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Abstract
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asymmetry) and the cost of capital and establishes that with perfect competition information asymmetry
makes no difference. Instead, a firm’s cost of capital is governed solely by the average precision of investors’
information. With imperfect competition, however, information asymmetry affects the cost of capital even
after controlling for investors’ average precision. In other words, the capital market’s degree of competition
plays a critical role for the relation between information asymmetry and the cost of capital. This point is
important to empirical research in finance and accounting.
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The consequences of information differences across investors in capital markets are still 
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liquidity; this, in turn, affects a firm’s cost of capital.  Thus, the precision of the 
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between information and the cost of capital.   
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1 Introduction

Information differences across investors (or groups of investors) have been a long-

standing concern to securities regulators and at the core of U.S. disclosure regulation

(e.g., Loss, 1983; Loss and Seligman, 2001). For example, the Securities and Exchange

Commission (SEC) recently enacted Regulation Fair Disclosure (Reg FD), which in-

tends to equalize information across investors by preventing companies from making

disclosures to select groups of investors and analysts. The SEC (2000) argued that

selective disclosure allows “those who were privy to the information beforehand...to

make a profit or avoid a loss at the expense of those kept in the dark,” and that this

practice leads to a loss in investor confidence (see also Levitt, 1998). Particularly,

small investors might be unwilling to invest if they fear that insiders gain at their

expense; this, in turn, increases firms’ cost of capital to the extent that the risk in

the economy has to be borne by fewer investors. Similarly, investors might demand a

return premium for investing in the capital markets which exhibit substantial infor-

mation asymmetry. Critics of Reg FD, however, argued that it could stifle corporate

disclosure and in turn increase firms’ cost of capital (AIMR, 2001). For example,

SEC Commissioner Unger (2000) voted against the proposed regulation because of

concerns that it would “most likely reduce the amount of information available to

investors...and the quality of the information that would be produced.”

As this example shows, the consequences of information asymmetry in capital

markets and, in particular, its relation to the amount and precision of information

available investors and the cost of capital, are still much debated. This paper ex-

amines these issues. We show that the precision of the information and information

asymmetry have separate and distinct effects on the cost of capital. Thus, it is im-
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portant to distinguish between these concepts.

The issue of whether and how information differences across investors affects prices

and the cost of capital cannot be addressed in conventional models of asset pricing,

such as the Capital Asset Pricing Model (CAPM), because these models generally

assume investors have homogeneous beliefs. Prior studies, however, have developed

models of capital market equilibria where investors have heterogeneous information.

For example, Merton (1987) presents a model in which some investors are less in-

formed than others. In particular, uninformed investors are not aware of the exis-

tence of some firms. Merton (1987) argues that information that increases uninformed

investors’ awareness can lower the cost of capital of these firms.

Recently, O’Hara (2003) and Easley and O’Hara (2004) develop asset pricing mod-

els that suggest that “information asymmetry” affects prices and is a determinant of

firms’ cost of capital. These papers argue that because of information asymmetries,

differentially informed traders will choose to hold different portfolios of securities. As

a result, they willingly bear “idiosyncratic risk.” Less informed traders recognize they

are at an information disadvantage and will try to hold assets where their disadvan-

tage is less. This drives down the price of securities with high degrees of asymmetry,

thereby increasing the cost of capital for these firms. Easley and O’Hara (2004) also

argue that this effect constitutes “information risk”; as such, it is priced in a capital

market equilibrium with many assets, i.e., the effect is not diversifiable.

Our paper explores the relation between information differences across investors

and the cost of capital by developing a model where investors make wealth allocation

decisions amongst securities based on their available information. These allocations,

in turn, determine the equilibrium prices of securities and their respective costs of

capital. Similar to Admati (1985), our model allows for multiple securities whose cash
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flows are correlated. We analyze how the distribution of information across investors

affects the cost of capital.

We show that when capital markets are characterized by perfect competition

among investors (as most prior models assume), equilibrium prices are a function of

two features of the economy’s information structure: 1) individual investors’ precision-

weighted, average assessment of firms’ expected end-of-period cash flows; and 2) a

discount for the risk investors associate with holding firms’ shares that depends on

investors’ average, assessed precision matrix (i.e., the inverse of the covariance ma-

trix) of the distribution of firms’ end-of-period cash flows. In other words, investors’

average assessed precision is a key determinant of the expected return on a firm’s

stock price, and therefore on its cost of capital. The extent to which investors’ pre-

cision matrices deviate from this average, however, does not matter. In particular,

information asymmetry across investors does not affect the discount for risk, holding

the average assessed precision constant. In other words, investors are not concerned

about the precision matrices of other investors, which usually is the primary concern

with adverse selection (Akerlof, 1970; Grossman, 1981).

One special setting for our model arises when investors have homogeneous infor-

mation, in which case our results are equivalent to the Capital Asset Pricing Model

(CAPM). Another special setting is one in which the distribution of all firms’ cash

flows are independent. In this setting, each firm’s pricing equation is independent

of the information of other firms. This latter setting facilitates comparing our re-

sults to the large “noisy rational expectations” literature, which generally examines

asset pricing in single-firm settings. Finally, we use our model to examine two spe-

cial settings where investors have heterogenous information: one where investors are

“diversely” informed, as in Kim and Verrecchia (1991), and one where investors are
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“asymmetrically informed,” as in Easley and O’Hara (2004).

We show that Easley and O’Hara’s (2004) interpretation of their model and the

role of information asymmetry is not correct. In particular, we show that price is

discounted because “less informed” investors resolve less uncertainty in the economy

about the end-of-period cash flow. In other words, the distribution of information

changes the average precision of information held by investors, and lowering the

precision raises the cost of capital. Importantly, price is not discounted relative to

the expected end-of-period cash flow because a “less informed” group of investors

faces an adverse selection problem, and thus must price-protect itself. In fact, we

show that increasing the degree of information asymmetry between investors can

reduce the cost of capital, provided that the average precision increases. Thus, in

their model, the dissemination of more information to more investors drives down the

cost of capital because it increases the average precision of investors, not because it

reduces information asymmetries as they claim.

Next, we extend our model to an economy where firms’ cash flows are correlated.

This extension allows us to examine the distinction between diversifiable and non-

diversifiable risk. In a large economy, the cost of capital is determined by average

assessed precision-matrix of the economy and not the average assessed precision for a

firm. These results extend the “estimation risk literature” in finance, which assumes

all investors have homogeneous information. Extending the homogenous information

results in Lambert et al. (2006), we show that higher quality disclosure can lower the

assessed covariance between a firm’s cash flows and those of other firms, and thereby

lower its cost of capital. We also show that, in a large economy, the effect documented

in Easley and O’Hara (2004) is diversifiable.1

1 The issue of diversifiability is also discussed in Hughes et al. (2005). But again, they cast the
effects in their model as being driven by information asymmetry, when in fact they are precision
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Finally, we discuss how information asymmetry affects prices, and hence the cost

of capital, in models of imperfect competition (e.g., Kyle, 1985; Diamond and Ver-

recchia, 1991). In contrast to models of perfect competition, we find asymmetric

information can affect to the cost of capital when there is imperfect competition.

Broadly stated, in models of imperfect competition information asymmetry affects

the willingness of “large” traders to supply liquidity. As liquidity declines, a firm’s

extant risk is borne by fewer investors. This, in turn, increases a firm’s cost of capital.

As we discuss in greater detail below, this suggests that the information asymmetry

effect is separate from (and in addition to) the precision effect discussed above.

As the debate about Regulation FD illustrates, there can be situations where a

policy is designed to decrease information asymmetry, but whose unintended conse-

quence is to decrease simultaneously the precision of publicly available information

(or vice versa). Thus, understanding the distinction and potential tradeoffs between

information-asymmetry effects and precision effects is important. In real capital mar-

kets, both effects are likely to be present; this might explain why empirical studies

point to an increase (not decrease) in firms’ cost of capital subsequent to Reg FD

(e.g., Gomes et al., 2006).

The remainder of this paper is organized as follows. In section 2, we develop the

model and derive pricing equations as a function of investors’ information structures.

In section 3, we analyze specific information structures commonly used in the litera-

ture to derive closed-form solutions to the pricing equations. Section 4 examines the

issue of diversifiabilty by allowing the number of firms and investors to grow large. In

section 5, we discuss models of imperfect competition. The last section summarizes

the paper and offers suggestions for future research.

effects.
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2 Market prices in a multi-firm economy

In this section we introduce a classical, one-period capital market setting in which N

investors, indexed by i = 1, 2, ...., N , allocate their wealth over the shares of J firms

and a risk-free asset (e.g., bonds). These settings have a long tradition in finance,

and include traditional asset pricing models such as the CAPM (see Fama, 1976),

as well as “rational expectations” (RE) models (which we discuss in more detail

below). Let Ṽ =
n
Ṽ1, ..., Ṽj, ..., ṼJ

o0
denote the J × 1 vector of end-of-period cash

flows generated by the firms, andP = {P1, ..., Pj, ..., PJ}0 the J×1 vector of beginning-
of-period market values, or prices, associated with those firms.2 Each investor has

information, represented byΦi, upon which he forms beliefs about firms’ end-of-period

cash flows. We allow for the possibility that Φi includes both public and private

information, as well as information gleaned from the vector of market (equilibrium)

prices, P. We assume that investors assess the joint distribution of firms’ cash flows

to have a multivariate normal distribution based on Φi. Specifically, let Ei
h
Ṽ|Φi

i
represent investor i’s J × 1 vector of firms’ expected values, and Covi investor i’s
J × J covariance matrix of firms’ end-of-period cash flows, conditional on investor
i’s information, Φi. Below, we discuss in greater detail the specific information that

underlies investors’ beliefs. For convenience, we represent the precision matrix for

investor i’s beliefs by Πi, where Πi is the inverse of covariance matrix investor i

associates with firms’ end-of-period cash flows: that is, Πi = Cov−1i . Finally, let

Π0 =
PN
i=1Πi represent the sum of investors’ precision matrices.

