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Abstract 
We characterize the steady-state equilibrium in which informed traders 

who exhibit heuristic (i.e. , representativeness, as opposed to Bayesian) 
and Bayesian behaviors achieve the same expected utility. Then, we show 
how the endogenous, steady-state proportion of heuristic traders is af
fected by the quality of public information and other exogenous features 
of our model. Finally, we discuss how the presence of heuristic traders po
tentially alters the link between improved public disclosure and: market 
liquidity, the variance in the change in price, and market efficiency. 

The authors ackowledge the comments and suggestions from workshop 
participants at the European Accounting Association meetings in Graz 
(Austria) , Johann Wolfgang Goethe University, Notre Dame University, 
Odense University, and the University of Rochester. 



1 Introduction 

A common assumption adopted in most models of securities trade is that traders form 

beliefs using Bayes rule. The assumption of Bayesian behavior, however, has been 

called into question by a significant body of experimental evidence in the psychol

ogy literature (see Ka hneman, Slovic, and Tversky [1982]). In addition, the anom

alies literature in accounting (see, for example, Ou and Penman [1989] or Bernard 

and Thomas [1990]) and finance (see, for example, De Bondt and Thaler [1985] or 

Chopra, Lakonishok, and Ritter [1992]) contains findings that are also consistent with 

the assertion that not all individuals are Bayesians . Nonetheless, Bayesian behavior 

remains the predominant behavioral assumption because of the compelling argument 

that Bayesian behavior should prevail in an evolutionary sense.1 For example, unless 

they learn to follow Bayes rule, heuristic equity fund managers should perform poorly 

and be driven out of business .2 

Recent research, however, ha s shown that, in a setting with imperfect compet ition 

among informed traders, informed heur·-istic traders who overreact to their private in

formation are viable in an evolutionary sense because they achieve a higher expected 

utility than informed Bayesian traders.:; Heuristic traders who overreact to their 

private information can achieve a higher expected utility because their overreaction 

1 S~:---e Friedm an [1953] for an exam ple of an argument that rational behavior dominates in an evolu
tionarv sense. 
2 In rC'sponse to the behavioral evidence just discussed, those who rely on the logic of the evolutionary 
argun1fm t would assf~rt Umt experirne.ntal markets do not conhtin the appropriat.e evolutionary for ces 
to drive out those who deviate from Bayesian behavior. In response to t he anomolies literature, they 
would argue tha t the experimental designs have not appropriately adj usted for r isk. Furthermore. 
even if the anomoly persists in the presen ce of an acceptable adj ustment for r isk, they would argue 
that the anomolies are due to some other economic friction. 
;l S~:---e, for example, Kyle and Wang (1996] and Palomino (1996]. De Long, et al. (1990] consider the 
viability of heuristic trade in a perfectly competitive market. T hey argue that hueristic behavior is 
viable because h euristic traders earn higher expected returns than Bayesian traders. As pointed out 
by Palomino [1996], heuristic traders continue to h ave lower expected utilities in the Delong, e t al. 
[1990] model, even tho ugh they have higher expected returns. 
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induces them to trade more aggressively than Bayesian traders. Such aggressive 

behavior, in turn, a llows an informed trader who is heuristic to capture more infor

mation rents (i.e., achieve a higher expected utility) than an informed trader who is 

Bayesian. 

We build off of this earlier work by considering the role played by public disclosure 

in a trading model with two types of informed traders, heuristic (i.e., those who 

overreact) and Bayesian. We undertake this extension of the earlier work for two 

reasons . First, we are interested in the effect of public disclosure on the viability of 

heuristic trade. Specifically, does improved disclosure work to drive heuristic trading 

behavior from the market ? Second, we are interested in whether heuristic trading 

alters previously established relations between disclosure levels and metrics commonly 

employed to assess disclosure's economic impact: market liquidity, the variance of 

price change coincident with the disclosure, and price efficiency. We acknowledge 

that the introduction of heuristic behaviors could be exploited to generate a ll sorts of 

results about the economic impact of disclosure. In this paper, however, we introduce 

heuristic trade in a plausible manner by appealing to an evolutionary construct. By 

making heuristic behavior plausible, our results concerning the economic impact of 

disclosure in the presence of heuristic trade should be correspondingly plausible. 

The model we employ is a standard Kyle [1985] model with the additional fea

tures of public disclosure of information and two types of identically informed traders : 

heuristic traders who overreact to their current information and Bayesian traders. We 

initially consider a static model in which the proportion of heuristic traders is exoge

nously fixed. In contrast to previous models in the literature, we then endogenize 

the proportion of informed traders who are heuristic by employing a simple evolu

tionary dynamic that is based upon relative expected utilities. We assume that the 
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population of informed traders shifts towards the type, Bayesian or heuristic, that 

earns higher expected utility.'1 In our static model, heuristic traders achieve a level 

of expected utility that exceeds the level of Bayesian traders, provided that there 

are not too many of the former. Thus, our evolutionary dynamic implies that, when 

the number of heuristic traders is small their proportion of the population grows , 

and when the number is large their proportion declines. Consequently, there exists 

a stable, steady-state equilibrium proportion of heuristic traders. One benefit of 

our evolutionary dynamic, and the associated steady-state equilibrium, is that it is 

amenable to comparative static analysis. 

With respect to the relation between public disclosure and heuristic trade, we 

show that improving the quality of public disclosure reduces the viability of heuristic 

trade. Specifically, we show that improving the quality of public disclosure causes the 

difference between the expected utilities of a heuristic and Bayesian trader to decline. 

This static equilibrium result, combined with our evolutionary dynamic, implies that 

heuristic traders comprise a smaller proportion of informed traders in the steady-state 

equilibrium. As a consequence, our model suggests that heuristic trading behavior is 

more likely to be observed in markets where public disclosure is poor. 

With respect to previously established relations between disclosure levels and ob-

servable market characteristics, we show that heuristic trade weakens, but does not 

generally undo, these relations. For example, prior models with only Bayesian in-

formed trade demonstrate that improving the quality of disclosure leads to more 

liquid markets, more efficient prices, and a greater price variance. These results arise 

'1 Kyle and Wang [1996] do not under take any evolutionary analysis. Palomino [1996] considers an 
evolutionary dynamic based upon risk adjusted r et urn realizations. \\lhile Palomino's choice of a 
dynamic is consistent with m uch of the literature in evolutionary economics, it s~>ems inconsistent 
with his critique of De Long, et al. [1990], which sug;g;ests that viability should be a function of 
expected utility as opposed to return realizations . 
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beca use public disclosure reduces the information asymmetry in the market by in

creasing the amount of public information. Heuristic trade weakens results relating 

public disclosure to market liquidity and price efficiency, but does not overturn them. 

The result relating public d isclosure to price variance, however, is overturned. To 

understand why these results are weakened or overturned, note first that market liq

uidity, market efficiency, and price variability are positively affected by the level of 

heuristic trade in some (market liquidity) or a ll (market efficiency and price vari

ability) cases. This positive relation arises because heuristic trade makes aggregate 

demand more informative. Improved public disclosure, however, reduces the level 

heurist ic trade. Thus, the reduction in the level of heuristic trade resulting from im

proved public disclosure militates against the force identified in prior models without 

heurist ic t rade. In our analysis of market liquidity and market efficiency, the coun

tervailing force is never sufficient to surmount the force identified in the prior models. 

In contrast, the result for price variability is overturned because the countervailing 

force does more than compensate. 

The remainder of the paper is organized as follows. In the next section, we 

present a static model of trade in which the proportion of informed, heuristic traders 

is exogenously fixed. In section 3 we endogenize the proportion of heuristic traders by 

introducing a simple evolutionary dynamic, and t hen derive a steady-state proportion 

of heuristic traders consistent with this dynamic. We discuss factors that affect the 

proportion of heuristic trade observed in equilibrium in Section 4. In Section G, we 

discuss the relation between public disclosure and a variety of market phenomena in 

the presence of heuristic trade. We conclude by summarizing our results . 
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2 The Static Model 

AB discussed earlier, the model we employ is an extension of the Kyle [1985] model. 

A Kyle model depicts a security market in which market makers do not know the 

extent to which demands are driven by private information versus liquidity motivated 

reasons that have no information content. In addition, it characterizes a setting where 

informed traders are aware that their trade can move price (i.e. , traders do not behave 

as price takers). The initial model we examine consists of one period, a Bayesian risk 

neutral market maker, liquidity traders, and N risk neutral informed traders. Among 

these N traders, we assume proportion p are heuristic and a proportion 1 - p are 

Bayesian. 5 We will use the results for the static model in this section to endogenize 

p in Section 3. 

Let u represent a firm's uncertain cash flow. At the beginning of the period, 

information about the firm's cash flow, :cp, is disclosed to the public, while private 

information, :ci, is revealed to all informed t raders, where 

(1) 

(2) 

ci is normally distributed with mean 0 and variance vi, and Cp is normally distributed 

with mean 0 and variance Vp· Common prior beliefs on u are that it is normally 

distributed with mean 0 and variance v _G 

Note that the public information in our model is simply the private information 

plus some noise. This information structure is intended to capture the idea that 

5 \rVe treat the number of heuristic traders, N p. as a cont inuo us variable. This permits us tD em ploy 
a simple continuous evolutionary dynamic that yields a steady state equilibrium p . If N p is r equired 
to be <m integer there may not be a steady sta te equilibrium . 
;; \rVithout loss of generality, we have assumed means of 0 tD ease n ota tion . 
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informed traders, such as financial analysts who cover a particular firm, have analysis 

advantages derived from their expertise or access to other information sources. These 

analysis advantages, in turn, allow them to eliminate noise from public disclosure. 

