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MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling

Abstract
Recent embedded systems are becoming integrated systems with components of different criticality. To tackle
this, mixed-criticality systems aim to provide different levels of timing assurance to components of different
criticality levels while achieving efficient resource utilization. Many approaches have been proposed to
execute more lower-criticality tasks without affecting the timeliness of higher-criticality tasks. Those previous
approaches however have at least one of the two limitations; i) they penalize all lower-criticality tasks at once
upon a certain situation, or ii) they make the decision how to penalize lowercriticality tasks at design time. As
a consequence, they underutilize resources by imposing an excessive penalty on lowcriticality tasks. Unlike
those existing studies, we present a novel framework, called MC-ADAPT, that aims to minimally penalize
lower-criticality tasks by fully reflecting the dynamically changing system behavior into adaptive decision
making. Towards this, we propose a new scheduling algorithm and develop its runtime schedulability analysis
capable of capturing the dynamic system state. Our proposed algorithm adaptively determines which task to
drop based on the runtime analysis. To determine the quality of task dropping solution, we propose the
speedup factor for task dropping while the conventional use of the speedup factor only evaluates MC
scheduling algorithms in terms of the worst-case schedulability. We apply the speedup factor for a newly-
defined task dropping problem that evaluates task dropping solution under different runtime scheduling
scenarios. We derive that MC-ADAPT has a speedup factor of 1.619 for task drop. This implies that MC-
ADAPT can behave the same as the optimal scheduling algorithm with optimal task dropping strategy does
under any runtime scenario if the system is sped up by a factor of 1.619.
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Abstract—Recent embedded systems are becoming integrated
systems with components of different criticality. To tackle this,
mixed-criticality systems aim to provide different levels of timing
assurance to components of different criticality levels while
achieving efficient resource utilization. Many approaches have
been proposed to execute more lower-criticality tasks without
affecting the timeliness of higher-criticality tasks. Those previous
approaches however have at least one of the two limitations; i)
they penalize all lower-criticality tasks at once upon a certain
situation, or ii) they make the decision how to penalize lower-
criticality tasks at design time. As a consequence, they under-
utilize resources by imposing an excessive penalty on low-
criticality tasks. Unlike those existing studies, we present a novel
framework, called MC-ADAPT, that aims to minimally penalize
lower-criticality tasks by fully reflecting the dynamically changing
system behavior into adaptive decision making. Towards this, we
propose a new scheduling algorithm and develop its runtime
schedulability analysis capable of capturing the dynamic system
state. Our proposed algorithm adaptively determines which task
to drop based on the runtime analysis. To determine the quality
of task dropping solution, we propose the speedup factor for task
dropping while the conventional use of the speedup factor only
evaluates MC scheduling algorithms in terms of the worst-case
schedulability. We apply the speedup factor for a newly-defined
task dropping problem that evaluates task dropping solution
under different runtime scheduling scenarios. We derive that
MC-ADAPT has a speedup factor of 1.619 for task drop. This
implies that MC-ADAPT can behave the same as the optimal
scheduling algorithm with optimal task dropping strategy does
under any runtime scenario if the system is sped up by a factor
of 1.619.

I. INTRODUCTION

One of the growing trends in safety-critical embedded
systems is towards increasing complex systems with various
applications of different importance or criticality. Their real-
world examples are avionics systems [1] and automotive
systems [2]. These systems are called Mixed-Criticality (MC)
systems, which integrate multiple components with different
criticality levels on a single computing platform. The main
design goal for MC systems is to provide different levels of
assurance to functionalities of different criticality levels, while
achieving efficient resource utilization.

Since the seminal work of Vestal [3], a vast amount of
work has been developed for scheduling of real-time MC
systems (see [4] for a survey). In typical approaches, the
system has two levels of criticality (high and low), and a
high-criticality task comprises of two WCET (Worst-Case

Execution Time) estimates with different levels of confidence.
Each high-criticality task typically starts in the low-criticality
mode during which it completes execution without exceeding
a low-confidence WCET estimate. Upon overrunning the low-
confidence WCET estimate, the task is considered to transit
to the high-criticality mode during which it can execute up
to its pessimistic (high-confidence) WCET estimate. A typical
requirement for MC systems is that 1) all high-criticality tasks
always satisfy their deadlines and 2) all low-criticality tasks
meet deadlines as long as all high-criticality tasks remain in the
low-criticality modes. A major challenge is to guarantee the
MC-schedulability while at the same time improving resource
utilization.

A vast majority of existing solutions [5]–[15] employ an
assumption of system-level mode switch that when a task ex-
hibits high-criticality behavior by violating its low-confidence
WCET estimate, all the other high-criticality tasks also show
high-criticality behavior simultaneously. Upon any task tran-
siting to the high-criticality mode, those existing solutions
commonly penalize all of the low-criticality tasks, i.e., either
by dropping all [5], [6], [8], [11], [14] or degrading all the
services offered to them [7], [9], [10], [12], [13], [15]. How-
ever, this is overly pessimistic, because not all high-criticality
tasks necessarily violate their low-confidence WCET estimates
at the same time. For example in automotive, it is a rare case
that both adaptive cruise control (ACC) component and anti-
lock braking system (ABS) component simultaneously violate
the normal ranges of WCET estimates because the behavior of
each component depends on different sensors (ACC depends
on laser and radar sensors while ABS depends on friction and
speed sensors).

Relaxing such an assumption, we consider task-level mode
switch, where tasks can exhibit high-criticality behavior at
different times, independently from each other. Under task-
level mode switch, it is allowed that some high-criticality tasks
execute in the high-criticality mode while others remain in the
low-criticality mode. This makes it possible to penalize some
of the low-criticality tasks selectively in the event of mode
switch, rather than all of them unnecessarily. In the automotive
example, various infotainment components such as head-up
display can be maximally serviced even under deviation of
some high-criticality tasks. Our goal is then to minimize the
total number of low-criticality tasks to be dropped under task-
level mode switch subject to the MC schedulability constraints.
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To achieve this, we seek to develop a new MC scheduling
framework that dynamically determines which tasks to drop
at runtime.

