

tls (Vi'lz. ( x , -  m,)lcro) 
k i = 

V/1/2. ( X  i - -  m,)/o o 
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and from (3.8), (3.10) in case of  special ~ =  ~ n :  

m i +  ~ L = I~ l i+c i IV i l l2  - -  " IIJH ( " O ' O ' V i l l 2 " ( X i - f f l i ) )  . . . . . .  

Oo J Ci. V,. + o~ 

Ci + ~ = (V~Icr~ + C,- l) - l 

Obviously one has quite handy recursions for the (robust) credibility estimator 
r h  i . 

4.2. H acheme i s t e r ' s  (1975) regression model 

Conditionally given 0 the X~ . . . . .  Xn+ ~ are independent. Suppose that there exist 
functions : 

b : ( 0 ,  z) ~ (IR q, IB q) 

0 2 : (O, 'r)  ~ (IR+ , IB+) 

such that: 

E(Xi l O) = a f  . b(O) 

Var (Xi ] 0) = o 2 (0)/V/, 

where ai is a known q-dimensional vector and V~, i --> 1 are given volume measures. 
The credibility estimator ~h,, + i of  m,,+ l is given by : 

T 
r~/n+ I = a n +  I " n + l ,  

where b,,÷l is the (vector-valued) credibility estimator of  b(O) based on 
X I . . . . .  X,,. 

Explicit formulas for/~,,+ i can be found in the original paper of HACHEMEISTER 
(1975), equivalent recursions based on the classical Kalman-filter in DE JONG & 
ZEHNWIRTH (I 983). 
Obviously the model fits into the framework of Section 3. 
Choose simply there: 

p = 1, H i = a f ,  R i = O ~ / ~  

Fi= 1, Qi = 1, 

where : 

One has : 

og = e (0 2 (o)) .  

b i = b ( 0 )  

b, = b : : l ,  C i ~ c i i - i  I . 
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The recursion (3.4), (3.6), (3.7) give in case of  general ~ :  

( Ci " ai ' ~ " ki ) .  (Xi _ aiT. ~i) 

b , +  , = ~ ,  + a f  . C ,  . a ,  . V~ . k ,  + cro 2 

_ ( I 
Ci+l:Ci ~,af'Ci ai" Vi:ki+oo 2) 

and the recursions (3.8)-(3.10) in case of special ~ =  ~H. 

[',+ = b i  Ci a, - -  tPn . . . . . . . . . . .  
\ ao J a T .  Ci" ai" V, +O2o 

( C,.o,.o:._C!: ]. 
c ,+ ,=c ,  - E : c ,  , , .  v,+og) 

Obviously also these recursions for a (robust) credibility estimator are quite 
practicable. 

4.3. Gerber & Jones' (1975) evolutionary model 

Suppose that X~ . . . . .  Xn+ ~ are conditionally independent given 0. Furthermore 
assume that : 

mi = m i -  I + Wi , 

where the random disturbances satisfy: 

E(wi)  = O, E ( w i  2) = w 

E ( w  i • wj) = O, i ¢=j, E ( w ,  mo) = O. 

Finally let : 

such that : 

0 2 : ( 0 ,  r )  ~ (IR+ , IB+ 

Var (Xi [ 0) = 02 (0)IV/, 

where ~ ,  i --> 1 are given volume measures. Recursions for the credibility estimator 
are given e.g. in the paper SUNDT (1981). 

This model is a special case of  the dynamic linear model of  Section 3. Choose 
simply there : 

p = I, H i = 1, R i = Cro21Vi 

F i = 1, Qi = w ,  

with : 
Oo 2 = E (o 2 (0)). 
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The recursions (3.4), (3.6), (3.7) give in case of  general ~u: 

(- Ci'-V£~- i ).(Xi-~li) 
, ~ + , = &  + G T ~ . k ~ + o  ~ 

C7" ~ " k, 
Ci + I = Ci + w 

C,. v,. ki+o~ 

g'(V,Y 2. (X~- &)/o0) 
k i = 

V/I/2" (X,- nZi)/O 0 
and the recursions (3.8), (3 .10)in case of special ~P= Wn: 

thi+' tfii+(Ci+w) "k,--~o /" ~l'114( " aO" . . . . .  Vi+w" Vi+°20 

c7.  v~ 
Ci + I = Ci + w .  

c, . v, + o~ 

5. A SIMULATION STUDY 

For the model of  Section 4.1 data was simulated with the choice ~ = 1 for all i. The 
conditional distribution of X i given 0 = 0 was assumed to be given according 

(5.1) P ( X i  = k [ O ='~) = (1 - z r ) .  p o ( k  ) + ~ .  P o o ( k )  

( f o r k = 0 , 1 , 2 , 3  . . . .  ) 

with the Poisson-probabilities: 

p o ( k ) =  ~ - e x p ( - O )  

and a probability or. For 0 0 > 0 ~ can be interpreted as the probability of  an outlier 
occurring according to the probabilities POo (k) .  The risk parameter 0 was simulated 
according to the Gamma-model with density on (0, ~ ) :  

(5.2) f o ( o )  = . O~-i . exp ( - f t .  O) 
F ( a )  

where a and fl are the nonnegative parameters. One gets for zr = 0 as credibility 
estimator : 

I t  

o~ + £ X i 
i= l  

(5.3) trim + I - 
[~ + ll 
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what shall be compared with a robust variant calculated recursively according to the 
formulas : 

(5.4) th,,+ , =th, + ( C,/oo) . ~n" (~.( c,,X" - rh-"-hTo) + Oo ) 

og 
C n  + I - -  

I + (O2o/C,,) 

where a 2 = (odfl) and Wn is the Huber-function with c = 1.645. The recursions start 
with : 

~ ,  = (a//33), C ,  = ( a / f l 2 ) .  

The aim of  the study was to compare the results of  (5.3), (5.4) with the ' t r u e '  
value O and to see which one gives the smaller mean squared error:  

( 5 . 5 )  (rhi ÷ j - O)  2 , 
I ' l - - r i o +  I i = n  o 

where n o is an adequate number smaller than n. The claims data had to be simulated 
with a sufficiently large "3" 0 and an adequate small ~. The author chosed ~ = 0.05 
and for 0 o the values 20, 25, 30, whereas he took cz = 100, fl = 10, giving for E(O) 
the value 10. With these parameter choices he simulated 100 risk parameters # j ,  
j = I . . . . .  100 according to the model (5.2) and for each O = Oj independently ri = 9 
values X i according to (5. I) (with x = 0.05). In (5.5) he took ri0 = 6. He got for the 
overall mean squared error 

I00 I0 
I 

MSE= - -  2 2 (rfi~J+)l - tg)) 2 
5 0 0  j = I i= 6 

the results of  the following table:  

t~o = 20 25 30 

with 
(5.3) 0.956 1.231 1.593 
(5.4) 0 .806 0.807 0.807 

showing the strong superiority of  (5.4) for situations where bigger outliers can 
occur with small probabili ty but one wants to rate the normal risk (i.e. case zr = 0). 
For further illustration the simulation results shall be given for two typical cases. In 
the first row of  the following tables the simulated Xi are given, in the second the rhi 
of  (5.3) and in the third the rh, of (5.4). 

~o  = 2 0  : 
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9 13 I 1 22 13 15 14 14 16 - -  

10.00 9.91 10.17 10.23 I 1.07 I 1.20 I 1.44 I 1.59 I 1.72 I 1.95 

10.00 9.91 10.17 10.23 10.63 10.79 I 1.05 I 1.23 11.38 I 1.62 

Oj = 8.42 

21 8 12 9 4 8 9 19 8 - -  

10.00 11.00 10.75 10.85 10.71 10.27 10.13 10.06 10.56 10.42 

10.00 10.52 10.31 10.44 10.34 9.91 9.80 9.75 10.05 9.95 

00  = 25  : 

Oj = 9 .60  

7 19 II 11 II 33 12 II I1 - -  

10.00 9.73 10.50 10.54 10.57 10.60 12.00 12.00 I 1.94 11.89 

10.00 9.73 10.20 10.26 10.31 10.36 10.70 10.78 10.80 10.81 

Oj = 10.71 

12 8 24 12 15 15 10 13 11 - -  

10.00 10.18 10.(10 11.08 11.14 11.40 11.63 11.53 11.61 11.58 

10.00 10.18 10.00 10.43 10.55 10.84 11.10 II .03 I1.15 11.14 

19o = 3 0  : 

~j = 10.77 

I I 7 13 6 7 2 8  7 4 0  1 I - -  

10.00 10.09 9.83 9.79 9.60 9.60 10.75 10.53 12.17 12.11 

I 0.00 10.09 9.83 10.08 9.79 9.60 9.95 9.77 10.08 I 0.13 
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31 8 12 9 4 8 9 29 8 - -  

10.00 11.91 I 1.58 I 1.62 11.43 10.93 10.75 10.65 I 1.67 I 1.47 

10.00 10.52 10.31 10.44 10.34 9.91 9.80 9.75 10.05 9.95 

6. FINAL REMARKS 

By applying robustifications of the Kalman-filter to credibility models one can 
derive fairly practicable recursions for a (robust) credibility estimator. For the 
Btihlmann-Straub and Hachemeister models one gets an alternative to an already 
existing approach to robust credibility (see KREMER (1991), KONSCH (1992)). For 
practical application of the above robustified recursions one needs (robust) 
estimators for the unknown model parameters. Desirable would be such estimators 
in a recursive form. Obviously here is something left for further research. 
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ABSTRACT 

Finite time ruin methods typically rely on diffusion approximations or discretiza- 
tion. We propose a new method by looking at the surplus process embedded at 
claim instants and develop a recursive scheme for calculating ruin probabilities. It is 
assumed that claim sizes follow a phase-type distribution. The proposed method is 
exact. The application of the method reveals where in the future the relative 
vulnerability to the company lies. 

KEYWORDS 

Finite-time ruin probability; Recursive methods; Phase-type distributions; Risk 
theory 

1. INTRODUCTION 

In this article we consider a classic model describing the evolution over time of the 
surplus of an insurance company. The value of the surplus process at time t consists 
of the initial surplus plus premiums received, minus the value of claims that have 
occurred by time t. There is a vast literature describing the situation where the 
surplus process becomes negative for the first time. 

The classic results concerning ruin probabilities were obtained by ARFWEDSON 
(1950), BEEKMAN (1966) and CRAM~R'(1955) and generalized by THORIN (1968). 
The classic problem was addressed also by PRABHU (1961 and 1965) and TAKACS 
(1967). In the case of a compound Poisson claims process and a fixed rate of 
premium income c the non-ruin probability ~O (a, t) over the finite horizon t given 
an initial surplus a is a solution of the integro-differential equation 

f, Oq~(a, t) O~(a, t) +~(a,  t) q~(a-y, t)dB(y) 
C - - - -  - -  - -  

Oa Ot o 

where B(.) is the claim size distribution (see GERBER (1979)). 

ASTIN BULLETIN, Vol. 24, No. 2. 1994 
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The typical solution to this equation is stated in terms of Laplace transforms. 
Numerical difficulties involving the inversion of the Laplace transform solution 
were pointed out by JANSSEN and DELFOSSE (1982), TAYLOR (1978) and others. For 
the probability of eventual ruin, exact results were obtained for claim sizes given by 
combinations of exponential distributions and combinations of gamma distribu- 
tions; see GERBER et al. (1987). Those results were generalized in DUFRESNE and 
GERBER (1988) for the family of combinations of shifted exponential distributions. 
Recursive calculations of ruin probabilities were developed by DEVYLDER and 
GOOVAERTS (1988) and SHrU (1988). 

For more general cases, DICKSON and WATERS 1(1991) and (1992)] present a 
discrete-time approximation for both the probability and the severity of ruin in finite 
time. A pertinent review of ruin theory results by TAYLOR (1985) contains 
references to many other texts on the subject. 

It was recently shown by ASMUSSEN and ROLSKI (1991) that the exact results for 
the probability of eventual ruin can be obtained for distributions belonging to be 
so-called "phase-type" family. (A similar observation was also made by JANSSEN 
(1982).) In particular, if the claim size distribution is of the phase type, in the 
compound Poisson model, then the distribution of the maximal aggregate loss is a 
known phase-type distribution whose parameters are easily calculated. The prob- 
ability of ruin is obtained as the tail of this distribution. Recently results involving 
phase-type distributions applied to the ruin problem were obtained by ASMUSSEN 
and BLADT (1992). However, most finite, continuous time ruin algorithms employ 
either diffusion approximations (GARRIDO (1988)) or discretize the surplus process, 
often employing PANJER'S (1981) recursion formula. 

The model we study can be described as follows: The initial surplus is a, and 
claims occur according to a Poisson process. Premiums are earned at a constant 
rate, and claim amounts are assumed to be non-negative, i.i.d, random variables 
with common distribution function B(x). Claim amounts are assumed to be 
independent of the claim number process. 

Since ruin occurs upon payment of claims, our approach is to observe the process 
embedded at claim instants only. The methods used lead to exact recursive formulae 
for the probability of ruin on a specific claim number. This in turn allows us to see 
where the relative vulnerability of the company lies over the duration of the process. 
We develop algorithms for the methods presented here assuming that the claim size 
distribution is of a phase-type. 

Our interest in the probability of ruin on a specific claim has been motivated in 
part by the similarity between the surplus process and the workload process in a 
single-server queue. Similarities between ruin theory and queueing theory have been 
extensively explored in WILLMOT (1990). 

In the next subsection necessary information about phase-type distributions is 
presented. In section 2 the general algorithm for phase-type distributions is 
described, and specific cases are considered. Numerical examples are presented in 
section 3 followed by conclusions in section 4. 

1.1. Phase-type Distributions 
Phase-type distributions have become an extremely popular tool for applied 
probabilists wishing to generalize beyond the exponential while retaining some of 
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its key properties. The phase-type family includes the exponential, mixture of 
exponentials, Erlangian and Coxian distributions as special cases. Among the 
appealing characteristics of phase-type distributions are the following closure 
properties: a) finite n-fold convolutions of phase-types are again of phase-type; b) a 
random modification (i.e. forward recurrence time) of a phase-type is again of phase- 
type; c) geometric mixtures of n-fold convolutions of phase-types are again of 
phase-type. This latest property is of particular interest vis-h-vis the ruin problem : 
couched in terms of its M/G/I waiting time analogue, NEUTS (1981) has shown that 
the distribution of the maximum aggregate loss is phase-type with easily determined 
parameters whenever the claim size distribution is phase-type as well. This fact was 
later used by JANSSEN (1982) and ASMUSSEN and ROLSKI (1991), who developed 
formulas for the ultimate probability of ruin for phase-type claim size distributions. 

Phase-type distributions were first introduced by NEUTS in 1975, but the most 
popular standard reference for them has become NEUTS (1981). A shortened 
treatment can be stated as follows. Consider a Markov process with transient states 
{ 1, 2 . . . . .  m} and absorbing state (177 + 1), whose infinitesimal generator Q has the 
form 

The diagonal entries Ti, are necessarily negative, other entries are non-negative, 
and t0 = - T e  represents the rates at which transitions occur from the individual 
transient states to the absorbing state. 

Let the. process start in state i with probability o~i, i = I . . . . .  m + I, and let o~ = 
( ~ l  . . . . .  ~,,,). (In many practical problems, o~,,,÷j =0.) Now let B(x) denote the 
distribution of the timne to absorption, X, into state m + I. The distribution B (.) thus 
described is said to be of "phase-type with representation (~, T)" ,  and 

B(x) - l - ~ e x p ( T x ) e ;  x->0. 

Assuming or,,+ i = 0  its density is b(x) = a exp(Tx)t0, x-->0, its Laplace-Stieltjes 
transform is qst~ ( s )  = E{e-SX} = ~t ( s l -  7 ) - I t  o, and its nth noncentral moment .is 
given by 

E IX"} = n ! a ( -  7) -" )e  

Many of these properties are quoted in the development which follows. The 
interested reader is directed to NEUTS (1981) for a rigorous treatment of phase-type 
distributions. 

2. RECURSIONS FOR PHASE-DISTRIBUTED CLAIM SIZES 

The method we are about to describe works with the incomplete density for the 
reserve remaining after the nth claim occurs. (It is of course incomplete because 
ruin already have occurred.) Define 

d 
p, (y)  = - - P r  {non-ruin up to nth claim, and remaining rese~e ~y} 

dy 
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and define the Laplace transforms 

£,, (s) = e-"Yp~(y)dy (2.1) 
0 

(Note in particular that £n(0) = Pr {non-ruin up to nth claim}.) 
Next, define the " increment"  between two consecutive claims as the difference 

between the revenue earned and the claim amount. Let g (y) be its density (defined 
on ( -  ~,  co) because the increment can assume both positive and negative values), 
and let 

G(s )  = I 2  ~ e-S~'g(y)dy. (2.2) 

Let the claim size have distribution function B(y), density b(y), and Laplace- 
Stieltjes transform 

Y c~B(s) = e-S:'dB(y). (2.3) 
0 

Since the number of  claims is given by a Poisson process, inter-claim times (and 
hence revenue amounts earned between claims) are exponentially distributed. 
Furthermore, premiums are collected at a constant rate, so it follows that the 
revenue collected between consecutive claims is also exponentially distributed, and 
we denote the mean revenue by (1/2). Since the increment is the difference between 
the revenue and the claim size these definitions lead to the following results after 
straightforward manipulations 

qb n (2) 2e - ~Y; y ~ 0 (2.4) 

g(y)  = 
e ~  

2e-~t b ( t -  y)dt; y < O  
0 

G(s)  = (2/2 + s )  ~ n (  - s) (2.5) 

T h e o r e m :  Let the claim size be given by a phase-type distribution with represen- 
tation (o~, T), and let to = - T e .  Then 

L,,(s)= L , , - l ( s ) G ( s ) + v  p,,_l(x) exp(Tx)dx(s l+ r ) - I t o  (2.6) 
~'~0 

where v = 2 a  ( 2 / -  T ) -  t 

P r o o f :  Having described the increment as above, the reserve after the nth claim is 
the sum of the reserve after the ( n - l ) t h  claim and the ensuing increment. 
Therefore 

p~(y) = p,,_ ~ (x)g (y -x )dx .  (2.7) 
0 
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The equivalent expression involving Laplace transforms is 

£,, ( s )  e -'~Yp, ( y ) d y  -sy = = e P, , -  t ( x ) g ( y  - x) dxdy. 
y=0 y=0 =0 

Due to absolute integrability, we can reverse the order of  integration to obtain 

L,,(s) = e ..... p , , -  i (x) e - ' < Y - " ) g ( y - x ) d y d x  

x=0 y=0 

= L,,_ i ( s ) G ( s )  - e -s.,.p,,- i (x )  e'-Vg( - .y )dydx (2.8) 
x = 0  y = x  

Formula (2.8) applies for all  non-negative generally distributed claim sizes. To 
complete the proof of the theorem, we must rely on properties of  phase-type 
distributions. Recall that b ( y )  = ct e x p ( T y ) t o .  Therefore for x < 0 ,  we find 

g ( x )  = t e - a ' b ( t - x ) d t  
t=O 

I; =or l e - a ~  e x p ( T ( t - x ) ) d t t o  
=0 

= 2 a  ( t l  - T )  - ~ exp(  - T x ) t o  = v exp ( - T x ) t o  

Consequently we can evaluate the inner integral of  the 2nd term of  (2.8) as 
follows : 

y e ' Y g ( - y ) d y =  v e ' : ' e x p ( T y ) d y t o  
) '  = x y = . r  

= v exp ( ( s / +  T)y)dyto 
y = x  

= - e 'x v exp ( T x )  ( s i  + T )  - J to (2.9) 

When (2.9) is substituted into (2.8), equation (2.6) is obtained. 

Remark:  By evaluating (2.6) at s = 0, one finds 
Pr{non-ruin  up to the nth claim} = 

Pr{non-ruin  up to the ( n -  l)th claim} 

i o + V P , , - I  ( x ) e x p ( T x ) d x T - I t o  
=0 
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from which one concludes that 

F P ( n ) ~ P r { r u i n  on the nth claim} = v  p , , _ l ( x )  e x p ( T x ) d x e .  (2.10) 
x = 0  

In what follows, we develop computational algorithms from (2.6) and (2.10) for the 
specific cases of  i) exponential, ii) mixtures of  exponential claim size distributions, 
and iii) Erlang-N distributions. 

2.1 R e c u r s i v e  A l g o r i t h m  for E x p o n e n t i a l  C l a i m  S i z e s  

If one assumes that claim sizes are exponentially distributed with mean (l/u), we 
can simplify the recursions for L,,(s)  and P(n) greatly. All of the matrix quantities 
reduce to scalar results. In particular: 

G ( s )  = (2/2 ÷ s ) ( p / ~ - s ) ,  T =  [-,u.I, t o = # ,  

v = ,;t/(2 +,u),  

( s l+  T) - I  = I/(s-/ . t) ,  and exp(Tx) = e-"" .  

Therefore (2.6) becomes 

L,,(s) = ( f f / ~ - s ) [ ( 2 / 2 + s ) L , , _ i ( s )  - (2/2 +/OL,,_ i (/.t)] (2.11) 

and 

P (n) = (2/2 + #)  L,,_ ~ ~ ) .  (2.12) 

For the remainder of  this section, let ~b -= q~B(2) = ~ / u ÷ 2 ) .  We seek an 
algorithm to determine the form of L,,(s) in terms of  G , - i ( s ) ,  and the correspon- 
ding expression for P(n). If the initial reserve is a, then &l ( s )=  e - 's .  Thus from 
(2.12) 

P ( I )  = ( I -  ~ )  Lo(,u) = ( I - q ~ ) e  -a/' (2.13) 

Using (2.1 I) we can find Li (s) as follows 

L, ( s )  = 2,a/(,u - s )  [e -"Sl(2 + s )  - e -"1(2 + u ) l  

= 2 , u e - "  [(2 +l~)e "°' -") - (4 + s)]/{(~ - s ) (2  + s ) (2  +/~)} 
e~ 

= 2,ue -,,u [(fl _ s )  + (4 + lit) Z (a ((It -s)) t : lk! l /[( f l  - s )  (4 + s)  (4 +/01 
k = l  

[ i ] = 2 / ( 2 + s ) e  -~4' q~ + (a/0 ( a (¢ t - - s ) ) k - I I k !  . (2.14) 
k = l  

Again using (2.12) for n = 2  we find 

P (2) = ( 1 - qb) L, (/.t) = ( 1 - qS) 2 e - 'q' I ~  + a~] (2.15) 
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and (2.1 I) gives  rise to the fo l lowing  exp re s s ion :  

=e-"t'[(~+a~) {4)(2/2 + s )  2 + q~(l - q5)(2/2 + s)} &(s) 

+ (ag)2(M2+s) 2 ~ (a(y-s))k-2/k! (2.16) 
k=2 

W e  now establ ish  the general  form of  1;,, (s). 