Within the context of our model, it follows that improvements in public disclosure 

can be interpreted as making information more accessible or more available to the 

market. 

After the public and private information is received, all traders submit demand 

orders to the market maker. Liquidity demand is "noise" in our model: it is assumed 

to be normally distributed with mean 0 and variance v1. Alternatively, informed 

trader demands are chosen strategically. After receiving the aggregate demand order, 

the market maker sets a price conditional upon aggregate demand and the public 

information. All orders are then cleared at that price . After trade takes place, the 

terminal value is realized and claims are paid. 

We model heuristic traders' behavior by assuming their posterior expectations 

deviate from true Bayesian expectations in a systematic manner. The posterior ex

pectation of a Bayesian trader, b, is 

(3) 

Note that :rp has no weight because :ri is a sufficient statistic for :r i, :rp with respect 

to u. We assume that posterior expectation for a heuristic trader, h, is 

where r > 1 represents the response of heuristic traders to the private information. 

Note that r > 1 implies that if a Bayesian trader's posterior expectation is greater 

(less) than the prior expectation, then a heuristic trader's posterior expectation is 

greater (less) than a Bayesian's expectation. Thus, heuristic traders overreact to the 
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new or current information. Our characterization of heuristic trader beliefs is con-

sistent with the findings in the psychology literature that some individuals exhibit 

r·epn->.sentativeness (more specifically, the ba.c;e mte fallacy ) and overconfidence: for 

examples of this literature see Kahneman, Slovic, and T versky [1982]. The assump

tion that r > 1 is consistent with the base rate fallacy because it implies heuristic 

traders place too much emphasis on their current information and too little on public 

information when forming posterior beliefs. It is also consistent with the notion of 

overconfidence because the heuristic traders are too confident in their private infor

mation? 

We assume that market making is a perfectly competitive industry. Consequently, 

we require that the market maker sets price equal to the conditional ex pectation of 

the asset's terminal value, plus an amount to cover the costs of supplying liquidity. 

Formally, let D represent the total net demand for firm shares and r > 0 some 

exogenous cost of supplying liquidity (e.g., inventory holding costs). The exogenous 

cost is a function of the demand orders tha t cannot be crossed, or total net demand, 

D. We assume that the price set to execute trades by the market maker, P , equals the 

expectation of the asset's terminal value based on total net demand plus an amount 

to cover costs : 

(5) 

where E[· i· ,· ] is the conditional expectations operator. If total net demand is positive, 

for example, implying that the market maker must go short, the market maker sets 

price higher than the expectation of u in order to cover his holding costs. Demand 

7 This is not to sugp;est t hat there are not alternative characteriza tions of heuristic trader beliefs. 
An e..xam ple of an alternative characterization is to weight the variances Vi and vJ' by some tunount 
less than one. vVe choose our characterization because it makes the mathematics facile. Finally. 
n ote that because traders are risk neutr al, it is not IK'Cessary to consider how heuristic behavior 
aflects beliefs about the posterior variance of t'l. 
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orders are then cleared a t the ma rket maker's price, terminal value is realized, and 

claims are settled.8 

In the standard Kyle [1985] model, the only driver of trading cost is the infor

mation asymmetry between the informed traders and the market maker. All other 

drivers of trading cost, such as the order processing and inventory holding costs iden

tified in the empirical literature (see Stoll [1989]) , are assumed away. In our setting, 

the elimination of other drivers of trading cost corresponds to c = 0. The benefit of 

assuming away other trading costs in the standard model is that it permits a n elegant, 

closed-form, linear equilibrium. This clean characterization facilitates the analysis of 

the implications of information asymmetry. Unfortunately, when heuristic trade is 

introduced into the standard model with c = 0, a linear equilibrium may fail to exist. 

Introducing other drivers of trading cost ensures the existence of a linear equilibrium, 

which, in turn, facilitates the analysis. An alternative to our approach would be to 

assume c = 0, a nd then assume that the parameters of the model are such that a 

linear equilibrium exists. With this alternative approach, all of our results continue 

to hold. The advantage of our approach is that it allows us to discuss comparative 

static results without continua lly qualifying our discussion with the assumption that 

an equilibrium exists over the comparative static range.9 

An equilibrium for our model must satisfy the following two criteria . 

i) The pricing function must satisfy eqn. (5) given the equilibrium trading strategies 

of the informed traders. 

6 'vVe assume the market m aker behavL'S in a Bayesian manner. One justification for this assump tion 
is that Bayesian behavior is s uperior in perfectly com petitive (i.e. , price-taking) settings. 
0 Of course, there are alternative ways to introduce a trading cost that are not associated with the 
adverse selection problem. For exam ple, each trader could be charged a transaction cost that is 
increasing in hi'i individual demand order (e.g., c times the absolute value of his demand order) . 
'vVe choose an inventory holdin,!!; cost that is a function of total ne t dem an d because it makes the 
an alysis considerably more facile than alternatives. 
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ii) The trading strategy for each informed trader must maximize his expected wealth 

given the equilibrium trading strategies of the other informed traders and the equi-

librium pricing function. 

In the following analysis, we conjecture and then confirm the existence of a unique 

linear equilibrium in which price is increasing in total net demand: that is, an equilib-

rium in which informed traders' demand functions are linear functions of their private 

information and the market maker's pricing function is an increasing linear function 

of total net demand. Specifically, the conjectured trading strategy of trader n is given 

by: 

(6) 

The market maker's pricing function in our conjectured equilibrium is: 

(7) 

where D = 2....:::~=1 UinXi + f rm:rp) + dt is realized total net demand, dt is the realization 

of liquidity demand, and Av and Ap are determined from the requirement that Av D + 

Ap:rp = E[uiD, xp]- Note that in our conjectured equilibrium price is increasing in 

total net demand, which implies that An + r. > 0. 

We begin our construction of the linear equilibrium by solving informed trader 

m's optimization problem given conjectured demand functions for the other informed 

traders of the form in eqn. (6) and a conjectured pricing function of the form in eqn. 

(7). Let hand b represent a heuristic and a Bayesian-type trader, respectively. Given 

trader -rn's beliefs about An, other traders' demand coefficients, the realization :ri , :rp, 

and trader m's type j E { h, b} , m 's demand solves 

(8) 
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where 

(9) 

(10) 

R = r > 1 if j =hand R = 1 if j = b, (11) 
f\j 

Fir/1 = L .fin, (12) 
rr.-,,,,_,-1 

n ·/·rn 

and 
N 

F pr/1 = L .f pr•. (13) 
n ·::::.:· l 

n-:;;.l·m 

The trader's optimization problem is a strictly concave programming problem. Con-

sequently, the first order condition provides a unique characterization of m 's optimal 

demand function, which is linear in the private and public information: specifically, 

f 
_ - Fpr;z(Av + c) - Ap 

· prn - 2(Av + c) ' (14) 

and 
Rv~vi - Fi.,;z(>.v +c) 

.fim = 2(>.D + c) . (15) 

Eqn. (13) implies that trader m!s demand coefficient on public information is the 

same regardless of his type. Eqn. (14) implies that trader m's demand coefficient 

on private informa tion is greater if rn is a hew·-istic type because a heuristic trader 

places more weight on his private information than a Bayesian trader. These two 

observations imply that heuristic traders react more aggressively to their information. 

In addition, like the standard Kyle model, rn's demand coefficients are decreasing in 

magnitude in the demand coefficients of other traders, and increasing in magnitude 

in market liquidity as represented by , 1+ . 
""D C 
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Before proceeding, it is useful to exploit the demand conditions form to establish 

the result that all traders of the same type must have the same demand coefficient 

in any linear equilibrium. Note that eqns . (14) and (15) imply that, in a ny linear 

equilibrium, 

where 

and 

-A 
f P -F 
· pm = (An + c) P 

R-1._' 
f v+vi .F: 
. irn = \ . + - i, 

/\f) c 

N 

F-'f· -z.-~. tn, 

N 

F -' r p-~. pn, 

n =cc.l 

(16) 

(17) 

(18) 

(19) 

represent the aggregate demand coefficients of informed traders. It follows from 

inspect ion of eqns. (15) a nd (16) that for any m and m' who are both of type 

j E { h, b }, .hn = .fim' and fprn = f prn'· Given this result, we let {fih, f ph} and 

{ .fib , f p1,} denote the demand coefficients for each heurist ic trader and each Bayesian 

trader, respectively. We can use the two equations of the form in eqn. (16) and 

t he two equations of the form in eqn. (17) to characterize the equilibrium demand 

coefficients: 
(r + N [r- 1][1- p]) v~tli 

.fih = (1 + N) (An + c) ' (20) 

. (1 - N [r - 1]p) v~vi 
.fib = ( 1 + N ) (AD + c) ' (21) 

and 
- Ap 

fph = .fpb = (1 + N)( An +c)· (22) 
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In summary, we have shown that given a linear pricing function, dema nd functions 

for each informed trader type a re linear. W ith this result in hand, we next consider 

the form of the pricing function given linear demand functions . 

