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Resource Allocation Auctions Within Firms

Abstract
There is growing interest in the use of markets within firms. Proponents have noted that markets are a simple
and efficient mechanism for allocating resources in economies in which information is dispersed. In contrast
to the use of markets in the broader economy, the efficiency of an internal market is determined in large part by
the endogenous contractual incentives provided to the participating, privately informed agents. In this paper,
we study the optimal design of managerial incentives when resources are allocated by an internal auction
market, as well as the efficiency of the resulting resource allocations. We show that the internal auction market
can achieve first-best resource allocations and decisions, but only at an excessive cost in compensation
payments. We then identify conditions under which the internal auction market and associated optimal
incentive contracts achieve the benchmark second-best outcome as determined using a direct revelation
mechanism. The advantage of the auction is that it is easier to implement than the direct revelation
mechanism. When the internal auction mechanism is unable to achieve second-best, we characterize the
factors that determine the magnitude of the shortfall. Overall, our results speak to the robust performance of
relatively simple market mechanisms and associated incentive systems in resolving resource allocation
problems within firms.
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An Examination of the Efficiency of Resource Allocation Auctions Within Firms

Abstract

There is growing interest in the use of markets within firms. Proponents have noted that mar-

kets are a simple and efficient mechanism for allocating resources in economies in which information

is dispersed. In contrast to the use of markets in the broader economy, the efficiency of an inter-

nal market is determined in large part by the endogenous contractual incentives provided to the

participating, privately informed agents. In this paper, we study the optimal design of managerial

incentives when resources are allocated by an internal auction market, as well as the efficiency of

the resulting resource allocations. We show that the internal auction market can achieve first-best

resource allocations and decisions, but only at an excessive cost in compensation payments. We

identify conditions under which the internal auction market and associated optimal incentive con-

tracts achieve the benchmark second-best outcome; the advantage of the auction is that it is easier

to implement than the direct revelation mechanism. When the internal auction mechanism is unable

to achieve second-best, we characterize the factors that determine the magnitude of the shortfall.

Overall, our results speak to the robust performance of relatively simple market mechanisms and

associated incentive systems in resolving resource allocation problems within firms.



1 Introduction

Two key aspects of a firm’s management control system are its resource allocation process, and the

extent to which that process is supported by the firm’s performance evaluation and compensation

systems. The importance of these elements is magnified by the fact that most decentralized firms

suffer from problems of asymmetric information. At least since Harris et al. (1982), the theoretical

literature in management accounting has approached this issue as a problem in mechanism design,

and has accordingly dealt with it by solving the associated direct revelation game. The problem with

this approach is that such solutions, to the extent they can even be characterized, are complicated

and, therefore, expensive to implement. An alternative is to view the firm as an “economy” and to

use the power of markets to allocate resources within the firm.

Markets are widely recognized as fostering efficient resource allocations when information about

relative values is dispersed across agents in an economy.1 Furthermore, markets are informationally

efficient and relatively simple to implement and maintain in comparison to other, more centralized

resource allocation mechanisms (Debreu (1959); Arrow (1964)). Their ability to induce efficient

allocations, coupled with their simplicity, has led to calls for the use of markets within firms for

allocating resources.2 In response, a number of organizations have developed and employed internal

markets. For example, BP Amoco created an internal market to allocate pollution permits across

business units, while the US Navy has utilized an internal market to fill certain jobs.3 In addition,

Ford has employed an experimental auction market for allocating cars to dealers, Intel has developed

an internal market for allocating production capacity, and Hewlett-Packard has created markets

for allocating computing power and conference rooms.4

In proposing the use of internal markets, one must recognize a fundamental difference between

internal markets and markets within an economy: preferences are exogenous in an economy and

endogenous within an organization. More specifically, preferences in internal markets are deter-

mined by the compensation schemes provided to the market participants. Hence, the efficiency of

an internal market is a function of the organization’s incentive system. In this paper, we study

the optimal design of contractual incentives to support the resource allocations implemented via
1See Hayek (1945).
2See, for example, Halal et al. (1993), Malone (2004), and Stuart (2005).
3See House and Victor (2006) and Jaffe (2003), respectively, for further details regarding the BP Amoco and US

Navy cases.
4For more on these and other examples, see IBM (2006) and Stuart (2005). Taylor (2006) describes an interesting

use of an internal market to direct the capital budgeting process.
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an internal market, and analyze the efficiency of the resulting allocation of resources.

The model we employ for our analysis consists of an owner (or principal) and two managers

(or agents). Each manager is hired to undertake a separate and independent project. The amount

of personal cost incurred by each manager to complete his project is uncertain when he is hired

and initiates his project. After each manager privately learns his personal cost to complete his

project, the principal uses an auction to allocate a single unit of an indivisible resource to one of

the managers.5 The resource reduces a manager’s personal cost to complete his project. After

the realization of his cost and the allocation of the resource, each manager decides whether or not

to complete his project. As a benchmark, we initially consider the first-best setting where the

managers’ realized costs are contractible. We then study how a second-price sealed-bid auction,

coupled with a fixed completion bonus, performs relative to the first-best. The combination of

this auction setup and the completion bonus creates a simple mechanism that is relatively easy to

maintain and implement.6

We find that the auction mechanism induces the first-best resource allocation and completion

decisions when each manager’s completion bonus equals his project’s completion value to the princi-

pal. Hence, when the managers’ bonuses fully impound the principal’s benefit of project completion,

the auction yields efficient resource allocation and project completion decisions. While such out-

comes may be socially efficient, they do not maximize the value of the principal’s expected utility.

In particular, inducing efficient resource allocations and project completion decisions requires that

the principal make excessively costly bonus payments. As a consequence, the principal chooses a

lower bonus, and settles for inefficient allocations and fewer project completions.

In the presence of private information, however, a more appropriate benchmark than first-best

is the outcome achieved under a direct revelation mechanism (see Myerson (1981)). As with the

second-best direct revelation mechanism, when the principal allocates the resource using the auction

mechanism, she chooses the managers’ bonuses to trade off the managers’ informational rents

against the efficiency of the resource allocation and project completion decisions. We show that the
5As an example of an indivisible resource, consider a consultant whose time constraints permit him to advise only

one of the managers.
6The second-price sealed-bid auction is one of the four “standard” types of auctions, the others being Dutch,

English, and second-price open-bid. An advantage of the second-price sealed-bid auction is that bidding one’s true

value for the resource is a dominant strategy. Under a fairly broad set of conditions, all four standard types of

auctions yield the same expected revenue to the auctioneer (the Revenue Equivalence Theorem). For a comprehensive

discussion of the auction literature, see Klemperer (2004).
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optimal trade-off results in the principal designing the managers’ bonuses so that the endogenous

value of the resource to each manager (and hence the amount each bids for the resource) is different

from the value to the principal of that manager receiving the resource. Thus, even though the

auction always results in the manager with the highest endogenous value for the resource winning

it, it may not always result in the manager whom the principal would most want to receive the

resource getting it. While our auction mechanism is inherently simpler to implement than the

second-best direct revelation mechanism, simplicity comes at a cost. We derive a precise set of

conditions under which the auction is able to attain the second-best benchmark. When these

conditions are not met, we identify the factors that determine the extent to which the auction

mechanism falls short of the second-best direct revelation benchmark.

In the setting discussed so far, each manager’s cost to complete his project was assumed to

be exogenously determined. In an extension of the model, we address a scenario in which these

costs are influenced by investments made by each manager, for example in skill or in cost-reducing

activities, where these investments are subject to moral hazard. In this case, the chosen incentives

have an additional role, that of influencing the managers’ investment in skill. Our main finding is

the characterization of settings in which the auction mechanism is robust to the presence of this

additional incentive problem.

An internal market is, in essence, a mechanism for establishing prices and allocating resources

within an organization. Therefore, our analysis relates to the vast accounting literature on transfer

pricing.7 A primary difference between our paper and the transfer pricing literature is that the

latter is concerned with the movement of products across divisions, while we study the competition

among divisions for the same resource. As such, our work has more in common with papers that

have looked at the allocation of central resources or services, in particular the literature pioneered

by Harris et al. (1982) (see Rajan and Reichelstein (2004) for a survey of this area of research).8

Our paper is clearly related to the large literature analyzing the efficiency of auctions in an

economy. The preponderance of this literature has analyzed the allocative efficiency of different

types of auctions when bidders are privately informed as to their valuations for the resource, and

those valuations are exogenously specified. In contrast, as noted earlier, when auctions are used
7A non-representative sample of recent work in this area includes Christensen and Demski (1998), Baldenius

(2000), Arya and Mittendorf (2004), and Baldenius and Reichelstein (2006); for a current survey of transfer pricing

practices, see Ernst & Young (2006).
8There is also a related theoretical and empirical literature in finance on the use of internal capital markets by

firms; see, for example, Lamont (1997), Stein (1997), Scharfstein and Stein (2000), and Gertner et al. (2002).
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within the firm to allocate resources, the bidders’ valuations of the resource are influenced by

their job duties and compensation. Thus, the principal, in choosing the managers’ compensation

contracts, must consider the effect that the contracts have on their valuations, their bids, and the

resulting resource allocation and project completion decisions.

There are two branches of the extant auctions literature that consider endogenous bidder valua-

tions for a resource. The first examines the effect of additional information on a bidder’s valuation,

the incentives for a bidder to release that information, and the incentives for a bidder to gather

additional information (see Milgrom and Weber (1982) and Bergemann and Valimaki (2006) for

a survey of the literature). The second examines the implications of changing the form of the

payment made by the winning bidder. For example, in the case of an auction for natural resource

extraction rights, the winning bidder could pay his bid plus a royalty on the resources extracted

in lieu of just paying his bid (see Riley (1988)). Our research is related to this second branch of

the auction literature, because we allow the bidder’s valuation of the resource to be affected by

the design of the auction. Closest to our work is that by Laffont and Tirole (1987), who examine

the auctioning of incentive contracts, as in a procurement setting.9 There are a number of differ-

ences between their paper and ours. In Laffont and Tirole (1987), the job itself is auctioned off

whereas, in our model, the agents are assigned the job ex ante and a helpful resource is auctioned

off. Further, the agents take actions after the auction in their model, while the agents take actions

before as well as after the auction in section 4 of our paper. Perhaps the most important difference

is that Laffont and Tirole (1987) assume that compensation can vary in the bids and the realized

project cost, thus enabling them to separate the auction design from the incentive contract design.