We assume that each of the N investors has a negative exponential utility func-

tion with a risk tolerance of parameter τ , and chooses his portfolio to maximize the

2 Throughout our analysis we denote a random variable by a tilde (~), and the realization of a
random variable and/or a fixed parameter with no tilde. In addition, we put vectors and matrices
in bold.
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expected utility of his end-of-period wealth. Let X̂i =
n
X̂i1, ..., X̂ij, ..., X̂iJ

o0
repre-

sent the J × 1 vector of investor i’s endowment of firm shares, and B̂i his endowment
of a risk-free asset (e.g., bonds). Similarly, let Xi = {Xi1, ...,Xij, ...,XiJ}0 repre-
sent the J × 1 vector of investor i’s demand for firm shares, and Bi the units of the

risk-free asset he chooses to hold. We assume that the risk-free asset has an initial

price of $1, and yields 1 + Rf at the end of the period. Finally, for convenience let

X0 = {X01, ..., X0j, ..., X0J}0 represent the J × 1 vector of total supply of firm shares
in the economy, where X0j =

PN
i=1Xij =

PN
i=1 X̂ij.

Given this structure, investor i’s expected utility can be expressed as a certainty

equivalent, which has the following special structure:

Certainty Equivalent of Investor i’s Expected Utility of End-of-PeriodWealth

= E [End-of-Period Wealth|Φi]− 1

2τ
V ar [End-of-Period Wealth|Φi] ,

where

E [End-of-Period Wealth|Φi] = Ei
h
Bi (1 +Rf) +XiṼ

i
, and

V ar [End-of-Period Wealth|Φi] = V ari
h
Bi (1 +Rf) +XiṼ

i
= XiCoviX

0
i.

Thus, we can reduce each investor’s objective function to choosing Xi and Bi such

that

max
Xi,Bi

Ei
h
Bi (1 +Rf) +XiṼ|Φi

i
− 1

2τ
XiCoviX

0
i,

subject to

XiP
0
+Bi = X̂iP

0
+B̂i.

Solving the budget constraint for the risk-free asset implies setting Bi = X̂iP
0
+B̂i −
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XiP
0
; substituting this expression into the objective function above implies

max
Xi

XiEi
h
Ṽ|Φi

i
+
³
X̂iP

0
+B̂i −XiP

0´
(1 +Rf)− 1

2τ
XiCoviX

0
i. (1)

Computing the first-order condition for investor i’s demand for firms shares,Xi, yields

Xi = τΠi

³
Ei
h
Ṽ|Φi

i
−P (1 +Rf)

´
. (2)

To derive an equilibrium set of prices, we sum the demands of all investors as

expressed in eqn. (2), and set them equal to the aggregate supply of shares in each

firm. This yields the following expression for the vector of equilibrium prices.

Proposition 1. The equilibrium price depends on investors’ information through the

following equation

P =
(Π0)

−1PN
i=1ΠiEi

h
Ṽ|Φi

i
− ( 1

N
Π0)

−1X0

Nτ

1 +Rf
. (3)

While not a closed-form solution per se, eqn. (3) is useful in illustrating the aggrega-

tion properties of price. Specifically, the vector of market prices, P, is equal to: the

vector of investors’ precision-weighted, average assessment of firms’ expected end-of-

period cash flows, (Π0)
−1PN

i=1ΠiEi
h
Ṽ|Φi

i
; minus a discount that results from the

risk the market associates with holding firms’ shares, ( 1
N
Π0)

−1X0

Nτ
; where both the

average assessment of expected values and risk are discounted back to the beginning

of the period at the risk-free rate, 1 + Rf . Investors’ expected values are weighted

by their precisions, Πi, because investors’ demands are proportionate to their pre-

cisions, ceteris paribus. The risk associated with holding firms’ shares, ( 1
N
Π0)

−1X0

Nτ
,

is a function of three elements: 1) the inverse of investors’ average precision matrix

for the distribution of firms’ end-of-period cash flows, ( 1
N
Π0)

−1, as an expression of

the (average) uncertainty associated with holding firms’ shares; 2) investors’ average
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holding of the total supply of firm shares, X0

N
; and 3) the inverse of investors’ tol-

erance for risk, τ . The precision matrix for investor i is simply the inverse of the

covariance matrix he associates with the cash flows of all firms based on his infor-

mation Φi. The result of inverting each investor’s covariance matrix, averaging these

inverses, and then inverting the average provides a matrix that is analogous to a co-

variance matrix. Because of the nonlinearities involved in matrix inversion, however,

this covariance matrix is not the simple average of investors’ individual covariance

matrices.

Eqn. (3) does not necessarily represent a closed-form expression for price because

when price aggregates information about firms’ cash flows, price can also be on the

right-hand-side of the equation as an element of Φi. That is, price can be a condi-

tioning variable in the expectation and precision terms through investors’ demand for

firm shares. The notion that investors condition their expectations over price, and

thereby glean additional information about firms’ cash flows through the price aggre-

gation process, is the central tenet of the so-called RE-literature (e.g., Grossman and

Stiglitz, 1980; Hellwig, 1980; Diamond and Verrecchia, 1981; Admati, 1985, etc.) In

general, a RE-analysis requires that eqns. (1) and (3) be solved simultaneously, along

with the market-clearing condition that investors’ demand for firm shares equals the

aggregate supply of those shares. For now, and primarily in the interests of motivat-

ing the discussion, we abstract from this issue; starting with Section 2 we explicitly

study market prices in the context of a RE-analysis.

To start, consider a circumstance in which all investors have homogeneous infor-

mation, which we represent by ΦH : that is, Φi = ΦH for all i. In addition, let ΠH

represent investors’ homogeneous precision matrix, and CovH its inverse: that is,

Πi = ΠH and CovH = Π−1
H for all i.
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Corollary 1. When investors have the same information, the pricing equation re-

duces to

P =
E
h
Ṽ|ΦH

i
−Π−1

H
X0

Nτ

1 +Rf
, or P =

E
h
Ṽ|ΦH

i
−CovH X0

Nτ

1 +Rf
. (4)

When the vector of the supply of firm shares, X0, is fixed, the expression for prices

in eqn. (4) is identical to that found in the Capital Asset Pricing Model (CAPM)

(e.g., Sharpe, 1964; Lintner, 1965). In particular, eqn. (4) shows that the price

of each firm is equal to its expected end-of-period cash flow, minus a discount for

the risk associated with holding that firm’s shares. The discount for holding firm

j’s shares, say, is
PN
k=1Cov

h
Ṽj, Ṽk

i
X0k
Nτ
, where

PN
k=1Cov

h
Ṽj, Ṽk

i
represents firm j’s

contribution to the aggregate uncertainty investors associate with the cash flows of

all firms, V ar
hPN

k=1 Ṽk
i
.

Note that when all investors have the same information, their beliefs are homo-

geneous; hence, there is no additional information to glean from price. This implies

that Corollary 1 is a closed-form solution for prices and a RE-analysis is unnecessary.

This will not be true, however, of our next two results.

Another special case arises when investors have diverse information, but of homo-

geneous precision (i.e., Πi = ΠH and Covi = CovH for all i). In this circumstance,

eqn. (3) also simplifies.

Corollary 2. If all investors have the same precision of information, but the infor-

mation itself is diverse,

P =
1
N

PN
i=1Ei

h
Ṽ|Φi

i
−Π−1

H
X0

Nτ

1 +Rf
=

1
N

PN
i=1Ei

h
Ṽ|Φi

i
−CovH X0

Nτ

1 +Rf
. (5)

Because investors’ precision matrices are homogeneous, the averaging process involv-

ing precision matrices in eqn. (3) disappears. Each price is now a simple average

of each investor’s expected cash flow (based on his information) less a reduction for
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risk that depends on the assessed covariance matrix of cash flows. The assessed co-

variance matrix is homogeneous across investors. In other words, information affects

investors’ conditional expected values, but not their conditional covariances. If one

were to ignore the possibility of investors conditioning their expectations on price by

assuming that there was too much “noise” in prices, then Corollary 2 is analogous to

the Lintner’s (1969) heterogeneous information version of the CAPM.