Assuming linear demand functions, the market maker's expectation of u condi-

tional upon the public information and observed total net demand sat isfies 

(23) 

Eqn. (23) implies a linear pricing funct ion with the following coefficients: 

(24) 

and 

Ap = 
2 

-FiFpVpV + VtV . 
Fi (vpv i + vpv) + v1(v + v, + vp) 

(25) 

The expression for Av has the standard implications. First, assuming that Fi > 0 

in equilibrium (which turns out to be the case) , the market is more liquid when the 

variability of liquidity trade, Vt , increases. Second, the market is more liquid when 

private information is less precise (i.e., vi is higher). 

To prove that our conjectured linear equilibrium exists and is unique, we show in 

the appendix that there exists a unique solution {.fih, .fi1, .fph , .fpb, Fi , F p, Av, .Ap} that 

satisfies the eight linear equilibrium conditions captured by eqns. (18) to (22) , (24) , 

and (25). The solution has the characterist ics presented in t he following lemma. 

Lemma 1. Flw any (exogenou.c1) pmportion of heuristic tmder·s, there e.r,ists a unique 

linear· eqnilibr·inm with pr·ice incnca.c;ing in total net demand that has the fo llo·wing 

proper·ties: Fi > 0, Fp < 0, )..D > 0,, ApE (0, v+u:+vp], .fih > .fib, .fih > 0, f ph = .fpb < 0 . 
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An interesting implication of Lemma 1 concerns the trading strategies of each 

type. Lemma 1 states that heuristic traders always respond more aggressively than 

Bayesian traders to private information: that is, they go "longer" on good private 

news and "shorter" on bad private news ( .fih > .fib)- This aggressive behavior can 

be beneficial to heuristic traders in that it permits them to capture more of the rents 

from their private information. 

The fact that the heuristic traders take more extreme positions in the same di-

rection as the private news implies that heuristic demand may go in the opposite 

direction of Bayesian demand. Specifically, for some realizations of xi , :x;P , a heuristic 

trader may be long (short) while a Bayesian trader is short (long). Demands may go 

in opposite direction because excessive demand by heuristic traders can result in the 

expectation of price "overreacting" in the sense that E [F ixi, xp] > ( <) E[ul:ri , :x;p], 

even though E [u l:rp] < (>) E [u lxi, :x;p]- In these cases, it becomes optimal for the 

Bayesian traders to take a position contrary to heuristic traders. 

To close out our discussion of the static equilibrium, we turn to the role c > 0 plays 

in ensuring an equilibrium. Broadly stated, the equilibrium >.. v and Fi in our model 

can be characterized as the point at which two functions cross. These two functions 

are: the sensitivity of the market maker's expectation to total net demand as a 

function of the aggregate demand coefficient on :x;i , >..n(Fi); and the aggregate demand 

coefficient on :x;i as a function of the sensitivity of the market maker's expectation to 

total net demand, Fi(>..n). From eqn. (24) , the fonner function is characterized by 

(26) 

Noting that Fi > 0 in any equilibrium in which >..n + c > 0, this implies that the 

market maker's sensitivity to total net demand is increasing in Fi when Fi is small 
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and decreasing in Fi when Fi is a large: that is, Av is unimodal in Fi . Using eqns. 

(20) and (21) , the aggregate demand coefficient function can be characterized by 

·( ' ) _ N(1 + [r- 1]p)v F, A[) - ----~~~--~~--~ 
(>..v + c) (1 + N )(v + vi) · 

(27) 

The aggregate demand coefficient on ;r;i is decreasing in the market maker's sensitivity 

to total net demand: that is, Fi ( Av) becomes smaller as Av increases. Note, however, 

that as the proportion of heuristic traders, p, increases, Fi(>..v ) shifts to a larger 

number for each unit of Av. The intuition underlying this shift is that heuristic 

traders respond more aggressively to the private information for any Av. W hen there 

are no heuristic traders (i.e., p = 0) Av (Fi) and Fi (>..v) always cross regardless of 

c. Thus, in this circumstance, there always exists an equilibrium. However, when 

c = 0, the existence of heuristic trade through p may shift Fi(>.. n ) to a position that 

precludes the possibility of >..D(Fi.) and Fi(>..n) crossing. 

More specifically, when c = 0, a necessary and sufficient condition for Av (Fi) and 

Fi (>..D) to cross is: 

1 - N (r- 1)p > 0. (28) 

Once again, if a ll traders are Bayesian, p = 0, then eqn. (28) is always trivially 

satisfied. However, when p > 0, an equilibrium exists only in the event that the 

number of informed traders, N , is sufficiently small. When c > 0, eqn. (28) is no 

longer a necessary condition. Thus, requiring that c > 0 always ensures a linear 

equilibrium in which price is increasing in total demand. 

3 Steady-State Heuristic Trade 

Having characterized an equilibrium for our static model in which the proportion 

of heuristic trade is exogenous , we now utilize that static model within a dynamic 
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evolutionary framework to endogenize the extent of heuristic trade. In our discussion 

of the trading strategies adopted by each type, we alluded to the potential for heuristic 

traders to gain or lose relative to Bayesian traders as a result of their aggressive 

behavior. VVhether heuristic traders gain or lose relative to Bayesian traders is a 

logical determinant of the viability of heuristic behavior in an evolutionary sense. 

Let nh(P) and nb(P) represent the (Bayesian) expected profits , which are also the 

expected utilities because all traders are risk neutral, of a heuristic and a Bayesian 

trader, respectively. Note that nh(P ) and n6 (p) are functions of the proportion of 

heuristic traders , p . To address the viability of heuristic behavior, we consider a 

simple continuous evolutionary dynamic that is a function of the difference in the 

expected profits of each type: nh(P) - n~> (JJ). 

Formally, we let the instantaneous change in the proportion of heuristic traders 

when the economy is a t state p be defined as 

(29) 

where ~ is a continuous function, 

~ 0 if nh(P) - n~>(P) = 0, 

~ > 0 if nh(P)- nb(P) > 0 and p < 1, 

~ 0 if nh(P)- nb(P) > 0 and p = 1, 

~ < 0 if nh(P) - n,, (p) < 0 and p > 0, 

and 

This evolutionary dynamic captures the idea that, over time, the population of in

formed traders shifts towards the type that achieves higher expected utility, assuming 
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that such a shift is possible. An interior steady-state equilibrium for this dynamic is 

an equilibrium proportion p E: (0, 1) such that both types of traders do equally well, 

7rh(P) = 7rb(p). A corner steady-state equilibrium with only heuristic traders has the 

property that 11 h (p = 1) 2:: 'lib (p = 1). Conversely, a corner steady-state equilibrium 

with only Bayesian traders has the property that 7rh(P = 0) :S 7rb (P = 0). 

Expected profit is the determinate of viability in our evolutionary dynamic. One 

justification for expected profit is that expected utility has been suggested as an ap

propriate measure of evolutionary fitness in the prior literature (see, e.g. , Palomino 

[1996]) , and the two are equivalent in our model with risk-neutra l agents. Another jus

tification arises from considering a setting where each generation of informed traders, 

whose types are fixed, plays our trading game an infinite number of times . Consistent 

with the notion of evolution, the behaviors of the next generation adapt towards those 

behaviors that performed well "on average" in the prior generation. In our model, 

"on average" is tantamount to expected profit. 

In order to establish the existence and uniqueness of a steady-state, we need 

to understand wha t drives the difference in expected profits in order to ascertain 

how that difference behaves in p. Exploiting the st a tic equilibrium conditions, the 

difference in expected profits can be written as 

( .\n + r: )E [([.fih - .fib] :Ei + [.fph - .fpb]:cp) (fib:Ei + .fpl,:Ep)j (30) 

( .\n + r: )covariance(dh - db, db) 

where dj denotes the demand for a trader of type j . 

The reason the difference in expected profits hinges on the sign of the covariance 

of dh - db and db is as follows. Note that a Bayesian trader has a positive (negative) 

demand only in cases where E [ulxi, xp] > ( <) E [P I:ci, :cp]· If, on average, a heuristic 
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trader goes longer (shorter) than the Bayesian trader when the Bayesian trader is long 

(short) , then one would expect the heuristic trader to have greater expected profits. If 

the converse were true, one would expect the heuristic trader to have lower expected 

profits. The covariance of dh - db and db is a measure of whether , on average, the 

heurist ic trader is going longer (shorter) than the Bayesia n trader when the Bayesian 

t rader is long (short) . 

In t he appendix, we show that covarian ce(dh - db, db ) can equal 0 at only a single 

value of p and is st rictly posit ive at p = 0. In addit ion, we show that t he covariance 

of dh - db and db equa ls 0 for an interior p if N is large and is strictly positive for all 

p if N is small. This a nalysis yields our first proposition. 