In contrast, we restrict attention to auctions with fixed completion bonuses. Our analysis is thus

in the spirit of recent work (see, for example, Rogerson (2003) and Chu and Sappington (2005))

that seeks to examine the efficiency of mechanisms that are easy to implement and that impose

lower informational requirements than the fully optimal, complex solution to the mechanism design

problem.

The following section introduces the model and the first-best benchmark. Section 3 analyzes the

auction mechanism and compares the outcome with the second-best direct revelation mechanism.

Section 4 introduces moral hazard to the auction mechanism and Section 5 concludes.
9See also McAfee and McMillan (1986), McAfee and McMillan (1987) and Riordan and Sappington (1987).
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2 The Model

Our model consists of a risk-neutral principal and two risk-neutral managers, 1 and 2. The principal

contracts with each manager to work on independent projects. At the time the principal and

managers contract, each manager is uncertain as to the personal cost he must incur to complete

his project. Once the projects are underway, each manager learns the cost to complete his project.

In particular, manager i learns that his cost is 1 − zi, where zi is the realization of a uniformly

distributed random variable z̃i with (normalized) support [0,1]; z̃1 and z̃2 are independent and

identically distributed.10 The principal has available an indivisible resource which, if allocated

to a manager, reduces that manager’s cost to complete his project. If manager i is allocated the

resource, his cost to complete the project is reduced to (1−β)(1−zi) where β ∈ [0, 1] and is publicly

known. Additionally, we assume that the managers are constrained in their wealth, and hence the

firm cannot “sell” the benefits of the tasks directly to the managers. Moreover, managers are free

to leave the firm at any time, and thus must receive their reservation payoff of zero if the principal

wants them to stay with the firm and complete their projects. Finally, the firm obtains a benefit

B > 0 if a project is completed (i.e., if both projects are completed, the firm receives 2B) and a

benefit of 0 if it is not completed. Given our scaling of the costs, and in order to avoid dealing with

degenerate settings in our analysis, we specify that B ≤ 2.

2.1 Benchmark

As a benchmark, consider the first-best case where the project completions and realizations z1 and

z2 are observable and contractible. Let z denote the minimum element of {z1, z2} and z denote

the maximum element of {z1, z2}. Table 1 provides the first-best resource allocation decisions,

completion decisions, and compensation levels for each possible {z1, z2} realization.

Insert Table 1 Here

To understand the conditions, note first that it is always optimal to allocate the resource to

the project that will be completed and has the largest cost to complete (lowest z) realization. It

follows that the resource should be allocated to the manager with realization z if both projects are

to be completed. However, if only one project is to be completed, it is optimal to complete the

project with realization z and allocate the resource to that project. Given these two observations,
10In Section 4, we allow manager i to improve the distribution of zi through costly investment.
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the first condition in the first column specifies when the completion of both projects dominates the

completion of just the most profitable project (i.e., the project associated with the larger z, z). If

this condition is satisfied, completion of both projects also dominates completion of neither project.

The first column of the next row contains the condition under which completion of just the most

profitable project dominates the completion of both projects and the completion of neither project.

The condition in the first column of the final row implies that the completion of neither project

dominates the completion of just the most profitable project. If this condition is met, completion

of neither project also dominates completion of both projects. The compensation in each case is

the amount necessary to satisfy each manager’s minimum utility constraint.

3 Analysis of The Auction Mechanism

As pointed out in the Introduction, simple auction mechanisms have proven to be efficient ways

to allocate resources when information within economies is dispersed across agents. To assess how

well an auction works within the context under consideration, we consider a sealed-bid second-

price auction for allocating the resource coupled with a contractual payment that is conditioned

on whether or not a manager completes his project. Under this auction mechanism, the manager

with the higher bid acquires the resource and has the lower bid, denoted p, deducted from his

compensation. We restrict attention to symmetric contracts and let c denote the bonus a manager

receives if he completes his project. Given that the managers are unable to ex ante commit to stay

with the firm for the entire game, the optimal fixed component of compensation is 0. Hence, we

do not incorporate a fixed component of compensation into the managers’ contracts.

In order to facilitate the characterization of the optimal contract and the resulting allocations,

we first assess how the managers behave for a given bonus, c. We assume that the managers play

the unique symmetric Nash equilibrium, which has the property that each manager’s dominant

strategy is to bid his personal valuation for the resource. Agent i’s valuation for the resource is

given by vi(zi):

vi =


0 0 ≤ zi ≤ 1− c

1−β

c− (1− β)(1− zi) 1− c
1−β ≤ zi ≤ 1− c

β(1− zi) 1− c ≤ zi ≤ 1

. (1)

Notice that the manager’s valuation function is non-monotonic in his cost realization, zi. The

reason is that a manager with a realization of zi < 1 − c
1−β will not complete the task, even if he
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is awarded the resource. On the other hand, a manager with 1 − c
1−β ≤ zi < 1 − c will complete

the project only if he is awarded the resource. Finally, a manager with zi ≥ 1 − c will always

complete his project. We refer to these managers as budget unconstrained and to managers in

the intermediate region (1 − c
1−β ≤ zi < 1 − c) as budget constrained. A budget constrained

manager’s value for the resource is c − (1 − β)(1 − zi) because this is the incremental benefit he

obtains from the resource and completing the project as opposed to not completing the project. A

budget unconstrained manager’s value for the resource is β(1− zi) because this is the incremental

benefit he obtains from receiving the resource and completing the project as opposed to completing

the project without the resource. Finally, a manager with zi < 1 − c
1−β assigns zero value to the

resource because he will not complete his project even if given the resource. Figure 1 graphically

illustrates the manager’s bidding strategy as a function of his cost realization.

Insert Figure 1 here

The single-peaked valuation function in Figure 1 drives the efficiency losses associated with our

internal auction mechanism. In the traditional auction literature, each manager bids based on his

exogenously endowed value for the resource. Further, his optimal bidding strategy is monotonic in

his value and, as a result, the resource is always allocated efficiently ex ante because the manager

who values the resource the most always bids the most and wins it. In our mechanism, as in

the traditional auction, each manager’s bid is monotonic in his value, which is determined by his

exogenous cost realization and the endogenous completion bonus. Furthermore, the manager who

values the resource the most always wins the resource. However, the resource allocation may not

be ex ante efficient because efficiency is defined from the principal’s perspective and is determined

by the agents’ cost realizations (z1, z2) rather than their endogenous values (v1, v2). Hence the

resource may not always be allocated efficiently under our auction mechanism.

To illustrate the efficiency loss attributable to the auction mechanism, assume that for real-

ization {z1, z2} it would be desirable for each manager to complete his project. In that case the

resource should be allocated to the manager with the higher cost (i.e. lower z realization). The

manager with the higher cost, however, will not necessarily bid a higher value in the auction be-

cause he may simply forego completion if he loses the auction. From Figure 1, note that if manager

1 receives a draw z1 = x and manager 2 receives z2 = y′, and in equilibrium each manager bids his

value, manager 2 will be awarded the resource and manager 1 will not complete his project, despite

the fact that both managers would have completed their project had manager 1 been awarded the
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resource.

Of course, the behavior of each manager is determined by his compensation so the potential for

the auction to fail to allocate the resource efficiently and induce efficient completion can be miti-

gated through the principal’s choice of contract. We next assess how the first-best completion and

allocation outcomes relate to the contract parameter, c. The following table provides the resource

allocation and completion strategies for each possible {z1, z2} under the auction mechanism.

Insert Table 2 here

The most telling observation of the table is that the resource allocation and product completion

strategies are “identical” to those in the first-best setting except that the contract bonus parameter,

c, replaces the benefit of completion to the firm, B. Hence, the auction mechanism allocates the

resource and induces the completion decisions that are efficient for the two managers given their

contract parameters; however, this need not be the efficient outcome for the principal. Indeed,

the resource allocation and completion decisions replicate those of the first-best if and only if the

manager’s bonus (i.e., completion benefit), c, equals the firm’s completion benefit, B.

3.1 The Optimal Bonus

The analysis above implies that the efficiency of the resource allocation and completion decisions

induced with the internal auction mechanism can achieve the first-best if the firm gives the “right”

bonus incentive to the managers. Of course, the principal does not care about the ex-ante efficiency

of the resource allocations and completion decisions when devising the optimal bonus; she cares

only about her own expected profits. Hence, setting c = B to induce efficient resource allocations

and completion decisions may not be optimal.

The principal’s ex ante payoff is determined by three components: the expected completion

benefits, the expected auction revenues (i.e., the expected amount deducted from the winning

manager’s compensation in payment for the resource), and the expected completion bonus pay-

ments. To facilitate the process of solving for the optimal bonus, it is useful to assess each of these

components and identify how each varies in the bonus c. Consider first the expected completion

benefits, which equals the expected number of projects completed times the completion benefit

B. If c = 1, any manager type will complete his project, even without help. In fact the same

is true for any bonus coefficient c greater than 1. Clearly, as c decreases below 1, an increasing

number of managers will not complete their task without help, and for c < 1−β, managers with an
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exceedingly high cost of completing their project will not complete their task even if awarded the

resource. From Figure 1, it is clear that decreasing c (when c < 1) causes the increasing portion of

manager i’s valuation, vi(zi), to increase which, in turn, decreases the expected number of projects

completed. More formally, we have the following lemma.11

Lemma 1 The expected number of projects completed under the auction mechanism with comple-

tion bonus c is:

CP =


2 c ≥ 1

2β−(1−c)2

β 1 > c ≥ 1− β

(2(1−β)−βc)c
(1−β)2

0 ≤ c < 1− β

CP is increasing in c.

Consider next the expected amount of compensation that the winning manager will payback

the principal in return for the resource. We refer to the payment as the owner’s “revenue.” From

Figure 1 we see that, when c increases, every type of manager zi has an equal or greater value for

the resource, which in turn drives up bids and ultimately the owner’s expected revenue. Hence, we

have Lemma 2.

Lemma 2 The principal’s expected revenue from allocating the resource under the auction mech-

anism with completion bonus c is given by:

ER =


βc3

3(1−β)2
0 ≤ c < 1− β

β2+(c−1)3

3β 1− β ≤ c < 1

β
3 c ≥ 1

.