Finally, we consider diverse information in conjunction with diverse precision. A

point of emphasis in the next section is that the vast majority of research on investors

with diverse information, heterogeneous precision, and “rational expectations” has

been couched in the context of a single-, and not multi—, firm setting.3 As we show

below, single-firm results will hold in a multi-firm economy under the additional as-

sumption that all cash flows are independently distributed across firms. Therefore, to

facilitate comparisons with prior work, we examine briefly the special case where each

investor assesses firms’ cash flows to be distributed independently. When investors

assess that cash flows are independent, their demand functions in eqn. (2) reduce to

Xij = τπi
h
Ṽj
i ³
Ei
h
Ṽj|Φi

i
− (1 +Rf)Pj

´
, (6)

where πi
h
Ṽj
i
denotes the precision (i.e., the reciprocal of the variance) investor i

associates with the end-of-period cash flow of firm j based on his information, Φi.

Note that, ceteris paribus, investors who assess the riskiness of cash flows to be lower

(higher) will purchase more (fewer) shares in the firm. Similarly, investors with higher

(lower) risk tolerances will purchase more (fewer) shares. Let π0
h
Ṽj
i
=
PN
i=1 πi

h
Ṽj
i

represent the sum of the precisions investors associate with the cash flow of firm j.

Extending the expression for prices in eqn. (3) to a circumstance where cash flows

are independent yields the following result.
3 An exception is Admati (1985).
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Corollary 3. When investors assess firms’ cash flows to be distributed independently,

the price for firm j, Pj, will be equal to

Pj =

1

π0[Ṽj]
PN
i=1 πi

h
Ṽj
i
Ei
h
Ṽj
i
− 1

1
N
π0[Ṽj]

X0j
Nτ

1 +Rf
, j = 1, 2, ..., J. (7)

As in eqn. (3), price in eqn. (7) is composed of two terms. The first term on the

right-hand-side of eqn. (7) is a precision-weighted, average assessment of investors’

expected end-of-period cash flow for firm j. Investors’ expected values are weighted

by their precisions because their demands are proportionate to their precisions, ceteris

paribus. The second term on the right-hand-side of eqn. (7) represents a discount

for risk; this is based on investors’ average precision of the distribution of the end-of-

period cash flow for firm j (i.e., 1
N
π0
h
Ṽj
i
). In particular, note that other information

characteristics are irrelevant to a firm’s equilibrium price and cost of capital. For

example, it does not matter whether there exists a high degree of information asym-

metry among investors, as is the case with a large number of relatively better informed

investors (i.e., investors with high precision) and a large number of relatively unin-

formed investors (i.e., investors with low precision), or a low degree of information

asymmetry, as is the case where all investors have approximately the same amount

of information. As long as the average precision is the same in the two economies,

prices will also be the same.

As alluded to above, with the exception of Corollary 1 (which assumes that in-

vestors have homogeneous beliefs), none of our results are expressed in closed-form in

that they do not explicitly incorporate the additional information investors’ glean by

conditioning their expectations over price. To solve the pricing system when investors

condition their expectations over price, we need to place more structure on the notion

of information. This is done in the next section.

12



3 Market prices with heterogeneous information

In this section we extend our analysis to heterogeneous information across investors

in conjunction with investors conditioning their expectations over price. As discussed

previously, price is as an aggregator of diverse information across investors. Rational

investors are cognizant of the aggregation process, and thus use price as an additional

conditioning variable in forming their expectations about future cash flows; this is

what is meant by investors having “rational expectations.” To solve for price in closed-

form, we assume that the structure of information in the economy is as follows. First,

we assume that investors have a common prior over the distribution of the vector of

end-of-period cash flows, Ṽ. Let m = {m1, ...,mj, ...,mJ}0 represent the J × 1 vector
of common prior beliefs about the expected value of Ṽ, and Ψ the J × J common
prior precision matrix of Ṽ. Note that in this formulation we allow for the cash flows

to be correlated across firms.

Each firm has associated with it a public announcement. Let ỹ = {ỹ1, ..., ỹj, ..., ỹJ}0

represent the J×1 vector of announcements. We assume that announcements have a
normal distribution, where η represents the J×J precision matrix of ỹ.4 We assume
that announcements are unbiased, E

h
ỹ|Ṽ = V

i
= V, but impose no structure on η.

For example, neither the variances across announcements, nor the covariances across

pairs of announcements, need be identical.

Each investor has private information about each firm. Let z̃i = {z̃i1, ..., z̃ij, ..., z̃iJ}0

represent the J × 1 vector of information available to investor i. As with public
announcements, we assume that private information is unbiased and has a normal

distribution. Let Si represent investor i’s J × J precision matrix for z̃i conditional
4 It is straightforward to extend the model to allow for a vector of announcements about each firm,
or for each investor to observe a vector of private information about each firm.
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on Ṽ = V. As is standard practice in the literature, we assume that ỹ and z̃i are

independent conditional on Ṽ = V.

We impose no structure on Si: for any investor the variance in private information

can be different across firms, and Si can differ across investors. In particular, this

implies that investors need not receive private information of equal quality. For

example, some investors might not be endowed with any private information, in

which case Si is a J × J matrix of 0’s. In fact, it is precisely this feature - how the

quality of information differs across investors - that we are interested in examining. As

discussed above, information (both public and private) is useful in investors’ demands

for all firms. That is, public information (say, accounting earnings) for firm j will,

in general, will be useful for both revising the assessment of expected end-of-period

cash flow for firm j and for other firms whose cash flows covary with firm j.

In this section we specialize our analysis to consider two information structures

that have been analyzed in the single-firm literature. First we consider a structure

analogous to that in Kim and Verrecchia (1991) (KV). In KV, the distribution of the

private information, z̃i, conditional on Ṽ = V, is independent across investors. That

is, each investor observes a vector of information whose error terms can be correlated

across firms, but uncorrelated across investors. Below we extend KV to a multi-firm

setting where the price for one firm can be informative about the future cash flows

for all firms.

Second we consider an information structure analogous to that in Easley and

O’Hara (2004) (EOH). In EOH, there are two groups of investors, “less informed” in-

vestors and “more informed” investors. Members of the “less informed” group observe

only the vector of public announcements, ỹ. In addition to the public announcements,

members of the “more informed” group also observe a vector of private information,
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z̃i. All members of the “more informed” group, however, receive exactly the same pri-

vate information. Thus, the error terms in the signals of the “more informed” group

are identical. Consequently, prices are only incrementally informative for investors in

the “less informed” group. Eventually we also extend EOH to a multi-firm setting.

As is standard in the RE-literature, we prevent prices from being fully revealing

by assuming that the aggregate supply of firm shares is uncertain. Specifically, we

assume that the aggregate supply vector, X̃0 =
n
X̃01, ..., X̃0j, ..., X̃0J

o0
, has a normal

distribution. This implies that prices, as information sources, incorporate noise in the

form of an aggregate supply shock. As is also the convention in the RE-literature, we

perform our analysis in the context of the distribution of the supply shock per-capita:

that is, let x̃0 =
½
x̃01 =

X̃01
N
, ..., x̃0j =

X̃0j
N
, ..., x̃0N =

X̃0J
N

¾0
represent the J × 1 vector

of per-capita supply shocks. Note that the vector of per-capita supply shocks, x̃0, also

has a normal distribution; let x̄0 = {x̄01, ..., x̄0j, ..., x̄0N}0 represent the J × 1 vector
of mean values of x̃0, andW the J × J precision matrix of x̃0. We assume that the
distribution of x̃0 is independent of all other variables.

3.1 Diversely informed investors

The goal of this subsection is to extend the KV analysis to a multi-firm setting with

correlated cash flows; in the next subsection we extend Easley and O’Hara (2004)

in a similar fashion. To start, as described above, each investor receives a vector

of private information, z̃i, where each vector has associated with it a conditional

precision matrix Si. A solution to a RE-equilibrium typically starts by first requiring

that investors conjecture that the vector of prices has the following linear functional

form:

P̃ = a+ bṼ + cỹ− dx̃0 + ex̄0. (8)
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That is, investors conjecture that the price vector is a linear function of true cash

flow, Ṽ, public announcements, ỹ, and supply shocks, x̃0 and x̄0, where a is a J × 1
vector of intercepts, and b, c, d, and e are J×J matrices of coefficients. Note that in
this formulation the price of each firm is allowed to be a function of the information

signals of all other firms in the marketplace. For this same reason, the price of

one firm also conveys information about other firms. In particular, we describe the

additional information investors glean by conditioning their expectations over price

as the “orthogonal” information in price. We represent the orthogonal information

in price with a variable ũ, where ũ is defined by

ũ = b−1
³
P̃− a− cỹ+ (d− e) x̄0

´
= Ṽ− b−1d (x̃0 − x̄0) . (9)

Note that b−1d is a J × J matrix. Conditional on Ṽ = V, the covariance matrix for

orthogonal information is

b−1d ·W−1 ·
³
b−1d

´0
.

Finally, let θ represent the precision matrix for orthogonal information conditional

on Ṽ = V: that is,

θ =
µ
b−1d ·W−1 ·

³
b−1d

´0¶−1
.

Note that even though investors have diverse private information, the precision of the

orthogonal information, i.e., the incremental information investors glean from price,

is the same across investors.