T h e o r e m :  For  n_> I, the Laplace  t ransform of  the dis t r ibut ion of  the reserve 
fo l lowing  the nth c la im is given by 

L.(s)=e ..... c~")(2/2+s) '( I-q))"-J + (a~,)"(2/2+s)" ~ (a~L-s))~-" 
Lj=l k=,, k[  (2.17) 

Fur thermore ,  the coeff ic ients  c) '') at the nth stage are related to those at the (n - l) th 
stage via 

n- l 1 ~ _(,,_,) (a#)"-' 
c) '') = q~ c ,  + • j = 1 ,7 (2.18) 

, . . . . .  ( , , j - , ,  . . . . . .  

P r o o f :  The  p roof  proceeds  via induction.  For  n = 1, (2.14) show that the form of  
(2.17) is correct,  with c{ I) = rh. For n = 2, (2.16) reveals  that cl 2) = c(2 2) = rh 2 + (a,u) ~ .  

Now assume that (2.17) is val id  up to index n=N- 1. Thus 

LN_l(s)=e-"t'[ C)U-')(212+s)J(l --(1)) N - I - j  
j = l  

+(a//B)N-t(2/2+s) N-I ~ (a('u--s))k-N+l (2.19) 
k = U - I  k! 

Subst i tut ing (2.19) into (2.1 1) for n = N we find 

£~v(S) =#/(,u-s)e -~" C ~ U - I ) ( l -  q b ) N - i - J ( ( M 2  + S )  j + l  -- (212+/~) J+l) 
Lj= I 

I I ( 2 / 2  -t" s ) N  (2/2 "t" /'~)N177"7"7 E ~(aQ'l--s))k-N+'] + (au) N- 
L-g-17 

-,,~, c~U-0(1 _ q,,))N-I - j  ~ 2 = e ~., (2/4 + s)t(212 +#)j-t 
Lj= I I=0 

N - I  

+ ( N - ~ ,  I=O 

+(a~) N(2/2 +s)N E (aQ~-s))k-N 
• =N k7 (2.20) 
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The infinite sum in (2.20) already satisfies the form required by (2.17) for n = N. It 
remains for us to rearrange the other terms in (2.20) and establish the recursion 
posed by (2.18). Note that these can be written as 

N~I N- I 
- tltt e qb 2 c~ N-I)(I (1 ) )N- I -J (2 / / ] '+S) I+I (2[2+~) j - I  

L/=0 j=max(I,/) 

N-I 1 + 2 qb__(a/z)N-] ( 2 1 2 + s ) l + 1 ( 2 / 2 + ~ )  N - I - !  
t=0 ( N -  1)! 

= e-('! '  L F ( 2 / 2 + s ) / ( 1 -  q~)U-t ~ c~U-I)+ (2.21) 
/=1 k=,n~ .t-z) ( N - I ) ! J J  

A comparison of equivalent powers of (212 + s) between (2.21) and the first sum of 
(2.17) establishes (2.18) and completes the proof by induction. 

When (2.17) is substituted into (2.12) one obtains 

P(n) = ( l -  qb)" e - '~  cJ"-')+ L #) ~. 
j= I (n - l )!J  

However, in light of  (2.18) this can be restated as follows. 

Coro l la ry  : 

P(n) = ( 1 -  cb)"e-a"'cl")/~, I1 = 1, 2 . . . .  (2.22) 

The algorithm for determining P (n) thus consists of  (2.18) and (2.22), starting from 
cl ~) = q). 

2.2 Recursive Algorithm for Mixtures of Exponentials 

Mixtures of  a finite number of  exponential distributions have been used frequently 
as a generalization of  the single-exponential case, see for instance GERBER 
(1979). 

The phase-type formulation of a mixture of  K exponentials has the following 
form: i t =  [ P l ,  P2 . . . . .  PK]; T = - d i a g [ u l ,  ,u 2 . . . . .  ,UK], and to = Lul, ,u2 . . . . .  ,UK]'. 
Similarly ~ (s) 

= [Pl ,  P2 . . . . .  PK] diag [(s +,ul) - t ,  (s +,u2)- t . . . . .  (s +,Ur) - i] [fit, ,u2 . . . . .  ,UK]' 
K 

= 2 Pifli](S+/'li)" 
i=1 

The other computations for (2.6) are equally straightforward, and the resulting 
recursion for L,(s) is 

K 
L,,(s) = ~ pi(kti/#i-s)[L,,_l(s)(212+s) - £,,_1(kti)(2/2+#~)] (2.23) 

i=1 
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and the probability of  ruin on the nth claim is 

K 

P(n) = ~ pi(2/2 + Pi).q,- i(,ui) (2.24) 
i = 1  

Again, we seek explicit expressions for L,,(s) and P(n)  which can be calculated 
recursively. Defining ~ ,  = (/.ti/2+,ui), we find (since Lo(S)= e-MS): 

K 

P ( I )  = ~ pi(l  - ' t l h i ) e  - a t ' i ,  (2.25) 
i = 1  

E 2 G ( s ) = ( A / 2 + s )  ~ pie -~'' ~i+(a,  ui) 
i=l =j k! J 

from which P (2) can be readily calculated using (2.24). Determination of L,, (s) for 
n-->2 in the general case becomes increasingly complicated due to the need to 
evaluate L,,_ ~ (,ui) at all K rates. Tractable results are, however, available for two 
important sub-cases. For both (2.24) can then be used to find the corresponding 
probabilities. 

Case A:  No Initial Reserve (a = 0): In this case 

K 

£1(S):(2/2+S) 2 piClki 
i = 1  

and similar methods to those of the previous section can be used to establish the 
following recursion : 

n 

L , ( s ) =  Y~ cJ")(M)L+s) y n = 1, 2 . . . .  (2.27) 
j = l  

C) ")= Z C~"-I) P iribi(I - ~ i ) ~ + l - J  J = 1, 2 . . . . .  n (2.28) 
k = max ( I , j  - l) i 

where 

and where 
K 

i = 1  

Case B: Mixture of 2 Exponentials 

T h e o r e m :  For the case of  a mixture of  2 exponentials the following relationship 
applies for L,,(s), n ~ l :  

tl 

L,, (s) = ~ c~") (2/;t + s)  / + (2/2 + s)"A°'~(s) (2.29) 
j = l  
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T h e o r e m :  T h e  recurs ion  for  £ ,  (s )  w h e n  the c l a im  size d i s t r i bu t ion  is E r l a n g - N  as 
desc r ibed  a b o v e  is as f o l l o w s :  

(s )  = f [ G _  ~ (s)  (k/it + s ) ,  0 . . . . .  0] £,, 

- L,,_,(O), p(-O)L;,_,(O)+pq£, ,_~(O) . . . . .  ~ pq' £ , I ~ ~ '  - ' ) ( 0 )  
~=o ( N -  I - I ) !  

( 0 / 0  - s) N 
( 0 / 0 -  s) N-j  

× 

(0/0 - s )  

wh ere  p = (A/it + 0) and  q = I - p .  

(2 .34)  

P r o o f :  O n e  can  show after  e l e m e n t a r y  ca l cu l a t i ons  that  

( - s l  - T )  - t t 0 = [ ( 0 / 0  - s )  N, ( 0 / 0  - s )  N -  t . . . . .  ( 0 / 0  - s ) ] '  

v = i ta  (itl  - T )  - i = [)./). + 0),  20 / (2  + 0) 2 . . . . .  ;tO N- i/(it + 0)u]  ; 

and  

exp  (Tx) = 

fo (Ox) fl  (Ox) f2 (Ox) 
0 fo (Ox) f~ (Ox) 
0 0 fo (Ox) 

... fN_~(Ox) 

... fN_2(Ox) 

... fN_3(Ox) 

0 0 0 fo(Ox) 

where  fk (Ox) = ( -- 1)k ~ ( -- OX) t 
t=k k! ( l -  k)! 

ta~,vxj k e - o.,.. The re fo re  

k! 

I = P,, - I (x) exp  (Tx) dx 
a=0 

G - ~ ( 0 )  ( - 0 )  ~ ' ._  ~ ( 0 )  0 2 L',',_ ~ ( 0 ) / 2  . . .  

0 L,  _ ~ (0)  ( - 0)  £;,_ ) (0)  

0 0 £ ._  ~ (0) . 

I c ( N - l )  ( O ) / ( N -  I ) !  ( - O) N- ~, ,- l  

( O)N-2 ~N-2> - £~ _)  ( O ) I ( N -  2 ) !  

( o)N- 3 (N- 3) (O)I(N - L . _  ) - 3 ) !  

0 0 0 £,,_~(0) 
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Substitution of  these expressions into (2.6) in light of  (2.5) gives rise to the 
theorem's result. Substitution of  s = 0 in (2.34) leads to the following result after 
elementary manipulations. 

Corol la ry  : In the case of  Erlang-N claim-size distributions, the probability of ruin 
on the nth claim is given by 

N - I  

P (n) = ~ L~i_ ) i(0) {( - 0)i[I - qN- ~]/i!}. (2.35) 
i=0 

In the case of  Erlang-2 claims, this reduces to 

P(n) = L,,_ ~ (0)(1 - q2) _ pOL',_ ~(0). (2.36) 

Using the same methods as before, one can again develop recursions for L,, (s). We 
state here as an example the recursion for the case of  Erlang-2 claim sizes: 

G(s)=e  -~° cJ")(2/2+s)J +(aO)2"(2/2+s)" 
/j= I k=2n 

-(") satisfy the recursion: where the coefficients cj 

c:n) [(aO)2n-2q 2 (a0)2"-I ] 
= L ~ .  ( n + l - j ) + G : - ~  q p"-j 

n 

+q2 Z ~(n- I) nt-Jtk '-k-I t-" ~ + l - j ) '  
k = max (2,j) 

The recursion starts with cl I) = q2+ aOq. 

(a(O ~_ s))k- 2n.] 

k~ J 
(2.37) 

j =  1 . . . . .  n;  n = 1, 2 . . . .  (2.38) 

3. NUMERICAL EXAMPLES 

A series of  numerical examples have been carried out to demonstrate the effect of 
the security loading, the initial reserve, and the claim size distribution on the 
probability of ruin. The results are displayed in Figures 1 through 10. 

Figures 1 and 2 display the cumulative probability of  ruin for exponentially 
distributed claims. In Figure 1, it is assumed that there is no initial reserve. 
Although the probabilities of  this and all later graphs are in fact valid only for 
integer claim numbers, continuous trajectories have been fitted to these points to 
show the overall trend. Figure 1 shows that these trajectories approach their 
ultimate limit of  1/(1 + 0) (where 0 is the relative security loading). This limit is a 
well-known result in risk theory; see for example BOWERS et al. (1986) p. 359, eq. 
(12.5.2). The speed of  convergence to this limit increases with 0. This is not 
surprising--if  the security loading is large, one would expect either to be ruined 
very soon, or else to have built up enough surplus to weather further fluctuations. 
For small 0, a smaller reserve accumulates, so the period of  vulnerability lasts 
longer. 
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Figure 2 displays the cumulative probability of  ruin as a function of the time and 
the initial reserve level. Here the acronym IRR refers to the initial reserve ratio, 
defined are the initial reserve divided by the expected amount of  a single claim. The 
security loading is 20%. The figure shows that even small reserves have a major 
benefit as opposed to having no reserve at all. For larger reserves, the commence- 
ment of  the period of  vulnerability is delayed due to the extremely small chance of  
a large number of  claims during a single time unit. 

The probability of  ruin on a given claim number reveals the relative vulnerability 
of  the company. This vulnerability is explored in Figures 3 though 6, where 
exponential claim sizes have been assumed. Figures 3 and 4 show that with a 
non-zero initial surplus, the ruin probabilities for the process with a smaller relative 
security loading 0 are spread over a much wider range than those for larger 0. 

Figures 5 and 6 show that for larger initial surpluses, the ruin probabilities are 
again spread over a wider range for smaller O's. Further, the larger initial surplus 
reduces the possibility of  early ruin, however, the relative vulnerability is more 
spread out. 

To demonstrate the effect of  more variable claim size distributions, Figures 7 and 
8 display the probabilities of  ruin on the nth claim for a series of  mixtures of  two 
exponentials with balanced means. This balanced means assumption (p~//~ ~ = p2 / t t 2 )  is 
common when fitting a mixture of  2 exponentials to only the first two moments 
E{B} and Var[B}.  Define c 2 = Var{B}/E{B}2; that is, c 2 is the squared 
coefficient of  variation (SCV) of  the claim size distribution. Then the parameters 
Pi, ~i, i = 1, 2, are found from the following equations: 

R = ~/(c 2 -  1)/(c 2+ l ) ,  (3.1) 

Pl,  P2 = (1 _+ R)/2, (3.2) 

/~, = 2p,/E {B}. (3.3) 

Figures 7 and 8 consider the case where there is no initial reserve and 0 = 100%. 
The SCV takes on values of  1.0 (corresponding to the ordinary exponential), 4.0 
and 9.0. The figures show that around the 40th claim, the probability of  being 
ruined on a given claim is almost 100 times more likely when SCV = 9.0 than with 
the ordinary exponential. In the short-run, however, there is more chance of  being 
ruined by a less variable claim size distribution. This seemingly contradictory result 
can be understood according to the following reasoning: when SCV = 9, we get 
R = 0.905, Pl = .952 and P2 = .048. Thus, for every large claim in the long-run, there 
are roughly 20 smaller ones, but the rare large-sized claim is roughly 20 times 
larger on average. Therefore, in the very short-run, there is little chance of ruin, but 
eventually, the larger claims start to occur, and their impact is so much greater. 

Figure 9 compares the ruin probabilities for exponential and Erlang-2 claim sizes 
for two values of  IRR, and assuming a relative security loading of  20%. As the 
figure demonstrates, there is substantially less likelihood of  ruin for Erlang-2 
claims. This is due to the reduced variability of  the claim sizes. (The Erlang-2 case 
has a c 2 equal to half that of  the exponential.) 



249 

'~' 0.004 

d: 

I I I I I 

RECURSIVE METHODS FOR COMPUTING FINITE-TIME RUIN PROBABILITIES 

0.005 

0.003 

0.002 

0.001 

0¢ 
0 

10 
a'o ~ ~ e'o ' 100 

30 50 70 90 
Number of Claims 

1 - - ~ -  theta=lO% t the ta :20% I 

FIGURE 3. Effect of security loading (initial reserve ratio = I0). 

E 
1 
"0 

c 

c 
2 

0.001 - 

0.0008- 

0.0006- 

0.0004- 

0.0002- 

0 
0 20 40 60 80 

10 30 50 70 90 
Number of Claims 

100 

[ --~-- ~e ta=50% ~ ~eta= lO0% ] 

FIGURE 4. Effect of security loading (initial reserve ratio = 10). 



250 

0.0008 

D.A. STANFORD AND K.J. STROIIqSKI 

0.0007 

.E 0.0006 

'~ 0.0005 

~ 0.0004 
~ 0.0003 

~ o.ooo2 

0.0001 

0 

7 - " ' -  

F-- 2b ' ~ ' ~ ' 8'0 ,~ 
10 30 50 70 90 

N u m b e r  of C la ims  

I - -~--  theta=lO% ~ theta=20% I 

FIGURE 5. Effect of" security loading (initial reserve ratio = 20). 

c 

0.6 ! 
='r" ~ ~ ,  I ; ; : ; : ; : ; : : ; 

0 2'0 40 60 80 100 
10 30 50 70 90 

Number of Claims 

I - - ~ -  theta=50% ~ theta=lO0% I 

FIGURE 6. Effect of security loading (initial reserve ratio : 20). 



E 
"a 

C 

2 

dC 

RECURSIVE METHODS FOR COMPUTING FINITE-TIME RUIN PROBABILITIES 

0.1 

0.01 

0.001 

0.0001 

1 E-05 

IE-,OO 

251 

5 10 15 20 25 30 
Number of Claims 

35 40 

I --B-'SCV=I.00 o SCV=4.00--x-'SCV=9.00 I 

FIGURE 7, Effect of claim size variability. 

E 

¢: 
0.1 

.c 
2 

¢ 

0.01 

Number of Claims 

- B - S C V = I . 0 0  o SCV=4.00-->e-SCV=9.00 I 

FIGURE 8. Effect of claim size variability. 



252 

C 

2 

o 

D.A. STANFORD AND K.J. STROIIqSKI 

iii ............................................................................................. 
o.4 .............. ~ ........................................................... 
o.~ ......... ~ , , . ~ , . _ . , . . _ , - - ~ . . - . , . . . ~  'o -~.._.~ 

0 20 40 60 80 
10 30 50 70 90 

Numberof  Claims 

100 

l - -B-  Exp./IRR=2 - -+ -  Exp./IRR=5 x ErI./IRR=2 [] ErI./IRR=5 

FIGURE 9. Effect of claim size distribution (security loading = 20%). 

| 

E 
• ~ 0.1 

c 

o 
.c 

2 0.01 

0.001 ! 

o 6 8 10 12 14 
Number of Claims 

16 18 20 

I - - ~ -  S C V = I . 0 0  ' I $ C V = 4 . 0 0  ~ SCV=9.00  I 

FIGURE I0. Effect of claim size variability. 



RECURSIVE METHODS FOR COMPUTING FINITE-TIME RUIN PROBABILITIES 253 

Figure l0 provides a comparison of  the ruin probabilities for the same three claim 
sizes distributions as Figures 7 and 8, assuming a non-zero initial reserve. The IRR 
equals 1 in this case, and the relative security loading is 0%. Although ruin is 
therefore certain, we chose this example to demonstrate the ruin behaviour over 
finite time. Again, we see that in the short run, the exponential case has the highest 
likelihood of  ruin, but in the long run the situation is reversed. 

4. CONCLUSIONS AND FUTURE WORK 

The current paper has presented recursive methods for determining the probability 
of ruin at claim instants. Among the advantages of  this approach are the fact that it 
is exact, and that it reveals where in the future that the relative vulnerability to the 
company lies. We hope to extend this method to include non-Poisson claims 
processes in further work. 
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ON THE COMPOUND GENERALIZED POISSON DISTRIBUTIONS 

BY R.S. AMBAGASPITIYA AND N. BALAKRISHNAN 
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A B S T R A C T  

GOOVAERTS and KAAS (1991) present a recursive scheme, involving Panjer's 
recursion, to compute the compound generalized Poisson distribution (CGPD). In 
the present paper, we study the CGPD in detail. First, we express the generating 
functions in terms of Lambert 's W function. An integral equation is derived for the 
pdf of CGPD, when the claim severities are absolutely continuous, from the basic 
principles. Also we derive the asymptotic formula for CGPD when.the distribution 
of claim severity satisfies certain conditions. Then we present a recursive formula 
somewhat different and easier to implement than the recursive scheme of GOOV- 
AERTS and KAAS (1991), when the distribution of claim severity follows an 
arithmetic distribution, which can be used to evaluate the CGPD. We illustrate the 
usage of this formula with a numerical example. 

K E Y W O R D S  

Compound generalized Poisson distributions; moments; integral equations; recur- 
sive equation; tail behaviour. 

] .  INTRODUCTION 

Modelling the claim frequency data is one of the most important areas in risk 
theory. Traditionally, the Poissot~ distribution, when the mean number of claims is 
equal to its variance, and the negative binomial distribution, when the variance of 
the number of claims exceeds its mean, have been used because of their convenient 
mathematical properties. Several authors including GOSStAUX and LEMAIRE (1981), 
SEAL (1982) and WmLMOT (1987) have considered alternatives to Poisson and 
negative binomial distributions for this purpose. CONSUL (1990) has compared the 
Generalized Poisson distribution (GPD) suggested by CONSUL and JAIN (1973) with 
several well known distributions and concluded that GPD is a plausible model for 
claim frequency data. GOOVAZRTS and KAAS (1991) presented a recursive scheme 
to compute the total claim distribution under the assumptions that the claims are 
independently and identically distributed integer random variables with the GPD 
claim frequency. 

In this paper, we discuss the compound generalized Poisson distribution (CGPD) 
in detail and derive a somewhat easy to programmable recursive relation than one 
given by GOOVAERTS and KAAS (1991). In Section 2, we present a brief summary 
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of the properties of the generalized Poisson distribution. In Section 3, we express 
the generating functions of CGPD in terms of Lambert's W function and illustrate 
the derivation of moments. In Section 4, we present an integral equation similar to 
Volterra's integral equation of second kind for the density function of CGPD when 
the distribution of claim severity is absolutely continuous. In addition, we discuss 
the tail behaviour of CGPD when the claim severity is non arithmetic. In Section 5, 
we present a recursive formula for the probability function of CGPD when the 
distribution of claim severity is arithmetic. We illustrate the usage of this formula 
through an example. 

2. GENERALIZED POISSON DISTRIBUTION (GPD) 

CONSUL and JAIN (1973) proposed a new generalization of the discrete Poisson 
distribution which was modified by CONSUL and SHOUKRI (1985) tO: A discrete 
random variable N is said to have a generalized Poisson distribution (GPD) if its 
probability mass function is given by 

(2.1) Pr(N=n)=p,O,O)= 120"+n0) ' -~exp ( -2 -n 0 )n !  for n=0,1,2. . .  

L0 for n > m  when 0 < 0  

and zero otherwise, where 2 > 0, max ( -  1, -Mm) --< 0 < 1 and m(--> 4) is the 
largest positive integer for which 3. + Om > 0 when 0 is negative. This generaliza- 
tion of the Poisson probability model in the sense that is probability generating 
function (pgf) is given by the Lagrange expansion of any pgf under a suitable 
transformation (CoNsuL and SnENTON (1972)). The GPD reduces to the Poisson 
distribution when 0 = 0 and it possesses the twin properties of over-dispersion and 
under-dispersion according as 0 > 0 or 0 < 0. The GPD gets truncated for negative 
values of 0 but the truncation error is always less than 0.07%. A recent book by 
CONSUL (1989) discusses various properties, inference and numerous applications of 
this model in biology, ecology, and other disciplines. For simplicity, from here on 
we assume the parameter 0 > O. AMBAGASPITIYA and BALAKRISHNAN (1993) has 
recently expressed the moment generating function MN(t) and the probability 
generating function of the GPD in terms of Lambert's W function when 0 > 0 as 
follows : 

(2.2) 
f 

Mu(t) = exp I -  

(2.3) PN(z) = exp { - 

where W is the Lambert's W 

2 [ W ( - 0 e x p ( - 0 + t ) ) + 0 ] l  
0 J 

[ W ( -  Ozexp ( - 0 ) ) +  0] l  
0 J 

function defined as 

W(x) exp (W(x)) = x. 