Proposition 1. TheTe e.riiitii a uniqlJ.e iiteady-iitate eq·uilibr·i·um. If the number· of 

inform,ed tr·aderii, N, iii iiufficiently larqe, both heur·iiit ic and Bayesian tr·ader·ii are 

obiierved in the iitm,dy-iitate: that iii, the iiteady iitate eq·uilibr·i-um p , j), satisfies J} E 

(0, 1). If the number· of informed tm der·ii iii iimall, then only heur i.c;tic tr·ader·ii s ur·vive 

in the iiteady-iitate: that iii, p = 1. 

Proposition 1 implies that heuristic traders who exhibit behavior consistent wit h 

representativeness or overconfidence always survive in an evolutionary sense. Fur

thermore, if there is a sufficient number of informed traders, Proposit ion 1 implies 

that both types of informed traders survive. 

An issue of interest is what happens to t he informed traders' expected profits a t 

the steady-state. An informed Bayesian t rader 's expected profits are 

(31) 

which are strictly p ositive. Because both trader types have equal expected profits in 

t he steady-state , this implies t hat the heuristic traders a lso have positive expected 
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profits in the steady-state. The source of each trader's expected profits, however, dif

fers. Bayesian traders choose demands to yield positive, conditional expected profits 

for all xi, :rp states . For some :ri , :rp states, however, the heuristic traders go long 

(short) when the Bayesian traders go short (long). Thus, for some :ri, :rp the heuristic 

traders earn negative conditional expected profits (i.e. , they make some "bad deals"). 

Heuristic traders still have positive ex pected profits because for some :ri, :rp they take 

bigger positions in the same direction as the Bayesian traders (i.e. , they make enough 

on "good deals" to compensate for the losses on "bad deals" ). 

In addition to our focus on steady-states, one might also be concerned with some 

notion of stability. A common stability condition requires that any perturba tion from 

a steady-state is self-correcting in the sense that the evolutionary dynamic leads to 

movement back to the steady-state. Our steady-state satisfies such a condition. Recall 

that the evolutionary dynamic requires that covariance(dh -db , db) = 0 at the steady

state p. Because covariance( dh - db , db) is positive for p < p, any negative perturbation 

from the steady would be self-correcting in that p would rise to J). Similarly, because 

covarian ce(dh -d1, db ) is negative for p > J), any positive perturbation from the steady 

would be self correcting in tha t p would fall top. 

4 Determinants of the Viability of Heuristic Trade 

The simplicity of our model permits us to generate some comparative static results 

that highlight how certain exogenous factors affect the viability of heuristic trade, as 

measured by J}. We then use these results to discuss the empirical relevance of our 

findings. 
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4.1 Comparative Static Results 

Throughout our discussion of comparative static results , we assume that N is suffi-

ciently large to ensure an interior value for p. The steady-state equilibrium condition 

implies that: 

covariance(dh - db , db ) = 0. (32) 

The comparative statics that follow are based on this condition. 

Because a main focus of this paper is the relation between information and the 

presence of heuristic trade, we first consider the relation between the information 

structure in our model and the viability of heuristic trade. As has been pointed 

out, heuristic behavior can be a beneficial attribute because the aggressive trade of 

heuristic informed traders can earn them a greater proportion of the rents arising 

from information asymmetry. Thus, one might expect that improving the quality of 

the public information (i.e., reducing the variance of vp) makes heuristic trade less 

viable. Corollary 1 confirms this intuition. 

Corollary 1. The pmpor·tion of henristic tmder·s S?J.stained in the steady-state, p, 'ts 

decreasing in the qv,ality of the public infor·mation: ,!;! > 0. 
p 

Extending the intuition underlying Corollary 1 to its limit, one might expect that 

heuristic behavior evolves away in cases where the public information is as good as 

the private information (vp = 0) . This extension is correct because the presence 

of inventory holding costs results in informed heuristic trader's always making "bad 

deals" and Bayesian trader's profiting by taking contrarian positions. 

We now briefly turn our analysis to the effect of variables that do not pertain to 

the information structure. We first present a corollary that summarizes the results 

and then discuss the intuition underlying the results. 
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Corollary 2. The pmp(wt-ion of heurist-ic tmden; sustained ·in the steady-state, p, 

is decreasing in the degree of representativeness or overconfidence, r , decr·easing in 

inventory holding costs, c, decr·easing in the var·iance of liquidity trade, Vt , and de-

. EJp EJp tip fTeasing in the num ber of infor·med traders, N : that zs !>-. < 0, -:;- < 0, -::;:::- < 0, and ur u c (T(}l 

The relation between the degree of representativeness or overconfidence, as for-

malized by r , and the viability of heuristic behavior is driven by the fact that heuristic 

traders take more aggressive trading positions as the degree of representat iveness or 

overconfidence rises. Greater aggression, in turn, reduces the expected profits they 

earn in :ri , :r p states where they make "good deals" (i.e., states where they have posi

tive conditional expected profits) and magnifies expected losses in :ri, :rp states where 

they make "bad deals" (i.e., states where they have negative conditional expected 

profits) . Thus, heuristic behavior is likely to become less viable as the degree of 

representativeness or overconfidence rises. 

The relation between inventory holding cost s and the viability of heuristic trade is 

driven by similar reasoning. Specifically, because the inventory holding cost reduces 

the conditional expected profits in states where the heuristic traders ma ke "good 

deals" and magnifies the losses in states where the heuristic traders make "bad deals," 

the viability of heuristic trade is reduced by increases in inventory holding costs. 

The viability of heuristic trade also declines in the variance of liquidity trade. To 

see why, note first that, in the imperfect competition setting we consider, heuristic 

behavior is viable because it commits heuristic informed traders to act aggressively 

on their private information. By acting aggressively, heuristic informed traders drive 

out demands by Bayesian informed traders, which, in turn, allows a heuristic trader 

Lo (;aplure relaLively more ren~ Lhan a Bayesian informed Lrader. An in(;rease in Lhe 
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variance of liquidity trade lessens the effect of informed trade on total net demand, 

which , in turn, ma kes price less sensitive to total net demand. Because price is less 

sensitive to total net demand, the aggressive behavior of the heuristic traders is less 

effective at driving down Bayesian demands. Thus , the relative benefit of heurist ic 

behavior declines and the proportion of heuristic traders falls. 

Finally, we turn to the effect of the number of informed traders on the viability 

of heuristic trade. Recall again that heuristic behavior is viable because it commits 

heuristic informed traders to act aggressively on their private information which, 

in turn, drives out demands by Bayesian informed traders and allows the heuristic 

traders to capture relatively more rents. In a setting with perfect competition (i.e. , 

price taking behavior), aggressive behavior is not rewarded because it does not affect 

the demands of other traders. Noting that traditional oligopoly settings converge 

to perfectly competitive settings as the number of participants becomes infinite, it 

is logical that the proportion of heuristic informed traders decreases in the number 

of informed traders . Indeed, one ca n show that the proportion of heuristic traders 

sustained in the steady-state approaches zero as the number of informed traders 

approaches infinity. 

4. 2 Empirical Relevance 

At this stage it is useful to step back and discuss the empirical relevance of our 

findings . Our comparative static results provide explicit predictions regarding the 

extent of heuristic behavior. Direct tests of these predictions , however, are likely to 

be difficult because doing so would require a good proxy for heuristic trade. We are 

reluctant to suggest such a proxy. 

Nonetheless, our model has some less explicit implications that do pertain to the 
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anomalies literature. In particular, if some of the anomalous empirical findings are 

driven by representativeness or overconfidence on the part of some traders, our model 

provides implicit predictions regarding the settings where the anomalous behavior 

should be most prominent. For example, Ou and Penman [1989] find evidence that 

prices overreact to transitory components of earnings . If these findings are driven 

by the presence of traders who overreact to their information, then one might ex

pect overreaction to be more pronounced in markets where there are more heuristic 

traders. Our model, by suggesting some determinants of heuristic trade, provides 

some predictions regarding overreaction: namely, the overreaction to tra nsitory com

ponents of earnings should be greater in markets or for firms where there is less public 

disclosure or less liquidity trade. 

Our model's insights also apply to papers in the finance literature that suggest 

excess returns can be attained by adopting contrarian investment strategies (i.e., 

buying the winners and selling the losers) .10 Again, if this finding is driven by the 

presence of heuristic t raders who overreact, then our model provides some predictions 

as to settings where the returns to contrarian investing should be greatest: namely, 

the returns should be greatest in markets or for firms where there is less public 

disclosure and less liquidity trade. 

Of course, there are anomalies that our particular behavioral construct cannot 

easily address . One that immediately comes to mind is the underreaction of prices to 

public information (see, for example, Bernard and Thomas [1989]) . The framework 

for our analysis, however, does provide a useful discipline to those who would attribute 

this finding to some sort of heuristic behavior. Specifically, our framework suggests 

that there should be some rationale for why the heuristic is economically viable, and 

108L>e, for example , De Bondt 1md T haler [1985] or Chopra, Lakonishok, and Ritter [1992]. 
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there should be predictions regarding the variables that determine the viability of the 

heuristic. These variables, in turn, can then be related to the extent of underreaction. 

5 Disclosure and Market Phenomena 

Three primary areas of interest in models of trade are the link between the quality of 

public disclosure and: market liquidity, the variance in the change in price, and the 

efficiency of prices. In this section, we discuss how heuristic trade introduces a force 

that potentially alters the standard link predicted in prior work. 