In the context of the information structure we consider in this subsection, investor

i’s expected value of firms’ cash flows becomes

Ei
h
Ṽ
i
= Π−1

i (Ψm+ ηy+ Sizi + θu) , (10)

where Πi = Ψ + η + Si + θ is the total precision matrix of investor i. The total

precision matrix is comprised of an investor’s prior, Ψ, the public announcements,
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η, his private information, Si, and orthogonal information, θ. The key insight here

is that when investor i conditions his expectations on his priors, public information,

private information, and price, the total precision of his information is simply the

sum of the precision matrices of his priors, the public announcements, his private

information, and the precision matrix of the orthogonalized price vector.

Let Avg [·] = 1
N

PN
i=1 [·] represent an averaging function. Then the average preci-

sion of information across investors, which eqn. (3) indicates is the key variable in

determining the discount for risk in pricing, becomes

Avg [Πi] = Ψ+ η +Avg [Si] + θ. (11)

The only remaining task is to solve for θ. To do this, we must solve for the parameters

b and d in the pricing eqn. (8). Substituting the expected cash flows and precisions

into the pricing eqn. (3) and summing across all investors gives us an equation for

price. We can then equate the coefficients from this equation with those from the

pricing eqn. (8) to solve for the parameters b and d.

Proposition 2. The precision of the orthogonal information in price is

θ = τ 2(Avg [Si]) ·W · (Avg [Si])0,

and the average total precision of information across investors is

Avg [Πi] = Ψ+ η +Avg [Si] + τ 2(Avg [Si]) ·W · (Avg [Si])0.

The contribution of Proposition 2 toward the goal of this paper is that now we

can solve the discount in price relative to the expected end-of-period cash flow in

closed-form. Specifically, Proposition 1 demonstrates that the discount in price is

governed by the average precision of information across investors. By determining
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the average precision in closed-form, we can represent the discount in the vector of

prices in a RE-setting as

(
1

N
Π0)

−1X0

Nτ
= (Avg [Πi])

−1X0

Nτ

= (Ψ+ η +Avg [Si] + τ 2(Avg [Si]) ·W · (Avg [Si])0)−1X0

Nτ
.

Once again, it is important to emphasize that the discount is governed by the average

precision, and not the asymmetry in the precision of information across investors.

For the special case where firms’ cash flows are distributed independently, the

market prices each firm independently. Specifically, in this circumstance the Ψ, η,

Si, and θ matrices are all diagonal, and the average precision of information across

investors for each firm j is

Ψj + ηj +Avg [sij] + τ 2 (Avg [sij])
2wj, (12)

where Ψj, ηj, sij, and wj represent the j-th diagonal term of the (diagonal) matrices

Ψ, η, Si, and W, respectively. The result for firms with independent cash flows is

tantamount to the result in KV for an economy with a single firm. Note that the

average precision of information across investors increases with the precision of the

prior, Ψj, the precision of the public announcement, ηj, and/or the average precision

of private information, Avg [sij]. This implies that firm j’s cost of capital decreases

with an increase in the precision of any of these terms.

3.2 Asymmetrically informed investors

Next, we examine an information structure analogous to that studied in Easley and

O’Hara (2004), (EOH). A salient claim in the EOH analysis is that information

asymmetries are “priced”; our goal is to re-examine that claim in the context of our

18



analysis. To facilitate this comparison, we begin with the special case where all firms’

cash flows are distributed independently. When all firms’ cash flows are distributed

independently, for all intent and purpose each firm can be analyzed independent of

every other firm. Thus, in this subsection we suppress the firm-j subscript, and couch

our analysis in the context of a “generic” firm: this eases the notation burden.

As in EOH, in this subsection we assume there are two groups of investors. The

first group is comprised of N1“less informed” investors, who receive Q1 public in-

formation signals, ỹh, h = 1, ..., Q1. The second group is comprised of N2 “more

informed” investors, who receive not only the Q1 public signals, but also Q2 private

signals, z̃k, k = 1, ..., Q2. All investors in the “more informed” group observe the

same signals. As stated before, this differs from KV, where private information is

distributed independently across investors. Also as in EOH, in this subsection we

assume that all signals (both public and private) have the same precision, s (i.e., here

η ≡ s). We assume that each of the signals ỹh and z̃k is conditionally independent of
every other signal. Also as before, each investor has a common prior on the distri-

bution of the end-of-period cash flow, Ṽ ; specifically, investors believe that Ṽ has a

normal distribution with mean m and precision Ψ.

The “more informed” group observes all public and private information available

in the economy. Hence, the “more informed” group cannot learn any additional in-

formation from price. In effect, for the “more informed” group, price is a redundant

source of information. Let Ỹ =
PQ1
h=1 ỹh and Z̃ =

PQ2
k=1 z̃k represent summary statis-

tics for the vector of public and private signals, respectively. Conditional upon the

realization of public and private information (i.e., conditional on Ỹ = Y and Z̃ = Z),

the conditional expectation of end-of-period cash flow of “more informed” investors
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is

E
h
Ṽ |y1, ..., yQ1, z1, ..., zQ2

i
=

Ψm+ sY + sZ

Ψ+ (Q1 +Q2) s
,

where the total precision of their information is Ψ+(Q1 +Q2) s. Note that the total

precision is increasing in the prior precision, Ψ, the precision per signal, s, and the

total number of signals, Q1 +Q2.

Members of the “less informed” group base their investment decisions on the Q1

public signals and price. As before, to ensure that price is not fully revealing, we

assume the shock to the aggregate supply creates noise. Specifically, we assume that

the aggregate per-capita supply for the firm, x̃0, has a normal distribution with mean

x̄0 and precision w, and is independent of each yh and zk.

As in the previous subsection, a solution to a RE-equilibrium typically starts by

requiring first that investors conjecture that “less informed” investors conjecture that

price has the form

P̃ = a+ bZ̃ + cỸ + dx̃0 − ex̄0. (13)

Here we represent the orthogonal information in price with a variable ũ, where ũ is

defined by

ũ =
P̃ − a− cỸ + x̄0 (d− e)

bQ2
=
Z̃

Q2
− d
b

x̃0 − x̄0
Q2

.

As before, the orthogonal information in price represents the incremental information

“less informed” investors glean by conditioning their expectations on price. Note that

the presence of an aggregate supply shock makes orthogonal information in price a

noisy measure of the private information available to “more informed” investors, Z̃.

We denote the precision of ũ by θ. Unlike the diverse information case considered

above where the precision of orthogonal information was defined conditional on the

realization of firms’ cash flows, here θ represents the total precision of ũ.
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As a consequence of conditioning their expectations on price, the total precision of

investors in the “less informed” group isΨ+Q1s+θ. As above, Ψ represents investors’

common prior precision. While “less informed” investors have no private information,

they learn the private information of “more informed” investors (with noise) when

they condition their expectations on price. Here, θ represents the precision of the

additional information “less informed” investors glean from price.

EOH use a slightly different (but equivalent) parameterization in their model that

facilitates some of the comparative statics analysis they do. In particular, they define

Q as the total number of information signals observed by “more informed” investors,

where Q ≡ Q1 + Q2, and α as the percentage of all signals that are private (i.e.,

α = Q2
Q1+Q2

). The fraction of investors in the informed group is µ, where µ = N2
N1+N2

.

EOH show that price can be expressed as:5

E
h
Ṽ − P̃ |Info

i
=
1

τ

x̄0
Ψ+ (1− α)Qs+ µαQs+ (1− µ) θ . (14)

In particular, the denominator of this expression indicates how the distribution of

information across investors affects the cost of capital. EOH discuss their results in

terms of the asymmetry of the information between the two groups of investors. Note,

however, that the denominator of their expression can be re-written as

µ (Ψ+Qs) + (1− µ) (Ψ+ (1− α)Qs+ θ)

= µ (Ψ+Qs) + (1− µ) (Ψ+Q1s+ θ) . (15)

The expression on the right-hand-side of eqn. (15) is simply the average precision

of information across investors. This renders their pricing equation equivalent to

our eqn. (7). The weights are the percentage of investors in each group: µ for the

5 EOH assume the risk free rate is zero.
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informed group and 1 − µ for the less informed group. This equation clearly shows
that it is the average precision of information that determines the magnitude of the

discount relative to the expected cash flow.

EOH interpret their analysis and comparative statics results as being driven by

information asymmetries. Each of their results, however, can also be explained using

the average precision metric. For example, EOH show that increasing the parameter

α - the fraction of signals that are private - makes the cost of capital go up. They claim

that this occurs because the information asymmetry between the groups increases.

Note, however, that EOH hold constant the total number of information signals

“more informed” investors observe, Q. Thus, while increasing α does result in an

increase in information asymmetry, it also reduces the average precision of information

by reducing the amount of information the “less informed” receive without having

any effect on the amount of information the “more informed” receive (because Q is

fixed). In other words, “more informed” investors receive the same number of signals

regardless of the magnitude of α. Thus, the average precision goes down, which

implies that the cost of capital goes up.