The task dropping decision under task-level mode switch is
challenging since the system state is dynamically changing
in the sense that a set of tasks in the high-criticality (or
low-criticality) mode as well as a set of tasks dropped (or
active) change dynamically over time. In addition, when a
high-criticality task requires additional resources due to its
mode switch, the actual resources to be secured by dropping
low-criticality tasks may vary depending on the current system
state. There exist some recent studies [16]–[18] considering
task dropping under task-level mode switch; however, all of
them do not take the dynamic behavior of the system into full
consideration since the tasks to be dropped are determined
(and analyzed) at design time and then remain unchanged
during runtime. Such a static decision has a considerable
degree of pessimism, leading to unnecessary dropping of low-
criticality tasks. This is because existing solutions cannot fully
capture dynamic system states and incorporate them efficiently
into the decision making of task dropping at runtime.

In this paper, we focus on the following research questions
to address these challenges.
• Q1. How can we analyze the impact of dynamic system

state changes on the MC schedulability at runtime?
• Q2. How can we make adaptive decisions on task drop-

ping without sacrifice in the MC schedulability?
• Q3. How can we evaluate the quality of task dropping

solution for MC scheduling algorithms?
This paper presents MC-ADAPT, which is an adaptive

MC scheduling framework that makes online task dropping
decisions according to dynamic system states under task-level
mode switch. In particular, to address Q1, we develop a run-
time schedulability analysis capable of capturing dynamic
system states, which serves as a basis for online task dropping
decisions. Our run-time analysis is efficient in the sense that it
is sufficient to consider only the current system state without
tracking the previous history of all system state changes when
deciding which tasks to drop.

To address Q2, we design a new scheduling algorithm,
called EDF-AD, by extending EDF-VD to support adaptive
task dropping under task-level mode switch. EDF-AD utilizes
the proposed run-time schedulability analysis to find a minimal
set of low-criticality tasks to be dropped, so as to secure the
additional resources requested by a mode-transiting task at the
current system state. We found that a straightforward extension
of EDF-VD leads to schedulability loss compared to EDF-VD.
We develop another scheduling algorithm, called EDF-AD-E,
which identifies the subset of tasks triggering schedulability
loss and isolates them from other tasks. However, improving
schedulability is not our main goal in this paper.

To address Q3, we propose the speedup factor for task
drop. Although the conventional speedup factor for the MC
scheduling problem is effective to evaluate the schedulability
of scheduling algorithms, it does not evaluate the quality of
task dropping solution. We propose to apply the speedup
factor for a different MC scheduling problem, called the
task dropping problem, which evaluates runtime performance

of low-criticality tasks in addition to MC-schedulability. We
derive that the speedup factor of MC-ADAPT for the task drop
is (1 +

√
5)/2 (≈ 1.619), which indicates that MC-ADAPT

can schedule any feasible task set under any runtime scenario
by dropping the same number of low-criticality tasks as the
optimal scheduling framework with optimal task dropping
strategy if the processor is sped up by a factor of 1.619. To the
best of our knowledge, this is the first work to quantify runtime
performance of MC scheduling algorithms via the processor
speedup factor [19]. In addition, we evaluate MC-ADAPT via
simulation in terms of schedulability and resource utilization.

In summary, this paper makes the following contributions:
• We present the MC-ADAPT framework supporting online

adaptive task dropping under task-level mode switch.
• We propose new scheduling algorithms, called EDF-AD

and EDF-AD-E, that drop a minimal set of low-criticality
tasks based on run-time schedulability analysis, without
sacrifice in schedulability.

• We propose the speedup factor for the task dropping
problem and derive that EDF-AD-E has a speedup factor
of 1.619 for task drop.

• Our simulation shows the effectiveness of our framework.

II. RELATED WORK

Since Vestal’s initial work [3] on MC systems, a rich
number of studies have been introduced for MC real-time
scheduling. A significant proportion of existing solutions make
an assumption on MC system behavior that once a single high-
criticality task violates its low-confidence WCET, all the other
high-criticality tasks will simultaneously exhibit similar behav-
ior, i.e., system-level mode switch. Upon system-level mode
switch, typical scheduling approaches [5], [6], [8], [11] require
the pessimistic strategy of dropping all active low-criticality
tasks immediately. There is a method to delay dropping low-
criticality tasks by adjusting the threshold of mode switch in
offline computation [14] or runtime computation [10]. Bate et
al. [20] presented a scheduling protocol for returning to the
low-criticality mode so as to resume the execution of low-
criticality tasks. Other works [7], [9], [10], [12], [13], [15]
provided degraded service to low-criticality tasks after system-
level mode switch, which includes stretching their periods [7],
[12], [15], lowering their priorities [7], skipping their jobs [9],
or reducing their execution times [10], [13]. However, all the
above studies share the impractical assumption of system-
level mode switch, which results that resources are still under-
utilized in practice.

Relaxing the assumption of system-level mode switch, re-
cent studies [16]–[18] considered task-level mode switch that
enables low-criticality tasks to be penalized selectively in the
event of individual mode switch. Huang et al. [16] proposed
offline mapping from each high-criticality tasks to multi-
ple low-criticality tasks: when the high-criticality task mode
switches, the connected low-criticality tasks are dropped. Ren
and Phan [17] proposed a similar technique under harmonic
workloads (the tasks with periods being integer multiples of
each other) with exclusive task grouping where each group has
a single high-criticality tasks. Gu et al. [18] also presented task
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grouping technique that allows multiple high-criticality tasks.
Within the predefined tolerance limit of a task group, they
drop only low-criticality tasks within the task group. All the
above studies make static task dropping decisions for a limited
number of scheduling scenarios (which task is mode-switching
or how many tasks in a task group are mode-switched) at
design time. On the other hand, MC-ADAPT makes dynamic
scheduling decision at runtime with online schedulability test
considering runtime criticality of each high-criticality task.
Our task dropping algorithm drops the minimum set of low-
criticality tasks for each possible system state. It is worth
to note that since the system state comprises not only the
information considered by the above approaches but also new
additional information, such as dropped low-criticality tasks.

The processor speedup factor [19] is widely used to evaluate
MC scheduling algorithms [5], [13]. Baruah et al. [5] proposed
EDF-VD with a speedup factor of 4/3, which is optimal in
uniprocessor MC scheduling. Since the conventional speedup
factor in the existing work only evaluates schedulability of
MC scheduling algorithms, we propose the speedup factor to
evaluate the quality of task dropping solution.