ER is increasing in c.

Insert Figure 2 here

The previous two lemmas indicate that increases in c can increase the principal’s welfare in two

ways. First, increases in c increase the expected number of projects completed, which increases

the expected completion benefits. Second, increases in c increase the revenues obtained from the
11Proofs to all results are in the Appendix.
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auction. Of course, the principal cannot increase his welfare by raising c indefinitely because c also

determines the expected completion bonus the principal must pay each manager. The expected

completion bonus equals the expected number of projects completed multiplied by c. It follows that

the expected completion bonus increases directly in c and, from Lemma 1, indirectly in c through

the effect of c on the expected number of projects completed. Hence, the optimal c must trade off

the benefit of a higher c on the first two components, the expected completion benefits and the

expected auction revenues, against the cost of a higher c on the third component, the expected

bonus payments. A formal analysis of this trade-off yields Proposition 1.

Proposition 1 The owner’s optimal choice of c is given by:

c∗ =


B
2 B ≤ 2(1− β)

1
4

(
3 + B −

√
(B − 1)2 + 8β

)
< 1 B > 2(1− β)

.

The optimal payment c∗ is continuous in B and β, however the induced behavior of the managers

is vastly different when B < 2(1−β) and B ≥ 2(1−β). When B < 2(1−β), it is not worthwhile to

the principal for a sufficiently “bad” type manager to complete his project, even if awarded help.

In Figure 1, note that types zi < 1 − c
1−β will not complete their tasks even if awarded help, as

(1 − zi)(1 − β) > c. On the other hand, when B ≥ 2(1 − β), the optimal bonus c∗ is sufficiently

large that any type of manager zi will complete his task if assigned the resource.12

We turn next to understanding the characteristics of the optimal auction mechanism, as well

as the manner in which they respond to changes in the exogenous parameters. We start with a key

comparative statics result on the choice of bonus coefficient.13

Corollary 1 When the auction mechanism is employed, the optimal bonus is increasing in the

completion benefit and decreasing in the return to the resource: ∂c∗

∂B > 0, ∂c∗

∂β ≤ 0.

Intuitively, the optimal bonus increases in the benefit of completion to the firm because increas-

ing the bonus makes it more likely that the manager will complete the project. In addition, the

bonus is decreasing in the return to the help resource, β . The intuition underlying this comparative

static is that increases in the productivity of the resource naturally make the value of the resource
12We are implicitly assuming that a manager who is indifferent between completing his task and abandoning it,

resolves the matter by completing his task.
13The proofs to all Corollaries are omitted.
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greater for each manager. Hence, it takes a smaller completion bonus to induce the managers to

complete the project with help, which allows the firm to retain a larger fraction of the total surplus.

As indicated by Proposition 1, the optimal bonus is always set below that which implements

the first-best resource allocation and completion decisions (c = B). As a consequence, we have the

following result.

Corollary 2 For any cost realization, {z1, z2}, the number of projects completed in the first-best

setting exceeds the number of projects completed when the auction mechanism is employed.

A direct implication of Corollary 2 is that the auction mechanism leads to poor follow-through

on projects relative to the first-best case. With respect to resource allocations, Corollary 2 also

implies that, under the auction mechanism and its associated optimal completion bonus, there

exist cost realizations where the firm would like to override the auction outcome and allocate

the resource to the losing manager. Consider, for example, the case where B < 2(1 − β), hence

c∗ = B/2, and the cost realization is such that 1 − z < c∗ < 1 − z < c∗/(1 − β) and β(1 − z) >

c∗− (1−β)(1− z). In this case, the manager with the low cost realization, z, wins the auction and

pays c∗ − (1 − β)(1 − z). Further, only the low cost manager completes the project. Given that

outcome, the firm would prefer to nullify the auction, refund the payment to the low cost manager,

and simply give the resource to the high cost manager. Why? Doing so decreases the auction

revenues by c∗− (1−β)(1− z) = B
2 − (1−β)(1− z) and, by inducing the high cost manager to also

complete the project, increases the net completion benefit by B− c∗ = B/2 > B/2− (1−β)(1− z).

In summary, the auction mechanism fails to induce first-best efficient allocations of the resource

and the completion decisions.

3.2 The Second-Best Direct Revelation Mechanism

When managers have private information about their operating units, the first-best is an overly

stringent benchmark for evaluating the efficiency of the auction mechanism. The more appropriate

standard is the outcome attained under the optimal direct revelation mechanism. In this section,

we derive the outcomes attained under such an optimal second-best contract, and then compare

these outcomes with those attained by the optimal auction mechanism.

In deriving the optimal contract for the second-best case, we continue to assume that each

manager must attain a reservation level of expected utility, conditional upon the type realizations,

of 0. Let xi(zi, z−i) ≥ 0 denote the payment made to manager i conditional upon i reporting a
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cost of zi and the other manager reporting a cost of z−i. Also, let ki(zi, z−i) be 0 or 1 depending

upon whether manager i is required to complete the project conditional upon the two reports, and

pi(zi, z−i) be the probability that manager i receives help conditional upon the two reports. Then,

the principal’s optimal contracting problem solves:

max{x(·),k(·),p(·)}

∫ 1

0

∫ 1

0

2∑
i=1

(Bki(zi, z−i)− xi(zi, z−i)) f1(z1)f2(z2)dz1dz2

subject to:

xi(zi, z−i)− ki(zi, z−i)(1− zi)(1− βpi(zi, z−i)) ≥ 0 ∀zi, z−i

zi ∈ arg max
s

E−i [xi(s, z−i)− ki(s, z−i)(1− zi)(1− βpi(s, z−i))] ∀zi

pi(·, ·) ∈ [0, 1] ∀i

p1(zi, z−i) + p2(zi, z−i) ≤ 1 ∀zi, z−i

xi(·, ·) ≥ 0 ∀i

The first constraint is the ex-post reservation constraint, the second is the truth-telling con-

straint, the third and fourth are constraints on the probabilities, and the fifth is the nonnegativity

constraint on managerial compensation.

3.2.1 Second-Best Resource Allocation and Completion Decisions

Below, we characterize the optimal second-best solution. As before, we let z denote the minimum

element of the realization {z1, z2} and z denote the maximum element of the realization {z1, z2}.

Proposition 2 Under any second-best contract the resource is allocated to the manager with the

highest cost that is required to complete his project: pi(zi, z−i) = 1 if and only if zi = z and

ki(zi, z−i) = 1 or zi = z and k−i(zi, z−i) = 0. Furthermore, manager i is asked to complete his

project if and only if B ≥ 2(1− zi)(1− βpi(zi, z−i)).

We can employ the conditions in Proposition 2 to summarize the second-best resource allocation

and completion decisions in a manner that facilitates comparison with those of the first-best and

those attained under the auction mechanism.

Insert Table 3 here
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The resource allocation and completion table in the second-best setting is the same as that in

the first-best setting except for the first column, where the B expressions in Table 1 have been

replaced by B/2 expressions in Table 3. Table 3 halves the benefit relative to the first-best setting,

because in the second-best setting, the principal must pay the managers informational rents which

effectively doubles their individual cost of completing each project. In particular, when the principal

decides which projects should go forward, he faces the virtual cost which, because of the uniform

probability assumption, is double each manager’s true cost of completing his project. Because the

managers’ virtual costs exceed their costs in the first-best setting, the principal optimally asks that

fewer projects be completed. This observation that the firm foregoes completed projects to induce

revelation in a less costly manner is consistent with the general adverse selection literature.

What is of particular interest here is a comparison of the resource allocation and completion

decisions under our auction mechanism with those under the second-best contract. Proposition 1,

coupled with Tables 2 and 3, yield Corollary 3.

Corollary 3 If B ≤ 2(1 − β), the resource allocation and completion decisions in the second-

best are replicated with the optimal auction mechanism. If B > 2(1 − β), the number of projects

completed for any cost realization, {z1, z2}, in the second-best setting exceeds the number of projects

completed when the auction mechanism is employed.

Corollary 3 implies that the auction mechanism replicates the resource allocations and com-

pletion decisions attained under a second-best contract in cases where the completion benefit is

small or the returns to the resource are small. This observation may appear surprising in light

of our analysis of the auction mechanism, which suggested inherent resource allocation inefficien-

cies arising from the bidding behavior in the auction. The corollary demonstrates that even the

second-best mechanism incorporates such inefficiencies in order to mitigate the informational rents

earned by the managers. However, in other cases, the auction mechanism fails to replicate the

second-best resource allocation and completion decisions. Instead, fewer projects are completed

with the market mechanism than would be under a second-best mechanism.

The fact that the auction mechanism replicates the second-best resource allocation and project

completion decisions when B ≤ 2(1 − β) suggests that the auction mechanism may attain the

second-best benchmark in such cases. The following proposition demonstrates that this is indeed

true.

Proposition 3 The auction mechanism attains the benchmark second-best level of performance if
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and only if B ≤ 2(1− β) .

Note that the second-best regime allocates the resource, determines which projects are com-

pleted, and compensates the employees as a function of the two announcements made.14 The

auction mechanism, in contrast, does not have the same degrees of freedom to establish state con-

tingent pay-offs. Instead, the auction mechanism uses the two announcements (i.e., the bids) to

determine who should be allocated the resource and how much the winner should pay for the re-

source. A fixed bonus c is then employed to motivate the managers in their bidding and project

completion decisions. Surprisingly, even with the disadvantage of fewer degrees of freedom, the

auction mechanism manages to attain the second-best benchmark when the principal’s benefit B

and the helpfulness of the resource β are limited (i.e., B ≤ 2(1− β)).

In contrast, for larger values of B and β (i.e., B > 2(1 − β)) the auction mechanism does not

attain the second-best benchmark. For large values of B, the principal decides not to pay B/2 as

a completion bonus, because the bonus becomes exceedingly large. Instead, the principal opts for

a smaller bonus of c∗ < B/2. The lowered bonus, in turn, implies fewer projects will be completed

with the auction mechanism relative to the second-best mechanism.

Because the auction mechanism fails to achieve the second-best when B > 2(1 − β), it is

important to assess the determinants of the opportunity loss from using the auction. The next

result provides a complete characterization of the impact of the exogenous factors in the model,

B and β, on the difference in overall value from employing the auction relative to the full-blown

second-best mechanism.