For more details about Lambert's W function see CORLESS et al. (1994). 
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2.1. Central moments of GPD 

We can obtain the central moments of  GPD by differentiating (2.2) with respect to t 
as illustrated by AMBAGASPITIYA and BALAKRISHNAN (1993), or from the basic 
principles as described by CONSUL (1989), or by using the method suggested by 
GOOVAERTS and KAAS (1991). The resulting expressions for first four central 
moments are as fol lows:  

(2.4) 

where M = (1 - 0 ) - i  

U I =`1M 

kt2 = `1M 3 

,u3 =`1 (3 M -  2 )M 4 

/u4= 3`12M6 + ̀ 1(15M2-20M +6)M 5 

2.2. Maximum likelihood estimators of 2 and 0 

Let a random sample of  n items be taken from the GPD model and let x~, x 2 . . . . .  x,, 
be their corresponding values. If the sample values are classified into 
class frequencies and ni denotes the frequency of  the ith class 
(ni = # { x j : l  --<j--< n, xj = i}), the ML estimate 0 as described in CONSUL and 
SHOUKRI (1984) is given by the unique root of  0 given by the equation 

k i ( i -  1) 
(2.5) ~ n, , ~  = o 

i=0 ~ + ( i - ~ ) O  

where k ( -< 2) is the number of classes, n = ~..,~= i ni and 2 is the sample mean. Note 
that (2.5) does not give a value for 0 when k = 0 or 1. The ML estimate J. is then 
given by 

(2.6) ~. = .~(I - 0) 

2.3. Tail behaviour of GPD 

Lemma 2.1 : For fixed `1, 0 and n ---~ 

`1 [~ , t )  - 3~2 
(2.7) Pr(N=n)= o - - ~ e x  p ,-`1 + -~)n . ( O e x p ( l - O ) ) "  

Proof: 

For large n, using the Stirling approximation to n! we can write the pmf  in (2.1) as 

`1 (`1 + nO)n - I exp ( - `1 - nO) 
(2.8) Pr (N = n) = / 0) 2 ~ n  n+l/2 e x p  - n  + 
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where 0~ = 0~ (n) satisfies 0 < 0~ < 1. After some rearrangement, we have 

{ 2 I + 2 I n - '  (exp 0 /}n 3/2(0exp(i 0)).; (2.9) Pr(N=n)= ~ I ~ j  - 2 -  12in - - 

Note that the term inside the { } tends to the required constant as n--~ w and 
hence the proof. 

3. COMPOUND GENERALIZED POISSON DISTRIBUTION (CGPD) 

Let N denote the number of claims produced by a portfolio of policies in a given 
time period. Let X i denote the amount of the ith claim. Then 

(3.1) S = X t + X 2 +  .. .  +XN 

represents the aggregate claims generated by the portfolio for the period under 
study. In order to make the model tractable, two fundamental assumptions are made 
in risk theory and they are 

1. X~, X2 . . . .  are identically distributed random variables with the distribution 
function F(x). 

2. The random variables N, X~, X z . . . .  are mutually independent. 

When a GPD is chosen for N, the distribution of S is called a compund 
generalized Poisson distribution. In terms of the convolution operation, we can 
write the distribution function of S as: 

Fs (x) = ~ F*"  (x) 2 (2 + nO)"- i exp ( - 2 - tl0) 
n=0 t//! 

The moment generating function of S is given by 

(3.2) M s (t) = M N (log M x (t)), 

where MN( t )  is the moment generating function (mgf) of the GPD and M x ( t )  is the 
mgf of the claim amount distribution. By using the expression given in (2.2), we 
can write the mgf of S as 

(3.3) M s ( t ) = e x p  - - - [ W ( - 0 e x p ( - 0 )  Mx(t) )+0]  . 
0 

Similarly, the probability generating function (pgf) of S, when the distribution of 
claim severity is arithmetic, can be written as 

(3.4) P s ( z )  =exp - - - [ W ( - 0 e x p ( - 0 )  Px(z))+0]  , 
0 

where P x ( z )  is the pgf of claim amount distribution. 
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3.1. Central moments  of  S 

The moments of S can be obtained by directly differentiating the mgf of S given in 
(3.3). For this differentiation, one may use the following identity, involving 
Lamberts W functions : 

d W  (x ) W (x ) 

dx x ( l  + W(x) )  " 

After some lengthy algebra, we obtain the following expressions for the first 
three central moment of S: 

E (S) = 2p~ M 
Var (S) =2p2M3+2(p2-p])M 
E((S - E(S)) 3) = 2 ( 3 M -  2) p~M 4 + 32p, (P2 -P]) M3 + (P3 - 3pzpt + 2p])2M 

where M = (1 - 0) -  1 and Pi, i = 1,2, 3 are the ith non-central moments of claim 
severity. 

4. PROPERTIES OF CGPD- ABSOLUTELY CONTINUOUS SEVERITIES 

Theorem 4,1: If the claim sizes are absolutely continuous with pdf f(x) for 
x > 0, then the pdf g(2, 0; x) of CGPD satisfy the integral equation 

(4.1) g(2,0;x)=pl(2,0)f(x) + - -  0 + 2  g(A+O,O;x-y)f(y)dy 
2 + 0  o 

where Pt (2, 0 )=  Pr(N= I) in the GPD with parameters 2 and 0. 

Proof:  

Consider 

(4.2) g(2, O;x) = y_~ pi(2, O)f*i(x) 
i=1 

(4.3) =Pl(2, O)f(x) + ~ pi(2,0)f*i(x) 
i=2  

By using the following identity of GPD, 

2 Opi_t(2+O,O) +-pi_l(2+O,O) (4.4) 
(2, 0) = 2 + 0 t Pi 

we have 
oo 

__2 (0 ~ Pi_l(2+O,O)f*i(X)+ (4.5) ~ pi(2,0)f*i(X)=2+ 0 
i=2  i=2  

i = 1 , 2  . . . .  

+ A 2 Pi-I(A+O'O) f 
i=2  l 
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Using the identities 

(4.6) f * i ( x )  = I x 

0 
f , o -  I) (x -  y ) f ( y )  dy 

and 

(4.7) 

we have 

(4.8) 

f * '  (x) _ ~ f , ( i _ , ) ( x _ y ) f ( y ) d y  
i o x 

2 P,(2'O)f *i(x)= 2 0 p,_l(2+O,O) f*(i-I)(x-y)f(y)dy 
i=2 2 + 0  i=_ 0 

ix ) + ~. ~ pi_l(l+O,O) -Yf*( i -] ) (x-y) f (y)dy  
t=2 0 X 

By interchanging the order of summation and the integration and realizing the 
fact 

(4.9) 

(4. I 0) 

we have 

(4.11) 

Substitution 
theorem. 

2 Pi-"(J'+O,O)f*(i-"(x-Y) = 2 
i = 2  i=I  

pi(2 + O, O) f *i (x - y) 

=9(Z +O,O;x- y) 

p , O . , O ) f * i ( x ) = - -  0 + 2  g(X+O,x -y ) f ( y )dy  
i=2 2 + 0  0 

of (4.11) in (4.3) yields the required result and hence the 

One has to solve the integral equation (4.1) numerically. Although, there are 
many algorithms and implementations available to solve Volterra integral equations 
of  the second kind, one has to modify them to solve (4.1). We are currently 
investigating the problem of finding the best algorithm and we hope to report this 
finding in a future article. 

4.1. Tail behaviour  of  C G P D  

T h e o r e m  4.2 : 

(4.12) 

If there exists a number n > 0 satisfying 

exp (0) 
- -  - L x ( -  K )  

e0 
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for X non-arithmetic and if - .L,~ ( - K) < oo, then 

(4.13) I - -  F s ( X  ) ~ Cx  -312 exp ( - nx), 

where C is given by 

* / exp.°-'' ] 
C - - - e x p  - 4  + n 4 ' , ( - g )  

0 5  0 

P r o o f :  

The Proof of this theorem directly follows from the Lemma 2.1 and from the 
theorem of EMBRECHTS, MAEIIMA, and TEUGELS (1982). 

5. PROPERTIES OF CGPD: ARITHMETIC SEVERITIES 

T h e o r e m  5.1: If the claim sizes are random variables on the positive integers 
with probability mass function f(x) = Pr (X = x), x = 0, 1, 2 . . . . .  then the probabil- 
ity mass function g(4, 0; x) of CGPD satisfies the recurrence equation 

(5.1) g(2, O;x)= ~ 0 + 2  g(2+O,O;x-y)f(y). 
2 + 0  y=~ 

P r o o f :  

This theorem can be proved following the same line of reasoning as Theorem 4.1 or 
the standard proof of Panjer's recursion (see Theorem 6.6. I and Corollary 6.6.1 in 
PANJER and WILLMOT (1992)). 

A result analogue to Theorem 4.2 can be established for discrete severity case 
using Lemma 2.1 and the theorem given in WILMOT (1989). 

5 .1 .  R e c u r s i v e  e v a l u a t i o n  

The recursive formula given in (5.1) is easily programmable and also simple to use 
for manual calculations. For the latter, one may use the following schematic 
approach : 

g(4, o, o) 
g(4, 0, I) 

g (2, 0, 2) 

g(L 0, 3) 
g (4, 0, 4) 

g (2 + 0, 0, 0) 

g(2+O,O, I) 
g (2 + 0, 0, 2) 

g(4 + 0, 0, 3) 

g(2+20,0,0) 
g(;t  + 20, 0, 1) 

g(2+20,0,2) 

g(4+30,0,0) g(4+40,0,0) 
g(2+30,0, l) 
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The first row of  the above scheme is obtained by using the fact that g(2 + iO, O) = 
p0(2 + iO, 0) = exp ( - 2 - i O )  for i = 0, 1 . . . .  To calculate the probability mass 
function given in the (i , j) th location, one has to use the elements in (I,j+ 1) where 
l = 0, 1 . . . . .  i - 1. Since the scheme is of an upper diagonal form, we can carry out 
the computations for each row starting from right to left. For example, if one wishes 
to compute 9 ( 2 , 0 , 4 )  one may start from 9 ( 2 + 4 0 , 0 , 0 )  and move along the 
diagonal from fight to left, i.e. calculate g (2  + (4 - i) O, O, i), i = O, 1, 2, 3, 4 in that 
order. 

E x a m p l e  : 

Suppose  that S has a CGPD with 2 = 0.8,  0 = 0.5 and the distribution of  individual 
c la im amounts  is as fol lows" 

x Pr(X = x) 

I 0.25 
2 0.45 
3 0.30 

Then, by using the recursive method described above, the pmf of  S has been 
tabulated for s = 0(1)59 and these values are presented in Table 1. 

TABLE 1 

THE PROBABILITY MASS FUNCTION OF S 

s Pr (S = s) s Pr (S = s) s Pr (S = s) 

0 .44933 20 .00269 40 .00017 
I ,05451 21 ,00231 41 .00015 
2 .10555 22 .00198 42 .00013 
3 .09329 23 .00171 43 .00012 
4 .04809 24 .00148 44 .00010 
5 .04813 25 .00128 45 .00009 
6 .03595 26 .00111 46 .00008 
7 ,02737 27 ,00096 47 .00007 
8 .02320 28 .00083 48 .00006 
9 .01835 29 .00073 49 .00006 

10 .01505 30 .00063 50 .00005 
11 .01248 31 .00055 51 .00004 
12 .01029 32 .00048 52 .00004 
13 .00860 33 .00042 53 .00003 
14 .00720 34 .00037 54 .00003 
15 .00605 35 .00032 55 .00003 
16 .00512 36 .00028 56 .00002 
17 .00434 37 .00025 57 .00002 
18 .00369 38 .00022 58 .00002 
19 .00315 39 .00019 59 .00002 



ON THE COMPOUND GENERALIZED POISSON DISTRIBUTIONS 263 

ACKNOWLEDGMENTS 

The  authors  would  like to thank both referees  for  their  valuable  c o m m e n t s  when  

revis ing this paper.  This  work  was  suppor ted  by the Natural S iences  and 

Eng inee r ing  Research  Counci l  o f  Canada.  

REFERENCES 

AMBAGASP]TIYA, R.S. and BALAKRISHNAN, N. (1993) Some remarks on Lagragian distributions, 
Submitted for publication. 

CONSUL, P.C. (1989) Generalized Poisson Distributions: Properties and Applications. Marcel Dekker 
Inc., New York/Basel. 

CONSUL, P.C. (1990) A model for distributions of injuries in auto-accidents, hteilungen der Schweiz 
Vereinigung der Versicherungsmathematiker Heft l, 16 I-168. 

CONSUL, P.C. and JAtN, G.C~ (1973) A generalization of Poisson distribution. Technometrics 15, 
791-799. 

CONSUL, P.C. and SHENTON, L.R. (1972) Use of Lagrange expansion for generating discrete generalized 
probability distributions. SlAM Journal of Applied Mathematics 23, 239-248. 

CONSOL, P.C. and SHOtJKal, M.M. (1984) Maximum likelihood estimation for the generalized Poisson 
distribution. Communications in Statistics- Theory and Methods !0. 977-991. 

CONSUl., P.C. and SHOUKm, M.M. (1985) The generalized Poisson distribution when the sample mean is 
larger than the sample variance. Conmutnications in Statistics - -  Simulation and Computation 14., 
1533-1547. 

CORLESS, R.M., GONNET, G.H., HARE, D.E.G. and JEFFREY, D.J. (1994) The Lambert W function. To 
appear in Advances in Computational Mathematics. 

EMBRECHTS, P., MAEJIMA, M. and TEUGELS, J. (1982) Asymptotic behaviour of compound distributions. 
ASTIN Bulletin 15, 45---48. 

GOOVAERTS, MJ. 'and KAAS, R. (1991) Evaluating compound generalized Poisson distributions recur- 
sively. ASTIN Bulletin 21, 193-197. 

GOSSBAUX, A: and LEMAmE, J. (1981) Methodes d'adjustement de distribution de sinistres. Bulletin of the 
Association of Swiss Actuaries 81, 87-95. 

PANJER, H.H. and WtLLMOT, G. E. (1992) Insurance Risk Models. Society' of Actuaries. SEAL, H. (1982) 
Mixed Poisson-an ideal distribution of claim numbers? Bulletin of the Association of Swiss Actuaries 
82, 293-295. 

WILLMOT, G.E. (1987) The Poisson-lnverse Gaussian distribution as an alternative to the Negative 
Binomial. Sandinavian Actuarial Journal, I 13-127. 

WILLMOT, G.E. (1989) Limiting tail behaviour of some discrete compound distributions, hlsurance: 
Mathematics and Economics 8, 175-185. 

R.S. AMBAGASPITIYA 
Department of Mathematics and Statistis, University of Calgary, 
Calgary, Alberta, Canada, T2N IN4. 

AND N. BALASKRISHNAN 

Depar tment  o f  Mathemat ics  and Statistics, M c M a s t e r  University, 

Hamilton,  Ontario, Canada, L8S 4 K I .  





MODELLING THE CLAIMS PROCESS IN THE 
PRESENCE OF COVARIATES 

BY ARTHUR E. RENSHAW 

Department of Actuarial Science & Statistics 
The City University, London 

ABSTRACT 

An overview of the potential of Generalized Linear Models as a means of 
modelling the salient features of the claims process in the presence of rating factors 
is presented. Specific attention is focused on the rich variety of modelling 
distributions which can be implemented in this context. 

KEYWORDS 

Claims Process; Rating Factors; Generalized Linear Models; Quasi-Likelihood; 
Extended Quasi-Likelihood. 

1. INTRODUCTION 

The claims process in non-life insurance comprises two components, claim 
frequency and claim serverity, in which the product of the underlying expected 
claim rate and expected claim severity defines the pure or risk premium. 
Specifically, considerable attention is given to the probabalistic modelling of 
various aspects of a single batch of claims, often focusing on the aggregate claims 
accruing in a time period of fixed duration, typically one year, under a variety of 
assumptions imposed on the claim frequency and claim severity mechanisms. 

In this paper, attention is refocused on the considerable potential of generalized 
linear models (GLMs) as a comprehensive modelling tool for the study of the 
claims process in the presence of covariates. Section 2 contains a brief summary of 
the main features of GLMs which are of potential interest in modelling various 
aspects of the claims process. Particular attention is drawn to the rich variety of 
modelling distributions which are available and to the parameter estimation and 
model fitting techniques based on the concepts of quasi-likelihood and extended 
quasi-likelihood. Sections 3 and 4 focus respectively on the modelling of the claim 
frequency and claim severity components of the process in the presence of 
covariates. An overview of the potential of GLMs as a means of modelling these 
two aspects of the claims process is discussed. Relevant published applications are 
referenced, although an exhaustive search of the literature has not been conducted. 
A number of the suggested modelling techniques are illustrated in Section 5. 

ASTIN BULLETIN, Vol. 24, No. 2, 1994 
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2. GLMs. QUASI-LIKELIHOOD. EXTENDED QUASI-LIKELIHOOD 

Focus intially on independent response variables {Yi: i=  1, 2 . . . . .  n} with either 
density or point mass function, as the case may be, of the type 

(2.1) f(yilOi,~,)=exp{yiO'-b(O') + c(yi,dp,)} 
a ((Pi) 

for specified functions a (.), b (.) and c (.), where 0i is the canonical parameter and 
~p~ the dispersion parameter. The cumulant function b(.) plays a central role in 
characterising many of the properties of the distribution. It gives rise to the 
cumulant generating function, K, of the random variable ~ ,  assuming it exits, 
according to the equation 

b {a (~bi) t + Oi} - b {Oi} 
(2.2) Ky, (t) = 

a 6Pi) 

Our immediate concern therefore is with distributions with at most two parame- 
ters. 

Let ,ui = E(Y/) throughout. Comparison of the density or point mass function of a 
standard distribution with expression (2.1) establishes membership or otherwise of 
this class of distributions. It also determines the specific nature of the canonical 
parameter 0~ and function a( .)  up to a constant, as well as the nature of the 
dispersion parameter ~b i and the other two functions b(.) and c(.). To uniquely 
determine 0~ and a (.) it is also necessary to compare the variance of the standard 
distributions with the general expression (2.6) or, more specifically, expression (2.8) 
for the variance of Y/. 

For inference, the log-likelhood is 

(2.3) 

The identity 

. . . .  IyiOi_b(Oi ) } 
l= i=~ l,= i=~ ( a - ( ~ )  + c(Yi'dP')" 

f0/.1 
(2.4) E.~--2-' } = 0  ~ E(Yi)=kt,=b'(O,) 

100iJ 

where dash denotes differentiation. Thus, provided the function b' (.) has an inverse, 
which is defined to be the case, the canonical parameter 0i = b'-J(/.ti), a known 
function of/.ti .  

The identity 

E~ '32/~l  + E l (0 /_  i )2  l = 0  = Var(Y~)=b"(Oi)a(dp~) 
L 00, J LL00d J 

the product of two functions. Noting that b"(.) is a function of the canonical 
parameter 0i and hence of kt;, the identity 

(2.5) b" (Oi) = V (,u,) 
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is established and hence the so-called variance function V(.) defined. Hence the 
variance or second cumulant is 

(2.6) Vat  (Y/) = K(2 i) = V (ffi) a (q~i) • 

The other function a (.) is commonly of the type 

¢, 
(2.7) a (qSi) - 

O)i 

with constant scale parameter ~b and prior weights w; so that 

V (~i )  
(2.8) Vat (Y~) = - -  

wi 

This is assumed to be the case throughout. We remark that by setting ~p = 1, 
l / w  i --d~i, the reciprocals of  the weights may also be re-interpreted as non-constant 
scale parameters q~i. 

We shall also have occasion to examine the degree of skewness in the Y/s. Here 
the identity 

EI03li~ + 3E{ 02/i Olil + EI(0// /3I=0 => E{(Yi-fli)3,=b"(Oi)a2(dpi) 
( - ~  J 00~ OO, J tkoo, J J 

so that, in terms of the variance function V(.), on using equation (2.5), the third 
cumulant of  Y, is 

dV K~ i)= V {a (q)i) } 2 
dm 

Hence the coefficient of skewness 

"(~) dV 
(2.9) "'3 _ V-|/2 {a(dpi)}l/2 

{K~i)} 3/2 dlx i 

The expressions for the second and third cumulants can also be derived from the 
cumulant generating function (2.2). 

Covariates may be either explanatory variables, or explanatory factors, or a 
mixture of  both. In all three cases, covariates enter through a linear predictor 

rh= ~ xofl j 
J 

with known covariate stricture (x,j) and unknown regression parameters flj and are 
linked to be mean, /xi, of  the modelling distribution through a monotonic, 
differentiable (link) function g with inverse g-~ ,  such that 

g ( u i )  = r L or ~ i  = g -  t (q i ) .  
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To fit such a model structure, maximum likelihood estimates for the f l js  are 
normally sought. These are obtained through the numerical solution of the 
equations 

" Y, - #i  O#i 
(2.10) ~ o 9 , - - - - - 0  V j  

,=~ C v ( m )  a,flj 

derived by setting the partial derivatives 

Ol Oli 01, Olz i 01, OOi OlZi 

of the log-likelihood with respect to the unknown parameters flj to zero. 
Equations (2.3), (2.4), (2.5) and (2.7) are needed in the evaluation of the first two 
partial derivative terms on the right hand side. These estimates are sufficient in the 
case of the canonical link function, defined by 9' = b'  - ~. 

To broaden the genesis of equations (2.10) by relaxing the constraints imposed 
by the full log-likelhood assumption (2.3) and its associated distribution assump- 
tion (2.1), define 

(2.11) q = q ( y ; / z ) =  ~ q,= wi ' Yi-___~s ds 
i=l i=1 C V ( s )  

to be the quasi-likelihood (strictly quasi-log-likelihood) function. Then by setting 
the partial derivatives of q (rather than l) with respect to flj to zero, equations (2. i0) 
are again reproduced. Equations (2.10) are called the Wedderburn quasi-likelihood 
estimating equations. The resulting quasi-likelihood parameter estimates have 
similar asymptotic properties to maximum likelihood parameters estimates and are 
identical to maximum likelihood parameter estimates for the class of distributions 
defined by equation (2.1). This latter class of distributions includes the binomial, 
Poisson, gamma and inverse Gaussian distributions, all of which are of potential 
interest in a claims context. The individual details are summarised in Table 2.1. The 
overriding feature of both the quasi-likelihood expression (2.11) and the Wedder- 
burn quasi-likelihood estimating equations (2.10) is that a knowledge of only the 
first and second moments is required of the modelling distribution of the ~s. 
Hence, by this means, it is possible to relax the full log-likelihood assumption (2.3) 
and extend the range of distributions which can be readily linked to covariates in 
practice with an attendant shift in emphasis from maximum likelihoo.d estmation to 
maximum quasi-likelihood estimation. This has important implications for the 
claims process which are discussed in context later. 