III. SYSTEM MODEL AND FRAMEWORK OVERVIEW

A. System Model

We consider dual-criticality uniprocessor systems with two
distinct criticality levels: HI (high) and LO (low).

Task Model. We consider an implicit-deadline sporadic
task system (denoted τ ) of n MC tasks. Each MC task τi
is characterized by (Ti, C

L
i , C

H
i , χi), where

• Ti ∈ R is the minimum inter-job separation time (or
period),

• CLi ∈ R is a low-confidence WCET (LO-WCET),
• CHi ∈ R is a high-confidence WCET (HI-WCET), and
• χi ∈ {HI,LO} is a task criticality level.
We can categorize individual tasks τi by their criticality

levels χi. For notational convenience, let τH denote a set of
tasks with HI-criticality levels (or a Hi-task set), i.e., τH

def
=

{τi ∈ τ |χi = HI}. Likewise, τL denotes a set of tasks with
LO-criticality levels (or a LO-task set).

Utilization. The LO- and HI-utilization of a task τi are
defined as uLi

def
= CLi /Ti and uHi

def
= CHi /Ti, respectively. For

notational convenience, we have

ULL
def
=

∑
τi∈τL

uLi , ULH
def
=

∑
τi∈τH

uLi , UHH
def
=

∑
τi∈τH

uHi .

Behavior Model. We assume some degree of uncertainty
on the execution time of different jobs for a task. We consider
task-level criticality mode (task mode). Each HI-task τi has its
own task mode (denoted as Mi) that indicates its behavior. A
task τi is said to be in LO-mode (Mi = LO) if no job of the
task has executed more than its LO-WCET (CLi ), and be in
HI-mode (Mi = HI) otherwise.

Under task mode, we consider task-level mode switch,
where an individual task changes its task mode independently.
That is, each HI-task starts in LO-mode, and switches to
HI-mode when its execution time violates CLi (called mode
switch) (see Fig. 1a). Most of the existing MC schemes employ

LO HI Active Dropped

The initial mode The initial state

(a) The task mode of a HI-task (b) The execution state of a LO-task

Execution time 
violates LO-WCET

Task dropping algorithm 
decides to drop

Fig. 1. The Behavioral Model of Tasks

the system-level criticality-mode (called system mode); the
system mode is LO if all HI tasks are in LO-mode, and it
becomes HI when all HI-tasks are in HI-mode. System mode
is a special case of task mode.

In addition to HI-tasks, we consider the execution state of
a LO-task (see Fig. 1b): each LO-task is in either active state
or dropped state. Initially, all LO-tasks are active (jobs of the
tasks are released sporadically). On mode switch, some LO-
tasks are allowed to be dropped in order to support HI-tasks
with their additional resource requests. When a LO-task is
dropped, no job of the task is released.

System Goal. It is generally important to maximize the
performance of LO-tasks as well as the MC-schedulability [7].
Our system goal is to drop as few LO-task as possible under
MC-schedulability, which consists of two conditions:
• Condition A: HI-tasks are always schedulable.
• Condition B: LO-tasks are schedulable if no HI-task is

in HI-mode.

B. The Overview of the MC-ADAPT Framework

We present the MC-ADAPT scheduling framework that
seeks to drop as few LO-tasks as possible under the MC-
schedulability. The key features of MC-ADAPT include task-
level mode switch and adaptive LO-task dropping. To enable
such features and leverage them for achieving our goal raises
several issues to address. We first need to design a new
scheduling algorithm that supports task-level mode switch
effectively. It is desirable to generalize or dominate the similar
ones based on system-level mode switch. We then need to
develop a method of task dropping that finds a minimal set
of LO-tasks to drop while securing the additional resources
requested by a mode-transiting task. This requires to analyze
run-time variation on the resource demand of HI-tasks under
task-level mode switch. When a task exhibits HI-behavior,
the amount of additional resource demand for all HI-tasks to
meet their deadlines can vary depending on a different runtime
system state, i.e., a different combination of tasks in HI-mode,
LO-mode, active state, and dropped state. This requires to
calculate such resource demand precisely based on a runtime
system state and determine which LO-tasks to be dropped so
as to guarantee the required resources as well as minimize the
number of dropped tasks at runtime in an efficient manner.

To develop the MC-ADAPT framework, we design a
scheduling algorithm and its analysis building upon the prin-
ciple of EDF-VD (Sec. V), and enhance it to become a
generalization of EDF-VD (Sec. VI).
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IV. RECAPITULATION OF EDF-VD SCHEDULING

In this section, we recapitulate EDF-VD [5] for the implicit-
deadline task model, whose algorithm and analysis are simple
while being speedup-optimal. Due to its simplicity, EDF-VD
is extended into various directions (e.g., constrained-deadline
task model [8], [21] and imprecise computation model [13]).

EDF-VD considers system-level mode switch that when a
single HI-task switches to HI-mode, all the other HI-tasks
switch to HI-mode simultaneously. Upon such an event, it
changes the system mode from LO-mode to HI-mode and
drops all the LO-tasks. Capturing the characteristics of MC
tasks that HI-tasks are subject to different WCET requirements
in different modes, EDF-VD assigns different priorities to a
HI-task in different modes (virtual deadline (VD) in the LO
mode and real deadline in HI-mode).

We now explain how EDF-VD assigns VDs. For a HI-task
τi, the VD of the task (Vi) is assigned by Vi = xTi where
x is the VD coefficient1 (x ∈ R s.t. 0 < x ≤ 1) with x =
ULH/(1− ULL ).

Schedulability analysis of EDF-VD consists of the follow-
ing lemmas. We will reuse Lemma 1 for our new algorithm.

Lemma 1 (from [5]). A task set τ is schedulable by EDF-VD
when all HI-tasks are in LO-mode if

ULL +
ULH
x
≤ 1. (1)

Lemma 2 (from [5]). A task set τ is schedulable by EDF-VD
when any HI-tasks are in HI-mode if

xULL + UHH ≤ 1. (2)

By Lemmas 1 and 2, a given task τ is MC-schedulable by
EDF-VD if Eqs. (1) and (2) hold.