Proposition 4 If B > 2(1 − β), the value of the principal’s objective under the second-best less

the value under the auction mechanism is an increasing function of B and β.

Under the second-best, an increase in B or β causes the principal to induce completion for

more state realizations due to the increased direct return to completion, captured by B, or the

decreased cost of completion, captured by β. In order for the auction mechanism to replicate

the second-best resource allocation and completion decisions, the completion bonus paid to the

managers must be given by c = B/2. For large values of B, however, paying the managers B/2

to replicate the second-best resource allocation and completion decisions is too costly because the
14We should also note that the degrees of contracting freedom are sufficiently large, because of the managers’

risk-neutrality, that there are a continuum of optimal second-best contracts. This implies that revelation can be

efficiently induced by any compensation scheme that has the appropriate expected information rents.
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expected payments received in the auction plus the expected returns from completion are insufficient

to cover the greater expected compensation. Instead, the principal optimally pays the managers

c = 1
4

(
3 + B −

√
(B − 1)2 + 8β

)
< B/2. The extent of this deviation from the second-best is

increasing in B and β, and, as a consequence, the auction mechanism falls farther from the second-

best when B or β increase.

As an example, Figure 3 plots the efficiency of the auction mechanism relative to the second-best

mechanism. The graphs only plot the relative efficiency of the auction mechanism for B > 2(1−β),

because the auction mechanism attains the second-best benchmark when B ≤ 2(1− β).

Insert Figure 3 here

4 Moral Hazard in Cost Reduction

To this point we have considered a scenario in which the managers are exogenously endowed with

their cost-to-complete realizations. This is arguably restrictive since managers often have the ability

to influence the cost of their projects via ex-ante activities such as research, planning or improved

search. Moreover, such investments are typically either privately undertaken or are otherwise

extremely costly to verify and use in a formal contract. In this section, we examine the robustness

of the auction mechanism to the presence of such investments, as well as the impact of the moral

hazard considerations they introduce.

To model ex-ante investments, we specify that each manager can initially expend effort that

affects the distribution of his type zi. In particular, we assume that manager i can take action

ei, where ei ∈ {0, 1}, and that action affects the probability distribution over the cost to complete

his project. Without loss of generality, suppose the cost to taking action ei = 0 is zero and the

manager incurs disutility ν when he selects ei = 1. As before, we will assume that manger i realizes

a cost of 1− zi to finish his project. However we now assume the distribution of zi is related to the

manager’s choice of effort ei in the following way:

f(zi, ei) =


1 ei = 1

2− 2zi ei = 0
.

Thus, zi is uniformly distributed over [0, 1] if ei = 1. If ei = 0, the support for zi is still [0, 1], but

the marginal density is increasing in zi.15

15This is the same formulation used to derive the probabilities of completion from Lemma 1.
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When the manager picks ei = 0, we shall say that he has taken no effort, and when he chooses

ei = 1 we shall say that he has exerted effort. We continue to assume that each manager privately

observes his own cost to complete. Moreover, each manager’s action ei is unobserved by the

principal and the other manager, and is subject to moral hazard. Finally, we continue to assume

the managers are free to leave the firm at any time, and hence, each manager must always receive

a level of utility at least as large as that offered by their outside option, which is 0.

The second-best benchmark contract changes in this setting because the principal’s preference

over e1 and e2 must be considered. We will assume that the principal prefers e1 = e2 = 1, which

implicitly imposes an upper limit on ν, each manager’s cost of effort. Thus, the only difference be-

tween this section and the preceding one is that the principal must also now motivate the managers

to expend effort ei = 1 to reduce their anticipated completion costs.

We begin by examining manager i’s preferences over ei in the auction mechanism. Managers

face two countervailing incentives with respect to their choice of ei. By exerting effort, manager

i increases his probability of getting a large zi. A large zi, in turn, increases the probability that

the manager completes his project and secures the completion bonus c. On the other hand. by

exerting no effort, manager i increases the probability that he will receive the rents associated

with obtaining the help resource. Thus, each manager must balance the advantage of exerting

effort – increasing the probability of completing the project and receiving the bonus c – versus the

disadvantage of exerting effort – completing the project without the cost-reducing resource. The

following lemma characterizes the incentives facing for each manager to exert effort as a function

of the other manager’s choice of effort.

Lemma 3 Agent i’s incentive to exert effort is decreasing in manager −i’s effort.

The proof to Lemma 3 shows that manager i’s preference for shirking increases as the other

manager works. To understand why, recall that the resource is awarded to the manager with the

highest cost to completion, conditional on the manager choosing to complete his project. As such, if

manager −i works, the probability of manager i being awarded the resource increases if he decides

to shirk. The only countervailing force to induce the manager i to work is the opportunity to earn

rents upon completing a project, i.e., the probability of completing a project increases if manager

i works.

To simplify the notation, let N(β, c, ν) = s(1, 1) − s(0, 1) − ν, the marginal surplus or loss

a manager obtains by exerting effort assuming that the other manager is exerting effort as well.

16



If N(β, c, ν) is positive, both managers exerting effort is a Nash equilibrium. For sufficiently

large values of ν, however, the principal will be unable to motivate both managers to exert effort

regardless of c. This follows from the fact that the manager will opt to incur more expected costs

ex post (i.e., a higher expected zi) in lieu of incurring higher costs ex ante (i.e., incurring ν). As

shown in the following proposition, when ν is sufficiently small, the principal will be able to induce

{e1, e2} = {1, 1} as a Nash equilibrium for a sufficiently large completion bonus, c.

Proposition 5 For sufficiently small ν, the principal can induce e1 = e2 = 1 to be a Nash equilib-

rium by setting c ≥ ĉ(β, ν). Moreover:

∂

∂β
ĉ(β, ν) ≥ 0;

∂

∂ν
ĉ(β, ν) ≥ 0.

When the completion bonus exceeds the threshold ĉ(β, ν), each manager prefers effort to no

effort. Although exerting no effort increases the probability that the manager will win the resource,

it also increases the probability that the manager does not finish his project and forfeits the bonus.

The analysis to this point raises the question of whether the no-moral-hazard optimal completion

bonus, c∗, can ever suffice to motivate effort. The following example demonstrates the possibility

of c∗ being sufficiently large to satisfy the moral hazard problem.

Example: Suppose the Principal earns B = 3/2 dollars for the completion of either project.

Moreover, suppose the resource would cut either manager’s cost in half, that is β = 1/2. The

optimal bonus without moral hazard is given by 1
8(9 −

√
17). A manager’s ex-ante expected

surplus from exerting effort is given by 1
192(123 − 19

√
17). On the other hand, the manager’s

expected surplus if he exerts no effort is 1
768(295 − 47

√
17). Clearly, for any cost of effort ν <

1
192(123− 19

√
17)− 1

768(295− 47
√

17) ≈ 0.10082, the manager will find it worthwhile to work hard

in order to improve his chances of obtaining a low cost (large z). On the other hand, for ν > 0.1,

the principal must increase the size of the bonus in order to motivate the manager.

As the example shows, the no-moral-hazard contract may offer sufficient rents to induce the

managers to engage in costly effort to lower their expected completion costs. To get a better handle

as to when effort can be induced at no incremental cost, we exploit some properties of N(β, c, ν).

In the proof to Proposition 5, N(β, c, ν) is shown to be minimized at c = 1−β
1+2β . Hence, if effort

is implemented as a Nash equilibrium when c∗ > 1−β
1+2β , as is always the case when B ≥ 2(1 − β),
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then any upward shock to the principal’s project completion benefit B will result in a new bonus,

c∗, which will again implement effort by both managers in a Nash equilibrium. Similarly, if B <

2(1−β) and c∗ < 1−β
1+2β , if c∗ motivates managers to exert effort, then the managers will continue to

exert effort following any revision of the bonus, c∗, following a downward shock to the principal’s

completion benefit B.

Characterizing the optimal second-best solution to this problem would be very complicated. If

the second-best mechanism without moral hazard does not induce the managers to exert effort,

then the principal must increase the rents paid to the managers with high type realizations, as

those realizations are more likely to be the product of the manager having exerted effort. Further,

the principal would have to determine whether or not to alter the quantity of projects completed.16

Although previous work has considered moral hazard alongside adverse selection, in these models

the moral hazard does not alter the managers’ private information. Without a second-best bench-

mark, we are unable to assess the efficiency loss associated with the use of our auction mechanism.

Instead, for the remainder of this section, we characterize the optimal auction mechanism when the

managers’ efforts influence their type realizations.

Proposition 5 established that for a suitably large completion bonus c, the principal can make

{e1, e2} = {1, 1} a Nash equilibrium, yet the principal may wish to make both managers exerting

effort the unique Nash equilibrium. There exists a literature on implementation of a unique Nash

equilibrium, albeit the literature relies on increasing the message space.17 The following proposition,

however, demonstrates that whenever the auction mechanism supports a Nash equilibrium in which

both managers exert effort, that equilibrium is unique.

Proposition 6 If both managers exerting effort is a Nash equilibrium (c ≥ ĉ), then both managers

exerting effort is the unique Nash equilibrium.

The proposition shows that if both managers exert effort in a Nash equilibrium, then that

equilibrium must be the unique Nash equilibrium. To illustrate, consider our earlier example where

B = 3/2 and β = 1/2. In order for effort to be a unique Nash equilibrium choice for both managers,

from the proposition, the principal must ensure that exerting effort is a dominant strategy. We have

already shown that exerting effort is a best response to the other manager exerting effort. Hence,

we assess whether exerting effort is also a best response to the other manager not exerting effort.
16For a simple example where moral hazard followed by adverse selection calls for a first-best production schedule,

see Laffont and Martimort (2002) p. 296-298.
17See, for example, Ma (1988) and Moore and Repullo (1990).
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A manager who exerts effort while his peer does not expects to earn a surplus of 1
768(359−47

√
17),

whereas if the manager also does not exert effort, he only expects to earn 1
1280(43

√
17 − 35).

The difference, which is approximately 0.10396, is positive which, consistent with the result in

Proposition 6, implies that exerting effort is a dominant strategy.