The goodness-of-fit of different hierarchical model predictor structures is moni- 
tored, in the first instance, by comparing the differences in model deviances. To do 
this, compare the current model structure, denoted by c, and whose fitted values are 
denoted by fli; with the full or saturated model structure, denoted by f, and which is 
characterised by the fitted values fii = Yi, the perfect fit. Let O~ and Oi denote the 
corresponding values of the canonical parameter, defined by Oi = b ' - I ( ,ug) ,  the 
inverse of b' .  Since we are concerned here exclusively with changes to the structure 
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T A B L E  2.1 

DETAILS OF SPECIFIC G L M  DISTRIBUTIONS 

P o i s s o n  b i n o m i a l  g a m m a  i n v e r s e  G a u s s i a n  

e - I']L~ in 
d.f./p.m.f. ( 3, ) i p (I - p ) "  -y 

y[ 

parameters  g > 0 pt: (0, I ) 

range y = 0 .  1 ,2  . . . .  y = 0 ,  1 .2  . . . . .  m 

canonic par. O=log(/,) 0 = l o g f - - f f - - )  

"1 - p ]  

scale par. q~ = I ~ = I 

weights  ~ = I to = I 

b(O) exp(O)  m log (I + e  °) 

. , , .o> -,ogl.,. ,og {C,)} 

ttle° 
I+ (07 exp (0) 

I + e  ° 

(,+) V(O) ,u 9 I - -  
I?1 

. . . . . .  " +-"'+I 
l+,v>O ,t+, z > 0 

y > 0  y > 0  

I 
0 = - / , - t  0 =  - - - I  ~ - 2  

2 

q~= t , - '  q ~ = r  

o o = l  r .o= l  

- l o g  ( - 0 )  - ( - 2 0) It2 

v l o g  (v) + ( v -  I) log ( ) ' )  I I 

2 . 

I 
_ _ ( _ 2 0 )  - t n  

0 

u"  ,u 3 

2i ts  ~z  31t5 ~2 

of the predictor, the scale parameter ~ remains the same throughout. Then 
define 

It 

(2.12) d*(z;  ~ ) = - 2 ( l ~ + ~ - / ( f ) ) = - 2  ~ __~°i{(yi0i-b(03)-(y~0i-b(03)},  
i = 1  q~ 

minus twice the log-likelihood ratio, of c relative to f, based on equations (2.3) and 
(2.5), to be the scaled deviance and 

(2.13) d( . / ;  E) = qd* (y_; E) 

to be the (unscaled) deviance of the current model c. Using the identity 

I : ' ' y ~ - s ( b ' ( ) )  I °' b,,.TX-~2s_, ds = (Yi - b' (t)) d, 
x Of 

it follows from equations (2.12), (2.13) and (2.5) that the expression for the 
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deviance can be written as 

" " f:" Yi - s 
(2.14) a ( z ; , u ) =  • di= ~_~ 2wi - - a s : - 2 ~ b q ( y ; ~ _ )  

i=~ i=% Ju, V (s ) 

where q(,y_;&) is the quasi-likelihood function. Hence in common with the 
construction of the quasi-likelihood and quasi-likelihood estimating equations, a 
knowledge of only the first and second moments is required of the modelling 
distribution of the Y~s to construct the model deviance. 

A trivial re-arrangement of equation (2.14) implies the the quasi-likelihood, q, 
satisfies 

tl  

- 2 q =  ~ d i  
- - ,  

i=1  

To accommodate inference on any parameters, such as ~b, which might be present 
in the variance of the response variables Yi, define the extended quasi-likelihood 
(strictly the extended-quasi-log-likelihood) q + where 

(2.15) - 2 q +  = ~., + ~ log{dpV(yi) } + log(2~/wi) . 
i=  i=  I i=  

Note that this expresssion is minus twice the log-likelihood for independent 
normally distributed responses Y/- N(,ui, a2), for which ~2= ~b, V(,ui)= 1; but is 
not an exact log-likelihood expression for any other case. The final term in the 
brackets is constant for a given data set, and may be omitted. 

Diagnostic checks, based on a thorough graphical analysis of residuals, are 
conducted before the final adoption of a specific model structure. Deviance 
residuals 

r i = sign (Yi-12i) " ~f~ 

where d~ is ith component of the deviance defined in equation (2.14), are advocated. 
A suitable estimate for the constant scale parameter ~b, if required, is provided by 
the moment estimator based on generalized Pearson residuals 

(2.16) q~ I i 
(y i - f i i )  2 

~ - -  O )  i - -  

v i= I V (/ai) 

where v denotes the number of degrees of freedom associated with the fit. 
Implementation is possible using the GLIM software package, BAKER & NELDER 

(1985) which is expressly designed to fit models of this type, while the reader is 
referred to the text by McCULLAGH & NELDER (1989) for further detail. 

3. C L A I M  F R E Q U E N C Y  

Claim fi'equency data are denoted throughout by (u, n,,, eu), comprising the 
observed number of claims, n,,, accruing from exposures, e,,, defined for a set of 
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units {u}. Typically the units are of the type u ~ (i~, i2, i3 . . . .  ), a cross-classified 
grid of cells defined for preselected levels of appropriate covariates, often rating 
factors. A number of different possible modelling scenarios can be implemented. 

Focus first on targetting the underlying or expected claim rates, denoted by 2 . ,  
based on the Poisson modelling assumption N,, l All- Poi (eu~.). with independence 
over all cells or units u, and where n u denotes the realisation of the random variable 
N,,. Here it is assumed that the claim rates, 2 . ,  are constant within cells. In the 
notation of Section 2, the responses Ys ~ N,, with 

mean/2,, = E ( N . )  = el,;~l,, variance function V(/2u) =/2. ,  scale parameter ~ = I 

and log-likelihood 

n 

(3.1) l = ~ { - /2 .  + n,, log (/2.)] + constant. 
u =  I 

Two link functions are of particular interest in this context, namely the log-link 
and the parameterised power-link. 

To implement the canonical log-link, for which 

r/l , = log (/2,,) = log (el,) + log (21,) = log (e.) + ~ xl , j f l  j 
Y 

the vector of log (eu) terms is declared as an offset. Such terms from part of the 
linear predictor and are characterised by a known regression coefficient with value 
one. Thus the target, 2 . ,  is linked to covariates through the relationship 

giving rise, possibly, to a multiplicative model structure for rating factors. 
A number of applications appear in the literature. Thus MCCULLAGH & NELDER 

(1983 & 1989), using data provided by the Lloyd's Register of Shipping concerning 
damage incidents caused to the forward section of cargo-carrying vessels, model the 
reported number of damage incidents classified by the three factors- ship type, year 
of construction, pe.riod of operation. To allow for possible inter-ship variability in 
accident proneness, over-~dispersion is introduced into the model through the 
retention of the scale parameter which is then estimated as described in Section 2, 
rather than setting its value to one. This modelling refinement has an impact on the 
standard errors of the parameter estimates but not on the parameter estimates 
themselves (the solutions to equations (2.10)). AnDRADE E SILVO (1989), BROCK- 
MAN & WRIGHT (1992) and BOSKOV (1992) have each applied this same model to 
motor claims data using a variety of potential rating factors in the predictor. 
CENTENO & ANDRADE E SILVO (1991) discuss the case when there are certain fixed 
linear relationships between covariates in the predictor. STROINSKI & CURRI (1989) 
discuss the selection of rating factors in automobile claim frequency modelling. 
RENSHAW & HABERMAN (1992) have modelled both sickness inception and sickness 
recovery rates as well as death rates from sickness with the predictor reflecting both 
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age at sickness inception and, where applicable, sickness duration. A feature of 
some of this work involves the use of break-point predictor terms in which the 
positions of the knots or hinges are determined by deviance profiles, constructred 
by scanning the positional choices of the knots. RENSHAW (1991) has also 
demonstrated the potential for this model in the graduation of the force of mortality 
in the construction of life tables. 

To implement the parameterised power-link function in this context, the 
alternative form of the log-likelihood expression: 

f } ~ T//u 
1= e. - 2 .  + - - l o g 0 . . )  + constant; 

. = I e u  

obtained by substituting ,u. = e.2,, into expression (3.1), is exploited. This implies 
the declaration of y. = n./e.  as Poisson responses with prior weights e.,  while the 
predictor link is denoted 

with link parameter ~'. The case y = I corresponds to the identity-link, while the 
case y = 0 corresponds to the log-link. The optimum value of y for a specific 
predictor structure is determined by constructing the deviance profile over the 
viable, range of values of y. Examples of this are to be found in RENSHAW & 
HABERMAN (1992) and in RENSHAW (1990). 

The Poisson model (with ~--  I) assumes that the claim rate, 2,,, is constant 
within cells. Heterogeneity across risks as opposed to time heterogeneity discussed 
by BERG & HABERMAN (1992) is historically introduced into the claim frequency 
process by modelling 2,, as a random variable. Focus on the weighted Poisson 
responses Y. (= N,,/e.) with Y.-  Poi (2,,) so that 

(3.2) E(Y.) = E{E(Y.  12.)1 = E(2,,). 

Vat (Y,,) = E{Var (Y,, 12.)} + Var {E(Y,, 12.)} 

and hence 

(3.3) Var (~,) = E(2,,) + Var (2,,). 

Note that when 2.  is constant. E ( 2 , , ) = 2 . ,  V a r ( 2 . ) = 0  and the within cell 
homogeneous Poisson model is reproduced. For the heterogeneous case, 
Var(Y,,) > E(Y,,). that is. the model is over dispersed. There are a number of 
feasible practical possibilities available: 

1) Allow for heterogeneity through the introduction of a constant scale parameter 
~0 as described in some of the applications identified above. 

2) Allow for heterogeneity through the introduction of non-constant scale parame- 
ters ~,, and generate their values through the introduction of a second stage 
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GLM chosen to model identifiable patterns of heterogeneity across cells; a 
technique known as joint modelling. An example, applied to life insurance, is to 
be found in RENSHAW (1992). 

3) Allow for heterogeneity by nominating a specific distribution for the claim rate 
~u. Thus commonly in the claims context, 2,, is given a gamma distribution 
with mean E(,,I,) and variance 

1 1 
(3.4) Var(~, , )=--  {E(2, )}2=--  {E(Y,,)} 2 v > 0 ,  

V 

on using equation (3.2). Then, it is well known that Y, has the negative binomial 
distribution, for which the 

1 2 
mean B, = E(Y,), variance function V(,u,,) =/.,t,, + - - u , ,  scale parameter q~ = 1 

v 

on substituting expression (3.4) into equation (3.3). Note that as v ~ 0% then for 
finite u,,, the distribution reverts to the Poisson distribution. Another possibility, 
BESSON & PARTRAT (1992), TREMBLAY (1992), is to assign an inverse Gaussian 
distribution with mean E(2,,) and scale parameter 7. It then follows from the 
relevant column of Table 2.1 that 

Var(~.u)=rlE(~,)}3=r{E(Y,)} 3 7 > 0  

so that Y, now has the Poisson-inverse Gaussian distribution with 

mean iz,, = E(Y,), variance function V(,u,,) =u,, + r u,3,, scale parameter ~ = 1. 

This reverts to the Poisson distribution as r ~ 0. Neither of these cases are 
members of the class of distributions defined by expression (2.1) so that their 
implementation lead to quasi-likelihood estimators for the fljs in the predictor. If 
these models are to be implemented, explicity expressions are needed for the 
deviance components defined in equation (2.14). These are 

2~o~ {y. log Y~-~ ] + ,  (Y"+v) l°gl~"~+vllky. + v jj 

for the negative binomial distribution, and 

2 w. y,, + + \l~u? 2 ~1 +Ty,~ @ s i n  

for the Poisson-inverse Gaussian distribution. 

- I ~  '~ ([Z,, - Yu )2 } 

1 + (ry,,,u,,) 2 + r(y~ +/.t~) 

Implementation also requires a 
knowledge of the variance function parameters v and 7. This is discussed in 
Section 5. 

Focus secondly on targetting the probability of a claim (or at least one claim), 
denoted by p , ,  based on the binomial modelling assumption N,, Ip,,- bin (e,,p,,), 
with independence over all cells or units u, where again nu denotes a realisation of 
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the random variable N,,. In the notation of Section 2, the responses Y/-= N, with 

mean lz , ,=E(N,,)=e~p~, variance function V ( p . ) = p , , ( I -  P")'e,,) scale parameter 

= 1 and log-likelihood 

l = ~ n. log 
, = I \ e .  j 

The canonical log-odds or logit link 

\e,, - / t , ,  J 

with linear predictor 

+ ( e , - n , , ) l o g ( e " - I k t " l t  + constant. 
\ e,, )) 

\1 - p , , j  

e qu 

1 + e 'l" 

q,,= ~ x,,jfli 
J 

is likely to be of interest in a non-life claim frequency context, while its application 
in this context would appear to be somewhat limited. An application of its use in 
targetting the probability of at least one claim in the context of (Belgium) car 
insurance claims is given by BEIRLANT et al. (1991). A number of researchers, 
including COUTTS (1984), have used this predictor-link structure to target claim 
proportions, over a network of cells but with estimation by weighted least squares. 
The binomial modelling distribution assumption, used in conjunction with the logit 

' and other link functions, has wide application in the construction of life tables, 
RENS~AW (1991). 

4. CLAIM SEVERITY 

Claim severity or loss distributions, defined on the positive real line, are invariably 
positively skewed. There is an extensive literature, see for example, HOGG and 
KLUGMAN (1984), documenting the modelling of homogeneous batches of empirical 
claim amounts by specific parameterised distributions. These include the gamma, 
Pareto, log-normal, log-gamma and Weibull distributions only the first of which is 
of the type defined by expression (2.1). HABERMAN & RENSHAW (1989) have 
indicated how certain loss distributions, not of the type defined by expression (2. l), 
may be fitted in the absence of covariates by the adaption of the associated 
likelihood function in a special way. Here we address the question: which loss 
distributions are capable of sustaining covariates? 

Mean claim amounts are denoted throughout by x,,, categorised over a set of 
units {u}. Thus data summaries take the form (u, n,,, xu) where x~ denotes the claim 
average in cell u based on n~ claims. The independence of the number n,, and the 
claim average x,, within each unit u is assumed. Again typically the units 
u -= (i~, i 2, i 3 . . . .  ), a cross-classified grid of cells defined for preselected levels of 
appropriate covariates, often rating factors. Denoting the underlying expected claim 
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severity in cell u by ,u~ and assuming the independence of individual claim 
amounts, the ceils means X,, are modelled as the responses of  a GLM with 
E(X,,) =H,, and Var (X, )=  q)V~, , ) /n  u. Covariates defined on {u} enter through a 
linear predictor, linked to the mean ,u,. 

Focus first on the gamma distribution. Precedence for its use in this context is to 
be found in McCULLAGH and NELDER (1983 & 1989) in which a re-analysis of the 
celebrated car insurance data of  BAXTER, COUTTS and Ross (1979) is presented. 
The data comprise (u, n , , , x , )  the number n, and average cost of  claims x,,, 
cross-classified by policy holder 's  age, car group and vehicle age. Modelling is 
based on independent gamma distributed individual claim amounts, for which the 

• mean responses, Xu, satisfy 

mean ,u, = E(X,,), variance function V ( u , )  =,u~, scale parameter ~ = v - t  > 0 

with weights n,, so that Var (X,,)= q)kt,2,1nu. In the analysis, a linear predictor r/ , ,  
composed of  the additive main effects of  the three factors only, is linked to H,, 
through the canonical reciprocal link function. Factor interaction terms are found 
not to be significant. Use of the reciprocal-link function, a member  of  the 
parameterised family of power link function 

(4.1) /x~ = r/u 

with y = - 1 ,  is justified on the basis of  the deviance profile constructed by 
allowing for incremental changes in y. The model proposed by MACK (1991) for 
rating automobile insurance makes identical distributional assumptions to these 
(formulated in terms of cell sums rather than in terms of cell averages) but restricts 
the modelling to the log-link, the limiting form of the power link as y tends to zero 
in order to focus on a multiplicative structure. The detail is presented in terms of 
two rating factors so that u-= ( i , j )  with model structure 

log ( ~ i j )  = Oli -t- f l j  ; 

while the maximum likelihood parameter estimating equations discussed by MACK 
(1991) are special cases of  equations (2.10). Implementation is readily achieved 
using the GLIM software package. MACK (1991) also goes on to apply the same 
model structure in the claims reserving context. BROCKMAN & WRIGHT (1992) use 
the identical model structure to MACK (1991) in their analysis of  the severity of  
motor claims data. 

Focus next on the Pareto distribution with density 

f ( x  I/3, 2) - flZ'8 , x > 0 
(2 + x )  t~÷ ' 

and parameters/3,  2 > O. It follows that 

2 ,822 
E ( X )  - , Var (X) - 

/ 3 -  1 ( / 3 -  1 ) 2 ( / 3 - 2 )  
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provided fl > 2. Introducing the reparameterisation 

3. ,8 
u = - - ,  ~ b = - - ;  

/3-1 /3-2 

a 1:1  mapping (/3, 3 . ) ~ ( , u , ~ )  with domain R>2 ×R>0 and image set 
R> 0 x R>~, implies that we can construct a GLM based on independent Pareto 
distributed claim amounts for which the mean responses, X., satisfy 

mean u,, = E(X.), variance function V( ,u . )=u~,  scale parameter ~ > 1 

and weights n. so that again V a r ( X . ) = q ~ / n . .  Apart from the mild extra 
constraint on the scale parameter, these details are identical to those of the GLM 
based on independent gamma responses, and the two different modelling assump- 
tions lead to essentially identical GLMs. They differ only in respect of the nature of 
the parameter estimation criterion, maximum likelihood in the case of the gamma 
response model and maximum quasi-likelihood in the case of the Pareto response 
model. 

Focus next on the generalization of these distributional assumptions through the 
introduction of the parameterised power variance function 

(4.2) V(,u) = V(u,  ¢)=,u ¢ . 

The gamma and Pareto distributions are essentially identical special cases with 
= 2. The characteristics of this family of distributions are discussed in detail by, 

for example, JORGENSEN (1987). Simplifying the notation slightly by writing 
equation (2.4) as 

,u = ~ (0) = b '  (0) with inverse 0 = ,u - i (~),  

it follows that the cumulant function b(.), corresponding to a specific variance 
function V(.), is determined by solving the equations 

db d I 
- / ~  ( 0 ) ,  - -  ~ - ~ ( ~ )  = 

dO d~ v (~) 

First, the solution of the second of these equations determines u-~( . ) .  This is 
then inverted to provide the expression for the right hand side of the first equation, 
which is then solved in turn for b (.). For the power variance function defined by 
equation (4.2), the special solution of these equation obtained by setting the 
arbitrary constant of integration to zero is given by 

exp (0) ~ = 1 

(4.3) b(O)= - -  ~ ~ 1 ,  2 
O~ 

- l o g  ( -  O) ~ = 2 

where 

(4.4) 
~ - 2  
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Equation (4.3) characterises the properties of the distribution in question, while 
equation (4.4) is reproduced graphically in Figure 4.1. 

For ~ > 2 (0 < oe < I), b(O) is the cumulant function of an extreme stable 
distribution with index o~, see EATON, MORmS and RUBIN (1971). The cumulant 
generating function and hence moment generating function is obtained by substitut- 
ing expression (4.3) into equation (2.2). It generates GLMs with parameterised 
power variance function, equation (4.2) with ~ > 2; has positive support, and is 
positive skewed. Equations (4.2), (2.7) and (2.9) determine the coefficient of 
skewness 

~tt~ ~ > 2. 

The family of distributions has therefore all the major characteristics of a loss 
distribution. It includes the inverse Gaussian distribution (~ = 3) and has the gamma 
distribution (~ = 2) as a limiting case. It represents a generalisation of these two 
cases. COUTTS (1984) suggests the potential of the two specific cases in the claim 
severity modelling context. For a given predictor-link structure, the optimum value 
for ~-> 2 is determined by scanning (minus twice) the extended-quasi-likelihood 
profile, expression (2.15) namely 

rl n 

_ 2 q +  = ~ d. - - +  ~ log{4~V(y.)} 
u = l  ~p u = l  
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for incremental changes in ~. To compute these values, ~p is estimated by 
expression (2.16) and (4.2), while evaluation of the integral in expression (2.14) for 
the power variance function given by equation (4.2), yields the deviance compo- 
nents 

f 1 ) I-¢) + _ _ ( / . z 2 - ~  x2-~) ~ ¢ 1 , 2 .  d , =  2~, ,  x,, (u~ - ~ - x .  
i - ¢  2 - ~  

Implementation is possible using the GLIM software package. McCULLAGH and 
NELDER (1989) illustrate the extended-quasi-likelihood profile for the BAXTER et al. 
(I 980) car insurance data set, which is optimal in the vicinity of  ~ = 2.4. They also 
demonstrate for these data how contour plots of  the extended-quasi-likelihood 
determine the joint opt imum position for the parameters (~, ~) when the parameter- 
ised power link function (4.1) is used in combination with the parameterised power 
variance function (4.2). 

So far we have dealt with the cases ~ --> 2. The case 2 > ~ > 1 (o~ < 0) is also of  
considerable interest but in the slightly different context of  aggregate claims. It is 
discuss by RENSHAW (1993). Of  the remaining cases, ~ = 1 reproduces the Poisson 
modelling distribution, 1 > ~ > 0 (or > 2) does not generale GLMs with distribu- 
tions of the type defined by equation (2.1), ~ = 0 generates the normal model, while 
finally 0 > ~ (1 < ~ < 2) generates extreme stable distributions with support on the 
whole of  the real line which, for this and other reasons, are of  no practical 
consequence here. 

Other claim severity modelling distributions capable of  supporting covariates are 
the log-normal and the log-gamma distributions. 

5. AN APPLICATION 

The motor insurance claims experience for a recent calendar year, made available 
by. a leading U.K. insurance company,  is available for analysis. By way of 
illustration, the data have been edited to read as follows: 

(t,  u,  e (t), _(t) ~(t),~ rt u , A u  ) 

where 

t- claim type (I-  insured vehicle, 2- third party property, 3- third party injury, 4- others) 

u -= (i,j ,  k, l, m) - units or cells based on 5 cross-classified rating factors 

pa : i = 1, 2, 3, 4, 5 - polyholders age (levels arranged in increasing age bands) 

vt : j  = I, 2, 3, 4, 5 - vehicle type (levels arranged in perceived order of increasing risk) 

va : k = 1, 2, 3, 4, - vehicle age (levels arranged in increasing age bands) 

rd : l = 1, 2, 3, 4, 5 - rating district (levels arranged in perceived order of increasing risk) 

cd : m = 1,2, 3, 4, - no claims discount (4 levels, arranged in order of  increasing 
discount) 
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e ( t )  exposures / /  - -  

n~, '~- number of claims 

x~ '~- mean claim severity. 

The independence of the number and the claim average within each cell for each 
claim type is assumed. The banding of the rating factors is deliberately left ill 
defined, and only selective features of the ensuing analysis presented by way of 
illustration. Other groupings of the rating factors are possible. 
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FIGURE 5,1. Deviance residual histograms. Poisson claim frequency (top), 
gamma claim severity models. 
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FIGURE 5.3. Expected claim severity lii~ ~J plotted against expected claim rate .~(,u. 
Classification by specific rating factor. 
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The modelling of the claim frequency and claim severity patterns across units u, 
for different claim types, provides estimates ~.I~ ) and fi~,') of the expected claim rates 
and expected claim severities respectively. The contribution, rp~ r), to the risk 
premium for claim type t is then the product ~.l~)fl~, ') and the risk premium, rio,,, 
determined by summation over all risk types t. Thus we have the sequences of 
mappings : 

(t, u, e~ t), ..(t) ~(t).~ .,, ,a,, ) ~ (t, u, 2~'),fi}:)) ~ (t, u, rp~, ')) ~ (u, rp,,) 

where 

r" ( t ) _  ] ( t ) .^ ( t )  and rp .  = Z __(t) iJ, - A u I~u tl:u . 
I 

We focus attention on the first mapping which represents the modelling stage and 
illustrate the application of various of the suggested modelling assumptions for 
damage to insured vehicle claim types (t = I). 