5.1 Market Liquidity 

Traditionally, market liquidity has been measured by the extent to which a unit of 

demand moves price. A more liquid market is one in which demand moves price less. 

Liquidity is captured in our model by >..1.:+c. Because r.. is exogenous, however, the 

endogenous component of liquidity is captured by An. 

Because heuristic traders are more aggressive in their trading, one might expect 

that total net demand contains more information as the proportion of heuristic traders 

increases. A standard model with only Bayesian traders yields the insight that an 

increase in the information content of total net demand causes a decrease in liquidity 

(i.e. , an increase in Av ). T herefore, a logical conjecture is that price should become 

more sensitive to total net demand as the proportion of heuristic traders increases. 

However, in the presence of heuristic traders , this conjecture is not generally true: in 

some cases liquidity is increasing in p and in others it is decreasing in p. 

Recall that An = ,r P; vpv . As shown in the appendix the static 
1< / (v 1,v i+"Vp 1J)+v!(v+ vi+vp ) ' 

equilibrium aggregate demand coefficient, Fi, is increasing in p. Therefore , an increase 

in p affect'S both the numerator and the denominator through an increa<se in Fi. Thus, 
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it is the relative magnitude of the effects on the numerator versus the denominator 

that determines the impact of p on An. For any value of p, it is possible to show that, 

when non-information costs, c, are sufficiently high, the numerator effect dominates 

the denominator effect. This implies that a marginal increase from p results in less 

liquid markets. When the converse occurs, the less intuitive outcome results - a 

marginal increase from p yields more liquid markets. 

From an intuitive perspective, the positive relation between heuristic trade and 

liquidity can be explained as follows. Heuristic traders overreact to their information. 

The overreaction causes total net demand to convey more information. The market 

maker must take out the effect of this overreaction when she computes An. This 

implies that An may decn'.ase in the presence of heuristic trade unless the heuristic 

traders' overreaction is sufficiently attenuated. One exogenous variable that attenu

ates heuristic trader behavior is the market maker's inventory holding cost parameter, 

c. If heuristic trading behavior is attenuated by a high c, then the market maker in

creases An in response to more heuristic trade. If cis low, the market maker delTeases 

An in response to more heuristic trade. More formally, we have the following corollary. 

Corollary 3. Ther·e exist values .for· c, c1 and ch > c1, such that An i,'i globally 

decreasing in p -~{ c ::; c1, An is incr·easing and then decr·easing in p ~f c E: (c1, ch) , 

and An is globally incr·easing in p ~f c 2:: ch . 

An implication drawn from static trading models with only Bayesian informed 

traders is that increasing the quality of the public disclosure (i.e. , decreasing vp) 

improves market liquidity (i.e., lowers An)Y This result arises because improved 

public disclosure reduces information asymmetry, which makes the price at which 

shares are executed less sensitive to the private information impounded in total net 

llSc>e, for example, proposition 1 of Kim and Verrecchia [1994] . 
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demand. Consequently, the response of price to demand, AD, falls . However, the 

presence of endogenous heuristic trade makes the relation between the quality of 

public disclosure and market liquidity potentially a mbiguous. 

To see why, recall that improving public disclosure reduces the steady-state pro

portion of heuristic traders (see Corollary 1). As we have just discussed, a reduction 

in the proportion of heuristic traders may decrease market liquidity (i.e. , increase An). 

Consequently, it is conceivable that the reduction in market liquidity arising from a 

decline in heuristic trade dominates the effect arising from a reduction in information 

asymmetry. This counterintuitive behavior does not arise in our model, however. 

Observation 1. .Mar·ket liqu-idity incr·eases -in the quality of the public inform,ation 

desp-ite the decl-in e in heu.r"'ist-ic tmde: that is, dd >.. > 0, wher·e :\ is the steady-state 
1Jp 

5.2 Variance of Price Change 

A common variable examined by accounting researchers is the variance of price change 

around a public announcement. In our model, the expected price is zero. Conse

quently, the variance of price change is captured by the variance of P. Because 

heuristic traders trade more aggressively, an increase in heuristic trade is likely to 

increase the information content of total net demand. Consequently, we expect that 

price changes are more significant as the proportion of heuristic traders increases . 

Corollary 4 confirms this intuition. 

Corollary 4. The var-iance of the pri ce change incr·eases as the pmportion of heu.rist·ic 

. . dV ar !F'l trader·s mcr·ea.'les: that zs, 1 · · > 0. 
<P 

The conventional wisdom in the theoretical literature is that the variance of price 
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change increases in the quality of disclosure. 12 The intuition underlying this re-

sult is that the higher the quality, the more disclosure moves market expectations. 

Consequently, as the market responds to the announcement, prices shift more dra

matically. In rational models of trade where informed demand occurs concurrently 

with disclosure, this result continues to hold even though the existence of informed 

trade gives rise to a countervailing force. Specifically, as the quality of the disclosure 

increases, the magnitude of equilibrium informed demand decreases, which, in turn, 

implies less information is conveyed to the market through total net demand. The 

decline in information in total net demand, however, is dominated by the increase in 

information through public disclosure. Therefore, the variance in the price change 

continues to increase in the quality of the public disclosure. 

If the proportion of heuristic trade is exogenously fixed in our model, the conven

tional wisdom also holds for our model: specifically, the variance of P decreases in 

Vp · However, when heuristic trade is endogenous, the variance of the price change 

decreases in the quality of disclosure. The explanation for a result of this type is 

that improved public disclosure decreases the proportion of heuristic traders in the 

steady-state, which dampens informed demand. This dampening of informed demand 

implies that the total net demand carries significantly less information. Therefore, 

despite the infusion of information that arises directly from public disclosure, pnce 

change is less dramatic. In summary, we have the following observation. l :l 

12St,>e, for example, the discussion in Holthausen and Verrecchia [1988]. 
13Kin1 and Verrecchia [1994] have a sin1ilar result. In their m odel, the number of informed traders 
en dogeno us, an d they show that the variance of the price change is decrea..c;ing in the q uality of 
the p ublic information . The reason for their result is that better p ublic information reduces the 
incentives for information acquisition , which, in turn, results in fewer informed tr aders in equilibrium. 
Fewer informed traders dam pens in formed demand. This leads to less infor mation bein g conveyed t.o 
the m arket. In shor t. the Kin1 and Verrecchia [1994] result is attributable to an endogenous num ber 
of informed traders while o urs is driven by an endogenous proportion of heuristic traders. 
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Observation 2. The va1·iance of the change in price decr·eases in the quality of the 

publ·ic information: that is, dv;[Pj > 0, where V ar [F] is the steady-state value for 
V p 

V ar[F ]. 

5.3 Price Efficiency 

A final area of interest to be considered is the extent to which price reflects infor-

mation, both public and private. We exa mine efficiency within the context of our 

model by considering the difference between the posterior variance of u conditional 

upon price, P, verses all public and private information, :ci , :cp: V arian ce [uiP] -

V ariance[ul :ci , xp]-

As Kyle and Wang [1996] have observed, heuristic traders react more aggressively, 

which, in turn, implies that more private information is revealed as the proportion of 

heuristic traders increases, ceter·i.c; par·ibus. This result holds in our model as well. 

Corollary 5. Prices becom e m ore infor·mation ally efficient as the pmpor·tion (~f 

} · t · t d · t} t · d{V ar [it iP1- Var [itixi ,x pl } O 
~eU1'lx'> iZC ,1'a e1·s zncr·eases: /,a, zs, - · · dp - · < . 

Because heuristic traders exist in the steady-state equilibrium, Corolla ry 5 implies 

that the price is more informationally efficient in the steady-state than in an equilib

rium with only Bayesian traders. 

A standard implication of static t rading models with only Bayesian informed 

traders is tha t increasing the quality of disclosure (i.e. , decreasing vp) improves price 

efficiency. This result arises because improved disclosure quality is ta ntamount to 

providing the market with more information. In contrast to static models with only 

Bayesian traders , however, a dynamic model with heuristic traders renders the re-

lation between the quality of public information and price efficiency potentially am

biguous. 
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This potential ambiguity arises from the fact that improved disclosure, in addi

tion to providing more information, reduces the steady-state proportion of heuristic 

traders (see Corollary 1) . Because Corollary 5 implies that a decrease in heuristic 

trade results in less efficient prices , there is an effect on price efficiency that counters 

the effect arising from more disclosure. Nonetheless , the countervailing effect of less 

heuristic trade is dominated by improved public disclosure. In summary, we have the 

following observation. 

Observation 3. Pr'ice efficiency incr'eases in the qual-ity l~{ the public inJorm,ation de-

} d l } d } d{Var [1i! P )-Var [it; x ;,:cp)} } --[ I ] spite t w ee;ine in re-ur'istic tra ,e: t w t is, dvp > 0, ·w ~er'e V a.r u P 

i"c; the steady-state value for' V a.r [uiP]. 