5 Conclusion

In this paper we address the issue of allocating resources within a firm in which two managers are

hired to implement two independent projects. Each manager’s cost to complete his project is a

random variable that he privately observes after being hired. Subsequently, the firm must allocate a

resource, which reduces either manager’s cost of completing his project, to one of the managers. The

standard approach to this type of problem in the economics and accounting literature since the work

of Harris et al. (1982) and Myerson (1981) has been to formulate the problem as a revelation game

and employ a direct revelation mechanism. However, direct mechanisms are generally complex

and, as a result, are costly to implement. Increasingly, firms are turning to the internal use of

markets, which have a demonstrated capacity for efficient allocation of resources within an economy.

Our analysis characterizes the optimal specification of a simple internal auction and examines its

effectiveness relative to that of a second-best mechanism.

We highlight that a major difference between an auction in an economy and within a firm is

that the valuations of the participants are (typically) exogenously given in the former case, whereas

they are endogenously determined through contractual incentives established by the principal in

the latter case. We show that this difference between implementing an auction in an economy

and a firm results in different optimal bidding strategies: in economies, the bidding strategies are

monotonic in the underlying types of the participants whereas within firms, the bidding strategies

may be non-monotonic. This difference implies that, within a firm, while the manager with the

highest endogenous value for the resource always wins the resource, he is not always the manager

whom the principal wishes to receive the resource. Not surprisingly, we find that this source of

inefficiency may cause the auction mechanism to fall short of the first-best. However, we provide

necessary and sufficient conditions for our auction mechanism to attain second-best efficiency. In

cases where the auction falls short of that benchmark, we identify the primary factors that determine

the loss in efficiency from implementing an auction. Finally, we extend the primary model to a

setting where each manager affects the distribution of his cost realization through the expenditure
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of private effort. In this setting, we identify circumstances under which the additional moral hazard

problem is settled at no incremental cost to the principal. Overall, our results speak to the dramatic

performance of relatively simple market mechanisms and associated incentive systems in resolving

resource allocation problems within firms.

From a technical standpoint, the results in our paper can be extended in at least two directions.

One extension would solve for the optimal second-best revelation mechanism when the managers

also face a moral hazard problem, and compare the results to those generated by our market

mechanism. We conjecture that the market mechanism continues to come close to the second-

best outcome. A second extension would generalize the moral hazard problem of Section 4 to a

continuous task with a generic distributional outcome. Again, we expect our results to be robust to

such a generalized setting, although it would be interesting to characterize precisely how the moral

hazard environment affects the performance of the market mechanism relative to the second-best

benchmark.
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6 Appendix

Proof of Lemma 1

Let P2 denote the probability of completing both projects, and similarly P1 and P0 denote the

probability of completing one project and no projects, respectively. Under the auction mechanism,

we will show that:

P2 =


1 c ≥ 1

β−(1−c)2

β 1 > c ≥ 1− β

c2

1−β 0 ≤ c < 1− β

P1 =


0 c ≥ 1

(1−c)2

β 1 > c ≥ 1− β

(2+β(−2+c)−2c)c
(1−β)2

0 ≤ c < 1− β

P0 =


0 c ≥ 1

0 1 > c ≥ 1− β(
1− c

1−β

)2
0 ≤ c < 1− β

The expression for CP and its monotonicity follow directly from the expressions above. We

present the analysis for a more general distribution function so that the results derived in this

section can be reused in Section 4, where managers can affect their cost realizations by undertaking

cost-reducing activities. We assume that the density of manager i’s cost realization zi is given by

f(zi, ei) = (2− 2zi)(1− ei) + ei, where ei denotes manager i’s choice of effort. We define F (zi, ei)

to be the corresponding cumulative distribution function. Until Section 4, ei ≡ 1, so the density is

uniform over the interval [0, 1].

If c ≥ 1, then both managers will always find it profitable to complete their projects, because

their payoff for completion c always exceeds their cost of completion.

Next, suppose 1 − β ≤ c < 1. Now a manager will always complete his task if he receives

the resource (by construction), and hence, assuming the principal always offers the resource to

one of the managers, the probability of no tasks being completed is zero. On the other hand,

the probability that both managers complete their projects is given by the probability that both

managers are budget unconstrained (zi > 1 − c for i = 1, 2) plus the probability that only one
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manager is budget constrained, yet values the resource more than the unconstrained manager.

Formally, the probability of both tasks being completed, which we denote by P2(·), is given by:

(1− F (1− c, e1))(1− F (1− c, e2)) +
∫ 1−c

0
[(1− F (Z(s), e1))f(s, e2) + (1− F (Z(s), e1))f(s, e1)] ds. (2)

Here, Z(s) is the type of budget unconstrained manager that values the resource as much as

a budget constrained manager with type s.18 In particular, Z(s) = 1 − c−(1−β)(1−s)
β . Letting

P2(e1, e2, β, c) denote the probability that both tasks are completed given that manager 1 puts

forth effort e1 and manager 2 works e2, we can solve (2) to obtain:

P2(e1, e2, β, c) =
−1
3β2


6β − 3β2 − 3 + 8c− 8βc− 6c2 + c4 + 2βc4

−(e1 + e2)(1− c)2(c2 + c− 2 + 2β(1 + c + c2))

+e1e2(c2(1 + 2β) + β − 1)

 (3)

Setting e1 = e2 = 1 in (3), the probability of both tasks being completed when 1 − β ≤ c < 1

reduces to P2(1, 1, β, c) = β−(1−c)2

β .

Finally, if c < 1−β, then we are no longer assured that a manager who receives help will complete

his task (see Figure 1). In particular, if zi < 1 − c
1−β , then manager i will not complete his task,

regardless of whether the resource is allocated to him or not. In this instance, the probability of

both tasks being completed is given by:

(1− F (1− c, e1))(1− F (1− c, e2)) +
∫ 1−c

1− c
1−β

[(1− F (Z(s), e1))f(s, e2) + (1− F (Z(s), e1))f(s, e1)] ds. (4)

Note that the integral in (4) is identical to that of (2), except that the bounds of integration are

changed to reflect the fact that not all managers will complete their tasks in the presence of the

resource. Solving for (4), we obtain:

P2(e1, e2, β, c) =
c2

3(1− β)2

 (2β − 3)(e2(c− 1)− c)c

+e1

(
(2β − 3)(c− 1)c + e2(3(c− 1)2 + β(4c− 2c2 − 3))

)
 (5)

Again, assuming e1 = e2 = 1 in (5), when c < 1−β, we can write P2(1, 1, β, c) = c2

1−β . Rather than

solve directly for P1, we instead solve for P0, and obtain P1 = 1−P0−P2. Neither manager will

complete his project if both have a realization z ∈
[
0, 1− c

1−β

]
, hence we can write:

18In Figure 1, Z(x) = y.
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P0 = F

[
1− c

1− β
, e1

]
F

[
1− c

1− β
, e2

]
=

(β + c− 1)2(c(e1 − 1) + β − 1)(c(e2 − 1) + β − 1)
(1− β)4

.

When e1 = e2 = 1, P0 reduces to
(
1− c

1−β

)2
.�

Proof of Lemma 2

In a second price auction, the principal’s expected revenue is given by the expected second-order

statistic. To facilitate the proof, we make a change of variables from the managers’ types, zi, to

their valuations, vi(zi). The distribution of the managers’ values when c < 1− β is different from

the distribution when c ≥ 1− β; in the former case, because managers with zi ∈ [0, 1− c
1−β ] place

no value on the resource, a mass exists at the zero valuation.

We begin with the case where 1 > c ≥ 1− β, which corresponds to the dotted line in figure 2.

Let g(v, ei) denote the density of manager i’s value for the resource after taking action ei. Then,

from the valuations found in (1), we can write:

g(v; ei) =


1
β f
(
1− v

β , ei

)
v < c + β − 1

1
β f
(
1− v

β , ei

)
+ 1

1−β f
(
1 + v−c

1−β , ei

)
c + β − 1 < v < cβ

(6)

The split in the distribution of values reflects the fact that when c ≥ 1 − β, the budget con-

strained and budget unconstrained managers share a limited set of values. Note that only budget

unconstrained managers will have values less than or equal to c + β − 1, whereas both types of

managers can have valuations between c + β − 1 and cβ.

We can calculate the cumulative distribution functions from (6) as:

G(v; ei) =


∫ c−(1−β)
0

(
1
β f
(
1− s

β , ei

))
ds v < c + β − 1∫ v

c−(1−β)

(
1
β f
(
1− s

β , ei

)
+ 1

1−β f
(
1 + s−c

1−β , ei

))
ds c + β − 1 ≤ v ≤ cβ

Solving, we have:

G(v; ei) =



v(ei(β−v)+v)
β2 v < c + β − 1

1
(1−β)2β2

β4 + β3(eic− 2)− (ei − 1)v2 + βv(ei − 2v(1− ei))

+β2(1− c2 + 2cv + ei(c2 − c− 2cv − v))

 c + β − 1 ≤ v ≤ cβ
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Because the expected revenue is given by the expected second order statistic of the managers’

values, we can use standard formulas involving the cumulative distribution function to obtain:

ER(e1, e2) =
∫ cβ

0
s (g(s, e1)(1−G(s, e2)) + g(s, e2)(1−G(s, e1)) ds

Solving, we find that:

ER(e1, e2, c) =
1

60β2


4(8β3 + (1− c)4(4 + c) + 2β(c− 1)3(6 + 3c + c2))

+(e1 + e2)(−7β3 − (1− c)4(11 + 4c)− 2β(c− 1)3(9 + 7c + 4c2))

+2e1e2(β3 + (1− c)4(3 + 2c) + 2β(c− 1)3(2 + c + 2c2)


If e1 = e2 = 1, then ER(1, 1, c) = β2+(c−1)3

3β when 1 − β < c ≤ 1. When c > 1, the managers’

valuations follow the thin line in Figure 2 where both managers always finish their projects (as in

the case of c = 1). Hence, when c > 1, the bonus parameter, c, does not play any role in either the

probability of finishing or the value either manager attaches to winning the resource (beyond the

case where c = 1).

Finally, when c < 1− β, both types of managers can have valuations between 0 and cβ, as the

boldface line indicates in Figure 2. However, there exists a mass of types with value 0. We can

thus write the density of values as:

g(v; ei) =
1
β

f

(
1− v

β
, ei

)
+

1
1− β

f

(
1 +

v − c

1− β
, ei

)
0 < v ≤ cβ (7)

P (v = 0; ei) =
∫ 0

c−(1−β)

1
1− β

f

(
1 +

s− c

1− β
, ei

)
ds (8)

From (8), we can write the cumulative distribution function as:

G(v; ei) =
∫ v

0

(
1

1− β
f

(
s− c

1− β
, ei

)
+

1
β

f

(
1− s

β
, ei

))
ds +

∫ 0

c−(1−β)

1
1− β

f

(
1 +

s− c

1− β
, ei

)
ds.