Consider first the Poisson claim frequency and gamma claim severity models, 
each with log-link functions and predictor structures composed of main effects and 
paired interaction terms. The improvements in the quality of the fits, monitored by 
the changes in deviance, as first main effects and then interaction effects are added 
to the predictor structures are examined. One such sequence of fits is reproduced in 
Table 5.1. An examination of such tables coupled with an examination of the 
resulting parameter estimates and their standard errors for each fitted model 
prompted the adoption of the predictor structure (expressed in GLIM notation 

pa  * (vt  + rd + c d )  + va 

comprising all five main effects and three second order interactions, all involving 
policyholders age pa ,  for the claim frequency model structure; and 

pa  * vt + va + rd  + cd  

comprising all five main effects and just one second order interaction term for the 
claim severity model structure. The various deviance residual plots are also highly 
supportive of the two fits. By way of illustration, only the deviance residual 
histograms are reproduced in Figure 5.1. The impact of the single interaction term 
on the claim severity model structure with parametric representation 

pa  * vt + va + rd  + cd: rlijkt,,, = kt + e~ i + f l j  + (olfl) 0 + y~ + 6t  + e,,, 

is illustrated in Figure 5.2 in which the estimated values of/~ + ~i +/3j + (~/3),~ are 
plotted against each level i of p a  for each level j of vt. Without the interaction terms 
(o~fl),j a series of parallel ' l ines '  would result as the structure is then additive in 
these factors on the log scale. For this model the expected claim severities are 
determined by /~;kt,,=exp (r/i,u,,). It can be informative to plot the resulting 

J J ^  

estimated claim frequencies 2~ j) against their corresponding estimated claim 
severities rift). One such scatter plot is illustrated in Figure 5.3. In addition the 
contours displayed represent those of constant risk premium levels, ~.~) f l~l )= con- 
stant. Here also the impact of the different levels of a rating factor are highlighted 
by the use of a different symbol to represent each level of this factor. The clustering 
of the different symbols is informative. 
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TABLE 5.1 

EXAMINATIO N  OF MAIN EFFECTS AND TWO FACTOR INTERACTIONS ON THE DEVIANCES 

claim frequency claim severity 

dev. diff. dev. diff. d.f. 

I 15371 12111 
3295 5268 4 

+ ut 12076 6842.5 
4359 253.2 4 

+ p a  7716.8 6589.3 
327.3 773.2 3 

+ ua 7389.5 5816.1 
2039 192.8 4 

+ r d  5350.3 5623.3 
2172 572.3 3 

+ c d  3178. I 5050.9 
95.57 355.7 16 

+ v t .  p a  3082.5 4695.2 
26.67 19.3 12 

+ vt • va 3055.8 4675.9 
17.85 35.8 16 

+ v t .  r d  3038.0 4640. I 
70.88 4 | .3 12 

+ v t .  c d  2967. I 4598.8 
91.83 31.5 12 

+ p a .  va 2875.3 4567.3 
69.45 70.15 16 

+ p a .  r d  2805.8 4497. | 
457.4 35. I 12 

+ p a  • c d  2348.4 4462.0 
24.79 18.6 12 

+ ua • r d  2323.6 4443.4 
28.16 22.6 9 

+ va • c d  2295.4 4420.8 
42.63 29.9 12 

+ r d .  c d  2252.8 4390.9 

Reverting next to the power-link in combination with the same predictor 
structures as above, the resulting deviance profiles, constructed over a range of  
values of  the power index, are reproduced in Figure 5.4. For the Poisson claim 
frequency model, the optimum power is at y = - 0 . 1 7 ,  which is sufficiently close to 
zero to lend support to the log-link. Indeed if the one remaining paired interaction 
term involving the rating factor pa (and va) is added to the predictor structure, then 
the optimum value of the power is essentially at zero. For the gamma claim severity 
model the optimum value of  the power in the link is at y = - 0 . 3 1 ,  somewhat 
intermediate between the canonical reciprocal-link and the log-link. If the one 
interaction term is omitted from the model structure, the optimum power value 
shifts much closer to be reciprocal-link, a similar conclusion to that reported in 
MCCULLAGH and NELDER (1989) in their reanalysis of  the BAXTER et al. (1979) 
data set involving a main effects structure. 
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FIGURE 5.4. Deviance profiles, power links. Poisson claim frequency (top), 
gamma claim severity models. 

For the claim severity model with power variance function and exponent ~ >- 2, 
in combination with the log-link and the above predictor structure, the deviance 
profile over ~ --> 2 has a similar U-shape to Figure 5.4 with a minimum at ~ = 2.63. 
Thus the optimum positions of both the exponents in the power link and in the 
power variance function have so-far been chosen separately by allowing for 
variation in just one of the exponents while keeping the other exponent fixed. The 
joint optimum positions of the two exponents (Y, ~) when the power link function 
(4.1) is used in combination with the power variance function (4.2) is determined by 
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FIGURE 5.5. Extended quasi deviance profile, power link and variance function. 
Link exponent y, variance function exponent ~. 

scanning the extended quasi-deviance profile defined by equation (2.15), part of 
which is reproduced in Figure 5.5 showing an optimnum at ( -  0.75, 2.54). 

We revert finally to the introduction of heterogeneity into the claim frequency 
model through the use of either the Poisson-gamma or Poisson-inverse Gaussian 
distributions as described in Section 3. Each of the choices involves an unknown 
parameter, denoted respectively by v or ~:, in the corresponding variance function. 
One possible strategy for setting the value of the unknown parameter might be to 
optimise the extended quasi-likelihood but further work is needed in this respect. 

6. SUMMARY 

Discussion has focused on providing an overview of the variety of response 
variables available for modelling both the claim frequency and claim severity 
components of the claims process in general insurance in the presence of rating 
factors. Working within the rich class of GLMs it is necessary to specify only the 
first two moments of the associated response variables rather than the full likelihood 
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in order to effect implementation. By this means, it is indicated how suitably 
selected parameterised variance functions can be used to model heterogeniety in the 
claim frequency process and to provide a parameterised family of claim response 
variables which include the ganm~a response variable as a limiting case. Additional 
modelling flexibility is achieved through the introduction of the parameterised 
power link function which includes the log-link as a special case. The salient 
characteristics in the implementation of these features are illustrated. 
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ABSTRACT 

The automobile third party insurance merit-rating systems of 22 countries are 
simulated and compared, using as main tools the stationary average premium level, 
the variability of the policyholders' payments, their elasticity with respect to the 
claim frequency, and the magnitude of the hunger for bonus. Principal components 
analysis is used to define an "Index of Toughness" for all systems ~. 

I. INTRODUCTION 

Most countries have now introduced merit-rating or bonus=malus systems (BMS) in 
third party liability automobile insurance rating. Such systems penalise policyhold- 
ers at fault in accidents by surcharges, and reward claim-free years by discounts. 
This study uses simulation to compare the BMS in force in six East Asian countries 
(Hong Kong, Japan, South Korea, Malaysia-Singapore, Taiwan, Thailand), fourteen 
European countries (Belgium, Denmark, Finland, France, Germany, Italy, Luxem- 
bourg, The Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the 
United Kingdom), as well as Kenya and Brazil. Several of these countries have 
recently modified their system. In these cases, both the old and the new BMS are 
studied, to investigate the impact of the recent modifications. 

The regulatory environments in the selected countries are extremely diversified, 
from total freedom (like in the U.K., where each insurer is free to design its own 
BMS) to government-imposed systems (like in Switzerland, where all companies 
have to use the same BMS), with many intermediate situations (Denmark, for 
instance, where insurers apply BMS rules quite loosely). Obviously the approach to 
bonus-malus design depends on regulation. If a tariff is imposed by the government 
and every insurer has to use it, there is no commercial pressure to match the 
premiums to the risks by making use of every available relevant information. 
Supervising authorities may choose, for socio-political reasons, to exclude from the 
tariff structure certain risk factors, even though they may be significantly correlated 
to losses. The government may then seek to correct for the inadequacies of the a 

i The authors wish to express their most sincere thanks to Azleen Ahmad,Bjorn Ajne, Alain Chevreau, 
Ted Chang, Freddy Corlier, Thatsanee Dharmpipit, Hans Gerber, Walther Neuhaus, Meha Pate[, Danny 
Quant, Joakim Hertig, Peter Johnson, Gi-Taig Jung, Edward Levay, Harri Lonka, Thomas Mack, 
Riccardo Ottaviani, Ermanno Pitacco, Shuji Nailo, Roberto Westenberger, and Chen Yeh-Lai, who have 
kindly provided detailed information about the systems in force in their respective countries. Special 
thanks to Ted Chung, for providing us with extensive loss data, and to Peter Johnson, for thoughtful 
personal comments. 
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priori system by using a " tough"  BMS. In a free market, carriers need to use a 
rating structure that matches the premiums to the risks as closely as possible, or at 
least as closely as the rating structures used by competitors. This entails using 
virtually every available classification variable correlated to the risks, since failing 
to do so would mean sacrificing the chance to select against competitors, and 
incurring the risk of suffering adverse selection by them. Therefore, the use of more 
a priori classification variables is expected in free market countries, which 
decreases the need for a sophisticated BMS. 

Despite these major differences in perspective, the comparison of BMS across 
countries may prove to be interesting, if only to allow countries to evaluate how 
"severe"  their BMS is, compared to neighbours. This article extends and updates 
the results of a preceding study (LEMAIRE, 1988a), where 13 BMS were analysed. 
Two main reasons motivate this update: 

(i) Several countries have modified their BMS since 1988, enforcing stiffer 
penalties in case of claims. 

(ii) While the earlier study focussed on insurance companies, the emphasis of the 
present research is the policyholder. For instance, this research evaluates the 
evolution of the average premium and its variability, as a function of the 
policyholder's claim frequency. The earlier study evaluated the insurer's 
premium income, by introducing a density function for the claim frequencies 
in the portfolio (the structure function) as well as a model for the number of 
new insureds and policy terminations. The two approaches lead to very 
different results. In most countries the constant flow of new drivers subsidies 
existing policies ; the average premium level in an open portfolio is higher than 
the expected premium paid by an average policyholder. 

All BMS are summarised in the Appendix. Section 2 presents the tools used in 
the analysis: the relative stationary average premium level, the coefficient of 
variation of premiums, as a function of time and claim frequency, the elasticity of 
premiums with respect to claim frequency, and the average claim retention to avoid 
future surcharges. There is a significant positive correlation between these meas- 
ures. In Section 3, factor analysis is used to summarise the data, and define an 
"Index of Toughness" for all systems, as the score along the first principal 
component. Comments for some BMS are found in Section 4. 

2. TOOLS FOR THE COMPARISON OF THE SYSTEMS 

All BMS were simulated, assuming that the number of at-fault claims for a given 
policyholder conforms to a Poisson distribution, with parameter 2. All values of 2 
between 0 and I were considered. In many countries, the average claim frequency 
in a typical portfolio is at or below 10%. This average value was selected as 
benchmark for summary presentations. 

In a few countries, the starting class in the BMS depends on exogenous variables 
like the age of the driver, or the annual mileage of the car. All simulations were 
performed assuming a new policyholder, driving annually less than 15,000 
kilometres in a passenger car, without business use. Assumptions specific to single 
countries are described in the Appendix. 
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Tool #1: The Relative Stationary Average Premium Level 

An apparently inescapable consequence of the implementation of a BMS is a 
progressive decrease of the observed average premium level, due to a concentration 
of policyholders in the high-discount classes. With claim frequencies averaging 
10% or less, it would be necessary to penalise each claim by nine classes to 
maintain a balanced distribution of policyholders among the classes. Because such 
severe penalties seem commercially impossible to enforce, most policies tend to 
cluster in the lowest BMS classes. 

For all systems, the average premium level of a policyholder with claim 
frequency 10% was simulated for 30 years, the maximum period most BMS seem 
to take a reach stationarity. Figure 1 presents the evolution of the mean premium 
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level for the selected countries. For a simple system like the Taiwanese, the 
premium decreases abruptly in the first few years, the time it takes for the best 
policyholders to reach the highest discount. The system then stabilises rapidly. For 
the more "sophisticated" systems the premium decreases in a much smoother way, 
and the steady state is not reached until at least 30 years have elapsed. 

Given the wide variety of systems in force, stationary average levels are difficult 
to compare. Therefore, a "Relative Stationary Average Level" (RSAL) was defined as 

stationary average lever -  minimum level 
RSAL= 

maximum leve l -  minimum level 
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Expressed as a percentage, this is an index that determines the relative position of 
the average policyholder, when the lowest premium is set equal to zero and the 
highest to 100. A low value of RSAL indicates a high clustering of policies in the 
lowest BMS classes. A high.RSAL suggests a better spread of policies among 
classes. Table 1 ranks all systems according to the RSAL. The top three countries 
on this list have very simple, bonus-only, systems: in case of a claim, a 
policyholder loses the entire discount accumulated over several years. 

TABLE I 

RELATIVE STATIONARY AVERAGE LEVEL FOR ALl. SYSTEMS 

Rank Country RSAL 

I Kenya 28.79 % 
2 Spain 25.67 % 
3 Malaysia 21.17 % 
4 Finland (new) 16.04% 
5 Sweden 14.20 % 
6 Netherlands I 1.78 % 
7 U.K. (protected) 11.37% 
8 Taiwan 9.55 % 
9 Finland (old) 8.46% 

10 Hong Kong 8.35 % 
I I Thailand 8.03 % 
12 U.K. (unprotected) 7.07% 
13 Portugal 6.75 % 
14 Norway (old) 6.61% 
15 Switzerland (new) 6.47% 
16 Germany (new) 5.85 % 
17 Japan (new) 4.63 % 
18 Belgium (new) 4.05 % 
19 Denmark 3.78 % 
20 Switzerland (old) 2.90% 
21 France 2.12 % 
22 Norway 2.11% 
23 Brazil 1.85% 
24 Korea 1.37 % 
25 Luxembourg (new) 1.36% 
26 Italy (new) 1.30% 
27 Luxembourg (old) 1.01% 
28 Japan (old) 0.88 % 
29 Belgium (old) 0.74% 
30 Italy (old) 0.01% 

Note:  In theory, the value of the RSAL cannot be computed for Norway, as there is no maximum 
premium level. In practice, however, very few policyholders have more than three claims in a given year : 
the probability that a driver wilh claim frequency 0.10 has 4 or more claims in a year is 3.8x 10 -6. 
Therefore, high-malus classes in Norway are very sparsely populated, all the more so as malus evasion 
seems to be tolerated by insurers. It was therefore assumed that no driver can have a malus exceeding 
three claims above starting level. 

All BMS carry an implicit penalty for new drivers, since the premium level of the 
access class is substantially higher than the average stationary premium level. 
Table 2 ranks all systems according to this first-year surcharge. 
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TABLE 2 

IMPLICIT SURCHARGE FOR NEWCOMERS 
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Rank Country Surcharge 

1 Germany (new) + 212.97 % 
2 Norway (new) + 195.80% 
3 Denmark + 189.50% 
4 Norway (old) + 159.13% 
5 Sweden + 158.89% 
6 Netherlands + 146.29% 
7 Japan (old) + 144.12% 
8 Finland (old) + 143.39% 
9 Finland (new) + 142.57% 

10 Korea + 135.51% 
I1 Hong Kong + 122.04% 
12 Japan (new) + 121.76% 
13 Italy (new) + 121.38% 
14 Luxembourg (new) + 100.89% 
15 U.K. (unprotected) + 98.75% 
16 Switzerland (old) + 94.10% 
17 Luxembourg (old) + 92.25% 
18 U.K. (protected) + 84.65% 
19 France + 77.55% 
20 Malaysia + 76.65% 
21 Kenya + 74.60% 
22 Taiwan + 68.20% 
23 Switzerland (new) + 67.88% 
24 Italy (old) + 64.26% 
25 Brazil + 52.33% 
26 Thailand + 50.55 % 
27 Belgium (new) + 41.87% 
28 Belgium (old) + 39.26% 
29 Spain + 28.70% 
30 Portugal + 26.95 % 

Several countries at the bottom of the list have, in addition to these implicit 
increases, explicit penalties for inexperienced drivers: surcharges in France, a 
deductible after a claim in Belgium and Switzerland. Of course the implicit 
surcharge for new drivers is not related to the overall toughness of the system ; it is 
a measure of the degree of cross-subsidization between young and experienced 
drivers. 

Tool #2: The coefficient of variation of the insured's premiums 

Insurance consists in a transfer of risk from the policyholder to the carrier. Without 
experience rating, the transfer is total (perfect solidarity): the variability of 
insureds' payments is zero. With experience rating, personalised premiums from the 
policyholder will vary from year to year according to claims history; cooperation 
between drivers is weakened. Solidarity between policyholders can be evaluated by 
a measure of the variability of annual premiums. The coefficient of variation 
(standard deviation divided by mean) was selected, as it is a dimension-less 
parameter. There is thus no need for currency conversions. 

The Actuarial Institute of the Republic of China kindly provided us with 
market-wide observed loss distributions, property damage and bodily injury, for 
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accident years 1987 to 1989. These distributions are very well represented by a 
Log-normal model (LEMAI~, 1993). Assuming that the aggregate claims process is 
Compound Poisson with Log-normal severities (BowECs et al., 1986, chapter 11), 
its coefficient of variation is found to average 6.40. While loss distributions in other 
countries of course differ from the Taiwanese experience, the coefficient of 
variation is not likely to be affected much. 

Table 3 ranks all countries according to the stationary coefficient of variation of 
payments, for a policyholder with claim frequency 0.10. These figures are divided 
by 6.40 in the last column, to indicate the percentage of the original coefficient of 
variation retained by the policyholder. They show that, even for the most severe 
systems, insureds are only asked to carry a small part of the variability of the 
process, 7.18% for the new Swiss system, on top of the list. 

TABLE 3 

COEFFICIENT OF VARIATION OF PREMIUMS 

Rank Country Coef. of variation Percentage retained 

I Switzerland (new) 0.4595 7.18 % 
2 Norway (old) 0,3900 6,09% 
3 Kenya 0.3835 5.99 % 
4 Finland (new) 0.3834 5.99% 
5 Sweden 0.3769 5.89% 
6 Netherlands 0.3523 5.50 % 
7 Japan (new) 0.3283 5.13 % 
8 Taiwan 0.3162 4.94 % 
9 Malaysia 0.3075 4.80 % 

I 0 Denmark 0.3017 4.71% 
I I Switzerland (old) 0.2700 4.21% 
12 Finland (old) 0.2570 4.02% 
13 Germany (new) 0,2536 3,96% 
14 Hong Kong 0.2518 3.93% 
15 U.K. (unprot) 0.2419 3.78% 
16 Luxembourg (new) 0.2147 3.35% 
17 Belgium (new) 0.2128 3.32% 
18 France 0.2049 3.20% 
19 Norway (new) 0.2049 3.20% 
20 Portugal 0.1956 3.06 % 
21 Thailand O. 1925 3.01% 
22 Spuin 0.1533 2.40% 
23 Korea O. 1271 1.99 % 
24 Japan (old) O. 1261 1,97 % 
25 U.K. (prot) • 0.1260 1.97 % 
26 Luxembourg (old) 0.1075 1.68% 
27 Italy (new) 0.0934 1.46% 
28 Belgium (old) 0.0586 0.92% 
29 Brazil 0.0304 0.48 % 
30 Italy (old) 0.0046 0.07 % 

Figure 2 shows the evolution of the coefficient of variation with time, for a 
benchmark policyholder, for the selected systems. Typically, the coefficient of 
variation starts at zero for the first policy year, increases until the best policyholders 

.reach the maximum discount, then decreases until stationarity is reached. Figure 3 
shows the coefficient of variation as a function of the claim frequency. 
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Tool #3 :The efficiency of the bonus-malus system 

Consider two policyholders, one with a claim frequency of 0. I 0, the other with a A 
of 0.11. Over a long period of time, the second driver should pay 10% more 
premiums than the first. A BMS with this property is called perfectly efficient. In 
practice, however, the mean premium increase will in most cases be much lower 
than 10%. If the increase is, say, 2 % instead of 10%, the system's efficiency is said 
to be 20%. Denoting P (`2) the mean stationary premium for a claim frequency `2, 
the efficiency u (,2) of the BMS is defined as 

dP (`2)/P (`2) 
/~ ( ` 2 )  - 

d`2/2 

It is the elasticity of the mean stationary premium with respect to the claim 
frequency : the relative increase of the premium, divided by the relative increase of 
the claim frequency. It measures the response of the system to a change in the claim 
frequency. This concept was first introduced in actuarial science by LOIMA- 
RANTA (1972). 

Ideally, the efficiency should be close to 1 for the most common values of 2. 
Table 4 indicates the efficiency of all systems for a policyholder with claim 

TABLE 4 
EFFICIENCY 

Rank Country Efficiency 

I Switzerland (new) 0.449 
2 Finland (new) 0.403 
3 Sweden 0.298 
4 Netherlands 0.275 
5 Norway (old) 0.263 
6 Germany (new) 0.257 
7 Kenya 0.237 
8 Japan (new) 0.232 
9 Switzerland (old) 0.208 

I 0 France 0.200 
II Belgium (new) 0.195 
12 Finland (old) 0.194 
13 Luxembourg (new) 0.183 
14 Malaysia 0.165 
15 Denmark 0.165 
16 Taiwan 0.136 
17 Hong Kong 0.133 
18 U.K. (unprotected) 0.129 
19 Norway (new) 0.127 
20 Portugal 0. I 1 I 
21 Thailand 0.081 
22 Spain 0.079 
23 Korea 0.078 
24 Italy (new) 0.063 
25 Luxembourg (old) 0.058 
26 Japan (old) 0.052 
27 U.K. (protected) 0.051 
28 Belgium (old) 0.02:4 
29 Brazil 0.011 
30 Italy (old) 0.001 
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frequency 0.10. On top of the list are countries (Switzerland, Finland, The 
Netherlands, and Belgium) that have recently modified their BMS, by adopting 
tougher transition rules. Figure 4 shows the efficiency of the selected systems as a 
function of Z. 
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FIGURE 4. Efficiency. 

Tool #4: The average optimal retention 

A well-known side-effect of BMS is the "hunger for bonus", the tendency of 
policyholders to pay small claims themselves, and not to report them to their carrier, 
in order to avoid future premium increases. A severe BMS will of course lead to a 
large bonus hunger inducement. 