6 Conclusion 

Pnw ions rP.sP.arc.h h::~~ shown that informffi h P.nr1s t1c. traoP.rs who ovP.rrP.ac.t to c.nrrP.nt 

information may do better than informed Bayesian traders. Consequently, heuristic 

behavior may be viable in an evolutionary sense. We extend this line of research 

by considering how public disclosure affects the proportion of heuristic trade in the 

steady-state equilibrium for an evolutionary model. We show that improved public 

disclosure, by reducing the rents available to informed traders, reduces steady-state 

heuristic trade. 

We use results developed from our steady-sta te model to reassess the link between 

public disclosure and: market liquidity, the variance of t he change in price that ac-

companies a public announcement, and the efficiency of market prices. In settings 

where all informed traders are Bayesian, improved (i.e. , more precise) public dis

closure is associated with greater market liquidity, increased variance of the change 
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in price that accompanies the announcement, and more efficient market prices. In 

our model, which posits an endogenous level of heuristic trade, there is the possi

bility that these results could be reversed. This reversion arises from the fact that 

improvements in the quality of public disclosure reduce the proportion of heurist ic 

trade, and less heuristic trade may be associated with less market liquidity, less price 

efficiency, etc. In short, public disclosure in the presence of heuristic traders gives 

rise to a force that counters the impact of disclosure identified in models with only 

Bayesian traders. This countervailing force ensures that the variance of price change 

declines with improved public disclosure. Despite this countervailing force, we show 

that improved public d isclosure continues to be positively related to market liquidity 

and strong-form efficiency in our model 

On a broader level, we acknowledge that introduction of heuristic behaviors could 

be exploited to generate a variety of economic responses to information. One con

tribution of this paper is that first it establishes the viability of a behavior in an 

evolutionary sense, and then it considers the impact of the behavior on the link be

tween information and economic outcomes . By adding the discipline imposed by an 

evolutionary construct, we avoid employing heuristics in an ad hoc manner to generate 

particular outcomes. As a consequence, the results attained in this paper, a nd others 

that ut ilize a similar approach, are likely to have a greater degree of plausibility. 
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Appendix 

Proof of Lemma 1 

Using eqns. (18)-(22), (24), and (25) we can write the endogenous variables, f ih, 

Fi(r + N[r - 1] [1 - p]) 
.fih = N(1 + [r - 1]p ) 

f
. _ Fi (1 - N [r- 1]p ) 

· '
6 

- N ( 1 + [r - 1]p) 

f = f = _ Fivt(v +vi) 
· ph · pb Flvp(v + vi )N(r - 1)p + v1(v +Vi + vp)N (1 + [r- 1]p) 

\ - FiVpV 
/\l) - ') 

Ftvp(v + vi ) + v1(v +vi + vp) 

A = " Vt v ( 1 + [r - 1]p) . 
P Ftvp(v + vi) (r - 1)p + v1(v + vi + vp)(1 + [r - 1]p) 

Furthermore, note that eqns. (18) , (20) and (21) imply 

N(1 + [r - 1]IJ) - 1
-) F· _ v+vi 

' - ( 1 + N ) (AD + c) . 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

Note also that eqn. (A6) implies that Fi > 0 in any linear equilibrium in which 

An + c > 0. Because all the endogenous variables can be expressed as functions of 

Fi and Fi > 0 in any equilibrium, the proof can be completed by showing that there 

exists a unique equilibrium Fi > 0. Using eqn. (A4) to substitute in for AIJ in eqn. 

(A6) and rearranging yields the following equilibrium condition for Fi: 

For convenience, denote the function on the left and side of eqn . (A7) as .J. If Fi = 0, 

J < 0, and as Fi ----> ()() , J ----> ()() . Therefore, there exists an interior equilibrium 
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Fi > 0. To show that the equilibrium is unique, one must show that J is increasing 

in Fi at any Fi which satisfies eqn. (A 7). Differentiating J with respect to Fi yields 

3Fi2c(1 + N )vp(v + vi?+ 2Fi(1- [r - 1]Np)vpv (v + vi) 

+ c(1 + N )vt (v + vi + vp)(v + vi) · (A8) 

If 1 - (r- 1)Np > 0, then ,~/, is clearly strictly positive. We show that gj;,. > 0 if . . 
1-(r-1)N p < 0 by cont radiction. Assume 1-(r -1)Np < 0 and ,~j{; < 0 at an Fi > 0 

that solves eqn. (A7). If gj;,. < 0, then 3Flc(1+ N)vp(v+vi)2 + 2Fi(1- [r -1]N p)vpv(v+ 
• 

vi) < 0 by eqn. (A8). If 3Fl c(1 + N )vp(v + vi )2 + 2Fi(1- [r - 1] N p)vpv(v + vi) < 0, 

eqn. (A 7) is satisfied at Fi if and only if Fic(1 + N )vt( v +vi + vp)( v +vi) - N [1 + (r-

1)p]vtv (v +vi + vp) > 0. Therefore, Fi > ~i~~~Cv~~i~ · We can rewrite eqn. (A8) as 

Fivp(v + vi) [3Fic(1 + N )(v +vi) 

+2(1- [r- l ]Np )v] + c(l + N )vt(v +vi + vp)(v + vi)· (A9) 

Notethateqn. (A9) implies that , if3Fic(1+N)(v+vi) +2(1-[r-1]N p)v >0, then 

,~/.; > 0. F\trthermore, note that, if 3Fic( 1 + N ) ( v + vi) + 2( 1 - [r - 1] N p )v > 0 at any 

Fi > 0, it follows that it is strictly positive for all Ff > Fi. Therefore, it follows that, 

if gj{, > 0 at any Fi > 0, then gj;,. > 0 for all Ff > Fi. We complete the contradiction . ' 

write eqn. (A9) as 

T herefore %i~ > 0 at the Fi which satisfies eqn. (A7) if 1- (r- 1)Np < 0. Q.E .D. 

The following two lemmas are used in the proof of Proposition 1. We will let a 

"A" over a variable denote the static equilibrium value for that variable which is a 
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function of pas well as the other exogenous variables (e.g., .fti is the static equilibrium 

Fi which is a function of p. ). 

Lemma Al. The static equilibrium Fi , Fi , is increasing in p: 4i:l > 0. dp 

Proof of Lemma Al 

Using the static equilibrium condition provided by eqn. (A7) to perform standard 

comparative statics analysis yields: 
A n.r 

dFi - ap 
dp - {)J . 

{}fi 

(All) 

Recalling tha t the denominator is strictly positive, the sign of the numerator is the 

sign of ':f~i . The numerator can be written as 

8J A ') ) ) ( ) ) --
8 

= Ft(r - 1 Nvpv (v + vi + r - 1 N v1v (v + vi + vP > 0. 
p 

Th £ ill 0 QED ere ore dp > . . . . 

Lemma A2. The static equilibrium Fi , Fi , is increasing inN: 1{f; > 0. 

Proof of Lemma A2 

(A12) 

Using the static equilibrium condition provided by eqn. (A7) to perform sta ndard 

comparative statics analysis yields: 

{)J 
- {):V 

------aT· 
dN rw 

' 

(A13) 

Recalling that the denominator is strictly positive, the sign of the numerator is the 

sign of *. The numerator can be written as 

8 J 

8N 
- Fj\ ::vp(v + vs~ + f:Nr - 1)pvpv (v + Vi) 

- FiCVt (v + Vi + vp)(v +Vi) + [1 + (r - 1)p]vtv(v + Vi + vp)- (A14) 

Exploiting the static equilibrium condition for Fi, J = 0, yields 

8J 1 A'l ') A.') A 

- DN = N(Fi cvp[v + vi]~+ ~~vpv [v + vi] + Ficvt[v + vi + vp][v + vi]) > 0. (A15) 
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Therefore :~~~~ > 0. Q.E.D. 

Proof of Proposition 1 

Using a variety of equilibrium conditions we can show that covariance(dh- db, d6 ) 

is proportional to K, where 

K = - (Fi3 c[1 + N ]vp [v + vS 2 

+ Fic[1 + N ]vt[v + vi + vp][v + vi])(r- 1)p + vpv1v(1 + [r- 1]p), (A16) 

and Fi is the static equilibrium value given p . The proof of the proposition is com

pleted by first showing that K > 0 a t p = 0 and ';t~ ::; 0 if K ::; 0. We complete the 

proof by showing that there exists an N , N, such that K 2:: 0 at p = 1 if and only if 

N ::; N. Note first tha t at p = 0, K = VpVtV > 0. Thus p = 0 is never a steady-state 

equilibrium value. Differentiating K with respect to p yields 

dK 

dp 
- (.f:3c[1 + N ]vp[v + vJ 2 

+Fic[1 + N ]vt[v +Vi + vp][v + vi]) (r - 1) + VpVtv (r - 1) 

dFi ~ ,, ,, 
--(3Ftc[1 + N ]vp[v +vi]~ + c[1 + N ]vt[v + vi + vp][v + vi])(r- 1)p. (A17) 

dp 

Assuming K ::; 0 implies that 

(~3c [1 + N ]vp[v + vi ]2 + ftic[1 + N ]vt[v +vi + vp][v + vi])(r - 1) 

1 
2:: - VpVtV(1 + [r - 11p). 

p 

It follows from eqns. (A17) and (A18) that 
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Thus, ~~~ :::; 0 if K:::; 0. Finally, fix p = 1. At N = 0, K > 0 because Fi = 0, and as 

N ~ 00, K ~ - oo because Fi > 0 if N > 0. Because :~~ > 0 for all N , it follows 

that :;~ < 0 for all N when p is fixed at 1. Thus, there exists an N , N , such that 

K ~ 0 for all N :::; N when p = 1. Thus, p = 1 is the unique steady-state equilibrium 

for all N :::; N , and the unique steady-state p E (0, 1) if N > N. Q.E.D. 