EOH also show that increasing the parameter µ - the proportion of investors who

get private information - makes the cost of capital go down. Again, while increasing

µ does reduce information asymmetry across investors, by the same token it also

increases the average precision of information in the market. Consistent with an

increase in average precision, our average precision metric predicts that the cost of

capital go down.

But it is important to emphasize that the cost of capital is lower because of the

existence of investors with private information, not in spite of it. To see this, note

that if no one in the economy received any private information (i.e., µ = 0), the
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denominator in the cost of capital equation reduces to Ψ + (1− α)Qs = Ψ + Q1s.6

This is strictly smaller than the denominator in the expression where there is a group

that receives private information in addition to the Q1 public signals. EOH’s results

hint at this when they show that if α = 1, implying that “less informed” investors

learn nothing (other than what they can learn through price), increasing the number

of signals the informed group receives, Q, makes the cost of capital go down. But this

also makes the degree of information asymmetry go up, which should increase the cost

of capital in the context of the EOH information-risk story. Instead, what is really

happening is that the average precision of information across investors is going up:

the more informed group receives more information, while the less informed group

receives less. Therefore, the cost of capital goes down.

As further evidence, consider the situation where the number of public signals

is non-zero, and the number of signals that are private increases. This increases

information asymmetry, but it also increases the weighted-average precision of infor-

mation.7 Does the cost of capital go down (because the average precision of investors

goes up), or does it go up (because the degree of asymmetry goes up)?

Given the way EOH parameterize their model, this comparison is difficult to do

because it requires examining the effect of simultaneously increasingQ and decreasing

α. Our simple re-parameterization makes the analysis more straightforward. In our

formulation, we can hold constant the number of public signals by fixing Q1, yet

increase the number of private signals by increasing Q2. Recall that the average

6 Note that price is no longer informative in this case, so that θ = 0.
7 Increasing the number of private signals will increase the precision of information for both groups.
The more informed group benefits directly, while the less informed group benefits from price being
a more informative signal. It is easy to show, however, that the precision of the informed group
increases by more than the precision of the less informed group. Therefore, the difference in the
precisions between the two groups increases, which means the degree of information asymmetry
increases.
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precision of the information in the economy weights the precisions of the two groups

according to their relative sizes. From above, the precision of the more informed

group is Ψ+Qs and the precision of the less informed group is Ψ+Q1s+ θ. Solving

for the precision of the information obtained from price in a RE-context yields the

following result.

Proposition 3. The average precision of investors’ information is

µ (Ψ+Qs) + (1− µ) (Ψ+Q1s+ θ) ,

where the precision of orthogonal information that arises from “less informed” in-

vestors conditioning their expectations on price is

θ =

⎛⎝ 1

Q2s
+

Ã
1

N2
N
τs

!2
1

Q22w

⎞⎠−1 . (16)

Eqn. (16) is analogous to eqn. (A3) in EOH.

Now consider what happens to the cost of capital if we hold Q1 fixed, but increase

Q2. The precision of the “more informed” group obviously increases. Moreover, the

precision of the information “less informed” investors glean from price also increases.

Thus, the precision of the information available to each group increases. This implies

that the average precision of investors goes up, and the cost of capital goes down.

To summarize, contrary to the suggestion in EOH, price is not discounted be-

cause “less informed” investors face an adverse selection problem and price protect

themselves. Instead, price is discounted because “less informed” investors simply

have more uncertainty about the end-of-period cash flow, which reduces the average

precision of information across investors in the economy. The implication is that

the cost of capital does not decline as a result of reducing information asymmetries.

Instead, the cost of capital declines as more persons in the economy receive more
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information. In other words, a greater tranmission of the “more informed” investors’

private information to the “less informed” group through price does lower the cost

of capital, but this is simply because the average precision of investors’ information

increases - it is not because information asymmetry has been reduced. In the same

way, giving “more informed” investors even more private information also lowers the

cost of capital. In this case, information asymmetry may actually increase. The aver-

age precision of information for investors goes up, however, so the cost of capital goes

down. In fact, the precision of the information available to “less informed” investors

actually improves here, because price contains more information.8

It is straightforward to extend the analysis of asymmetric information across in-

vestors to an economy in which the cash flows are cross-sectionally correlated. For

convenience, assume that the same N1 investors receive only the public signals about

each firm, whereas that the remaining N2 investors also receive private signals about

each firm. Assume that there exist Q1 public signals about each firm and Q2 private

signals. The only complicating feature is that now each public signal and each private

signal conveys information about the future cash flows of all firms. Assume all signals

(both public and private) have the same precision matrix, S.

As before, “more informed” investors cannot learn anything from price. “Less

informed” investors base their investment decisions on the Q1 public signals and

price. Again, the price of one firm can be potentially informative about the cash

8 As further evidence, suppose we hold constant the average precision across investors of their “basic”
information (e.g., their information not including any inferences they glean from prices), but increase
the information asymmetry of the “basic” information of the two groups. That is, suppose we hold
constant µ(Q1 +Q2) + (1 − µ)Q1, but simultaneously increase Q2 and decrease Q1. Even though
information asymmetries increase, such a change will decrease the cost of capital. The reason is that
the average precision of the “total” information (i.e., the information investors possess including
their inferences from prices) held by the two groups will increase. In particular, the decrease in the
precision of the “less informed” investors that results from lowering Q1 is partially offset by their
ability to infer from price the information that results from an increase in Q2.
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flows of all firms. Solving for the precision of the information gleaned from price in a

RE-context yields the following result.

Proposition 4. The average precision of investors’ information is

µ (Ψ+QS) + (1− µ) (Ψ+Q1S+ θ) , (17)

where the precision of the incremental information conveyed by price is

θ =

⎡⎣ 1
Q2
S−1 −

Ã
1

τ

N

N2

1

Q2

!2
S−1 ·W · (S−1)0

⎤⎦−1 .
The first term in the average precision equation, eqn. (17), is the precision of more

informed investors, weighted by their relative population in the economy (µ), and

the second term is the precision of less informed investors, weighted by their relative

population (1−µ). Note again that an increase in Q2 increases the average precision
of information, which lowers the cost of capital.

The significance of Proposition 4 is that it demonstrates how the notion of average

precision extends to an EOH setting with multiple firms whose cash flows may covary.

Average precision governs the discount in price associated with the market holding

firms’ shares. Thus, as the expression for average precision manifest in eqn. (17) goes

up or down, cost of capital correspondingly decreases or increases.

4 Disclosure and diversification

Section 3 establishes that the discount the market associates with holding firms’ shares

relies on investors’ average precision for the distribution of firms’ end-of-period cash

flows. An interesting ancillary question, then, is whether an individual firm can affect

its discount through investors’ average precision by disclosing additional information

about its cash flow. To address this question, recall that in Proposition 1 the discount
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was characterized by ( 1
N
Π0)

−1X0

Nτ
, where

³
1
N
Π0

´−1
represents the inverse of investors’

average precision matrix for the distribution of firms’ end-of-period cash flows, X0

N

represents investors’ per-capita holding of firm shares, and τ represents investors’

tolerance for risk. It is straightforward to show that when there are only a finite

number of investors in the economy (i.e., N is finite), additional disclosure by firm j

will reduce its discount by increasing the average precision in investors’ information,

Π0. Nonetheless, it could be argued that the finite-N case is uninteresting in the

context of the CAPM in that it fails to capture the effect of “diversification.” Thus,

in this section we study the effect of disclosure by firm j on its discount in the presence

of diversification.

Diversification is achieved typically by appealing to the notion of a “large econ-

omy.” So as to avoid cases as uninteresting as the finite-N case, however, some

consideration should be given to how one defines a “large economy.” For example, if

by “large economy” one means that the number of investors in the economy gets large

(i.e., N gets large), while all other features of the economy remain finite, then diver-

sification alone eliminates any discount because X0

N
converges to 0. But just as the

finite-N case is an uninteresting setting to study diversification, this setting is equally

uninteresting in that the economy only becomes large in the number of investors, not

in the number of firms (or the total supply of firm shares). Thus, we define a “large

economy” as one in which both the number of investors, N , and the number of firms,

J , become large. In other words, we characterize a “large economy” as one in which

the number of firms becomes large in relation to the number of investors.

Using this definition of a “large economy,” we begin our study of diversification

with the special case in which the cash flows for all firms are distributed independently.

Recall from Corollary 3 that when cash flows are independent, investors’ covariance
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and precision matrices are diagonal, and the discount for the risk for firm j reduces

to
1

1
N
π0
h
Ṽj
iX0j
Nτ

=
1

1
N

PN
i=1 πi

h
Ṽj
iX0j
Nτ

.

Here, irrespective of the number of investors in the economy, the average precision of

information, 1
N

PN
i=1 πi

h
Ṽj
i
, remains finite. As N increases, however, the per-capita

supply of firm j’s shares, X0j
N
, steadily diminishes. This is consistent with the concept

of “diversifiable risk.” When the per-capita supply approaches 0 as N gets large (i.e.,

as X0j
N
→ 0), the discount for the risk for firm j approaches 0. Thus, here the average

precision of investors’ information is irrelevant; as such, any disclosure by firm j

intended to affect the average precision is also irrelevant.