The optimal hunger for bonus associated with each BMS can be calculated using 
an algorithm based on dynamic programming (LEMAmE, 1985, chapter 18). For 
each class of the system, the algorithm computes the optimal retention level, the 
level under which it is the policyholder's interest to not report a claim. Calculations 
require the following input: 

(i) A discount factor, to compare present payments (the claim indemnified) with 
future savings (surcharges avoided). This factor includes not only inflation, but 
also policyholders' personal characteristics such as income increase anticipa- 
tion and impatience rate. The selected factor was 0.90; 
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(ii) A loss distr ibution.  Since bodi ly  injury claims have to be reported to the police 
and the insurer, a property damage only  distr ibution should be used here. The 
1989 Ta iwanese  property damage loss distr ibution can be accurately fitted by a 
Log-normal  distr ibution,  with parameters ~ = 8.7876 and 0 2 =  1.3569. Since 
five years have elapsed since 1989, and since Ta iwanese  loss amounts  are 
probably below worldwide averages,  a 6 0 %  inflat ion factor was applied. It 
increases u to 8.7876 + In (I .60)  = 9.2576, while leaving a 2 unchanged ;  

(iii) A cla im frequency,  set at 10%;  and 
(iv) A convers ion  factor, that enables  the compar ison  of widely different BMS,  and 

premiums expressed in many  different currencies.  Since the class at level 100 
is situated at quite different posit ions,  p remium levels were rescaled by a mul-  
t iplicative factor, in such a way that the average p remium collected, if all 
c la ims are reported, is the same for each country.  The  basic units of  Table  5 
are such that the average collected premium,  using an expense ratio of  40 % of  the 

TABLE 5 

AVERAGE OPTIMAl+ RETENTIONS 

Rank Country 

Average optimal retention 

(Basic units) (Percentage of 
average premium) 

1 Taiwan 10,879 315.92 % 
2 Kenya 6,959 202.08 % 
3 Finland (new) 6,882 199.84% 
4 Norway (old) 6.641 192.85 % 
5 Switzerland (new) 6,406 186.03% 
6 Sweden 5,873 170.26 % 
7 Netherlands 5,799 168.40 % 
8 Germany (new) 5,451 158.29 % 
9 Malaysia 5,032 146.12 % 

10 Finland (old) 4,915 142.74% 
I I Portugal 4,815 139.83 % 
12 Denmark 4,431 128.58 % 
13 Hong Kong 3,823 I I 1.01% 
14 U.K. (unprotected) 3,818 110.88 % 
15 Switzerland (old) 3,749 108.87% 
16 Norway (new) 3,300 95.83 % 
17 Belgium (new) 3,001 87.14 % 
18 Luxembourg (new) 2,886 83.81% 
19 Japan (new) 2,791 81.04% 
20 Thai land 2,624 76.20 % 
21 France 2,524 73.28 % 
22 Spain 2,384 69.21% 
23 Korea 2,145 62.28 % 
24 Luxembourg (old) . 1.442 41.87% 
25 U.K. (protected) 1.393 40.45 % 
26 Belgium (old) 1,286 37.34% 
27 Italy (new) I, 181 34.28 % 
28 Japan (old) 712 20.68 % 
29 Brazil 370 10.74 % 
30 Italy (old) 19 0.55 % 
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gross premium, is 3,443.6. The knowledge of the average premium effectively 
collected in each country would then enable the calculation of optimal retentions 
in that country's currency. Table 5 ranks all systems according to the average 
optimal retention: the optimal retention for each class is weighted by its 
stationary class probability. Figures are provided both in basic units and in 
percentages of the average premium. 

3. AN INDEX OF TOUGHNESS 

All four measures defined in Section 2 can be used to evaluate the "mildness" or 
"toughness" of a BMS. A system that penalises claims heavily will exhibit high 
RSAL, coefficient of variation of premiums, efficiency, and optimal retentions. 
These four measures, presented in Tables 1, 3, 4 and 5 for a benchmark 
policyholder, are however highly positively correlated, as shown in Table 6. 

T A B L E  6 

CORRELATIONS BETWEEN THE FOUR MEASURES OF TOUGHNESS 

RSAL Coef. o f  variation Efficiency Average  retention 

RSAL I .4748 .3167 .4813 
CV I .9009 .8378 
Efficiency 1 .6853 
Retention I 

Principal components analysis was used to summarise these data. The first 
principal component, or factor, explains 72.60% of the total variance, the second 
18.71%. Correlations between the first two factors and the four variables are 
indicated in Table 7. 

T A B L E  7 

FACTOR PATTERN - -  CORRELATIONS BETWEEN VARIABLES AND FACTORS 

Factor I Factor  2 

R S A L  ,6155 - .7777 
Coef. of  variation .9673 - .  159 I 
Efficiency .8837 - .3428 
Average  retention .8993 - . 0 2 4 3  

The first principal component is heavily correlated with efficiency, a~,e-rage 
retention, and the coefficient of variation. It is less correlated with RSAL. It can 
clearly be used as a measure of the toughness of a BMS, with the coefficient of 
variation as the best substitute variable for this index. Standardized factor scores for 
all 30 systems are provided in Table 8. They rank all systems according to 
"toughness". Obviously, this ranking does not imply any judgment about the 
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TABLE 8 

FIRST FACTOR SCORES FOR ALL SYSTEMS 

A measure of toughness 

Rank Country Factor score 

I Switzerland (new) 1.7917 
2 Finland (new) 1.7794 
3 Kenya 1.6942 
4 Sweden 1.279 I 
5 Taiwan 1.1585 
6 Norway (old) 1.0974 
7 Netherlands 1.0610 
8 Malaysia 0.7948 
9 Germany (new) 0.5044 

10 Finland (old) 0.3427 
I I Japan (new) 0.2710 
12 Denmark 0.1912 
13 Switzerland (old) O. 1060 
14 Hong Kong 0.0100 
15 U.K. (unprotected) - 0.0683 
[6 Spain -0.1116 
17 Portugal - O. 1339 
18 Belgium (new) - 0.1604 
19 Luxembourg (new) - 0.283 I 
20 France - 0.2886 
21 Norway (new) - 0.3934 
22 Thailand - 0.4754 
23 U.K. (protecled) - 0.8170 
24 Korea - 0.9310 
25 Luxembourg (old) - 1,1475 
26 Italy (new) - 1.2003 
27 Japan (old) - 1.2102 
28 Belgium (old) - 1.4146 
29 Brazil - 1.6210 
30 Italy (old) - 1.8248 

quali ty o f  the sys tems .  " T o u g h "  is not  to be cons ide red  as a s y n o n y m  of  " g o o d "  

(or " b a d " ) .  Also,  the rankings  could  have been s o m e w h a t  di f ferent ,  had another  

benchmark  cla im f requency  been selected.  

A s s u m i n g  that factor  scores  are normal ly  dis t r ibuted,  a percent i le  on the s tandard 

normal  dis t r ibut ion can be ass igned  to each sys tem.  For  instance,  the new Swiss  

sys tem has a factor  score  si tuated 1.7917 s tandard devia t ions  to the right o f  the 

mean.  That  co r r e sponds  to percent i le  96.36 in the " u n i v e r s e "  o f  BMS.  

Factor  scores  are c o m p u t e d  by the formula  

S C O R E = 0 . 2 6 2 5 5  l + 0 .26719 x + 

+ 0 . 2 8 7 3 9  ~, 0-~ i I - ~  J 0 .18086 x \ 7.2557 
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That formula can be applied to rank any BMS not considered among the 30 
analyzed here. For instance, the BMS in force in Germany in the early 1980s was 
not used in the construction of the above formula. It can nevertheless be positioned 
on Table 8. It has a RSAL of 1.74%, an efficiency of 0.163, an average retention of 
2900, and a coefficient of variation of 0.1865. Its factor score is evaluated at 
-0.3530,  which ranks this system 21st on our Index of Toughness. 

From Table 7, and the above formula, it is apparent that the RSAL is a mediocre 
tool to evaluate toughness. This is probably due to the fact that it is strongly 
influenced by the premium for the upper class, a class which is sparsely populated 
for the sophisticated systems. Alternative definitions of the RSAL could eliminate 
the influence of the classes with low occupation, at the expense of some 
arbitrariness. This would most probably result in a higher ranking of systems with 
many classes like the Belgian and the Swiss BMS. 

An important remark is that the coefficient of variation is very close to the first 
principal component as a measure of the toughness of a BMS, since the correlation 
between the two is 0.9673. Calculating the value of the Index of Toughness 
necessitates the computation of the values taken by the four tools, and their 
weighted average. Using the coefficient of variation as an alternate measure is much 
simpler and loses little in accuracy, The rank correlation between the two measures 
(Tables 3 and 8) is 0.9653. 

The most striking conclusion of the study of Table 8 is the position of the 
second-generation BMS. With the exception of Norway, all the countries that 
recently changed their system made it much tougher. Switzerland jumps from the 
13th to the 1st rank, Finland from the 10th to the 2nd, Japan from the 27th to the 
1 lth, etc. 

4. COMMENTS 

4.1. Belgium 

The old Belgian system, in force since 1971, exemplified the problems faced by 
insurers using a mild BMS: a strong clustering of policies in the high-discount 
classes. With only a two-class penalty for the first claim, the system was in fact 
designed for an average claim frequency of 1/3. The much lower claims frequencies 
observed since the 1974 first oil shock created an increasing lack of financial 
balance, with over 75% of the policyholders in one of the three lowest classes in 
1983, and less than 1% of insureds in the malus zone. For instance, one company 
allowed BEF 713 millions in maluses in 1983, while recovering only 3 millions in 
maluses, thus producing an average discount of 32.84%. This led the Professional 
Union of Insurance Companies to set up a study group and suggest a new system to 
the regulatory authorities (see LEMAIRE, 1988b). The new system was implemented 
in 1992. It penalises the first claim by 4 classes. 

The new system has a special rule, that no policyholder can be in the malus zone 
after 4 consecutive claim-free years. This makes the BMS non-markovian, as it 
requires insurers to memorise the past behaviour of the policyholders for three 
years. The study of the BMS necessitates the subdivision of several classes into four 
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sub-classes, adding a digit specifying the number of consecutive claim-free years 
(see LEMAmE, 1985, chapter 17, for a description of the procedure). The impact of 
the special transition rule is evidenced in Table 9; a driver in class 18.0 (who had 
an accident last year) has an optimal retention of 288.16% of the average premium. 
This retention increases to 457.52 % for an insured in class 18 with three claim-free 
years. 

TABLE 9 

OPTIMAl. RETENTIONS - -  BELGIAN BMS 

Class Optimal retention Class Optimal retention 

0 38.41% 16.6 254.05% 
1 56.50 % 16.3 305.99 % 
2 76.59 % 17.7 252.17 % 
3 98.26 % 17.2 296.85 % 
4 117.80% 17.3 360.03% 
5 137.34% 18.0 288.16% 
6 156.05 % 18. I 326.98 % 
7 174.03% 18.2 382.01% 

18.3 457.52% 
8 190.40% 19.0 257.56% 
9 208.83 % 19.1 304.64 % 

I 0 224.98 % 19.2 369.69 % 
11 239.38% 19.3 457.52% 
12 254.56 % 20.0 228.29 % 
13 273.65 % 20. I 283.74 % 
14 285.46 % 20.2 359.28 % 
15 269.02 % 21.0 196.03 % 

21.1 260.11% 
22 147.31% 

The impact of the stronger transition rules is evident in our overall ranking. 
Belgium moves from the 28th to the 18th place. Still, the new system still has a 
slightly negative score on the first factor. The new BMS has to be classified as 
"average ". 

4.2. Japan 

Up to April 1993, Japanese insurers used a BMS that was unique in the world in the 
sense that any claim involving bodily injury was penalised as two property damage 
claims. (Korea is the only other country where penalties depend on claim severity). 
That system was extremely mild, ranking 27th in the "toughness" scale. Once a 
policyholder had reached the highest discount class, his first claim was not 
penalised, as the premium level remained at 40. Even two claims in a single year 
only raised the premium level from 40 to 45. As the penalty for a property damage 
claim was two classes only, the system was "designed" for claim frequencies 
around I/3. The efficiency was extremely high for claims frequencies around 0.33, 
culminating at 1.165 for 2 = 0.29. The old Japanese BMS was a rare example of an 
"over-efficient" system, for specific values of 2. 

The transition rules are now tougher, and the BMS ranks in l lth place. Table 10 
shows that optimal retentions have considerably increased in all but the top upper 
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classes. The simulation predicts a somewhat better spread of policies among the 
classes, with 61% of all drivers (instead of 74%) eventually occupying class I. 

TABLE l0 

OPTIMAL RETENTIONS - -  JAPANESE BMS 

Optimal Stationary class Optimal Stationary class 
Class retetation probability retention probability 

(old) (old) (new) (new) 

I 5.80% .7409 20.13% .6095 
2 16.13% .0794 39.65% .0608 
3 34.95% .0879 68.36% .0714 
4 64.33% .0333 113.84% .0865 
5 107.37% .0283 169.00% .0382 
6 159.73% .0116 230.80% .0306 
7 216.07% .0084 294.55% .0317 
8 265.54% .0040 350.40% .0205 
9 309.07% .0028 399.33% .0141 

10 347.46% .0014 437.20% .0103 
I1 380.76% .0009 474.27% .0085 
12 409.51% .0005 496.78% .0067 
13 423.46% .0003 508.49% .0042 
14 427.26% .0002 383.44% .0030 
15 281.77% .0001 252.43% .0024 
16 137.39% .0001 123.02% .0016 

Avenge 20.68% 81.04% 

4.3. Switzerland 

In January of 1990, Swiss insurers modified their BMS, keeping all of its former 
characteristics while adding a penalty class for each claim. This made the Swiss 
system the toughest system in the world. The impact of the change in the transition 
rules on optimal retentions and on the stationary distribution of policyholders is 
shown in Table I I. The decision to enforce a strong BMS was probably influenced 
by the fact that Swiss insurers are only allowed to use one a priori  classification 
variable (the engine displacement, with over 70% of all vehicles in one class), as 
well as a deductible for young drivers. 

4.4. Ta iwan  

Taiwan has adopted a simple system. Its unique characteristic (shared with 
Thailand) is that all surcharges are erased after a single claim-free year, and that all 
discounts are eliminated following a single claim. As a result, optimal retentions are 
very high in all classes, and Taiwan ranks first in average optimal retention. (For 
most other countries, retentions can be extremely high, but in sparsely-populated 
high-malus classes. Low retentions in the best classes results in a lower weighted 
average retention). 
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TABLE I I 

OPTIMAL RETENTIONS - -  SwIss BMS 

Optimal Stationary class Optimal Stationary class 
Class retention probability retention probability 

(old) (old) (new) (new) 

0 68.87% .6512 98.12% .5396 
1 104.07% .0648 136.14% .0489 
2 135.67% .0781 170.16% .0535 
3 164.42% .0972 200.87% .0700 
4 190.84% .0250 235.40% .1084 
5 223.00% .0220 273.13% .0255 
6 259.94% .0224 314.14% .0230 
7 300.96% .0156 358.08% .0207 
8 346.17% .0054 404.68% .0264 
9 386.78% .0045 446.43% .0314 

10 423.44% .0047 490.69% .0079 
II 464.83% .0039 537.17% .0064 
12 510.23% .0009 585.85% .0060 
13 558.85% .0010 636.41% .0090 
14 610.66% .0013 681.26% .0100 
15 656.67% .0008 716.85% .0023 
16 688.55% .0002 750.10% .0020 
17 719.47% .0003 778.53% .0022 
18 746.42% .0003 629.71% .0028 
19 565.56% .0002 476.50% .0023 
20 381.43% .0001 321.01% .0009 
21 189.38% .0001 159.38% .0009 

Average 108.87% 186.03% 

TABLE 12 

OPTIMAL RETENTIONS - -  TAIWANESE BMS 

Class Optimal retention Stationary class probability 

I 339.72% .7403 
2 339.72% .0782 
3 223.63% .0862 
4 195.00% .0000 
5 195.00% ,0906 
6 195.00% ,0046 
7 195.00% ,0001 
8 195.00% ,0000 
9 195.00% .0000 

Average 315.92% 

Another consequence of the strong transition rules is the high variability of the 
premium for the policyholders with a low claim frequency ( ; t<0.10) ,  who 
constitute a majority (see Fig. 3). 

On all other measures, Taiwan ranks about average. The overall ranking of the 
system is 5th. The maximum efficiency of 0.278 is low, and is only obtained for a 
high value of the claim frequency (2 = 0.49). 
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APPENDIX 

DESCRIPTION OF ALL BONUS-MALUS SYSTEMS 

This appendix provides a summary description of all BMS analysed in this paper. 
For each BMS, we provide the number of classes, all premium levels, the starting 
levels, and a short description of the transition rules: the number of classes 
decreased following a claim-free year, and the number of classes increased 
following claims. Special rules and assumptions are mentioned. A perfectly accurate 
description of all BMS would necessitate a full presentation of the transition table, 
and require many more pages. The obvious regulatory trend in most countries is 
towards more freedom. So it is probable that, by the time this article is published, 
the BMS described here will co-exist with many other systems. 

1-2. BELGIUM --Old system ( 1971) 

* Number of classes: 18 
* Levels: 60, 65, 70, 75, 80, 85, 90, 95, 100, 100, 105, 110, 115, 120, 130, 140, 

160, 200 
* Starting level: 85 for pleasure use and commuting, 100 for business use 
* Claim-free: - 1 .  Cannot be above level 100 after 4 consecutive claim-free 

years. 
First claim : + 2. Subsequent claims : + 3 

New system (1992) 

* Number of classes : 23 .-_ 

* Levels: 54, 54, 54, 57, 60, 63, 66, 69, 73, 77, 81, 85, 90, 95, IO0, 105, 111, 117, 
123, 130, 140, 160, 200 

* Starting level: 85 for pleasure use and commuting, lO0 for business use 
* Claim-free: - 1 .  Cannot be above level 100 alter 4 consecutive claim-free 

years. 
First claim : + 4. Subsequent claims : + 5 
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3. BRAZIL 

* Number of classes:  7 
* Levels :  65, 70, 75, 80, 85, 90, 100 
* Starting level:  100 
* Claim-free:  - 1 

Each c la im:  + I 

4. DENMARK 

* Number of c lasses:  10 
* Levels :  30, 40, 50, 60, 70, 80, 90, 100, 120, 150 
* Starting level :  100 
* Claim-free:  - I 

Each claim : + 2 

5-6. FINLAND - -  Old System 

* Number of  c lasses:  14 
* Levels:  40, 50, 50, 50, 50, 60, 60, 70, 80, 100, 110, 120, 130, 150 
* Starting level:  120 
* Claim-free:  - l 

First c la im:  from + 6 (lowest classes) to + 1 (highest classes) 
Subsequent c la ims:  + 3 

New system 

* Number of  classes : 17 
* Levels:  30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 100, 100 
* Starting level:  lowest 100 
* Claim-free:  - 1 

First c la im:  + 3  or +4 ,  Subsequent c la im:  + 4  or + 5  

7. FRANCE 

* Number of  classes : 351 
* Levels:  all integers from 50 to 350 
* Starting level :  I00. 
* Claim-free:  5% reduction. Cannot be above level 100 after 2 consecutive 

claim-free years. 
Each c la im:  25% increase, 12.5% if shared responsibility. 

* A recent modification is that the first claim of  a policyholder  who was at the 
lowest level for at least 3 years is not penalised. 

8. G E R M A N Y -  Old System 

* Number of  classes : 18 
* Levels : 40, 40, 40, 40, 40, 45, 50, 55, 60, 65, 70, 85, 100, 125, 175, 175, 200, 200 
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* Starting level :  175, or 125 if licensed for at least three years 
* Claim-free:  - 1 or to level 100, if more favourable 

Each c la im:  from + 1 or + 2  (highest levels) to + 4  or + 5  (lowest levels) 

9. New System 

* Number of  Classes : 22 
* Levels :  30, 35, 35, 35, 40, 40, 40, 40, 40, 45, 45, 50, 55, 60, 65, 70, 85, 100, 

125, 155, 175, 200 
* Starting level :  175 or 125, depending on experience and other cars in the same 

household. 
* Claim-free:  - 1, except in the upper classes. 

Each c la im:  from + I (upper classes) to + 9 (lowest class) 

10. HONG KONG 

* Number of  classes:  6 
* Levels:  40, 50, 60, 70, 80, 100 
* Starting level :  100 
* Claim-free:  - 1 

First c la im:  + 2 or + 3. Subsequent c la ims:  all discounts lost 

11-12. ITALY - -  Old system 

* Number of  classes : 13 
* Levels:  70, 70, 70, 75, 80, 85, 92, 100, 115, 132, 152, 175, 200 
* Starting level :  115 
* Claim-free:  - 1 

Each c la im:  + 1 

New System (1991) 

* Number of  classes : 18 
* Levels :  50, 53, 56, 59, 62, 66, 70, 74, 78, 82, 88, 94, 100, 115, 130, 150, 175, 

200 
* Starting level:  1 1 5  

* Claim-free:  - 1 
First claim : + 2. Subsequent claim : + 3 

13-14. JAPAN 

* Number of  classes : 16 
* Levels :  40, 40, 40, 42, 45, 50, 60, 70, 80, 90, 100, 1 I0, 120, 130, 140, 150 
* Starting level:  100 
* Claim-free:  - 1 
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Old System (1984) 

Each claim: + 2 Property Damage, + 4 Bodily Injury 

New System (1993). 

Each claim: + 3 

* 12.5% of all claims have bodily injury implications. 

15. KENYA 

* Number of classes: 7 
* Levels: 40, 50, 60, 70, 80, 90, 100 
* Starting level: 100 
* Claim-free: - 1 

Each claim: all discounts lost 

16. KOREA 

* Number of  classes : 37 
* Levels: 40, 45, 50, 55, 60 . . . . .  210, 215, 220 
* Starting level: 100 
* Claim-free: the premium level generally decreases by 10. Moving down is 

however only allowed after 3 claim-free yea~s. The policy cannot be above level 
100 after 3 claim-free years. 
Each claim: Property damage claims are penalised by 0.5 or 1 penalty point, 
depending on the cost. Bodily injury claims are penalised by 1 to 4 points, 
depending on the type of  injury. Serious offenses are assessed supplementary 
points, up to 3. The premium increase is 10 levels per penalty point, with a few 
exceptions. 

* As data concerning the distribution of  injuries were not available, it was assumed 
that all claims were penalised by one point, by far the most probable value. 