For the remainder of the analysis, we assume that the steady-state is in the inte-

rior. We denote the interior steady-state values with a "- " over the varia ble. Note 
- ~ 

that Fi equals Fi only when p = p. 

The following lemma is used to prove Corollary 1. 

Lemma A3. The static equilibrium Fi , Fi, is decreasing in vp: t, < 0. 

Proof of Lemma A3 

Using the static equilibrium condition given by eqn. (A 7) to perform standard 

comparative statics analysis yields: 

(A20) 

Recalling tha t the denominator is strictly positive, the sign of the numerator is the 

sign of !b..z.
1
1''- . The numerator can be written as 

(-1Jp 

(A21) 

Exploiting the static equilibrium condition for Fi, J = 0 at Fi, allows eqn. (A21) to 

be rewritten as 

8J ~ 
-~ ex Fic[1 + N][v +vi] - N (1 + [r - 1]p)v. 

u Vp 
(A22) 

Thus, the sign of Fic( 1 + N)(v + vi) - N (1 + [r - 1]p )v determines the sign of :;~ . 

We show that Fic(1 + N)(v + vi) - N (1 + lr - 1jp)v < 0 by showing that J > 0 at 
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the value for Fi that sets Fic(1 + N)(v +vi)- N(1 + [r- 1]p)v = 0, P = ~~i~~~~~=;:_:.~ . 

At Fi = P the value for J = N:~~;t~)1/:r:~r
3 

> 0. Therefore, because J is increasing 

in Fi , Fi < 1-;'i~~{;;~!.~ which implies that - !!.:' < 0 and =..Lddl:'· < 0. Q.E.D. 
C \. • ,\V 'tL VLp :·t1, 

Proof of Corollary 1. 

Using standard comparative statics analysis on the steady-state equilibrium con-

clition, K = 0, yields: 

(A23) 

Recall that - d
1
K > 0 at j5 so the sign of 

1
di> is the same as the sign of '

1
1K • d K satisfies 

£ ·P £ :Vp ( :'V1J dv p 

Exploiting the steady-state equilibrium condition, K = 0, allows eqn. (A24) to be 

rewritten as: 
dK dFi A ') 

-d = --d [3Ft c(1 + N)vp(v +vi) 
V p V p 

1 A ') 

+c(1 + N)vt(v +vi + vp)(v +vi)] (r -1)p + -Fic(1 + N )vt (v + vi)~(r -1)j:J > 0 (A25) 
Vp 

because Lemma A3 implies d
1
h < 0. Therefore, 

1
df5 > 0. Q.E.D. 

( .1Jp ( :t.'1J 

The following lemmas are used to prove Corollary 2. 

Lemma A4. At the interior steady-state p, j5 E (0, 1) , [1- N (r- 1)z1] > 0. 

Proof of Lemma A4. 

Using the equilibrium conditions we can show that covariance(dh - db , db) is pro-

portional to ( 1 - [r- 1] N p) v~vi - >-p. Noting that Ap > 0 for all p and that the steady

state condition requires (1 - [r -1]Nf5) v_;}i - ~P = 0, if follows that (1- [r -1]Np) > 0. 

Q.E.D. 

Lemma A5. The static equilibrium Fi, Fi , is increasing in r: ~ > 0. 
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Proof of Lemma A5 

Using the equilibrium condition provided by eqn. (A7) to perform standard com-

para tive statics analysis yields: 

(A26) 

Recalling tha t the denominator is strictly positive, the sign of the numerator is the 

sign of _ #;l _ The numerator can be written as: 
dr 

(A27) 

Th £ #:1 0 QED ere ore dr > . . . . 

Proof of Corollary 2. 

Using standard comparative statics analysis on the steady-state equilibrium con-
. d dK d dK r dr: r d~ 

clition, K = 0 ytelds· ...E. = d r ...E. = d e ..:.12. = d~1 and ~ = d N Recall 
· dr ~' de - #i.' d1:1 ~' dN ~-

a p a p a1' a J' 

that - '~1~ > 0 at j) so the sign of ::~ is t he same as the sign of ';1~ for variable z. '~~ 

satisfies: 

(A28) 

Exploiting the steady-state equilibrium condition, K = 0, allows eqn. (A30) to be 

rewritten as: 

beca use ill > 0. dK satisfies: dr de 

V pVtV 
--- < 0 

r - 1 
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Doing standard comparative statics analysis, we can use the static equilibrium con

dition, eqn. (A7) , to derive ~- We then substitute in for * in eqn. (A32) and 

simplify to obtain: 
dK 
- ex -(1 - [r - 1]Np) < 0 
de 

because (1 - rr- 11Np) > 0 by Lemma A4. ~~ satisfies: 

(A31) 

dFi A'> ,, 

--d (3Ft c[1 + N ]vp [v +vi] ~ + c[1 + N] vt[v +Vi + vp][v + vi]) (r - 1)p 
Vt 

-.ftic[1 + N ][v +vi + vp][v + vi] (r - 1)p + vpv(1 + [r- 1]p). (A32) 

Exploiting the equilibrium condition K = 0 allows eqn. (A32) to be rewritten as: 

dF· A,, ,, 
--~ (3Ftc[1 + N]vp[v + vi]w + c[1 + N][v + vi + vp][v + vi]) (r - 1)p 

dvt 

+..!_Fi3 r;[1 + N ]vp[v + vJ \r- 1)p. (A33) 
Vt 

Doing standard comparative statics analysis, we can use the static equilibrium con

dition, eqn. (A7), to derive *· We then substitute in for #(;; in eqn. (A33) and 

simplify to obtain: 
dK 
- ex -(1 - [r - 1]Np) < 0 
dvt 

because (1 - [r - 1]Np) > 0 by Lemma A4. ~~ satisfies: 

(A34) 

dK dFi A,, . ., l 
dN = - dN (3Ftc[1 + N ]vp [v + vi]w + c[1 + N ]vt[v + vi + vp][v + vi )(r - 1)p 

-(~3cvp [v + vif + Ficvt[v + Vi + vp][v + vi]) (r - 1)p < 0 (A35) 

because '1ft > 0 by Lemma A2. Q.E.D. 
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Proof of Corollary 3. 

Using eqn. (A4) , the change in the static equilibrium AD, 5.n, arising from a 

change in p is 

(A36) 

Because Lemma A1 implies that ~:; > 0, d,;~) is of the same sign as v1(v +vi+ vp)

i:?vp(v + vi)- Because !!Jt > 0, it follows that if d,~;7 = 0 at some p, then d;p2 > 0 for 

p < p and d5.t D < 0 for p > p. The proof is completed by deriving conditions under 
<-P 

which Vt (v + vi + vp) - f ?vp(v + vi ) :::; 0 at p = 0, and vt (v + vi + vp) - F/' vp(v + vi) 2: 0 

at p = 1. If Vt(v + Vi + vp) - F/'vp(v + vi) :::; 0 at p = 0, it must be the case that at 

Fi = 1'1 rv+ 1•·+1• ) d l · 
· ' ·• ·p . a n ]J = 0 J < 0. Eva uatmg J at 

Vp ( -tJ+'t'i ) ' -

vlrr +v+v ) h . lds 
' · ' 

1
' · w en p = 0 yte 

t'p(t+vi) 

(A37) 

which is weakly negative if and only if 

(N - 1)vpv 

r:::; rt = 2(1 + N )Jv1vp(v + vi)(v + vi + vp) 
(A38) 

and p = 1, J:::; 0. Evaluating J a t 

which is weakly positive if and only if 

A A 

1JJ(t•+ vi+vp) 
Vp (1:+1:; ) 

(A40) 

Therefore, An is globally decreasing in p if r:::; r1, An is increasing and then decreasing 

in p if r E: (rt, rh) , and 5.D is globally increasing in p if r 2: rh· Q.E.D. 
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Proof of Observation 1. 

Using eqn. (A4) we can write the steady state value for >..n, "5..1y, as 

(A41) 

where Pi denotes the steady state equilibrium value for Fi (i.e. , Pi = Fi where Fi 

is evaluated at p). Total differentiation of the right hand side of eqn. (A41) with 

respect to Vp yields 

(A42) 

where ( {}.J OK - {}.J OK ) and ( {}.J OK - {}.J OK) are evaluated at the steady state val-
<7p {} F;_ {}Fi <7p lh1p &p {}p a -up 

ues. Note that at the steady state values a.J aK > 0 -a.'. aK > 0 a.J aK < 0 and 
' ' ,7p tJFi ' Obi {}p , &,p ,7p , 

- tJ.J aK > 0. Therefore we complete the proof by showing that - F·v (v + v·) a.'. aK + {}p i}llp , ~ l ~ {}bi <7p 

v v (v+ v · + v )a.JaK >OandF:-v (v + v ·)a.rm~ +P~v v (v + v ·) a.J aK > 0. Usingthe p l ~ p t}up {}p ~ l t <}p tibi t p t <}p tJvp 

equilibrium conditions, it can be shown that 

(A43) 

and 

> 0. (A44) 

Q.E.D. 