We can now solve for the expected revenue as follows:

ER(e1, e2) =
∫ cβ

0
s (g[s, e1](1−G(s, e2)) + g[s, e2](1−G(s, e1))) ds

=
1

60(1− β)4

βc3(10e1e2(1− β)2 − 5c(β − 1)(2e2 + e1(3− 5e2 + 2β(e2 − 1))))

+2(e1 − 1)(e2 − 1)(8 + β(2β − 7))

 .
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Note that the expected revenue calculation above omits the calculation at the mass v = 0 be-

cause whenever at least one manager values the resource at zero, the other manager will obtain the

resource free of charge. In the present setting where e1 = e2 = 1, we have ER(e1, e2) = βc3

3(1−β)2

when c < 1− β.�

Proof of Proposition 1

Let πcb denote the principal’s total expected profits. Recall that for values of c greater than

1 − β, any type of manager who receives the resource will complete his task; when c is less than

1−β, a manager may not wish to complete his task even if he is awarded the resource. If c = 1−β,

the worst type of manager is indifferent between completing his task and abandoning it. We will

show that the two different representation of πcb yield the same value when the bonus coefficient c

is set at 1− β.

We begin by considering the case where the principal sets c > 1− β. Then we can write:

πcb = ER[1, 1] + (B − c)(1 + P2(1, 1)) =
β2 + 6β(B − c)− (1 + 3B − 4c)(1− c)2

3β
. (9)

Note that πcb is a cubic in c, and the coefficient of c3 is positive. The two solutions to ∂
∂cπ

cb = 0

are given by 1
4(3 + B −

√
(B − 1)2 + 8β) and 1

4(3 + B +
√

(B − 1)2 + 8β). As such, the principal’s

profits are increasing for c ≤ 1
4(3 + B −

√
(B − 1)2 + 8β) and c ≥ 1

4(3 + B +
√

(B − 1)2 + 8β).

However, note that 1
4(3 + B +

√
(B − 1)2 + 8β) ≥ 1, and hence cannot be a valid solution as we

have already shown that c ≤ 1. Thus, when we restrict c > 1 − β, the solution to the principal’s

problem will always be 1
4(3+B−

√
(B − 1)2 + 8β), as long as this expression is greater than 1−β, or

equivalently, provided B > 2(1−β). Alternatively, if B ≤ 2(1−β), i.e., 1
4(3+B−

√
(B − 1)2 + 8β) ≤

1− β, then the optimal solution sets the bonus c = 1− β.

We now drop the earlier assumption that the principal requires any recipient of the resource to

complete his project, and hence restrict the bonus coefficient c to be less than 1−β. The principal

now maximizes:

πcb = ER[1, 1] + (B − c)(2 · P2(1, 1) + P1(1, 1))

=
c

3(1− β)2
· [2c(β(3 + 2c)− 3)− 3B(β(2 + c)− 2)] . (10)

The cubic has two extreme points, c = 1−β
β and c = B

2 . Examining the second order conditions,

c = B
2 is a maximum whenever B < 2

β − 2 whereas c = 1−β
β is a maximum whenever B > 2

β − 2.
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However, 1−β
β > 1 − β and hence is never a feasible solution. In order for B/2 to belong to the

interval [0, 1−β), we must have B < 2(1−β), which in turn implies that B < 2
β−2. If B ≥ 2(1−β),

the best the principal can do is to set c equal to 1 − β, since her objective function is increasing

over the entire range c ∈ [0, 1 − β). Whereas, if B < 2(1 − β), then B < 2
β − 2, and hence the

optimal solution calls for setting c = B/2.

Now, because the two expressions for the principal’s profits (9) and (10) share the same

value at c = 1 − β, when B < 2(1 − β), revealed preference shows that the optimal solu-

tion calls for setting c = B/2. When B > 2(1 − β), the same argument demonstrates that

c = 1
4

(
3 + B −

√
(B − 1)2 + 8β

)
is optimal. Finally, if B = 2(1 − β), the optimal solution calls

for setting c = 1
4

(
3 + B −

√
(B − 1)2 + 8β

)
= B/2.�

Proof of Proposition 2

We first prove two lemmas which are useful in the proof of the proposition.

Lemma 4 Any incentive compatible set (k(z), p(z), x(z)) must satisfy the following:

E−i[ki(zi, z−i)(1− βpi(zi, z−i))] is increasing in zi.

Proof: Truth-telling mandates that:

E−i [xi(zi, z−i)− ki(zi, z−i)(1− zi)(1− βpi(zi, z−i))] ≥ E−i [xi(z̃i, z−i)− ki(z̃i, z−i)(1− zi)(1− βpi(z̃i, z−i))]

E−i [xi(z̃i, z−i)− ki(z̃i, z−i)(1− z̃i)(1− βpi(z̃i, z−i))] ≥ E−i [xi(zi, z−i)− ki(zi, z−i)(1− z̃i)(1− βpi(zi, z−i))]

Summing the pair yields:

E−i [(1− z̃i) (ki(zi, z−i)(1− βpi(zi, z−i))− ki(z̃i, z−i)(1− βpi(z̃i, z−i)))] ≥

E−i [(1− zi) (ki(zi, z−i)(1− βpi(zi, z−i))− ki(z̃i, z−i)(1− βpi(z̃i, z−i)))]

If z̃i > zi then it must be the case that E−i [ki(zi, z−i)(1− βpi(zi, z−i))− ki(z̃i, z−i)(1− βpi(z̃i, z−i))]

is non-positive, i.e.

E−i [ki(zi, z−i)(1− βpi(zi, z−i))] ≤ E−i [ki(z̃i, z−i)(1− βpi(z̃i, z−i))] .

�
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Lemma 5 The expected payment to agent i can be expressed as the sum of his expected cost of

completion and an informational rent term. That is:

E−i [xi(zi)] = E−i

[
ki(zi, z−i)(1− zi)(1− βpi(zi, z−i)) +

∫ zi

0
ki(s, z−i)(1− βpi(s, z−i))ds

]
.

Proof: Let πi(zi) = πi(zi, zi) = E−i[πi(zi, zi, z−i)], where πi(a, b, d) is manager i’s payoff for

announcing b when his true type is a and the other manager announces d, and πi(a, b) is the

expected value of πi(a, b, d) over d. The Envelope Theorem yields:

π′
i(zi) =

∂

∂s
πi(s, zi)

∣∣∣∣
s=zi

+
∂

∂s
πi(zi, s)

∣∣∣∣
s=zi

The second term on the r.h.s. is zero if local IC holds, so applying the Fundamental Theorem of

Calculus to the FOC yields:

πi(zi)− πi(0) = E−i

[∫ zi

0
ki(s, z−i)(1− βpi(s, z−i))ds

]
.

Abusing notation and letting z denote the vector of realizations {zi, z−i}, by the definition of πi,

the expected payment above can be expressed as:

E−i [xi(z)] = E−i

[
ki(zi, z−i)(1− zi)(1− βpi(zi, z−i)) +

∫ zi

0
ki(s, z−i)(1− βpi(s, z−i))ds

]
+ πi(0).

Note that this fixes manager i’s expected payment conditional on observing zi. If we define

xi(z) as the term inside the brackets above, then xi(z) ≥ 0 for all values of z such that the manager

is at worst indifferent to finishing if he is asked to (i.e., not just in expectation). The fact that

πi(0) = 0 is optimal can be seen by assuming the contrary, say πi(0) > 0, then noting that we can

reduce each manager’s compensation by πi(0) and the schedule will continue to satisfy both IC and

IR. �

We can now prove the proposition. Integration by parts allows us to rewrite

E−i

[∫ 1

0

(
ki(t, z−i)(1− t)(1− βpi(t, z−i)) +

∫ t

0
ki(s, z−i)(1− βpi(s, z−i))ds

)
fi(t)dt

]
as
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E−i

[∫ 1

0

(
ki(t, z−i)(1− t)(1− βpi(t, z−i)) +

(
1− F (t)

f(t)

)
ki(t, z−i)(1− βpi(t, z−i))

)
fi(t)dt

]
Therefore using Lemma 5 we can re-write the Principal’s problem as:

max
∫ 1

0

∫ 1

0

 2∑
i=1

B(ki(zi, z−i))−

 [ki(zi, z−i)(1− z1)(1− βpi(zi, z−i))

+
(

1−F (zi)
f(zi)

)
ki(zi, z−i)(1− βpi(zi, z−i))

 fi(zi)f−i(z−i) (11)

Because we are using the uniform density over [0, 1] we can replace 1−F (zi)
f(zi)

with 1− zi allowing

us to rewrite (11) as:

max
∫ 1

0

∫ 1

0

(
2∑

i=1

B(ki(zi, z−i))− 2 [ki(zi, z−i)(1− zi)(1− βpi(zi, z−i))]

)
fi(zi)f−i(z−i) (12)

From (12), it is obvious that the principal will set pi(zi, z−i) = 1 to the manager with k(zi, z−i) =

1 and the smallest value of zi, otherwise pi(zi, z−i) = 0. The principal will set ki(zi, z−i) = 1 when-

ever doing so maximizes the integrand in (12). In other words, when B/2 ≥ β(1−z)+(1−β)(1−z),

then k1(z1, z2) = k2(z2, z1) = 1, whereas when (1− z)β +(1− z)(1−β) > B/2 ≥ (1−β)(1− z), the

manager with the higher realization of z is asked to complete the project. Finally, in all other cases,

the principal prefers for both managers not to complete their projects. Hence, the monotonicity

requirements from Lemma 4 are satisfied.�

Proof of Proposition 3

We begin by calculating the principal’s expected surplus in the second-best setting. Recall that

from (12), the principal’s expected payment to each manager is given by two times the manager’s

realized cost. The probability of both managers finishing their tasks times the principal’s payoff

when two tasks are finished is given by the sum of (13) and (14), below:

2
∫ 1

1−B
2

∫ 1

s
(2B − 2((1− t) + (1− β)(1− s))) dtds; (13)

2
∫ 1−B

2

1− B
2(1−β)

∫ 1

1−
B
2 −(1−β)(1−s)

β

(2B − 2((1− t) + (1− β)(1− s))) dtds. (14)

In the two expressions above, t denotes the larger of the two zi draws, and s the smaller of the

two. The integrals in (13) and (14) are pre-multiplied by 2 because either manager 1 or manager
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2 could receive the smaller cost realization z. When both managers are asked to complete their

projects, the manager with the greatest cost (1 − s) is always awarded the resource. The integral

in (13) refers to the case where (1− s) is sufficiently small that, regardless of the other manager’s

cost realization, B/2 ≥ β(1− t)+(1−β)(1−s); i.e., from Table 3, the two managers will always be

asked to complete their tasks. On the other hand, the integral in (14) considers larger realizations

of (1−s), and thus, in order to again satisfy B/2 ≥ β(1− t)+(1−β)(1−s) requires that the larger

of the two realizations, t, be restricted. The lower bound of integration, 1− B/2−(1−β)(1−s)
β for t is

the edge where B/2 = β(1− t) + (1− β)(1− s), i.e., the cost boundary where both managers are

asked to complete their tasks. The sum of (13) and (14) is given by (3+β)B3

12(1−β) .