V. THE MC-ADAPT FRAMEWORK

In this section, we present the MC-ADAPT framework that
supports adaptive task dropping under task-level mode switch.
To minimize the dropping of LO-tasks, we need a resource-
efficient scheduling algorithm and task dropping algorithm
to choose a minimal set of LO-tasks for additional resource
request by a mode-transiting task (Sec. V-A). In Sec. V-B,
we check whether a task is schedulable at a specific mode
switch via online schedulability analysis. In Sec. V-C, we
check whether a task set is schedulable under any sequence
of mode switches via offline schedulability analysis.

A. The EDF-AD Scheduling Algorithm

To minimize the dropping of LO-tasks under task-level
mode switch, we propose the EDF-AD (EDF-Adaptive task
Dropping) algorithm extending the principle of EDF-VD.
Runtime Scheduling Policy. To guarantee the schedulability
of HI-tasks after mode switch, we apply VDs to HI-tasks in
their LO-mode. EDF-AD adopts the same VD assignment2

1The computation of VD coefficient is derived from Eq. (1) of Lemma 1.
2The VD coefficient is derived from the schedulability analysis for the

initial system state (all HI-tasks are in LO-mode and all LO-tasks are active),
which is identical for both EDF-VD and EDF-AD.

as EDF-VD, but changes the priorities of tasks according to
task level mode switches. EDF-AD schedules the job with the
earliest effective deadline and operates under the following
rules:
• Schedule LO-tasks with their real deadlines.
• For each HI-task τi, schedule the task with its VD if the

task is in LO-mode (Mi = LO) and with its real deadline
if the task is in HI-mode (Mi = HI)

• At the mode switch of a HI-task τi, set Mi := HI and
drop LO-tasks3 by the EDF-AD task dropping algorithm.

If the task mode of a HI-task is changed to HI at the mode
switch, the relative deadline of the task is postponed from its
VD to its real deadline.
Task Dropping Algorithm. To drop as few LO-tasks as
possible at mode switch, we need to know how many resources
are required to satisfy MC-schedulability. To do this, we
develop an online schedulability test and drop LO-tasks by
the test.

To construct such a test, we introduce system state that cap-
tures the dynamic system behavior at mode switch, including
the task mode (execution state) of each task.

Definition 1 (System state). For a given task set τ , a
system state S is defined as a four-tuple of disjoint sets:
S = (τH1, τH2, τL1, τL2) where
• τH1 : the LO-mode HI-task set (τH1 = {τi ∈ τH |Mi =

LO}),
• τH2: the HI-mode HI-task set (including the mode switch-

ing task) (τH2 = τH \ τH1),
• τL1: the active LO-task set, and
• τL2: the dropped LO-task set (including the dropping LO-

tasks at mode switch) (τL2 = τL \ τL1).
The initial system state is S0 = (τH , ∅, τL, ∅).

We present the EDF-AD task dropping algorithm as follows:
• Before system start, sort LO-tasks in decreasing order of

their task utilization.
• Drop the LO-task with the highest utilization among the

active LO-task set (τL1) until the dropped LO-task set
(τL2) satisfies the online schedulability test (Eq. (3)). This
algorithm minimizes the number of the dropping tasks
during the entire running time, which is optimal with
respect to the online schedulability test.

We present the online schedulability test to determine which
LO-tasks should be dropped at mode-switch:

ULL2 ≥
ULL1 + ULH1/x+ UHH2 + ULL − 1

1− x
. (3)

Its correctness is presented in Sec. V-B.
The runtime complexity of MC-ADAPT is O(n), a linear

complexity. The task dropping algorithm takes O(n): identi-
fying resource deficiency takes O(n) and selecting the drop
candidates of LO-tasks (sorting LO-tasks is done offline) takes
O(n). The required memory space for the system state is at
most n bits to store criticality-modes of HI-tasks.

3If a task is dropped by the scheduler, then the currently-released job of
the task is immediately stopped (not guaranteed to meet its deadline) and no
further job of the task is released. If a task is in the active mode, all jobs
released by the task meet their deadlines.
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B. Online Schedulability Analysis

We analyze online schedulability at a specific mode switch,
which means whether a given task set is schedulable by EDF-
AD when the system state at mode switch is given. Let Sk be
the system state after k-th mode switch (k ≥ 1). To find the
collective resource demand on a given interval, we compute
the resource demand of each task depending on its task mode
(execution state).

We consider online schedulability on two different kinds of
system states: the initial system state (S0) and the system state
(Sk) that is switched from any feasible system state (Sk−1).
Since S0 is the same as system LO-mode in EDF-VD, we can
reuse the results of EDF-VD for online schedulability on S0.

Lemma 3. A task set τ is schedulable by EDF-AD on S0 if

ULL +
ULH
x
≤ 1. (4)

Proof. It is immediate from Lemma 1.

Next, consider online schedulability on Sk.

Theorem 1. Consider a task set τ . Assume that the task set
is schedulable with Sk−1. Let Sk be the system state transited
from Sk−1. Then, τ is schedulable by EDF-AD on Sk if

ULL1 +
ULH1

x
+ xULL2 + UHH2 ≤ 1. (5)

We can derive the online schedulability test (Eq. (3)) in
Sec. V-A from Theorem 1. Eq. (5) is rewritten to

(ULL − ULL2) +
ULH1

x
+ xULL2 + UHH2 ≤ 1 (∵ ULL = ULL1 + ULL2)

⇔ ULL +
ULH1

x
+ UHH2 − 1 ≤ ULL2 − xULL2,

which is Eq. (3).
Now, we present the proof strategy for Theorem 1 and

present auxiliary lemmas for the proof. We prove it by
contradiction. Suppose that a deadline is missed. Let I denote
a minimal4 instance of jobs released by τ on which a deadline
is missed by EDF-AD. Without loss of generality, we assume
that the first job in I is released at time 0 and the deadline is
missed at time t15. For task τi and any time t, let DEMi(t) be
an upper bound of the demand6 of task τi over time interval
[0, t) in I . Let DEM(t) be the sum of DEMi(t) of all the tasks
in τ . Since a deadline is missed at t1, we have DEM(t1) > t1.
We will show that our calculation of DEM(t1) is no greater
than t1, which leads to a contradiction.

To find DEM(t1), we consider individual task demand over
[0, t1). The following lemma bounds the demand for a HI-task
in LO-mode and the demand of a LO-task in the active state.