17-18. LUXEMBOURG - -  Old system 

* Number of  classes: 22 
* Levels: 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 100, 105, I10, 115, 120, 130, 

140, 160, 180, 200, 225, 250 
* Starting level: 100 
* Claim-free: - I .  Cannot be above level 100 after 4 consecutive claim-free 

years 
Each claim: + 2 

New system 

* Two new classes, at levels 47.5 and 45, have been added. 
* Each claim: + 3  



A COMPARATIVE ANALYSIS OF 30 BONUS-MALUS SYSTEMS 307 

19. M A L A Y S I A  - -  S I N G A P O R E  

* Number of classes: 6 
* Levels: 45, 55, 61.67, 70, 75, 100 
* Starting level: 100 
* Claim-free: - 1 

Each claim: all discounts lost 

20. T H E  N E T H E R L A N D S  ( 198 i) 

* Number of classes: 14 
* Levels: 30, 32.5, 35, 37.5, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120 
* Starting level: 70 to 100, depending on age and annual mileage 
* Claim-free: - 1 

Each claim: + 3  to +5  

21-22.  N O R W A Y  - -  Old  sys t em 

* Number of classes: inf ini te  
* Levels: 30, 40, 50, 60, 70 . . . .  
* Starting level: 100 
* Claim-free: - I or level 120, if more favourable 

First claim: + 2 (highest levels) or + 3 (3 lowest levels). 
Subsequent claims : + 2 

N e w  sys tem 

Several BMS currently coexist. The following system was launched in 1987 by a 
leading company (see NEUHAUS, 1988) 

* Number of  classes : infinite 
* Levels: all integers from 25 up 
* Starting level: 80, for drivers aged at least 25 insuring their privately owned 

vehicle. 100 for all others. 
* Claim-free : 13 % discount. 

Each claim: fixed amount premium increase (NOK 2,500 in 1988). The penalty 
cannot however exceed 50% of the basic premium. The penalty is reduced by 
half for the drivers who have had between five and nine consecutive claim-free 
years at level 25, for their first claim. It is waived for drivers who have had at 
least ten consecutive years at the 25 level, for their first claim. An extra 
deductible is enforced if the claimant is at a higher level than 80, prior to the 
claim. 

23. P O R T U G A L  

* Number of  classes : 6 
* Levels: 70, 100, 115, 130, 145, 200 
* Starting level: 100 
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* Claim-free:  - 1 after two-consecutive claim-free years 
Each c la im:  + I 

24. SPAIN 

* Number of  classes:  5 
* Levels :  70, 80, 90, 100, 100 
* Starting level :  highest 100 
* Claim-free:  - 1 

Each c la im:  all discounts lost 
* The use of  this BMS has now been discontinued by most insurers, as complete 

rating freedom now exists. 

25. SWEDEN 

* Number of  classes : 7 
* Levels :  25, 40, 50, 60, 70, 80, 100 
* Starting level:  I00 
* Claim-free:  - 1 .  Level 25 is only awarded after 6 consecutive claim-free 

years. 
Each claim : + 2 

* A fixed premium of  SEK 100 (about 10% of  the average premium) is not 
affected by the BMS. 

26-27. SWITZERLAND 

* Number of  c lasses:  22 
* Levels :  45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 155, 170, 

185, 200, 215, 230, 250, 270 
* Starting level :  100 
* Claim-free:  - 1 

Old system 

Each claim : + 3 

New system (1990) 

Each claim : + 4  

28. TAIWAN 

* Number of  classes : 9 
* Levels :  50, 65, 80, 100, 110, 120, 130, 140, 150 
* Starting level :  100 
* Claim-free:  - 1 or to level 80, if more favourable 

Cla ims:  if k claims, to level 100+ 10k 
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29. THAILAND 

* Number of  classes : 7 
* Levels: 60, 70, 80, 100, 120, 130, 140 
* Starting level: 100 
* Claim-free: - I or to level 80, if more favourable 

First claim: to level 100. Two or more claims: to level 120 or 
favourable) 

+ I (least 

30-31. UNITED KINGDOM (Typical BMS) 

* Number of classes: 7 
* Levels: 33, 40, 45, 55, 65, 75, 100 
* Starting level: 75 
* Claim-free: - 1 

First claim: + 3 (level 33), + 2  (levels 40 and 45), + I. 
Subsequent claims : + 2 

* As British insurers enjoy complete tariff structure freedom, many BMS coexist. 
Many insurers have recently introduced "protected discount schemes" :  policy- 
holders who have reached the maximum discount may elect to pay a surcharge, 
usually in the [10%-20%] range, to have their entitlement to discount preserved 
in case of  a claim. More than two claims in five years result in disqualification 
from the protected discount scheme. Both the protected and unprotected forms 
are analysed. 

JEAN LEMAIRE AND HONGMIN Zl 

Department of Insurance and Risk Management, 
Wharton School University of Pennsylvania, 
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ADDITIVITY OF CHAIN-LADDER PROJECTIONS 

BY BJORN AJNE 

Skandia, Stockholm 

A B S T R A C T  

In this paper some results are given on the addivity of  chain-ladder projections. 
Given two claims development triangles, when do their chain-ladder projections add 
up to the projections of the combined triangle, that is the tr iangle being the 
element-wise sum of the two given triangles? 

Necessary and sufficient conditions for equality are given. These are of  a fairly 
simply form and are directly connected to the ordinary chain-ladder calculations. In 
addition, sufficient conditions of  the same form are given for inequality between the 
combined projection vector and the sum of the two original projections vectors. 

Chain-ladder projections. 

K E Y W O R D S  

I.  INTRODUCTION 

Consider two claims development triangles C and D. C consists of  positive 
elements C(i,j), where i denotes the accident years and runs from 0 to n. The index 
j denotes the development year. For each i it runs from 0 to n - i. Thus n denotes 
the calendar year at the end of  which the triangle C is observed, the oldest accident 
year observed being year number zero. For D the same things hold true with C(i,j) 
exchanged for D(i,j). 

The triangles C and D are thought of  as corresponding to two different 
subportfolios. The elements C(i,j) and D(i,j) are thought of as accumula ted  
claims data for accident year i at the end of  development year j, be it claims 
numbers or claims payments or payments plus known reserves. Below they are 
referred to as amounts. 

If now we fill out the triangles into full squares using the ordinary chain-ladder 
method, C(i, n) and D(i, n) will for each accident year i be the projected final 
accumulated amounts for that year. C(0, n) and D(0, n) are already there, being the 
final amounts for the base year. Adding C(i, n) and D(i, n) for all i, we will get the 
projected final accumulated amounts for the combined portfolio. 

ASTIN BULLETIN, Vol. 24. No. 2. 1994 
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This, however, we can also get in another way. We can add the two triangles C 
and D to get a third triangle E with elements E( i , j ) ,  being sums of the 
corresponding C ( i , j )  and D( i , j ) .  Then we do the chain-ladder on E to obtain 
projected final accumulated amounts E(i, n) for the combined portfolio. 

The purpose of this paper is to study under what circumstances the two methods 
will give the same result. This is done in Section 3. When these circumstances are 
not present sufficient conditions will be given for one method to be more prudent 
than the other one. This is done in Section 4. 

The paper is an improved version of a paper presented to the 23rd ASTIN 
Colloquium (AJNE, 1991) with simpler proofs and somewhat more far-reaching 
results. 

The practical application is rather the opposite way round to that described above. 
We are given the total portfolio. When should we contemplate dividing it up into 
subportfolios in order to get more prudent estimates of its final amounts? 

In the appendix an illustration is given in the form of four pairs of simple 
development triangles (C, D). 

Among other things, the question of additivity of claims reserving methods is 
treated in an lecture given by Hans Bfihlmann at the 24th ASTIN Colloquium in 
Cambridge (BOHLMANN, 1993). 

2. S O M E  C H A I N - I . A D D E R  F O R M U L A S  

Let us recall some chain-ladder calculations. We do it for the triangle C, the 
corresponding being valid for D and E. 

Chain-ladder is performed using quotients between accumulated amounts as 
link-ratios. That is, putting 

n - j ! n - j  

k=O / ,=0  

we have 

(2) C(i, n) = C(i, n - i ) f ( n  - i+ I ) f ( n -  i+  2 ) . . . f ( n )  

The factors f ( j )  describe the estimated distribution of the claims amounts over 
the development years, assumed to be one and the same for all accident years in the 
underlying model. The distribution of the accumulated amounts is given by 
U (0), U (1) . . . . .  U (n) where 

(3) U ( j )  = l l f ( j +  l ) f ( j + 2 ) . . . f ( n )  for j = 0 . . .  ( n - 1 )  

U(n) = 1 

From (2) and (3) it follows that 

(4) C (i, II - i) = C (i, n) U (n - i) 

Denote by C(i )  the sum of the first (i + 1) projected amounts. Also, denote by 
C ( . , j )  the jth column sum (in the original triangle) and by C '  ( . , j)  the same sum 
with the term C ( n - j , j )  omitted. That is 

n - j  n - j -  I 

(5) C ( . , j ) =  ~ C ( k , j )  C ' ( . , j ) =  ~ C ( k , j )  
k=O k = 0  
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i 

(6) C ( i ) =  ~ C(k,n)  
k=o 

By induction it is proved that 

(7) C (i, n) = C (i - 1) C (i, n - i ) /C '  (., n - i) 

Formula (7) yields a rapid recursive calculation of the projections C(i ,  n) for 
i =  1. . .  n. On the author's part it goes back to an observation made by Kjell 
Andersson (ANDERSSON, 1992). 

From (4) and (7) we find 

(8) C ' ( . ,  , l -  i) = C ( i -  I) U(n - i) 

(9) C(., n -  i) = C ( i )  U(n  - i) 

Formulas (4) and (9) are contained in a theorem 
(MACK, 1991). 

by Thomas Mack 

3. NECESSARY AND SUFFICIENT CONDITIONS FOR EQUALITY 

We now bring all three triangles C, D and E into play. For D and E we use a 
notation corresponding to (5) and (6) above. The estimated cumulative distribution 
of  claims amounts over development years, corresponding to U for the triangle C, is 
denoted by V for the triangle D. 

Theorem 1 : The necessary and sufficient conditions for the chain-ladder projec- 
tions to be additive, 

E ( i , n ) = C ( i , n ) + D ( i , n )  for all i, 

is that for each positive i at least one of  the following two equalities (a) and (b) 
holds true 

(a) U ( n - i ) = V ( n - i )  

(b) C(i,  n)/(C(O, n) + ... + C ( i -  I, n)) = D(i ,  n)/(D(O, n) + ...  + D ( i -  1, n)) 

Proof: 

We want to compare E(i ,  n) with C(i,  n )+  D(i ,  n). 
For i = 0, equality trivially holds as all three entities are then elements of  the base 

triangles. 
Now consider the case when i is positive. Applying (7) to E(i ,  n) and observing 

that the E-triangle is the sum of the C- and D-triangles, we get 

E (i, n) = E ( i -  1) (C (i, n -  i) + O(i ,  n -  i ) ) / (C '  (., n -  i) + D '  (., n - i))  
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We then apply (4) to the numerator and (8) to the denominator to get 

E (i, n) = 
E (i - 1 ) (C (i, n) U (n - i) + O (i, n) V (n - i)) /(C (i - I ) U (n - i) + D (i - 1) V (n - i)) 

Dividing through by C(i, n)+ D(i ,  n), and in the right hand member  also both 
multiplying and dividing by C ( i -  1)+ D ( i -  I), we finally get 

(10) E ( i , n ) / ( C ( i , n ) + D ( i , n ) ) =  Q ( i ) × E ( i -  l ) / ( C ( i -  1 ) + O ( i -  I)) 

where Q(i )  is the quotient between 

(11) (C(i, n) U(n - i) + D(i ,  n) V(n - i))/(C(i ,  n) + D(i,  n)) 

and 

(12) ( C ( i -  1) U(n - i) + O ( i -  1) V(n - i ) ) / ( C ( i -  1) + O ( i -  1)) 

The last two expressions are the averages of U ( n -  i) and V ( n -  i) using as 
weights, in the first case C(i, n) and D(i,  n), and in the second case C ( i -  1) and 
D ( i -  I). Also remember that 

(13) C ( i -  1) = C(0, 17)+ ... + C ( i -  I, n) 

(14) D ( i -  I ) = D ( 0 ,  n ) +  ... + D ( i - 1 , 1 7 )  

(15) E ( i -  I) = E ( 0 ,  n )+  ... + E ( i -  I, n) 

Now the argument begins. First assume that the projections are additive so 
that 

(16) E ( i , n ) = C ( i , n ) + D ( i , n )  for all i 

Then, from (10), Q ( i ) =  l for each positive i. According to (11) and (12) this 
means that either 

(17) U ( n -  i) = V ( n -  i) 

or else, according to the interpretation of (11) and (12) as averages, 

(18) C(i, n)/D(i,  ii) = C ( i -  l ) / D ( i -  1) 

Conversely, if for each positive i at least one of (17) and (18) is true, then 
Q(i )  = 1 and (16) follows by induction from (10) and the fact that (16) is true for 
i = 0 .  

Condition (18) may be written 

(19) C(i, n)/(C(O, n) + ... + C ( i -  I, n)) = D(i,  n)/(D(O,,1) + ... + D ( i -  I, n)) 

This finishes the proof. 

C(i, n)and D(i,  n) are our estimated total claims amounts for accident year i for 
the two subportfolios. We will use either member of (19) as a measure of the ra te  
of  increase (in claims volume) of  the corresponding portfolio at accident year i. 

If  (17) holds for all i, or if (19) holds for all i, then the sufficient condition of 
Theorem I is fulfilled. We thus have the following two corollaries. 
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Corol lary  1:  If the two subportfolios are equally long-tailed, then the chain- 
ladder projections are additive. 

Corol lary  2 :  If the two subportfolios have the same rate of  increase for each 
accident year, then the chain-ladder projections are additive. 

4. SUFFICIENT CONDITIONS FOR INEQUALITY 

If, instead of  (17), we have 

(20) U(n  - i)  --< V(n  - i) for all positive i 

then the subportfolio C will have an estimated accumulated distribution of  claims 
amounts over development years which increases to one at a slower rate than that of  
D. We will then say that subportfolio C is at  least as long-tailed as subport- 
folio D. 

If, instead of  (19), we have 

(21) C(i ,  n ) /C( i  - 1) ~- D(i ,  n ) / D ( i -  1) for all positive i 

we will say that D increases at least as fast as C. 
If this is the case, we will also have 

C(i ,  n) /D(i ,  n) --< C( i  - l ) /D( i  - t) 

Theorem 2 : If one of  two subportfolios is at least as long-tailed as, and increases 
(in claims volume) at least as fast as, the other one, then the chain-ladder 
projections of  the combined portfolio are less than or equal to the sums of  the 
corresponding projections of  the two subportfolios. If one of  the subportfolios is at 
least as long-tailed as the other one, while the latter increases at least as fast as the 
first one, then the chain-ladder projections of the combined portfolio are greater 
than or equal to the sums of the corresponding projections of  the two subportfol- 
ios. 

Proof:  

If both (20) and (21) are fulfilled, then for the averages (11) and (12), which define 
the quotient Q( i ) ,  we find 

1) U ( n -  i) is less than or equal to V ( n -  i) 
2) The weight given to U ( n - i )  in the numerator is less than or equal to the 

weight given to it in the denominator. 

Thus Q ( i )  is greater than or equal to one for all positive i. From (10) it then 
follows by induction that 

E ( i , n ) / ( C ( i , n ) + D ( i , n ) )  > - I for all i 
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Arguing in the same way, we see that if C is at the same time more (or equally) 
long-tailed and faster (or equally) increasing as compared to D, that is (21) with 
reversed inequality sign and (20) hold true, then 

E(i,n)/(C(i,n)+D(i,n)) --< 1 for all i 

This finishes the proof. 
It may be noted that we have introduced only partial orderings between 

development triangles, in that the inequality signs in (20) and (21) in general may 
go in opposite directions for different i. 

5. CONCLUSIONS 

We have given a partial answer to the question of Section 1 on which method to 
use. The answer is almost self-evident, at least a posteriori. Assume, for instance, 
that we add together a long-tailed business which decreases in volume and a 
short-tailed, increasing one. The long-tailed character of  the early accident years 
will give high lag-factors for the later development years. These lag-fators will then 
grossly overestimate the final amounts for the dominating short-tailed business of 
the later accident years. That is, the combined method will give the highest 
projections. 

An example in the opposite direction may be a motor comprehensive account 
where no division is made between third party claims and hull damage claims. If 
the third party claims take an increasing share of  the total business, a separation o f  
the two types of  claims into different development triangles would certainly have 
been desirable from a prudent point of  view. 

Even if a certain degree of prudence is to be recommended, the goal is not to 
have as large reserves as possible, but to have as correct reserves as possible. So, in 
conclusion, the lesson to be learnt from this exercise in the following one. 

If one part of  a portfolio can be assumed to differ significantly from the rest of  
the portfolio with respect to both Iong-tailedness and rate of  change of the claims 
volume, that part should be treated separately in making chain-ladder projections. 
Returning to prudence, this is especially important if it is at the same time more 
long-tailed and faster increasing than the rest of  the portfolio. 
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APPENDIX 

Below four pairs of simple development triangles (C, D) are exhibited. For the first 
three pairs, chain-ladder projectins do add. This means that the projected amounts 
corresponding to the combined triangle E are the sums of the corresponding 
projections for C and D, in accordance with the results of Section 3. 

For the fourth pair, treating C and D separately will give more prudent 
projections for the combined portfolio. This means that the projected amounts of E 
are less than or equal to the sums of the corresponding projections for C and D 
(with inequality sign in at least one place). This is in accordance with one of the 
two sufficient conditions of Section 4. 

In all the cases there are three accident years 0, I and 2. These are observed 
through development years 0 to 2, 0 to 1 and 0 only, respectively. Thus, in the 
notation of the main paper, n = 2. Projected amounts are shown within parentheses. 
The amounts in the third column are the chain-ladder projections. 

Case 1 

C D E 

100 200 300 
100 300 (450) 
160 (400) (600) 

100 250 375 200 450 675 
100 250 (375) 200 550 (825) 
100 (250) (375) 260 (650) (975) 

Proj (E) = Proj (C) + Proj (D) 

In this case C and D are equally long-tailed, the link-ratios (lag-factors) of 
formula (l) being f ( 1 ) = 2 . 5  and f ( 2 ) =  1.5. So projections add because of 
Corollary 1 of Section 3. 

Case 2 

C D E 

100 200 300 l0 100 150 110 300 450 
100 300 (450) 40 150 (225) 140 450 (675) 
260 (650) (975) 65 (325) (487.5) 325 (975) (1462.5) 

Proj (E) = Proj (C) + Proj (D) 

In this case C and D have the same rate of increase (but not the same link ratios), 
as shown by the fact that the third columns are proportional to each other. So 
projections add because of Corollary 2 of Section 3. 
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Case 3 

C D 

100 200 300 200 
200 400 (600) 200 
300 (600) (900) 400 

Pr~ (E )=  Pr~ (C)+  Pr~ (O) 

E 

300 450 300 500 750 
300 (450) 400 700 (1050) 
(600) (900) 700 (1200) (1800) 

In this case none of the above-mentioned circumstances are present but additivity 
follows from Theorem I in Section 3. For i = I, the equality (17) is fulfilled, as the 
link ratio f ( 2 ) =  1.5 for both C and D, making U ( I ) =  V(1). For i = 2 ,  the 
equality (19) is fulfilled, as the quotient between the third element in column three 
and the sum of the first two ones is I for both C and D. 

C is more long-tailed than D, as (20) is fulfilled with strict inequality for i = 2. It 
is also faster increasing than D as (21) is fulfilled with reversed inequality signs and 
strict inequality for i=  I. This illustrates why strict inequalities cannot be 
introduced in Theorem 2 in Section 4, without adding the rather pointless 
requirement that the necessary and sufficient condition of Theorem I must be 
fulfilled. 

Case 4 

C D 

100 250 375 10 I00 
100 250 (375) 40 150 
100 (250) (375) 65 (325) 

Proj(E) less than Pr~ (C)+  Pr~ (D) 

E 

150 I10 350 525 
(225) 140 400 (600) 
(487.5) 165 (495) (742.5) 

This case illustrates a normal use of Theorem 2 in Section 4. D is more 
long-tailed and faster increasing than C, and there is no equality sign in (21). 

BJORN AJNE 
Skandia, S-/03 50 Stockhom. 
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1. INTRODUCTION 

The calculation of mean claim sizes, in the presence of  a deductible, is usually 
achieved through numerical integration. In case of  a Lognormal or Gamma 
distribution, the quantities of interest can easily be expressed as functions of  the 
cumulative distribution function, with modified parameters. This also applies to the 
F-distribution, where the incomplete Beta function enters the scene; see for instance 
the appendix in HOGG and KLUGMAN (1984). 

The purpose of  this paper is to derive an explicit formula for the first two 
moments of  the Inverse Gaussian distribution, in the presence of  censoring. For 
reasons of  completeness we also consider truncation of  the Inverse Gaussian 
distribution by an upper limit. 

The tractability of  the derivation depends in a crucial way on two properties of  
the Inverse Gaussian distribution. Firstly, the cumulative distribution function of  the 
Inverse Gaussian can be written as a simple function using the Normal probability 
integral. Secondly, the moment generating function of  a censorized Inverse 
Gaussian distribution boils down to an expression containing the cumulative Inverse 
Gaussian distribution. This manifests itself most clearly in case of  life insurance 
where the quantity of  interest is the expectation of  a present value. In case of  
non-life insurance, where the dimension of  the Inverse Gaussian random variable is 
money instead of time, a further step is required: differentiation of the moment 
generating function. 

So, a natural order of this paper is to address ourselves first to the derivation for 
the life case and afterwards tackling the more laborious derivation for the non-life 
case. 

2. MATHEMATICAL PRELIMINARIES 

We denote the Inverse Gaussian density with mean ,u and variance u2/~ by 

(2.1) h (x [,u, ~b) = [#~b/2 ~x3] 'h exp { - ~ (x - u)2/2px} 

ASTIN BULLETIN, Vol. 24, No. 2, 1994 



320 PETER TER BERG 

and its cumulative distribution function as" 

(2.2) H(xlkt, c]))=N[(x-/~)'qT~ktx]+eZC~Nl-(x+l.t)'~t~xl 

where N denotes the Normal probability integral" 

N ( z ) = ( 2 ~ ) - ' ~ I  Z_~ exp(-½t2)dt 

which can be evaluated by means of expansions such as given in ABRAMOWITZ and . 
STEGUN (1970). Whenever the parameters do not enter explicitely in h or H we will 
assume these are ,u and ~b. 

Observe that e ~'h (x ],u, ~)  is proportional with an Inverse Gaussian density : 

(2.3) exp (tx) h (x l u, ¢)  = exp (¢ - f )  h (x I m , f )  

where the auxiliary parameters m and f depend on t: 

(2.4) m = ~dp/f 
f = (q~2 _ 2 t~q~) '~ 

Alternatively, we may say that the Esscher transform of (2.1) is h(x]m,f). 
Integration of (2.3) over part of  the positive axis is tractable using (2.2). Integrating 
(2.3) over the whole positive axis gives the moment  generating function of (2.1) 
a s :  

E [e 'x] = exp (~b - f )  

from which we easily see that the n-fold convolution of (2.1) is again an Inverse 
Gaussian density : 

h"* (x [ ,u, q~) = h (x [ n u, itS) 

a property which it has in common with the Gamma density and which formed the 
reason for HADWlGER (1942) tO put (2.1) forward as a modelling tool in insurance 
and demography. 

In case of  deductibles or limits, this property is lost, however. 