Now consider the case where all investors have the same precision of information,

but the information itself is diverse. Recall from Corollary 2 that when all investors

have the same precision of information, the discount for the risk in the vector of firm

share prices, P, reduces to

CovH
X0

Nτ
.

This expression implies that the discount to the price of firm j’s shares is

1

Nτ

JX
k=1

Covj,kX0k =
1

Nτ

⎛⎝Covj,jX0j + JX
k 6=j
Covj,kX0k

⎞⎠ , (18)

where Covj,k represents the j-th, k-th element of the matrix CovH . The right-hand-

side of eqn. (18) is analogous to the discount for risk in the traditional CAPM,

except in our analysis the covariances are multiplied by the supply of firms’ shares;

in the CAPM, the aggregate supply of firms’ shares (in percentage terms) is 1. As

discussed above, if the off-diagonal elements of the covariance matrix CovH are zero,

this reduces to
1

Nτ
Covj,jX0j,
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which approaches 0 as N gets large. If the off-diagonal elements are non-zero, how-

ever,
PJ
k 6=j Covj,kX0k will grow as the number of firms in the economy, J , grows; this

implies that
1

Nτ

JX
k 6=j
Covj,kX0k

will not approach 0. In short, for the discount in the price for firm j’s shares to

remain positive in a “large economy”(as we have defined this concept), firms’ cash

flows must covary.

When firms’ cash flows covary, there exists a role for disclosure by firm j. Specif-

ically, let δ̃j represent the error in the disclosure firm j provides about its cash flow;

we assume that δ̃j is independent of all other variables.

Proposition 5. When all investors have the same precision of information, but the

information itself is diverse, firm j’s discount, 1
Nτ

PJ
k=1Covj,kX0k, moves closer to 0

as the precision in its disclosure about its cash flow increases.

Proposition 5 demonstrates that disclosure by a firm attenuates the discount for the

risk the market associates with holding shares of that firm. It also extends results

in the “estimation risk” literature that concern information structures based on the

historical time-series of return variables from a stationary process (Brown, 1979;

Barry and Brown, 1984 and 1985; etc.). Finally, Proposition 5 extends results in

Lambert et al. (2006) that are based on homogeneous beliefs to the case of diverse

information and homogeneous precisions.

To illustrate Proposition 5, recall that δ̃j represents the error in the disclosure firm

j provides about its cash flows. Let V ar
h
Ṽj
i
and V ar

h
δ̃j
i
represent the variances

of firm j’s cash flow, and the error in disclosure about that cash flow, respectively.

Then disclosure by firm j reduces Covj,k, the j-th, k-th element of the matrix CovH ,
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from Covj,k to
V ar

h
δ̃j
i

V ar
h
Ṽj
i
+ V ar

h
δ̃j
iCovj,k.

This, in turn, implies that 1
Nτ

PJ
k=1Covj,kX0k reduces to

V ar
h
δ̃j
i

V ar
h
Ṽj
i
+ V ar

h
δ̃j
i 1
Nτ

JX
k=1

Covj,kX0k. (19)

Thus, as the precision in the error in firm j’s disclosure about its cash flow increases

(i.e., as V ar
h
δ̃j
i
decreases), the expression in eqn. (19) gets closer to 0. In short,

disclosure by a firm attenuates the discount for the risk the market associates with

holding shares of that firm. Proposition 5 extends easily to the situation in which

investors’ precision matrices for are not homogeneous.

5 Imperfect competition

To this point, we have shown that in a CAPM or RE-setting, the discount to prices

that results from the risk the market associates with holding firms’ shares is a function

of the average precision of information across investors, not information asymmetry

per se. Information asymmetry does not manifest in cost of capital in conventional

characterizations of the CAPM or RE models because these settings are based on

perfect competition. In a model of perfect competition, each investor determines his

demand for firm shares based on a conjecture that his demand cannot affect price.

In particular, more informed investors do not strategically reduce their demand for

fear of revealing their information to others, thereby adversely impacting the price at

which they trade. Moreover, no trading takes place until an equilibrium price is set.

Less informed investors rationally use price as a conditioning variable in setting their

expectations and assessing risk when they submit their demand order.

30



Under perfect competition, eqn. (2) shows that each investor’s demand for shares

of firm j is decreasing in his assessed degree of uncertainty (increasing in his assessed

precision) about j’s future cash flow. While less informed investors will demand

fewer shares when they perceive uncertainty to be high, more informed investors

will demand more shares. Because demand is linear in each investor’s precision, the

relevant metric when investors’ demands are aggregated to clear the market is the

average assessed precision. Moreover, the assessed uncertainty about firm j’s cash

flow is not greater when the investor perceives that other investors possess more

precise information. In fact, an investor’s assessed degree of uncertainty decreases

when other investors acquire more information, because this information becomes

(partially) transmitted through price when investors condition their expectations over

price in determining their demand. In other words, the intuition that information

asymmetry drives up the cost of capital in a model of perfect competition because

less informed investors reduce their demand for firm shares is flawed.

This being the case, how does information asymmetry manifest in cost of capi-

tal? We argue that the effect of information asymmetry may arise in the context of

imperfect competition. Imperfect competition results when investors’ demand orders

are sufficiently “large” in relation to the market as a whole such that a conjecture

that their demand cannot affect price is unsustainable. Thus, investors must take

into account the effect of their actions on the market price at which their trades are

executed.

While there exist a variety of characterizations of imperfect competition in the

literature (e.g., Copeland and Galai, 1983; Kyle, 1985; Glosten and Milgrom, 1985;

Admati and Pfleiderer, 1988; etc.), the characterization of this phenomenon offered

in Diamond and Verrecchia (1991) is perhaps closest to our modeling in the prior
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sections. In Diamond and Verrecchia (DV), there are two classes of investors: two

large, risk neutral traders who are (potentially) informed; and N less informed “mar-

ket makers” who are risk averse with risk tolerance τ . In each period, the risk neutral

traders submit their demands, and then the market-makers set the price at which

they execute those demands based on publicly available information and inferences

about firm value based on the order flow. The risk-averse market makers also pro-

vide the risk-bearing capacity for the market by absorbing whatever shares are not

demanded by the risk neutral traders. For all intent and purpose, the risk-averse

market makers serve the role of generic investors in a model of perfect competition:

they are risk-averse, perfectly competitive, and are informed indirectly by order flow,

in the same fashion that uninformed investors are informed indirectly in a RE-model

by conditioning their expectations over price. In other words, the risk-averse market

makers serve the same role as the less well-informed investors in Grossman and Stigliz

(1980), Easley and O’Hara (2004), etc.

In a model of perfect competition, risk neutral traders with private information

will take infinite positions in a firm’s stock. In a world of imperfect competition,

however, such large positions will influence the beliefs of other investors about future

cash flows (because the risk neutral traders may be informed); this, in turn, affects

the price at which trade takes place. In particular, in DV the risk neutral traders

conjecture rightly that price will be a linear, increasing function of their demand for

shares.

DV construct a three-date model in which the firm’s uncertain cash flow is realized

at date three. At the beginning of the model, the large, risk neutral traders do not

know whether they will become informed or receive liquidity shocks (i.e., they do not

know their type). At date 2, one large risk-neutral trader receives private information
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about the firm’s cash flow and the other receives a liquidity shock that requires him

to sell a random number of his existing shares. Trade occurs both at date 1, before

any public information is disseminated or the risk-neutral traders learn their type,

and at date 2, after information and type is revealed.

If we fold the pricing back to the beginning of the model - before the risk neutral

investors know their type - DV’s Proposition 1 shows that the equilibrium price

is lower than the ex-ante expected cash flow. Thus, despite the existence of risk

neutral traders in the economy, pricing is not done on a risk neutral basis. That is,

the cost of capital exceeds the risk-free rate. Moreover, increasing the precision of

the public information, which reduces information asymmetry between traders and

market makers, causes price to increase (which decreases the cost of capital).

These results follow from the risk neutral traders’ unwillingness to take a large

position in the stock at date 1 because they anticipate this may lead to problems at

date 2. In particular, they are concerned that if they incur a liquidity shock at date

2, they will have to sell their holdings at a low price. The low price at date 2 will

occur because market makers observing a large order to sell shares will be unable to

distinguish whether it is a result of an uninformed trader’s need for liquidity or from

an informed trader’s decision to sell based on the receipt of bad news. The market

makers’ lowering of price in response to an order to sell shares is the classic price-

protection response to an adverse selection problem. The greater the asymmetry

of information between (potentially) better informed traders and less well informed

market makers, the greater will be the reaction of price to the order flow, including

the reaction to a liquidity trader’s sale of shares at date 2. Because the risk neutral

traders are unwilling to take a large position at date 1, the risk-averse market makers

must absorb more of the shares at that time. As a consequence, the stock price at
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date 1 is accordingly lower.