Lemma 4. Consider any time t. (a) For a HI-task in LO-mode
(τi ∈ τH1), DEMi(t) = (uLi /x)t, and (b) for a LO-task in the
active state (τi ∈ τL1), DEMi(t) = uLi · t.

4Since I is minimal, EDF-AD can schedule any proper subset of I .
5All jobs in I are necessary to construct the deadline miss. Otherwise, the

unnecessary job can be removed from I , which contradicts the minimality of
I .

6The demand of a task for a time interval indicates the worst-case
resource demand to meet deadlines of jobs released by the tasks for the time
interval [22].

Proof. (a) The task demand over [0, t) is smaller than or equal
to CLi · t/(xTi). Thus, DEMi(t) = (uLi /x)t.

(b) The task demand over [0, t) is smaller than or equal to
CLi · t/Ti. Thus, DEMi(t1) = uLi · t1.

For the demand for a HI-task in HI-mode and a LO-task in
the dropped state, we utilize a characteristic of the jobs that
are included in DEM(t1).

Lemma 5 (from [5]). Consider the minimal instance I . All
jobs that execute in [0, t1) have a deadline ≤ t1.

Based on Lemma 5, we bound the demand of a HI-task in
HI-mode. For a HI-task τi, let J∗i be the mode-switching job
of τi in I and a∗i be the release time of J∗i .

Lemma 6. If HI-task τi is mode switched (τi ∈ τH2), then

DEMi(t1) =

{
(uLi /x)t1 if t1 < a∗i + xTi,
uLi · a∗i + uHi (t1 − a∗i ) otherwise.

Proof. At mode switch of τi, the deadline of J∗i is changed
from a∗i + xTi to a∗i + Ti and the execution requirement is
changed from CLi to CHi . By Lemma 5, the changed demand
is not considered when t1 < a∗i + Ti. The task demand over
[0, t1) is different depending on whether time t1 is before the
VD of J∗i or not.

Case (t1 < a∗i + xTi). Since t1 < a∗i + xTi ≤ a∗i + Ti, the
task demand is the same as Lemma 4a.

Case (t1 ≥ a∗i + xTi). We calculate the task demand of
jobs before time a∗i and the task demand after time a∗i . Since
jobs before time a∗i execute for LO-WCET (CLi ), the task
demand of jobs before a∗i is CLi · a∗i /Ti. Since job J∗i and
its successive jobs execute HI-WCET (CHi ), the task demand
of jobs after time a∗i is CHi (t1 − a∗i )/Ti. Then, DEMi(t1) =
CLi · a∗i /Ti + CHi (t1 − a∗i )/Ti.

The following lemma bounds the demand of a LO-task in
the dropped state.

Lemma 7. Let τq be the last (k-th) mode-switched task in I
on Sk. If LO-task τi is dropped (τi ∈ τL2), then

DEMi(t1) =

{
uLi · t1 if t1 < a∗q + xTq ,
uLi (a

∗
q + xTq) otherwise.

Proof. Since τq is the last mode-switched task, τi is dropped
before or at the mode switch of J∗q . The mode switch of J∗q
happens before or at its VD (a∗q + xTq). The task demand of
τi over [0, t1) is different depending on whether time t1 is
before the VD of J∗q or not.

Case (t1 < a∗q + xTq). In the worst case, the mode switch
happens at the VD of J∗q . Then, the upper bound of the demand
is the same as Lemma 4b.

Case (t1 ≥ a∗q+xTq). No job of the task executes after the
mode switch of J∗q . To execute before the mode switch, jobs
must have a deadline no greater than the VD of J∗q . Then,
DEMi(t1) = CLi (a

∗
q + xTq)/Ti.

We consider the task demand on Sk based on the task
demand on Sk−1. We know that Sk−1 is a feasible system
state and Sk is the transited state from Sk−1 by the mode
switch of HI-task τq . Let DEMk

i (t) be the demand of task
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τi over [0, t) on the system state Sk. We compute DEMk
i (t1)

based on DEMk−1
i (t1) for task τi depending on whether time

t1 is before the VD of J∗q or not (Lemmas 8 and 9).

Lemma 8. If t1 < a∗q +xTq , then DEMk
i (t1) = DEMk−1

i (t1).

Proof. Task τq belongs to τH2 when the system state is Sk and
belongs to τH1 when the system state is Sk−1. Since τq ∈ τH2

on Sk, we have DEMk
i (t1) = (uLi /x)t1 by Lemma 6. Since

τq ∈ τH1 on Sk−1, we have DEMk−1
i (t1) = (uLi /x)t1 by

Lemma 4a.
Consider task τi that is dropped by τq . The task belongs

to τL2 when the system state is Sk and belongs to τL1 when
the system state is Sk−1. Since τi ∈ τL2 on Sk, we have
DEMk

i (t1) = uLi · t1 by Lemma 7. Since τq ∈ τL1 on Sk−1,
we have DEMk−1

i (t1) = uLi · t1 by Lemma 4b.
Consider task τi ∈ τ that is not tq and not dropped by

τq . Since its task mode (execution state) is not changed from
Sk−1 to Sk, we have DEMk

i (t) = DEMk−1
i (t) for any t.

Lemma 9. If t1 ≥ a∗q + xTq , then

DEMk
i (t1) ≤ DEMk−1

i (a∗q)+(t1 − a∗q)


uLi /x if τi ∈ τH1,
uLi if τi ∈ τL1,
uHi if τi ∈ τH2,
x · uLi if τi ∈ τL2.

Proof. For τi ∈ τH1, we have DEMk
i (t1) = DEMk−1

i (a∗q) +
(t1 − a∗q)u

L
i /x by Lemma 4a. For τi ∈ τL1, we have

DEMk
i (t1) = DEMk−1

i (a∗q) + (t1 − a∗q)uLi by Lemma 4b.
Consider τi ∈ τH2. If a∗i ≤ a∗q , we have DEMk

i (t1) =

DEMk−1
i (a∗q)+ (t− a∗q)uHi by Lemma 6. Otherwise, we have

DEMk
i (t1) =DEMk−1

i (a∗q) + (a∗i − a∗q)uLi + (t1 − a∗i )uHi
(by Lemma 6)

≤DEMk−1
i (a∗q) + (t1 − a∗q)uHi .