3. PRESENT VALUES IN LIFE INSURANCE 

Consider a, not necessarily human, life duration X, with density (2.1). A lump sum 
B will be paid at moment X. With a discount factor exp ( - 6) the present value V of 
B at moment  D < X is" 

(3.1) V= B exp [ 6 ( D -  X)] 

In case there is an upper limit L for the moment of  payment, (3.1) is valid as long 
as D<X--<L and for X >  L, (3.1) is replaced by:  

(3.2) V = B exp [6 (D - L)] 
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The expected value of  V r, where ~ = I or 2 is of  special economic interest, is then 
easy to derive. We have:  

(3.3) V ~ = B ~ exp [ 6 r ( D -  X)] D < X--< L 

= B ~ exp [63 (D - L)] L < X 

Using (2.1-2-3-4) with t = - 6 v  results in: 

(3.4) E [V  ~ ] = B ~ [ I - H ( D ) ]  -~ { Q [ H ( L B m ,  f ) - H ( D  ] m , f ) ] + R [ I - H ( L ) ] }  

where the auxiliary variables Q and R are given by :  

Q = exp [dp - f -  tD] 

R = exp I t ( L -  D)] 

Whenever  L ~ o~, (3.4) simplifies to : 

[ 1  - H(D]m,f)] 
(3.5) E[V ~1 = B~ Q 

[ 1 -  H ( D  I,u, q0)] 

4. EXPECTED VALUES IN NON-LIFE INSURANCE 

Now X represents the size of  a monetary loss, which is modified to a claim size Y 
by a deductible D and a limit L: 

Y = 0  X<--D 

= X - D  D < X < - - L  

= L - D  L < X  

So, the probabili ty of  a nilclaim is given by H(D). 
The moment generating function of  Y can be written as:  

M(t )  = H(O) + R[ I - H(L)] + Q {H(L l m, f ) -  H(D l m , f ) }  

In order to derive E[Y] and E[Y2], we have to differentiate M(t )  with respect to 
t, substituting t = 0 afterwards. 

The following auxiliary results are helpful in this task: 

dm/dt = m2/f 

df/dt = - m 

dQ/dt = Q (m - D) 

dH (z I m , f ) / d t  = 2 m  {N[(z - m) { f l m z  ] - H(z ]m , f ) }  

dU[(m - z) { f / m z  ]/dt = z Z f - l h ( z l m , f )  

where z is a dummy variable, which does not depend on t. 
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After some rewriting, we arrive then at: 

M' (t) = R ( L -  D) [l - H ( L ) ]  + 

+ Q(m + D) {H(D ] m , f ) - H ( L  ] m , f )}  + 

+ 2 Qm { N [(m - D) ~f/rnD ] - N [(m - L) ~ f /mL ] } 

M"(t)  = R ( L -  D) 2 [1 - H(L)] + 

+ Q [ m 2 f - t _ ( m  + D) 2] {H(D ] m , f ) - H ( L  ]m, f )}  + 

+ 2 a m f  - ' ( m  - 2fD)  {N[(m - D) ~f /mD] - N[(m - L) ~f/mL]} + 

+ 2 a m f - t [ D 2 h ( D l m ,  f ) - L 2 h ( L  [ m , f ) ]  

Now the main goal of  this paper follows easily by substituting t = 0:  

(4.1) E[Y]=M' (O)  

= ( L -  D) [1 - H ( L ) ]  + 

+ (/,t + D) [H(D) - H(L)] + 

+ 21~ I N [ ~ - O ) ' q T ~ t ~ O l - N [ ( k t - L ) ' q ~ i t L l }  

(4.2) E [ Y Z ] = M " ( 0 )  

= ( L -  D) z [1 - H ( L ) ]  + 

+ [,u 2 ~ - ' - C u + D) 2] [H (D) - H (L)] + 

+ 2/~¢ - ' ~  - 2~bO) { N [ ~  - O) ~a~~O ] - NI(/z - L) ' ~ / ~ L  l } + 

+ 2/~b - I [D 2 h (D) - L 2 h (L)] 

ff we let L---) ~,  (4.1) simplifies to: 

(4.3) E [ Y ] = 2 ~ N [ ( i t - D )  ~ / ~ ] - ~ + O ) [ I - H ( D ) ]  

= (It - D) N[Cu - D) qdpl#D] + (It + D) eZ~N[  - (u + D) ~[dpl/.,tD] 

which agrees with formula (15) in CHHIKARA and FOLKS (1977)~. 

The second moment (4.2) simplifies to: 

(4.4) E[Y 2 ] = [ ( u + D )  2 - ~ z ~ b - ~ ] [ l - H ( o ) ] +  

+ 2~dp -~ { O 2 h ( O ) + ( l z - 2 q S O ) N [ ~ - D ) ~ ' ~ i t O ] }  

Whenever interest focusses on moments, conditionally on X > D, the formu- 
lae (4.1-2-3-4) must be divided by the probability [1 - H ( D ) ] .  

I came across  this reference after complet ion of  this paper. It does not contain an explicit derivation of  
this result, however.  
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It is wellknown that deductibles have a loss eliminating effect. At the same time 
however, the coefficient of variation of the aggregate claim size distribution 
increases. A clear exposition of these matters can be found in chapter 5 of STERK 
(1979). 

The availability of (4.3) and (4.4) enables a routine illustration of these findings 
with the Inverse Gaussian distribution. 
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A B S T R A C T  

This paper considers the application of state space modelling to the chain ladder 
linear model in order to allow the run-off parameters to vary with accident year. In 
the usual application of the chain ladder technique, the development factors are 
assumed to be the same for each accident year. This implies that the run-off shape 
does not alter with accident year. This paper shows how this assumption can be 
relaxed in order to allow a recursive smooth model to be applied, or for large 
changes in the shape of the run-off curve. It is possible for these changes to be 
modelled using external inputs, or for a multiprocess model to be used to detect 
changes in the run-off shape. 

K E Y W O R D S  

Chain ladder technique; Kalman filter; linear models; state space models. 

I .  INTRODUCTION 

The claims reserving process is made up of two parts. The first part is the analysis 
of the data, and the fitting of suitable models. The second part consists of using the 
results of the modelling process to project future claims experience. This paper is 
concerned primarily with the model fitting procedure: the use of the models for 
forecasting will be discussed only briefly. In addition, attention is restricted to the 
development factors and no attempt is made to provide a comprehensive claims 
analysis procedure. Thus, this paper shows how to modify the chain ladder linear 
model when there are indications that the run-off pattern is changing. This change 
might be gradual or sudden : the value of the method presented here is that it allows 
the change to be incorporated into the reserving process. 

In order to project future claims it is necessary to have as full an understanding of 
the pattern of claims experience as possible. The chain ladder technique, which is 
widely used, does not allow the run-off pattern to change from accident year to 
accident year. It is unlikely that evidence that the run-off pattern has changed will 
come to light when the chain ladder technique is used in its usual form. The 
purpose of this paper is to adapt the chain ladder technique to allow the 
development factors to evolve with accident year. 

ASTIN BULLETIN. Vol. 24, No. 2, 199,4 
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2 .  T H E  C H A I N  L A D D E R  L I N E A R  M O D E L  

In order to apply the recursive smoothing methods, we first write the chain ladder 
technique as a linear model. The original reference for this is KREMER (1982) and a 
useful later reference is RENSHAW (1989). We will not give full details here as these 
can be found in the above papers and in VERRALL (1989) and VERRALL (1991a). 

The chain ladder technique is based on the following model:  

E[Ci)I  C~.j_ t . . . . .  Ci~] = 2jCi , . i_  (i) 

where 

Cij = cumulative claims in accident year i, development year j. 

2j = development factor for year j. 

Define the incremental claims by Zij where 

Z i j = C  6 - C ~ . j _ ~  j--> 2 

Zil = Cil 

The logged incremental claims are denoted by Y,j where Y,j = log (Zij). The chain 
ladder linear model is 

(2) e (v ,  i) = ~ + o~, + l ,  

with the constraints that ot I =Ell = 0. 
Because the model has a row and column effect, the parameters are called the 

row parameters (oti) and column parameters (flj). The following relationship 
between the columr~ parameters was derived in VERRALL (1991b)" 

efli 
(3) 2j = I + - -  

j - I  

E eft t 
k = l  

The chain ladder technique estimates the development factors by ).j, where 

n - j +  I 

c,, 
/=1  

(4) ~.j - 
n - j +  I 

Ci, j -  I 
i=1  

(assuming we have a n x n run-off triangle). 
This can be seen to be a weighted average of the estimate of the development 

factor for each row, the weights being the cumulative claims in development year 
j -  I. The estimates from each row are 

CI.i C2j Cn -j+ l.j 

Ci,j-i  C2,j-I Cn-j+l,j-I 

and the weights are C i . j -  i ,  C2..i- i . . . .  , C . _ j +  ~,j_ ~. 



A METHOD FOR MODELLING VARYING RUN-OFF EVOLUTIONS IN CLAIMS RESERVING 327 

This gives the estimate ~.j in equation (4). The chain ladder technique is often 
criticised because it does not allow the run-off shape to evolve, as it imposes the 
same development factors on each row. An alternative model would be 

(5) E [ C q l  Ci, J_ t . . . . .  Cil] = 2ij  C i , j -  I 

This is obviously unreasonable since there would be far too many parameters. 
The model which will be studied in this paper lies between these two extremes. It 
will be assumed that the development parameters are similar from row to row, but 
not identical. The extension uses a state space model in a similar way to VERRALL 
(1989). However, that paper did not address the development factors in any detail, 
and the recursive relationship defined here has not been considered before. The 
estimates of the development factors in the chain ladder technique will be found 
from equation (3). 

The next section describes the state space model which allows the development 
factors to vary from row to row. 

3. THE STATE SPACE MODEL 

This section contains a summary of  the state space model which was derived in 
VERRALL (1989) and shows how to extend it to allow the run-off pattern to evolve 
stochastically. The data which make up the claims run-off triangle can be regarded 
as a time series, and in year t the data which are received are 

Z l , t  . 

Z 2 , 1 - I  

Zt ,  i 

The chain ladder linear model, given by equation (2), can be written in matrix 
form for the data at time t as 

(6) Y, = F, 0 ,  + e_, 

where F, is the matrix which specifies the model 

and 0t  is the parameter vector at time t. 

VERRALL (1989) gives the model for the basic chain ladder technique, but it is 
necessary to extend it to separate the development parameters in each accident year. 
Thus, it is necessary to differentiate between fl~.2 and fl2.2, where ill.2 and/332.2 are 
the original column parameter/32, but in rows 1 and 2 respectively. Unfortunately, 
it is hard (and not helpful) to define the general form of the model at time t, but we 
can see the way it can be done by considering times t = 2 and 3 (say): 

(7) 

iY l E, E + Ee l Y2.1 1 I ill,2 e2'l 
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(8) 

IYI.3 1 I I  0 0 0 0 
Y99 = 1 1 0 0 ! 

i o l o  o 

/x 

1 ] O~2 
0 Ce3 
0 31.2 

fl2.2 
/t~l. 3 

I el'3 ] 
+ e2. I 

e3,1 

These equations, the observation equations, form one part of the state space 
model. The difference between this model and the standard chain ladder linear 
model is that the column parameters are not the same in each row. This can be seen 
by considering two observations in the same column, for example Y2.3 and Y3.3- The 
standard model is: 

Y2,3 = ,it + ~2 + f13 + e2.3 

~.3 = ~ + ~3 + f13 + e3.3 

and the new model is 

Y2.3 = ~ + ~2 + fl2.3 + e2.3 

~.3 =/.t + o~ 3 + fl3.3 + e3.3 

The state space model connects/332.3 to fl3,3, but does not insist that fl3.3 = fl2,3- 
The connection is made by the system equations which, in their most general form, 
are as follows 

(9) 0 ,  + t = G, ~, + H, u~ + ~ , .  

It can be seen that the system equation relates the parameter vector at time t + I 
to the parameter vector at time t. The matrix G, governs the exact form of this 
relationship. The vector u,  contains any new parameters at time t which are not 
related to those at time t -  1. In this case these will be the column parameters for 
the new colunm which is added to the triangle at time t. It is usual to use vague 
prior distributions for each input u j ,  reflecting the fact that there is unlikely to be 
information about the parameters before any relevant data are received. ~ t  is a 
zero-mean stochastic disturbance term. 

The model is mostly defined by the foml of  the matrix G t.  In this paper, it is 
chosen so that the colunm parameters evolve in the following way:  

Column 2 3 
Row 

7. /32.2 : / ~ , 2  + w2.2 /32.3 =/3,,3 + ,02,3 
3 ]~3,2 : fl2.2 + W3,2 fl3.3 = fl2,3 + W3,3 
4 f l4,2 ~" f l3.2 -I- 1.04, 2 

If the stochastic disturbance terms have zero variance, then the column parameters 
are identical in each row and the model reverts to the basic chain ladder linear 
model. The larger the variance, the more variation is allowed between the rows. 
These variances can be chosen by the user. They can be the same for each row and 



A METHOD FOR MODELLING VARYING RUN-OFF EVOLUTIONS IN CLAIMS RESERVING 329 

column, or can differ according to prior opinion on changes in the run-off pattern. 
For example,  if there is evidence that the initial rows form a homogeneous group, 
but that there is then a change in the run-off pattern, larger variances terms can be 
included to allow this change to be reflected in the column parameters. 

It has often been remarked in previous papers that the chain ladder technique is 
over-parameterised,  due to using a separate parameter, o~,, for each row. This 
criticism is of the opposite form to that made of the development factors. The use of 
a separate parameter for each row effect makes too little connection between the 
rows, while the use of identical development  factors for each row makes too great a 
connection between the rows. The usual way to overcome the problem with the row 
parameters is to use a recursive model for these parameters. This is defined by 

( 1 0 )  o~, + i = o~, + v, 

where v, is a zero-mean stochastic disturbance term. 
Continuing with the illustration for the model at times t = 2 and 3, the system 

equation which relates the parameter vector at time t = 3 to that at time t = 2 is 

01~ 2 

~3 

/31,2 

32,2 

fl1.3 °i] l o l o  
0 I /~ 

1 0 ill,2 
1 0 
0 0 

( l l )  0 
0 
0 
0 u3+ 

0 
1 

0 
0 
/19 

6 
b¢"2 2 

O' 

We have now defined a state space model which allows the run-off pattern to 
change from row to row. This model can be fitted using the Kalman Filter, as was 
described in VERRALL (1989). The next section contains a numerical illustration o f  
this model. 

4. NUMERICAL ILLUSTRATION 

As a numerical illustration, the data which has been used previously by the author is 
again used in this paper. It should be emphasised that this is for illustration 
purposes:  the whole range of claims data is varied enough that comprehensive 
examples covering all possibilities are not feasible. The data is taken from TAYLOR 
and ASHE (1983). 

357848 766940 610542 482940 527326 574398 
352118 884021 933894 1183289 445745 320996 
290507 1001799 926219 1016654 750816 146923 
310608 1108250 776189 1562400 272482 352053 
44316(I 693190 991983 769488 504851 470639 
396132 937085 847498 805037 705960 
440832 847631 1131398 1063269 
359480 1061648 14433q0 
376686 986608 
344014 

with exposure factors 

610 721 697 621 600 552 543 503 525 420 

146342 139950 227229 
527804 266172 425046 
495992 280405 
206286 

67948 
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The exposures for each year of  business are divided into the claims data before 
the analysis is carried out. 

We now apply the model given by equation (I 1). This relates the row parameters 
recursively, and also allows the development parameters to evolve. Attention will 
be focussed on the development parameters, as it is the evolution of  the run-off 
shape which is the subject of  this paper. 

In order to illustrate the effect of  the model, the state variances have been chosen 
as follows. 

var (eij)= 0.116, var (a, l a t_ l) = 0.0289, v a r  (l~ij[t~i_ l, j )  = 0.0[ 

These values have been chosen in line with VERRALL (1989). It should be 
emphasised that it is possible to estimate these from the data if that is appropriate. 
Also, they can be varied in order to gauge their effect. They do not have to be 
constant: sharp changes in the run-off shape can be modelled by putting a larger 
variance for the development factors at tile appropriate point. Table 1 shows the 
estimates of,u and of  the row parameters, a i .  Also shown for comparison purposes 
are the estimates from the standard model, given by equation (2). Table 2 shows the 
estimates of  the column parameters, /3;j, for columns 2 to 10 in rows I to 9. The 
final row in this table shows the estimates from the standard model. 

T A B L E  I 

Standard Model State Space Model 

Overal  Mean 
Row Parameters  

6.106 6.126 
0.194 0.184 
0.149 0.168 
0.153 0.194 
0 .299 0.29 I 
0 .412 0.387 
0.508 0 .469 
0.673 0.534 
0.495 0.524 
0.602 0.536 

T A B L E  2 

2 3 4 5 6 7 8 9 10 

State Space Model 

0.925 0 .886 0 .914 0.383 0.025 - 0 . 1 7 5  
0.918 0.895 0.945 0.361 - 0 . 0 3 4 9  - 0 . 1 3 5  
0 .920 0.907 0.964 0.361 - 0 . 0 7 9 7  - 0 . 1 3 0  
0.918 0 .920 0 .980 0 .332 - 0 . 0 5 0  - 0 . 1 6 1  
0.895 0 .942 0.951 0.352 - 0 .0264 
0 .894 0 .960 0 .940 0.375 
0 .890 0 .990 0 .944 
0.898 1.014 
0.897 

0.911 0.939 0.965 0.383 

Standard Model 

- 0 . 0 0 5  - 0 . 1 1 8  

- 0 .479 - 0 .074 
- 0 . 4 6 1  - 0 . 0 6 2 8  
- 0 .447 

- 1 . 4 1 3  

- 0 .439 - 0 .054 - 1.393 
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The column parameters can be converted into the more familiar development 
factors, using equation (3). For the state space model, this is applied to each row 
separately. The results are shown in Table 3. 

TABLE 3 

2 3 4 5 6 7 8 9 10 

State Space Model 

I 3.522 1.688 1.419 1.174 1.104 1.077 
2 3.504 1.698 1.432 I. 168 1.097 1.080 
3 3.51 I 1.705 1.438 I. 167 1.092 1.080 
4 3.505 1.716 1.4.43 1.161 1.094 1.077 
5 3.447 1.744 1.431 I. 165 1.097 
6 3.444 1.758 1.423 I. 169 
7 3.435 1.783 1.419 
8 3.454 1.799 
9 3.452 

Standard Model 

3.488 1.733 1.434 I. 169 1.098 1.080 

1.053 1.075 
1.053 1.076 
1.054 

1.018 

1.054 1.075 1.018 

We will concentrate on the estimates of the parameters, and not show their standard 
errors (although these are available). It can be clearly seen that the development 
parameters have been allowed to evolve. The first parameter seems to be 
decreasing, while the second one is increasing. Patterns such as this can give useful 
insights into the changes in the run-off shape. 

5. CONCLUSIONS 

A state space model has been suggested which allows the development factors to 
evolve recursively. The model is not bound by the strong assumption made by the 
chain ladder technique that the run-off shape is the same for each accident year. 

It may not be clear what parameter estimates should be used for forecasting the 
future development of the triangle. The most sensible estimates would be the latest 
ones. These are 

3.452 1.799 1.419 1.169 1.097 1.077 1.054 1.076 1.018 

compared with those of the ordinary chain ladder model" 

3.488 1.733 1.434 1.169 1.098 1.080 1.054 1.075 1.018 

The advantage of using the estimates from the dynamic model are that they are 
more likely to reflect the most recent run-off shape, which the best indication of 
future development. In particular, if large changes have occured in the development 
parameters, the straightforward estimates may be unreliable. The usual chain ladder 
technique does not weight the data according to the time since it was received. The 
first rows have the same effect on the estimates of the development parameters from 
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this  po in t  o f  v iew as the  more  recen t  rows.  T h e  d y n a m i c  model  g ives  more  we igh t  

to recent  data,  by a l l owing  the  p a r a m e t e r  to evolve .  

It would  a lso  be  s t r a igh t fo rward  to a l low a sudden  c h a n g e  in the  run -o f f  

evo lu t ion  by a l l owing  the d e v e l o p m e n t  fac tors  to c h a n g e  sudden ly .  Th i s  can  be 

d o n e  by  us ing  a su i tab ly  large va r i ance  for  the  s tochas t i c  d i s tu rbances .  
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BOOK REVIEW 

BJORN SUNDT (1993): An Introduction to Non-Life Insurance Mathematics. Third 
edition. Verrffentlichungen des Instituts fiir Versicherungswissenschaft der Univer- 
sitat Mannheim, Vol. 28, Verlag Versicherungswirtschaft, Karlsruhe, 215 pages, 
DM 32.--.  

In ASTIN Bulletin 1987 we could read the book review on Sundt's first edition. 
Since then, two further editions have appeared, the third being published in late 
1993. Like the preceding this third edition of the book covers the most important 
topics of non-life insurance mathematics: credibility theory, bonus systems, 
tariffication, the risk process, accumulated claims distribution, reserves, and utility 
theory. It is a very properly written introductory textbook into modern risk theory 
for students as well as for practitioners. Whenever new editions appeared, it resulted 
in a considerable improvement of the presentation. 

In order to document the changes from one edition to the next, we cite from the 
prefaces (and this reflects indeed what is needed to be said about this edition): 

"The most extensive changes from the first edition of the book are the 
following : A new Section 6.8 on hierachical credibility and a new Chapter 8 on 
multiplicative rating models are included. In Chapter 7 on bonus systems, the 
asymptotic optimality criterion has been replaced with a non asymptotic one. In 
Chapter 9 a different proof of Lundberg's Inequality is given. To give a better 
flow in the presentation, the material on moment-generating functions, Laplace 
transforms, and convex functions has been transferred to appendices. A simple 
proof of Ohlin's Lemma is given in Appendix A, The discussion on the optimal 
choice of a compensation function has been extended and presented under more 
general conditions as it seemed that greater generality could be achieved without 
complicating the mathematics." (Second edition) 

"The most extensive change from the second edition to the third edition is the 
inclusion of exercises... In the exercises, I have to a large extent included 
questions where one should comment on assumptions or results. In a practically 
oriented subject like insurance mathematics, it is important that the material 
becomes not only mathematics, but that one also continuously considers 
questions like, what does this imply, are these assumptions realistic, does this 
result seem reasonable, etc. At an exercise course, such questions could be 
discussed between the teacher and the students. 

The text of the book has been much less changed than was the case with the 
second edition. Most of the changes have been aimed at simplifying and 
clarifying, and correcting errors in the second edition. The most important 
changes are the following: New material includes subsections 5F, 6.4D-E, 7B, 
8.3D, 10.2B, 10.6C-D, and 12D, and Appendix A... The material in the old 
section on ruin theory in Chapter 9 has been reorganized and divided into three 
sections (Sections 9.4-6)." (Third edition) 
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There is only one point which could possibly be criticized: In each step, from 
edition one to two and from two to three, the size of the text and the formulas has 
been diminished. This together with a somewhat nonstandard style for sub- and 
superscripts (e.g. on p. 80 below) makes the reading considerably harder. 
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