If there were no information asymmetries, the risk neutral investors will hold all

the firm’s shares at all dates, and pricing will be done on a risk neutral basis. There

will be no price reaction to a sell order at date 2 because it will be known to be

liquidity-driven. The greater the degree of information asymmetry at date 2 between

informed, risk neutral traders and risk-averse market makers, however, the more price

(mistakenly) reacts to a liquidity-based need to sell (buy) shares. Anticipating this,

the risk neutral traders purchase fewer shares at date 1, which means that more shares

are held by the risk-averse market makers. The compensation market-makers require

for bearing a greater share of risk drives the date 1 price downward. Therefore, more

information asymmetry increases the cost of capital.

Thus, the salient difference between DV’s model of imperfect competition versus

perfect competition models in the RE-literature is that in the former the number of

shares held in toto by risk-averse market makers (equivalently, generic investors in

models of perfect competition) is endogenous, whereas in the latter it is exogenous. In

particular, the number of shares held by the risk-averse market makers is a function

of the information structure in the economy, and more specifically, by the degree of

information asymmetry.

Interestingly, the results in DV are consistent with the intuition offered in Easley

and O’Hara that asymmetric information will cause investors to withdraw from the

market, thereby lowering the price. It is important to note, however, that it is not

the smaller, uninformed investors who withdraw. Instead, it is the larger investors

who withdraw from the market, because they are the ones who bear liquidity costs

when exogenous circumstances force them to liquidate their large positions.
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6 Conclusion

This paper analyzes how the distribution of information across investors affects firms’

cost of capital. We find that when investors have different information, prices are a

function of two features of the economy’s information structure: 1) individual in-

vestors’ precision-weighted, average assessment of firms’ expected end-of-period cash

flows; and 2) a discount for the risk investors associate with holding firms’ shares

that depends on the investors’ average, assessed precision matrix (i.e., the inverse of

the covariance matrix) of the distribution of firms’ end-of-period cash flows. In other

words, investors’ average, assessed precision is a key determinant of the expected re-

turn on a firm’s stock price, and therefore on its cost of capital. The extent to which

investors’ precision matrices deviate from this average, however, does not matter. In

particular, the asymmetry of information across investors does not affect the discount

for risk, holding the average assessed precision constant.

Our results imply that Easley and O’Hara’s (2004) interpretation of their “in-

formation asymmetry” determinant of the cost of capital model is not correct. In

particular, we show that in their model price is not discounted relative to the ex-

pected end-of-period cash flow because a “less informed” group of investors faces an

adverse selection problem, and thus must price-protect itself. Instead, price is dis-

counted because “less informed” investors simply manifest more uncertainty about

the end-of-period cash flow. This lowers the average precision of information held

by investors, which raises the cost of capital. In fact, we show that increasing the

degree of information asymmetry between investors can reduce the cost of capital,

not increase it. The dissemination of more information to more investors drives down

the cost of capital, not the reduction in information asymmetries per se.
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Interestingly, many of the same factors that are thought to reduce information

asymmetries (e.g., improved accounting and disclosure policies, increased following

by analysts, etc.) will also increase investors’ average, assessed precision of infor-

mation. Therefore, it may be difficult to distinguish empirically between the two

constructs. It is important to emphasize, however, that an information asymmetry

story is inconsistent with a model based on perfect competition.

When firms’ cash flows are correlated, the average assessed precision of a firm’s

cash flow is diversifiable; that is, it becomes an increasingly smaller portion of a

firm’s risk as the economy grows large. What is relevant is not the average assessed

precision for a firm, but rather the average assessed precision-matrix for the economy.

That is, as in the CAPM, what is important is the assessed covariance between firms.

We show that improved information about a firm’s cash flow can lower the assessed

covariance between its cash flows and those of other firms, and thereby lower its cost

of capital.

While asymmetric information across investors plays no role in models that depend

on perfect competition, in models of imperfect competition asymmetric information

affects the willingness of “large” traders to supply liquidity. In models of imperfect

competition information asymmetry affects the willingness of “large” traders to sup-

ply liquidity. As liquidity declines, a firm’s extant risk is borne by fewer investors.

This, in turn, increases a firm’s cost of capital rises. In other words, a salient impli-

cation of our analysis is that information asymmetry is a separate and distinct effect

from information precision effect, and both contribute to a firm’s cost of capital in

unique ways.
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APPENDIX

Proof of Proposition 1.

From eqn. (2), investor i’s demand for shares of firms (in vector format) is

Xi = τΠi

³
Ei
h
Ṽ
i
−P (1 +Rf)

´
. (A1)

Summing the demand function across investors yields

X0 =
NX
i=1

Xi = τ
NX
i=1

Πi

³
Ei
h
Ṽ
i
−P (1 +Rf)

´
;

recall that X0 is the aggregate supply vector. Solving for P, the vector of firm share

prices, yields

P =
(Π0)

−1PN
i=1ΠiEi

h
Ṽ
i
− ( 1

N
Π0)

−1X0

Nτ

1 +Rf
.

Q.E.D.

Proof of Proposition 2.

First, we re-express P as characterized in Proposition 1 as follows:

P = (
1

N
Π0)

−1
1
N

PN
i=1ΠiEi

h
Ṽ
i
− X0

Nτ

1 +Rf
.

Next, substitute into this expression for P the characterization of Ei
h
Ṽ
i
offered in

eqn. (10):

P = (
1

N
Π0)

−1
1
N

PN
i=1Πi

³
Π−1
i (Ψm+ ηy+ Sizi + θu)

´
− X0

Nτ

1 +Rf

= (
1

N
Π0)

−1Ψm+ ηy + 1
N

PN
i=1 Sizi + θu− X0

Nτ

1 +Rf
.

Thus, when investors condition their expectations over P, they interpret P a random

variable characterized as

P̃ = (
1

N
Π0)

−1Ψm+ ηỹ + 1
N

PN
i=1 Siz̃i + θũ− 1

τ
x̃0

1 +Rf
, (A2)
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where for convenience we now express the aggregate supply on a per-capita basis:

that is, x̃0 = X̃0

N
. The law of large numbers implies that 1

N

PN
i=1 Siz̃i converges to

1
N

PN
i=1 SiṼ because the idiosyncratic elements in z̃i average out. Thus, we substitute

this into eqn. (A2), along with the expression for ũ suggested in eqn. (9):

P̃ = (
1

N
Π0)

−1Ψm+ ηỹ + 1
N

PN
i=1 SiṼ + θ

³
Ṽ− b−1d (x̃0 − x̄0)

´
− 1

τ
x̃0

1 +Rf

= (
1

N
Π0)

−1Ψm+ ηỹ +
³
θ+ 1

N

PN
i=1 Si

´
Ṽ−

³
θb−1d+ I

τ

´
x̃0 + θb−1dx̄0

1 +Rf
.

Now recall that investors conjecture that P̃ is of the form P̃ = a+bṼ+cỹ−dx̃0+ex̄0.
For this conjecture to be self-fulfilling, it must be the case that

b =
( 1
N
Π0)

−1

1 +Rf
((θ+

1

N

NX
i=1

S), and

d =
( 1
N
Π0)

−1

1 +Rf
(θb−1d+

I

τ
).

Thus,

b−1d =

Ã
θ+

1

N

NX
i=1

Si

!−1
(
1

N
Π0)(

1

N
Π0)

−1
Ã
θb−1d+

I

τ

!

= (θ+
1

N

NX
i=1

Si)
−1(θb−1d+

I

τ
).

Hence, we can solve to get

b−1d =
( 1
N

PN
i=1 Si)

−1

τ
.

Substituting this expression for b−1d back into the expression for the precision of the

orthogonal information in price, θ, yields

θ = τ 2
"
1

N

NX
i=1

Si

#
·W·

"
1

N

NX
i=1

Si

#0
.

Q.E.D.
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Proof of Proposition 3.

The average precision of investors’ information is µ (Ψ+Qs)+(1− µ) (Ψ+Q1s+ θ).

It remains to solve for θ, the precision of the incremental information provided by

price, ũ. To expedite the proof, first we appeal to the (general) expression for P̃ as

given in eqn. (A2)

P̃ =
1

1
N
Π0

Ψm+ ηỹ + 1
N

PN
i=1 Siz̃i + θũ− 1

τ
x̃0

1 +Rf
. (A2)

In the EOH setting, and in particular when firms’ cash flows are independent, this

expression for P̃ implies that the price of firm j, Pj, can be written as

P̃j =
(N1 +N2)Ψjmj + (N1 +N2) sjỸj +N1θjũ+N2sjZ̃j − 1

τ
x̃j

(1 +Rf) (N1 (Ψj +Q1sj + θj) +N2 (Ψj + (Q1 +Q2) sj))
, (A3)

where, consistent with EOH: 1) sj describes the precision of both public and private

information (i.e., here ηj ≡ sj); 2) only “more informed” investors have private

information, so
PN
i=1 Siz̃i in eqn. (A2) reduces to N2sjZ̃i in this setting; and 3) only

“less informed” investors condition their expectations on price, so θũ in eqn. (A2)

reduces to N1θjũ in this setting. Henceforth, to ease the notational burden, we

suppress the subscript j in eqn. (A3). Recall that ũ is defined as

ũ =
P̃ − a− cỸ + x̄ (d− e)

bQ2
=
Z̃

Q2
− d
b

x̃− x̄
Q2

.