On the other hand, the probability of a single manager completing his task times the payoff to

the principal under the second-best is given by the sum of the following expressions, (15) and (16):

2
∫ 1−B

2

1− B
2(1−β)

∫ 1−
B
2 −(1−β)(1−s)

β

s
(B − 2((1− t)(1− β))) dtds; (15)

2
∫ 1− B

2(1−β)

0

∫ 1

1− B
2(1−β)

(B − 2((1− t)(1− β))) dtds. (16)

Again, t denotes the larger of the two draws. Recall that only one manager is asked to complete

his project whenever the second entry in the first column of Table 3 holds. The second integral in

(15) is the complement to the second integral in (14), i.e., the bounds ensure that the entry in the

first row and column of Table 3 is violated, and instead, the second row of the first column holds.

The first integral in (16) is the complement to the first integral in (14) in that it allows the smaller

of the two cost realizations to belong to an interval which would never satisfy the first row and

column of Table 3. The second integral in (16) simply limits the larger of the two cost realizations

such that the principal is assured that at least one task is accomplished, i.e. it limits the larger of

the two realization to satisfy (1 − t)β + (1 − s)(1 − β) > B/2 ≥ (1 − β)(1 − t). The sum of (15)

and (16) is given by B2(6+β(B−6)−3B+β2B)
12(1−β)2

. Summing the expected payoffs times their respective

probabilities yields the principal’s total expected payoff which is given by:

B2(6− β(6 + B))
12(1− β)2

. (17)

We now turn to the principal’s expected payoff using the market mechanism. Substituting the

optimal completion bonus c = B/2 into the principal’s objective function (10) yields (17).�
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Proof of Proposition 4

We begin with the principal’s expected payoff from the second-best regime. If both managers

complete their tasks, the principal’s expected payoff is given by:19

2
∫ 1

1−B
2

∫ 1

s
(2B − 2((1− t) + (1− β)(1− s))) dtds

+2
∫ 1−B

2

0

∫ 1

1−
B
2 −(1−β)(1−s)

β

(2B − 2((1− t) + (1− β)(1− s))) dtds

=
16β3 + (1− 4β)(B − 2)3 − β2(40− 36B + B3)

12β2
(18)

Similarly, if only a single manager completes his task, then the principal’s expected payoff in

the second-best setting is given by:

2
∫ 1−B

2

0

∫ 1−
B
2 −(1−β)(1−s)

β

s
(B − 2((1− t)(1− β))) dtds

=
(B − 2)2(2 + 3β(B − 2)−B + β2(4 + B))

12β2
. (19)

Summing (18) and (19), we obtain the principal’s expected payoff which is given by:

16β2 − (B − 2)3 + 24β(B − 1)
12β

. (20)

Similarly, the principal’s payoff using the auction mechanism is derived by inserting the optimal

completion bonus, c∗ = 1
4

(
3 + B −

√
(B − 1)2 + 8β

)
, into the principal’s objective function in (9)

to yield:

1
24β

(
8β2 +

(
1 +

√
(B − 1)2 + 8β −B

)
(B − 1)2 + 4β

(
9B − 9 + 2

√
(B − 1)2 + 8β

))
. (21)

The difference between the principal’s payoff in the second-best setting, (20), and the auction

mechanism, (21), is given by:

D(B, β) = − 1
24β

 8β2 − 2(16β2 − (B − 2)3 + 24β(B − 1))

+
(
1 +

√
(B − 1)2 + 8β −B

)
(B − 1)2 + 4β

(
2
√

(B − 1)2 + 8β + 9(B − 1)
)
 .

19Note that the integrands in this proof mirror those in the proof of Proposition 3; however, the bounds of integration

differ because now B > 2(1− β).
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Ignoring the scalar constant 1
24 , the above expression can be simplified as follows:

D(B, β) =
1
β

(
24β2 − 2(B − 2)3 + (B − 1)3 + 12β(B − 1)−

(
(B − 1)2 + 8β

) 3
2

)
. (22)

To show that D(B, β) is increasing in B for B ≥ 2(1− β), note that:

∂D

∂B
=

3
β

(
−2(B − 2)2 + (B − 1)2 + 4β − (B − 1)

√
(B − 1)2 + 8β

)
. (23)

Label the expression in brackets in (23) as j(β), and note that j
(
1− B

2

)
= 0 as:

j

(
2−B

2

)
= −2(B − 2)2 + (B − 1)2 + 2(2−B)− (B − 1)

√
(B − 1)2 + 4(2−B)

= 2(2−B)(B − 1) + (B − 1)2 − (B − 1)(3−B)

= (B − 1)(4− 2B + B − 1− 3 + B) = 0.

We then differentiate j(β) to obtain:

∂j

∂β
=

4√
(B − 1)2 + 8β

(√
(B − 1)2 + 8β − (B − 1)

)
. (24)

For B ≥ 2(1− β), or equivalently, β ≥ 1− B
2 , note that

√
(B − 1)2 + 8β ≥

√
(B − 1)2 + 8− 4B =

(3 − B) > 1. Since (B − 1) < 1, the expression in (24) is strictly positive, i.e., j(β) is monotone

increasing in β for β ≥ 1− B
2 . As j

(
1− B

2

)
= 0, we have thus demonstrated that (23) > 0, as was

to be shown.

Next, we show that D(B, β) is increasing in β for β ≥ 1− B
2 . From (22), the partial derivative

∂D(B,β)
∂β is non-negative if and only if any of the following equivalent inequalities hold:

 β
(
48β + 12(B − 1)− 24

2

(
8β + (B − 1)2

) 1
2

)
−24β2 + 12β(B − 1)− 2(B − 2)3 + (B − 1)3 −

(
8β + (B − 1)2

) 3
2

 ≥ 0 (25)

24β2 + 2(B − 2)3 − (B − 1)3 −
(
4β − (B − 1)2

)√
(B − 1)2 + 8β ≥ 0. (26)

Let g(β) denote the expression on the left hand side of (26). Note that the function g(β) is zero

when β = 1− B
2 , since:

g

(
2−B

2

)
= 24

(B − 2)2

4
+ 2(B − 2)3 − (B − 1)3 − (3−B)

(
2(2−B)− (B − 1)2

)
= 2(B − 2)

(
3(B − 2) + B2 − 4B + 4 + 3−B

)
+ (B − 1)2 (3−B −B + 1)

= 2(B − 2)(B2 − 2B + 1) + 2(B − 1)2(2−B) = 0.
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Moreover, the derivative of g(β) is given by:

∂g(β)
∂β

= 48β −
(
4β − (B − 1)2

)
4
(
(B − 1)2 + 8β

)− 1
2 − 4

√
(B − 1)2 + 8β

= 48β − 4√
8β + (B − 1)2

(
4β − (B − 1)2 + (B − 1)2 + 8β

)
=

48β√
8β + (B − 1)2

(√
8β + (B − 1)2 − 1

)
. (27)

As before, β ≥ 1− B
2 implies

√
8β + (B − 1)2 ≥ 3−B > 1, so the above expression (27) is positive.

Because g(β) is zero at β = 1 − B/2, and increasing for all β ≥ 1 − B
2 , we have established that

∂D(B,β)
∂β ≥ 0 for all β ≥ 1− B

2 .�

Proof of Lemma 3

Let s(ei, e−i) denote manager i’s, ex-ante expected surplus from taking action ei when the other

manager picks effort e−i. We first show that agent i’s expected surplus is given by:

s(ei, e−i) = − 1
60β2


4((1− c)4(4 + c)− 2β3 − 5β2(3c− 2) + 2β(c− 1)3(6 + 3c + c2))

−e−i(7β3 + (1− c)4(11 + 4c) + 2β(c− 1)3(9 + 7c + 4c2))

−ei(10β2 − 3β3 + (1− c)4(11 + 4c) + 2β(c− 1)3(9 + 7c + c2))

+2eie−i(β3 + (1− c)4(3 + 2c) + 2β(c− 1)3(2 + c + 2c2))

 (28)

To derive (28) we proceed in two steps. We first find the manager’s expected payoff c minus

the cost of effort, and in the second step, we subtract the manager’s expected payment.