39 



Proof of Corollary 4. 

The static equilibrium variance of the price can be expressed as 

(A45) 

where 

A 1 :']1 : ) A t) •} 

F; v; (v +vi) ~ + 2Ftvpvt(v + vi) ~ 

+v[(v + vi+ vp)(v +vi) + fr/·v; vt (v + vi) (A46) 

A 1 t) t ) A t) t} 

F; v;(v +vi) ~ + 2Ftvpvt(V + vi) ~ 

+v[(v + vi + vp)(v +vi) + 2Fi2v; vt (v + vi) + vpvf (v + vi + vp), (A47) 

z2 = fri (fri+frp) 

A FiNvtv (v + vi) 
= Fi- Fjlr (l + N)vp(v + vi)2 + Flvpv (v + vi)+ Fir(l + N)vt(v +vi+ vp) (v + vi) ' 

(A48) 

and 

(A49) 

It is a straight forward exercise to show tha t Z1 is increasing in Fi and is not a function 

· f N t th t 1 > -. . -, N v 11,.( v+1)i_) because of the 
l ]J. O e a Flc(l+N )vp ('u+vi ):.l+ J<? t•p1-{v+viJ+Fic(l+N)1!J(v+vi+vp)(t+1JiJ 

static equilibrium condition given by eqn. (A7), J = 0. Thus, Z2 is also increasing 
A A A 

in Fi and is not a function of p . Finally, because Fi > II and II is decreasing in Fi, 

it can be shown that .&a is also decreasing in l'i a nd is not a function of p. The proof 

is completed by noting that Lemma Al states that fri is increasing in p. Q.E.D. 
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Proof of Observation 2. 

Using the steady state conditions, the steady state variance of the price can be 

expressed as: 

- - [ v ]
2 

Var P-
· [ ] - ( 1 + N) ( v + vi) 

(A50) 

Thus, to complete the proof we need to show that L = [1 - (r - 1)NpfvP + 

( :V[l+~~- llPl ) 
2 

is increasing in vP. Differentiating L with respect to Vp yields: 

dp -
+-(r - 1){2N [1 + (r- 1)p][1- (r - 1)NjJ]Fivpvt} 

dvp 

dPi [ "( ) [ ( ) ]'' ( ) --d 2N~ r- 1]J 1 + r - 1 p ~Vt v +Vi . 
V p 

(A51) 

The first term on the right hand side of eqn. (A51) is clearly positive. We complete 

the proof by showing that the last two terms is positive as well. Let NI denote the 

sum of the last to terms in ~~~~. We can exploit the equilibrium conditions to show 

that 

1\1 ex Pir(1 + n)[1 + (r - 1)p]v1{N (r - 1)p(v +vi) - [1 - (r - 1)N p]vp}(3N + 2) 

+{1- [(r -1)JJ]2}Nv1{N [1 + (r- 1)]v - Fir(1 + N )(v + vi) }. (A52) 

Using the two equilibrium equations, J = 0 [eqn. (A7)] and K = 0 [eqn. (A16)], it is 

possible to show that N(r -1)p(v+vi)- [1- (r -1 )Np]vp > 0. The static equilibrium 

condition, J = 0, and the steady state equilibrium condition observation in Lemma 

A4 that [1- (r -1)NJJ] > 0 imply that N [1 + (r- 1)]v - /ir(1 + N )(v +vi) > 0 and 

1 - [(r - 1)pj2 > 0 respectively. Thus, the right hand side of eqn. (A52) is strictly 

positive. Q.E.D. 
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Lemma A5. The static equilibrium Ap, Ap, is decreasing in p: d5..1, < 0. 
dp 

Proof of Lemma A5 

Using the static equilibrium condition for >.P given by eqn. (A5) yields 

dP'; beca use, by Lemma Al, l.lP > 0. Q.E.D. 

Proof of Corollary 5. 

Note that the unconditional variance of u conditioned upon X i, Xp is t::;.i. Thus 

the change in efficiency is solely a function of the change in the static equilibrium 

varia nce of u conditioned upon P: 

V [- IP] Cov[u,P f a.r u = v- _ 
Var [P] 

(A54) 

The proof proceeds by showing that o:,.~'[~l
2 

is increasing in p. We can use the static 

equilibrium conditions to show that 

Cov[u, .Pp 
Var [P] 

(A55) 

In order to show that 0 <»;}[u_.i:J
2 

is increasing in p, we show that 5..,, . . 
l-· arlf-'i >..1, (v+vi)+N(1+ [r- 1jp)v 

and 5.. - .~. ~~: ;1~~~- lltl , 1: . . are both decreasing in p . Noting that Lemma A5 implies 
pF,,1.+1.,_ + N , 1+ ,r-1;P. F,1. 

that ~P is decreasing in p it follows directly that 5..1' Cv+vi)+:~'cl+[r- 1Jp)
1
} is decreasing in 

p. We can rewrite . . N(l+[r-1)~) . . as follows: 
Ap Fi ( v + vi )+ N (1 + tr - 1 iP) Fi1} 

N(l + [r - l ]p) vE 
(A56) 
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h 'l ,, h ,, h 

where E = F;_ r ( l + N)vp(v +vi)~+ Ftvpv (v +vi) + Fir( l + N)vt(v + vi + vp )(v + vi) · 

Differentiation of F;vzv(t,:~i)+P;E with respect to Fi yields 

h 1 ? h ? 

-[Fi r ( l + N)vp(v + vi)~+ Ftvpv(v + vi) 

+ Fir(l + N )vt(v + vi + vp)(v +vi)] 

[F:2vpv(v + vi )N (r - l)p + v1v(v + vi+ vp) (l + [r - l ]p)] 

h'l 3 h·? ? ? 
+ 2Fi· r( l + N )vpvtv (v + vi ) + F'tvpvtv~(v + vi)~ 

-~3r(l + N )vpvtv(v + vi)3 [vp + (v + vi + vp)(r- l )p] 

- Fi2vpvtv2
( v + vi)[vp + ( v + vi + vp) (r - 1 )p] 

-Fir(l + N)v;vtv (v + vi)3 

-[frjlr(l + N)vpvtv (v + vi? + Fi2vpv(v + vi )][Fi3vpv(v + vi)N(-r - l )p] 

-Fir(l + N )vtv (v + vi+ vp) (v + vi ) 

[vt(v +Vi + vp)(l + [r - l]p) - Fivp(v + vi)(l- [r- l]p)] 

< 0 

beca use v1(v + vi + vp)( l + [r- l]p) - Fivp(v + vi) (l - [r- l]p) > 0 by the static 

equilibrium condition given by eqn. (A7) , J = 0 . Noting that the t erm on the right 

hand side of eqn. (A56) is not directly a function of p and that fri is increasing in p by 

Lemma Al it follows from eqn. (A57) that . . N(l+ [~- l).p) . . = -, v E ,, . 
' ApF; (tJ+ v; )+N ( l+[r-l ;p)F;v F;v1v('1.+ v ;)+ l•;B 

is decreasing in p . Therefore, c;::!:tJr is increasing in p which implies that V a.r [u iP] 

is decreasing in p . Q.E.D. 
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Proof of Observation 3. 

Note that the steady state unconditional variance of u conditioned upon :ri, :rp is 

v~;,; . Thus the change in efficiency is solely a function of the change in the steady 

state variance of u conditioned upon P: 

- - Cov[u,P f 
V a.r[ui P ] = v - -

Va.r [P ] 
(A58) 

The steady state value for the covariance satisfies 

,, 
-- - v~ 
Cov[u, P] = --

v +vi 
(A59) 

which implies that the change in steady state price efficiency due to a change in 

vP has the opposite sign of dv;[PJ. From the proof of Observation 2 we know that 
1.}p 

> 0. Q.E.D. 
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Table 1: Some Notation 

N - the number of risk neutral informed traders 

p - the proportion of informed traders who are heuristic 

u- firm cash flow, which has a normal distribution with mean 0 and variance v 

:'i;P = u + ci + Cp - public disclosure about firm cash flow, where: 

Ci has a normal distribution with mean 0 and variance Vi , a nd 

Cp has a normal distribution with mean 0 and variance Vp 

:ci = u + Ci - private information about firm cash flow 

r > 1 - heuristic traders' response to priva te information 

D - total net demand order 

d t - liquidity demand, which has a normal distribution with mean 0 and variance Vt 

c > 0- exogenous cost of supplying liquidity 

h - a heuristic-type trader 

b - a Bayesian-type trader 

P = (>.v + c)D + Ap:Ep - price at which trades are executed, where: 

>.v is the weight the market maker places on total net demand, and 

>.P is the weight the market maker places on public information 

.fih - the weight a heuristic informed trader places on private information 

.fib - the weight a Bayesian informed trader places on private information 

.fph = .fpb - the weight all informed traders place on public information 

Fi = 2..::~~-.= 1 .fin - the sum of all informed traders' weights on private information 

Fp = 2...::::~~1 .fpr,- the sum of all informed traders' weights on public information 
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