Substituting this into eqn. (A3) yields

P̃ =
(N1 +N2)Ψm+ (N1 +N2) sỸ +N1θ

³
Z̃
Q2
− d

b
x̃−x̄
Q2

´
+N2sZ̃ − 1

τ
x̃

(1 +Rf) (N1 (Ψ+Q1s+ θ) +N2 (Ψ+ (Q1 +Q2) s))

=
(N1 +N2)Ψm+ (N1 +N2) sỸ +

³
N1θ
Q2
+N2s

´
Z̃ −

³
N1θ
Q2

d
b
+ N1+N2

τ

´
x̃+N1θ

d
b
x̄
Q2

(1 +Rf) (N1 (Ψ+Q1s+ θ) +N2 (Ψ+ (Q1 +Q2) s))
.

But recall once again that price is also equal to P = a+ bZ̃+ cỸ +dx− ex̄. Equating
coefficients yields

b

d
=

N1θ
Q2
+N2s

N1θ
Q2

d
b
+ N1+N2

τ

,
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or
b

d
=
N2
N

τs,

where N ≡ N1 +N2. This implies that

V ar [ũ] =
1

Q2s
+

Ã
d

b

!2
1

Q22w

=
1

Q2s
+

Ã
1

N2
N
τs

!2
1

Q22w
,

where θ = V ar [ũ]−1. Q.E.D.

Proof of Proposition 4.

The proof of Proposition 4 parallels that of Proposition 3, except here we assume that

cash flows are cross-sectionally correlated. Cross-sectional correlation requires that

the proof to Proposition 4 be couched in terms of matrices, as opposed to scalars;

nonetheless, the underlying logic is identical to that of the proof to Proposition 3.

Thus, in the interests of economy we leave this proof for the motivated reader.

Proof of Proposition 5.

Let Π represent investors’ homogeneous, total precision matrix. From the proof to

Proposition 2, we know that investors’ precision is additive in the precision of public

information about firms’ cash flows (additive in η). Without loss of generality, assume

that firm 1 discloses additional information about its cash flow with error δ̃, and δ̃

is independent of all other variables. Let Π∗ represent investors’ homogeneous, total

precision matrix that results from firm 1’s additional disclosure, andCov∗ its inverse:

that is, Cov∗ = Π∗−1. With firm 1’s additional disclosure, investors’ precision matrix
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about firms’ cash flows becomes

Π∗ = Π+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V ar
h
δ̃j
i
0 ... 0

0 0 ... 0

. . . .

0 0 ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1,1 + V ar
h
δ̃j
i−1

Π1,2 ... Π1,J

Π2,1 Π2,2 ... Π2,J

. . . .

ΠJ,1 ΠJ,2 ... ΠJ,J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Πj,k represents the j-th, k-th element of the matrix Π, and

Cov∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1,1 + V ar
h
δ̃j
i−1

Π1,2 ... Π1,J

Π2,1 Π2,2 ... Π2,J

. . . .

ΠJ,1 ΠJ,2 ... ΠJ,J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

Let Cov∗j,k and Π∗j,k represent the j-th, k-th element of the matrices Cov
∗ and Π∗,

respectively. Then

Cov∗1,j =
Cofactorj,1 of Π∗matrix
Determinant of Π∗matrix

=
Cofactorj,1 of Π∗matrixPJ

k=1Π
∗
1,k · Cofactor1,k of Π∗matrix

=
Cofactorj,1 of Π matrix

Π∗1,1 ·Cofactor1,1 of Π∗matrix+
PJ
k=2Π

∗
1,k ·Cofactor1,k of Π∗matrix

=
Cofactorj,1 of Π matrix

V ar
h
δ̃j
i−1 · Cofactor1,1 of Πmatrix+PJ

k=1Π1,k ·Cofactor1,k of Π matrix

=

Cofactorj,1 of Π matrixPJ

k=1
Π1,k·Cofactor1,k of Π matrix

V ar[δ̃j]
−1·Cofactor1,1 of ΠmatrixPJ
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Π1,k·Cofactor1,k of Π matrix

+ 1

=
V ar
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iCov1,j

=
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iCov1,j.

Q.E.D.

41



Ackerlof, G., 1970, The Market for Lemons: Quality Uncertainty and the Market

Mechanism, Quarterly Journal of Economics 84, 488-500.

Admati, A., 1985, A Noisy Rational Expectations Equilibrium for Multi-Asset Secu-

rity Markets, Econometrica 53, 629-658.

Admati, A., and P. Pfleiderer, 1988, A Theory of Intraday Patterns: Volume and

Price Variability, Review of Financial Studies 1, 3-40.

Association for Investment Management and Research (AIMR), 2001, Analysts, Port-

folio Managers say Volume, Quality of information have fallen under Regulation FD

AIMRmember survey shows, http://www.aimr.org/pressroom/01releases/regFD_survey.html.

Barry, C., and S. Brown, 1984, Differential information and the Small Firm Effect,

Journal of Financial Economics 13, 283-294.

Barry, C., and S. Brown, 1985, Differential Information and Security Market Equi-

librium, Journal of Financial and Quantitative Analysis 20, 407-422.

Brown, S., 1979, The Effect of Estimation Risk on Capital Market Equilibrium, Jour-

nal of Financial and Quantitative Analysis 15, 215-220.

Copeland, T., and D. Galai, 1983, Information Effects on the Bid-Ask Spread, Journal

of Finance 38, 1457-1469.

Diamond, D., and R. Verrecchia, 1981, Information Aggregation in a Noisy Rational

Expectations Economy, Journal of Financial Economics 9, 221-235.

Diamond, D., and R. Verrecchia, 1991, Disclosure, Liquidity and the Cost of Capital,

Journal of Finance 46, 1325-1359.

Easley, D., and M. O’Hara, 2004, Information and the Cost of Capital, Journal of

42



Finance 59, 1553-1583.

Fama, E., 1976, Foundations of Finance, Basic Books, New York.

Glosten, L. and P. Milgrom, 1985, Bid, Ask, and Transaction Prices in a Specialist

Market with Hetergeneously Informed Traders, Journal of Financial Economics 14,

71-100.

Gomes, A., G. Gorton, and L. Madureira, 2006, SEC Regulation Fair Disclosure,

Information, and the Cost of Capital, working paper: Washington University; Uni-

versity of Pennsylvania; Case Western Reserve University.

Grossman, S., 1981, The Role of Warranties and Private Disclosure about Product

Quality, Journal of Law and Economics 24, 461-483.

Grossman, S., and J. Stiglitz, 1980, On the impossibility of informationally efficient

markets. American Economic Review 70, 393-408.

Hellwig, M., 1980, On the Aggregation of Information in Competitive Markets, Jour-

nal of Economic Theory 22, 477-498.

Hughes, J., J. Liu, and J. Liu, 2005, Information, Diversification and the Cost of

Capital, working paper, UCLA.

Kim, O., and R. Verrecchia, 1991, Market Reactions to Anticipated Announcements,

Journal of Financial Economics 30, 273-309.

Kyle, A., 1985, Continuous Auctions and Insider Trade, Econometrica 53, 1315-1335.

Lambert, R., Leuz, C., and R. Verrecchia, 2006, Accounting Information, Disclosure,

and the Cost of Capital, working paper, University of Pennsylvania.

Levitt, A., 1998, The Importance of High Quality Accounting Standards, Accounting

43



Horizons 12, 79-82.

Lintner, J., 1965, The Valuation of Risk Assets and the Selection of Risky Investments

in Stock Portfolios and Capital Budgets, Review of Economics & Statistics 65, 13-37.

Lintner, J., 1969, The Aggregation of Investors’ Diverse Judgments and Preferences in

Purely Competitive Security Markets, Journal of Financial and Quantitative Analysis

4, 347-400.

Loss, L., 1983, Fundamentals of Securities Regulation (Little Brown and Company;

Boston).

Loss, L., and Seligman, J., 2001, Fundamentals of Securities Regulation, 4th edition.

Gaithersburg, MD: Aspen Law & Business, 2001.

Merton, R., 1987, A Simple Model of Capital Market Equilibrium With Incomplete

Information, Journal of Finance 43, 483-510.

O’Hara, M., 2003, Presidential Address: Liquidity and Price Discovery, Journal of

Finance 58, 1335-1354.

United States Securities and Exchange Commission, 2000, Final Rule: Selective Dis-

closure and Insider Trading, Exchange Act Release No. 33-7881 (Oct. 23, 2000),

htt://www.sec.gov/rules/final/33-7881.htm.

Sharpe, W., 1964, Capital Asset Prices, A Theory of Market Equilibrium Under

Conditions of Risk, Journal of Finance 19, 425-442.

Unger, L., 2000, Speech by SEC Commissioner: Fallout from Regulation FD — Has

the SEC Finally Cut the Tightrope?

44


	University of Pennsylvania
	ScholarlyCommons
	2012

	Information Asymmetry, Information Precision, and the Cost of Capital
	Richard A. Lambert
	Christian Leuz
	Robert E. Verrecchia
	Recommended Citation

	Information Asymmetry, Information Precision, and the Cost of Capital
	Abstract
	Keywords
	Disciplines