Consider τi ∈ τL2. By Lemma 5, the deadline of J∗q is no
greater than t1: a∗q + Tq ≤ t1. By Lemma 7, we have

DEMk
i (t1) =(a∗q + xTq)u

L
i

≤DEMk−1
i (a∗q) + x(t1 − a∗q)uLi (∵ Tq ≤ t1 − a∗q).

Based on the relation between the demand on Sk and the
demand on Sk−1, we now prove Theorem 1.

Proof of Theorem 1. We summarize the proof strategy stated
before. Let DEMk(t) be the sum of DEMk

i (t) of all the
tasks in τ . Since Sk−1 is a feasible system state, we have
DEMk−1(t) ≤ t for any t. With the proof by contradiction, we
assume a deadline misses in I . Then, we have DEMk(t1) >
t1. To lead to a contradiction, we only need to show that
DEMk(t1) ≤ t1. Let τq be the last mode-switched task in I .
DEMk(t1) is different depending on whether t1 is before the
VD of J∗q or not.

Case 1 (t1 < a∗q + xTq). We calculate DEMk(t1):

DEMk(t1) =
∑
τi∈τ

DEMk
i (t1)

=
∑
τi∈τ

DEMk−1
i (t1) (by Lemma 8)

= DEMk−1(t1),

which is smaller than or equal to 1 by the assumption on
DEMk−1.

Case 2 (t1 ≥ a∗q + xTq). We calculate DEMk(t1):

DEMk(t1) =
∑
τi∈τ

DEMk
i (t1)

≤
∑
τi∈τ

DEMk−1
i (a∗q) + (t1 − a∗q)(ULL1 +

ULH1

x

+ xULL2 + UHH2) (by Lemma 9)

≤ DEMk−1(a∗q) + (t1 − a∗q) (Eq. (5) with Sk)

≤ a∗q + (t1 − a∗q) (by the assumption on DEMk−1)

= t1.

From Cases 1 and 2, we showed that DEMk(t1) ≤ t1.

C. Offline Schedulability Analysis

We looked at online schedulability analysis at a mode
switch. However, we do not yet know whether a task set
is schedulable by EDF-AD under any sequences of mode
switches, which is offline schedulability. To know the schedu-
lability, we need to check whether EDF-AD can schedule
the task set on any system state satisfying MC-schedulability
(Condition A and B in Sec. III), based on the online schedu-
lability analysis (Lemma 3 and Theorem 1).

Theorem 2. A task set τ is MC-schedulable by EDF-AD if

ULL +
ULH
x
≤ 1, (6)

xULL +
∑
τi∈τH

max(
uLi
x
, uHi ) ≤ 1. (7)

Proof. To show that τ is MC-schedulable, we need to satisfy
both Conditions A and B. Since Eq. (6) holds, by Lemma 3,
τ is schedulable on S0, which satisfies Condition B. For
Condition A, by Theorem 1, we show that Eq. (5) holds with
any τH2 6= ∅: since each HI-task is either LO-mode or HI-
mode, and all LO-tasks may be dropped in the worst case,

xULL +
∑
τi∈τH

max(
uLi
x
, uHi ) ≤ 1,

which holds from Eq. (7).

We show an example task set schedulable by EDF-AD.

Example 1. Consider the example task set in Table I. Accord-
ing to the VD assignment, we have x = 0.3/(1− 0.4) = 0.5.
We show that Eqs. (6) and (7) hold: 0.4 + 0.3/0.5 = 1
and 0.5 ∗ 0.4 + max(0.1/0.5, 0.35) + max(0.2/0.5, 0.30) =
0.2 + 0.35 + 0.4 = 0.95 ≤ 1. Then, the task set is MC-
schedulable by Theorem 2.
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Task χi uLi uHi

τ1 HI 0.10 0.35
τ2 HI 0.20 0.30
τ3 LO 0.18 N/A
τ4 LO 0.12 N/A
τ5 LO 0.10 N/A

TABLE I
THE PARAMETERS OF AN EXAMPLE TASK SET

VI. AN ENHANCED MC-ADAPT FRAMEWORK

A straightforward extension of EDF-VD, which is EDF-
AD, yields a counter-intuitive result that EDF-AD does not
dominate EDF-VD in schedulability. In Sec. VI-A, we find the
characteristics of the subset of tasks that cause the schedulabil-
ity loss. In Sec. VI-B, we present a new scheduling algorithm
that isolates them from the other tasks.

A. The Schedulability Loss of EDF-AD

Let’s look at an example schedulable by EDF-VD but not
by EDF-AD.

Example 2. We modify the task set in Table I by changing uH1
of τ1 to 0.45. Since ULL and ULH are not changed, x will not
be changed. The task set is schedulable by EDF-VD because
Lemmas 1 and 2 hold: 0.4+0.3/0.5 = 1 and 0.5·0.4+0.75 =
0.95 ≤ 1. However, the task set is not schedulable by EDF-
AD because Eq. (7) in Theorem 2 does not hold: 0.5 · 0.4 +
max(0.1/0.5, 0.45) + max(0.2/0.5, 0.30) = 1.05 > 1.

We investigate which difference between EDF-VD and
EDF-AD causes the schedulability loss. When checking Con-
dition B in MC-schedulability, both EDF-VD and EDF-AD
consider the initial system state S0. Thus, the loss is related to
checking Condition A. We define the critical task mode as the
combination of task modes for HI-tasks where the collective
resource demand of HI-tasks is maximized. While the critical
task mode for EDF-VD is system HI-mode (among system
HI-mode and system LO-mode), the one for EDF-AD is not
system HI-mode (all HI-tasks are in HI-mode). Since a HI-
task executes with its VD in LO-mode, there may exist a
HI-tasks whose resource utilization in LO-mode (CLi /Vi) is
higher than the one in HI-mode (CHi /Ti). Thus, the critical
task mode is the combination of the task mode of each HI-task
where its resource utilization is maximized. However, EDF-
VD adopting the system-level mode switch (from system LO-
mode to system HI-mode) is irrelevant to the critical task mode
of EDF-AD.