To simplify notation, as before, let Z[s] = 1 − c−(1−β)(1−s)
β denote the type of budget- uncon-

strained manager with the same value for the resource as a budget-constrained manager with cost

(1 − s). Let ZZ[t] = 1 + β(1−t)−c
1−β denote the type of budget constrained manager with the same

valuation for the resource as a budget unconstrained manager with cost (1− t). The following table

shows manager i’s payoff for all possible realizations of zi and z−i:
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Payoff zi Condition z−i Condition Relative zi

c− (1− zi) zi ≥ 1− c z−i ≥ 1− c zi > z−i

c− (1− zi) zi ≥ 1− c z−i < 1− c zi > Z[z−i]

c− (1− β)(1− zi) zi ≥ 1− c z−i ≥ 1− c zi < z−i

c− (1− β)(1− zi) zi < 1− c z−i < 1− c zi ≥ z−i

c− (1− β)(1− zi) zi < 1− c z−i ≥ 1− c Z[zi] < z−i

c− (1− β)(1− zi) 1− c−1+β
β ≥ zi ≥ 1− c z−i < 1− c Z[z−i] > zi

0 1− c > zi 1− c > z−i zi < z−i

0 1− c > zi 1− c ≤ z−i ≤ 1− c−1+β
β zi < ZZ[z−i]

To obtain each manager’s expected surplus, we first sum the expected values in the table above

and use the probabilities previously computed in the proof of Lemma 1 to obtain:

1
60β2


2(12β3 − (1− c)4(4 + c) + 10β2(3c− 2)− 2β(c− 1)3(6 + 3c + c2))

+2e−i(3β3 + (1− c)4(9 + c) + 2β(c− 1)3(6 + 3c + c2))

−ei(9β3 − 10β2 − (1− c)4(2c− 7)− 2β(1− c)4(3 + 2c))

−eie−i(β3 + (1− c)4(3 + 2c) + 2β(c− 1)3(2 + c + 2c2))

 . (29)

Using the cumulative distribution of values, G(·), from Lemma 2, we can calculate the expected

payment as: ∫ cβ

0
sg(s, e−i)(1−G(s, ei))ds

and can subtract it from (29) to obtain the manager’s expected surplus s(ei, e−i) in (28).

Now, we can characterize the cross partial:

∂2s(ei, e−i)
∂ei∂e−i

=
−
(
β3 + (1− c)4(3 + 2c) + 2β(c− 1)3(2 + c + 2c2)

)
30β2

. (30)

It remains to be shown that (30) is negative. To this end, note that we can disregard the

denominator of (30). The numerator of (30) is concave in β hence we can solve for the maximizing

value of β via the first order approach to obtain β̂ = (1− c)
√

2
3(2 + c + 2c2)(1− c). Clearly, when

β̂ > 1, β = 1 maximizes the numerator of (30) over the feasible region β ∈ [0, 1]. Moreover,

β̂ > 1 whenever c < .11, and in this region, substituting β = 1 into the numerator of (30) yields

c3(−6c2 +15c−10), which is clearly non-positive on the entire real line. Now, when β̂ ≤ 1, plugging

β̂ into the numerator of (30) and simplifying yields:
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−(1− c)4
(

3 + 2c− 4
3
(2 + c + 2c2)

√
2
3
(1− c)(2 + c + 2c2)

)
. (31)

It remains to be shown that the expression in (31) is non-positive, which is equivalent to the

following series of inequalities:

3 + 2c ≥ 4
3
(2 + c + 2c2)

√
2
3
(1− c)(2 + c + 2c2)

9(3 + 2c)2 ≥ 16(2 + c + 2c2)2
2
3
(2 + c + 2c2)

27(9 + 4c2 + 12c)2 ≥ 32(2 + c + 2c2)3

(2c− 1)2(64c5 + 96c4 + 224c3 + 160c2 + 144c− 13) ≥ 0. (32)

The first expression on the left-hand side of (32) is always positive, and hence can be ig-

nored. The second expression on the left-hand side of (32) has a single sign-change among its

coefficients and hence, by Descartes’ Rule of Signs, has a single positive real root. Let f(c) =

64c5 + 96c4 + 224c3 + 160c2 + 144c − 13, and note that f(0) < 0 < f(.1); hence, the unique root

of the polynomial f(c) belongs to the interval (0, .1), which lies in the range where β̂ > 1. As

the coefficient on the highest order of the polynomial, c5 is positive, f(c) is strictly positive for all

c > 0.1, thus concluding the proof.�

Proof of Proposition 5

We can write N(β, c, ν) as:

N(β, c, ν) =
1

12β2

(
2β2 − β3 + (1− c)4 + 2β(c− 1)3(1 + c)

)
− ν (33)

The equation ∂
∂cN(β, c, ν) = 0 has two solutions in c: c = 1 with multiplicity 2, and c = 1−β

1+2β .

However, ∂2

∂c2
N(β, c, ν)

∣∣∣
c=1

= 0 and ∂2

∂c2
N(β, c, ν)

∣∣∣
c= 1−β

1+2β

= 3
1+2β > 0, therefore, the function

N(β, c, ν) is minimized at c = 1−β
1+2β < 1−β. In fact, N(β, c, ν) is increasing in the range c ∈ [1−β, 1].

This follows because:
∂

∂c
N(β, c, ν)

∣∣∣∣
c=1−β

=
2
3
β(1− β) ≥ 0,

and we know that ∂
∂cN(β, c, ν) does not cross 0 before c = 1. By the intermediate value theorem,

N(β, c, ν) is therefore increasing over c ∈
[

1−β
1+2β , 1

]
. Since ∂

∂ν N(·) = −1, any increase in ν will

increase ĉ, the solution to N(β, ĉ, ν) = 0, and decrease the set of values of c that generate a Nash
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equilibrium. Similarly, we have ∂
∂β N(β, c, ν) = − 1

12β3 (β3 + 2(1− c)4 + 2β(c− 1)3(1 + c)), which is

always non-positive; hence, N(β, c, ν) is decreasing in β and thus, ĉ must be increasing in β.�

Proof of Proposition 6

Examine the difference N2(β, c, ν) = s(1, 0)−s(0, 0). Label the difference N2(β, v, ν). We have:

N2(β, c, ν) =
1

60β2

(
10β2 − 3β3 + (1− c)4(11 + 4c) + 2β(c− 1)3(9 + 7c + 4c2)

)
− ν.

To show that if e1 = e2 = 1 is a Nash equilibrium, then it is the unique Nash, it is sufficient to

show that N(β, c, ν) ≥ 0 ⇒ N2(β, c, ν) ≥ 0. To demonstrate this, we will show that N2(β, c, ν) ≥

N(β, c, ν) by proving that their difference is always non-negative. To this end, we have:

ND(β, c, ν) = N2(β, c, ν)−N(β, c, ν) =
β3 + (1− c)4(3 + 2c)− 2β(1− c)3(2c2 + 2 + c)

30β2
.

We first show that both ND(β, 0, ν) and ND(β, 1, ν) are non-negative. We have:

ND(β, 0, ν) =
3− 4β + β3

30β2
. (34)

The sign of (34) is determined by its numerator, which decreases on the range β ∈ [0, 2/
√

3],

equals 0 when β = 1, and is strictly positive for β ∈ [0, 1). On the other hand, we can write:

ND(β, 1, ν) =
β

30
.

Clearly, ND(β, 1, ν) ≥ 0. Now, it remains to be shown that ND[β, c, ν] ≥ 0 for c ∈ (0, 1). To

this end, note that ∂
∂cND = 0 has three solutions: c = 1, c = −

√
1−β√
1+2β

and c =
√

1−β√
1+2β

, and only

the last root is possible in the range (0, 1). Moreover, we have ∂2

∂c2
ND(β, c, ν)

∣∣∣
c=

√
1−β√
1+2β

≥ 0, hence

c =
√

1−β√
1+2β

is a local minimum. If ND
(
β,

√
1−β√
1+2β

, ν
)
≥ 0, then the proof is complete. To this end,

we have:

sign
(

ND

(
β,

√
1− β√
1 + 2β

, ν

))
= sign

(
(β − 1)

√
1− β(8 + 12β) +

√
1 + 2β(2β3 + 3β2 − 8)

30β2(1 + 2β)3/2

)
= −sign

(√
1− β(8 + 12β) +

√
1 + 2β(2β3 + 3β2 − 8)

)
(35)

The expression inside the sign function in (35) has two zeroes: β = 0, 1/2. Moreover, for β = 1/4

and β = 3/4, the expression is positive, hence (35) is non-negative on the entire interval β ∈ [0, 1].�
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Table 1

Characterization of the First Best

Manager with realization z Manager with realization z

Allocated Allocated

Resource? Complete? Compensation Resource? Complete? Compensation

B ≥ β(1− z) + (1− β)(1− z) Yes Yes (1− β)(1− z) No Yes 1− z

(1− z)β + (1− z)(1− β)

> B ≥ (1− β)(1− z)
No No 0 Yes Yes (1− z)(1− β)

(1− z)(1− β) > B Indiff No 0 Indiff No 0
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Table 2

Characterization of the Auction Mechanism

Manager with realization z Manager with realization z

Allocated Allocated

Resource? Complete? Resource? Complete?

c ≥ β(1− z) + (1− β)(1− z) Yes Yes No Yes

(1− z)β + (1− z)(1− β)

> c ≥ (1− β)(1− z)
No No Yes Yes

(1− z)(1− β) > c Indiff No Indiff No
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Table 3

Characterization of the Second Best

Manager with realization z Manager with realization z

Allocated Allocated

Resource? Complete? Resource? Complete?

B/2 ≥ β(1− z) + (1− β)(1− z) Yes Yes No Yes

(1− z)β + (1− z)(1− β)

> B/2 ≥ (1− β)(1− z)
No No Yes Yes

(1− z)(1− β) > B/2 Indiff No Indiff No
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Figure 1: A manager with draw zi < 1 − c
1−β will never complete his

project, even with help, and hence values the resource at zero dollars.

For managers with 1 − c
1−β < zi < 1 − c, valuations are increasing in

zi because they only complete the project with help; consequently, the

larger the draw, the more money they keep after successful completion of

the project. Managers with a draw zi > 1−c have a value for the resource

which is decreasing in zi, because the better their draw (the larger zi),

the less the resource reduces their costs of completion.
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Figure 2: For bonuses c such that c < 1− β, the bold face curves depict

a manager’s valuation for the resource as a function of his type. Note

that the managers with sufficiently small zi (where the valuation is flat)

will not complete their project even if they receive the resource whereas

managers with an increasing valuation will only complete their project

if they receive the resource. For 1 − β < c < 1, a manager’s value for

the resource is given by the dotted curve, and again, managers with an

increasing valuation will only complete their task if they receive help.

Finally, managers’ valuations for c ≥ 1 is given by the thin curve and in

this case all managers are willing to complete their project, regardless of

whether they are awarded the resource or not.

43



1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
B

0.92

0.94

0.96

0.98

1

Figure 3: The solid, dashed-dotted and dashed curves plot the efficiency

of the auction mechanism relative to the second-best mechanism for β =

0.2, 0.5 and 0.8, respectively, for values of B ∈ [2(1 − β), 2]. Clearly, for

larger values of β and B, the auction mechanism becomes less efficient at

replicating the second-best outcome.
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