We investigate why some HI-tasks have a higher resource
utilization in LO-mode. All HI-tasks execute with their VD
(Vi = xTi) in their LO-mode and the VD coefficient is
derived from the collective utilization of the task set such
that ULH/x ≤ UHH . However, the VD assignment may not be
the best choice for an individual task, specially for the HI-
tasks that have relatively small difference between HI-WCET
and LO-WCET. Then, the task has uLi /x > uHi . From the
understanding of the schedulability loss, we will present a
resolution in the next subsection.

B. The EDF-AD-E Scheduling Algorithm

Since a fully-independent task-level mode switch may pro-
duce the schedulability loss, we apply a limited mode switch
not to sacrifice schedulability. We propose another scheduling
algorithm, called EDF-AD-E.

Scheduling Algorithm. We formally define the subset of HI-
tasks that produces the schedulability loss.

Definition 2. HI-mode-preferred tasks (τF ) are defined as a
set of HI-tasks s.t. CLi /Vi > CHi /Ti: τF = {τi ∈ τH | uLi /x >
uHi }

The schedulability loss may happen when HI-mode-
preferred tasks remain in LO-mode and the other tasks have
mode-switched. In addition, since a HI-mode-preferred task
has resource utilization in HI-mode lower than the one in
LO-mode, it is better for the task to execute in HI-mode
from system start. We now present the EDF-AD-E (Enhanced)
algorithm as follows:

• The VD of each HI-task τi is assigned by Vi = xTi where
x = min(1, (1− UHH )/ULL ).

• For HI-mode-preferred tasks, execute them in HI-mode
from system start.

• All the other runtime scheduling policies (including the
task dropping algorithm) are the same as EDF-AD.

We cannot use the VD coefficient in EDF-AD because the
offline schedulability of EDF-AD-E is different from EDF-
AD. We compute the VD coefficient from EDF-AD-E offline
schedulability (Theorem 4). The initial system state of EDF-
AD-E is different from EDF-AD: S0 = (τH \ τF , τF , τL, ∅).

Online Schedulability Analysis. Since the EDF-AD-E
scheduling algorithm is modified from EDF-AD, we need to
check whether online schedulability analysis of EDF-AD is
also applicable to EDF-AD-E. Since S0 is different from EDF-
AD, we re-derive online schedulability on S0.

Lemma 10. A task set τ is schedulable by EDF-AD-E on S0

if

ULL +
∑
τi∈τH

min(
uLi
x
, uHi ) ≤ 1. (8)

Proof. On S0, we have τH1 = τH \ τF , τH2 = τF and τL1 =
τL. Since the demand of task τi ∈ τF over [0, t) is no greater
than CHi · t/Ti, we have

τi ∈ τF ,DEMi(t) = uHi · t. (9)
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We show that the demand over [0, t) is no greater than t:

DEM(t1)

=
∑

τi∈τH\τF

DEMi(t) +
∑
τi∈τL

DEMi(t) +
∑
τi∈τF

DEMi(t)

= (
∑

τi∈τH\τF

uLi /x+
∑
τi∈τL1

uLi )t+
∑
τi∈τF

DEMi(t)

(by Lemma 4)

= (
∑

τi∈τH\τF

uLi /x+ ULL )t+
∑
τi∈τF

uHi · t (by Eq. (9))

= (ULL +
∑

τi∈τH\τF

uLi /x+
∑
τi∈τF

uHi )t

≤ 1 · t (by assumption)

Online schedulability on Sk is the same as EDF-AD.

Theorem 3. Consider a task set τ . Assume that the task set
is schedulable with Sk−1. Let Sk be the system state that is
transited from Sk−1. Then, the task set is schedulable by EDF-
AD-E on Sk if Eq. (5) holds.

Proof. The proof is the same as Theorem 1.

Offline Schedulability Analysis. The following theorem de-
rives the offline schedulability of EDF-AD-E.

Theorem 4. A task set τ is MC-schedulable by EDF-AD-E if

ULL +
∑
τi∈τH

min(
uLi
x
, uHi ) ≤ 1, (10)

xULL + UHH ≤ 1. (11)

Proof. To show that τ is MC-schedulable, we need to satisfy
both Conditions A and B in MC-schedulability. Since Eq. (10)
holds, by Lemma 10, τ is schedulable on S0, which satisfies
Condition B. For Condition A, by Theorem 3, we show that
Eq. (5) holds with any τH2 6= ∅: since each HI-task except
HI-mode-preferred tasks is LO-mode or HI-mode, and all LO-
tasks may be dropped in the worst case,

xULL +
∑

τi∈τH\τF

max(
uLi
x
, uHi ) +

∑
τi∈τF

uHi ≤ 1

⇔ xULL +
∑

τi∈τH\τF

uHi + UHF ≤ 1 (by Def. 2)

⇔ xULL + UHH − UHF + UHF ≤ 1,

which holds from Eq. (11).

Properties. EDF-AD-E strictly dominates EDF-VD in terms
of MC-schedulability (Lemma 11 and Example 3).

Lemma 11. If any task set is MC-schedulable by EDF-VD,
the task set is also MC-schedulable by EDF-AD-E.

Proof. Since the task set is MC-schedulable by EDF-VD, by
Lemmas 1 and 2, Eqs. (1) and (2) hold. If Eqs. (10) and (11)
holds, by Theorem 4, the task set is also MC-schedulable by
EDF-AD-E. Eq. (10) holds: ULL +

∑
τi∈τH min(

uL
i

x , u
H
i ) ≤

ULL +
UL

H

x ≤ 1 from Eq. (1). Eq. (11) holds from Eq. (2).

Example 3. We modify the task set in Table I by changing uH1
of τ1 to 0.55. We will schedule the task set by EDF-VD. Since
ULL and ULH are not changed, x will not be changed. The task
set is not schedulable by EDF-VD because Eq. (2) in Lemma 2
does not hold: 0.5 ∗ 0.4 + 0.85 = 1.05 > 1. We will schedule
the task set by EDF-AD-E. By the VD assignment, we have
x = (1− 0.85)/0.4 = 0.375. Task τ2 is a HI-mode-preferred
task because uLi /x = 0.2/0.375 = 0.53 > uHi = 0.30. We
show that Eqs. (10) and (11) hold: 0.4 + 0.1/0.375 + 0.3 =
0.96 ≤ 1 and 0.375 ∗ 0.4 + 0.85 = 1. Then, the task set is
MC-schedulable by Theorem 4,

VII. THE SPEEDUP FACTOR

In this section, we quantify the effectiveness of EDF-AD-E
based on the metric of the processor speedup factor [19]. The
speedup factor (α ∈ R s.t. α ≥ 1) is a reliable performance
metric for comparing the worst-case behavior of different
algorithms for solving the same problem. The smaller speedup
factor of an algorithm indicates that the behavior of the
algorithm is closer to that of the optimal algorithm. Previously,
the speedup factor for the MC scheduling problem is effective
to evaluate MC scheduling algorithms (e.g., [5]). However,
it only evaluates MC-schedulability, and cannot evaluate the
quality of task dropping. So, we propose the speedup factor
for the task dropping problem which extends the existing MC
scheduling problem with the runtime performance of LO-tasks.
First, we define the task dropping problem.

Definition 3 (the task dropping problem). For a given feasible
MC task set τ , a subset of HI-tasks (τR ∈ τ ), and scheduling
algorithm A, the task dropping problem is: if tasks in τR mode-
switch on runtime, how many LO-tasks are required to be
dropped for scheduling τ by scheduling algorithm A?

Now, we define the speedup factor of scheduling algorithm
A for the task dropping problem (Def. 3). Let OPT be the
optimal clairvoyant scheduling algorithm with optimal task
dropping7. The speedup factor of A for task drop is defined
as the smallest real number α (≥ 1) such that the number of
LO-tasks required to be dropped to schedule any given task
set τ under any given mode switch sequence (specified by
τR ∈ τ ) by OPT on a speed-1 processor is the same as the
one to schedule τ under the mode switch sequence by A on
a speed-α processor.

The speedup factor for the MC scheduling problem eval-
uates scheduling algorithms in terms of MC-schedulability.
Similarly, the speedup factor for the task dropping problem
evaluates scheduling algorithms in terms of the number of
the required task dropping under any possible scheduling
scenarios. Although the existing work cannot provide any
performance guarantee on LO-tasks via the speedup factor,
we propose the first work to evaluate how many LO-tasks can
be scheduled after mode switch via the speedup factor.

Next, we evaluate EDF-AD-E via the proposed metric.

Theorem 5. EDF-AD-E has a speedup factor of 1+
√
5

2 for
the task dropping problem.

7In MC systems, a clairvoyant scheme is the one that knows the time instant
of mode switch before runtime scheduling.
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To prove Theorem 5, we present an auxiliary lemma.

Lemma 12. Consider a task set τ and a subset of HI-tasks
τR ∈ τ . Consider a scheduling scenario that tasks in τR mode-
switches on runtime. EDF-AD-E can schedule τ under the
scenario by dropping a subset of LO-tasks τG ∈ τ if

ULL +
ULH
x
≤ 1, (12)

ULL1 +
ULH1

x
+ xULL2 + UHH2 ≤ 1 (13)

where τH2 = τR and τL2 = τG.

Proof. We need to show that τ is schedulable on S0 and any
legitimate Sk considering τR and τG. For schedulability on
S0, by Lemma 10, we need to satisfy Eq. (8):

ULL +
∑
τi∈τH

min(
uLi
x
, uHi ) ≤ 1,

which holds by
∑
τi∈τH min(

uL
i

x , u
H
i ) ≤ ULH and Eq. (12).

Consider any legitimate Sk considering τR and τG. Since
each task in τR is either HI-mode or LO-mode, τH2 in Sk
is any subset of τR. In Sk, we set τL2 := τG because any
LO-task in τG may be dropped. To show that the task set is
schedulable with Sk, by Theorem 3, we need to satisfy Eq. (5):

ULL1 + xULL2 +
∑

τi∈τH1\τF

uLi
x

+
∑

τi∈τH2\τF

max(
uLi
x
, uHi )

+
∑
τi∈τF

uHi ≤ 1

⇔ ULL1 + xULL2 +
∑

τi∈τH1

min(
uLi
x
, uHi ) + UHH2 ≤ 1,

which holds by
∑
τi∈τH1

min(
uL
i

x , u
H
i ) ≤ UHH1 and Eq. (13).

Proof of Theorem 5. Consider a task set τ . Consider a
scheduling scenario that tasks in a set of HI-tasks τR ∈ τ
mode-switch on runtime. We will prove that if τ is schedulable
under the scenario by the optimal clairvoyant scheduling
algorithm with dropping a set of LO-tasks τG ∈ τ on a speed-1
processor, τ is also schedulable under the scenario by EDF-
AD-E with dropping τG on a speed- 1+

√
5

2 processor.
Let τH1 := τH \ τR, τH2 := τR, τL1 := τL \ τG, and

τL2 := τG. Let b denote an upper bound on the utilization of
τ on the initial state and the minimum utilization of τ on the
worst-case task modes of HI-tasks:

max(ULL + ULH , U
L
L1 + ULH1 + UHH2) ≤ b. (14)

To show that the task set is schedulable, by Lemma 12, it
is required that Eqs. (12) and (13) hold. Suppose that there
exists α s.t. 1/x ≤ α and 1 + x ≤ α for some x ∈ R s.t.
0 < x ≤ 1. We show that Eq. (12) holds:

ULL +
ULH
x
≤ ULL + αULH

≤ α(ULL + ULH),

which is smaller than or equal to 1 if ULL + ULH ≤ 1/α.

We show that Eq. (13) holds. We divide cases depending on
whether UHH2−ULH2 ≤ ULL2 or not. When UHH2−ULH2 ≤ ULL2,
we show that Eq. (13) holds:

ULL1 +
ULH1

x
+ xULL2 + UHH2

≤ ULL1 + αULH1 + (1 + x)ULL2 + ULH2

≤ α(ULL + ULH),

which is smaller than or equal to 1 if ULL +ULH ≤ 1/α. When
ULL2 < UHH2 − ULH2, we show that Eq. (13) holds:

ULL1 +
ULH1

x
+ xULL2 + UHH2

≤ ULL1 + αULH1 + ULH2 + (1 + x)(UHH2 − ULH2)

≤ α(ULL1 + ULH1 + UHH2),

which is smaller than or equal to 1 if ULL1+U
L
H1+U

H
H2 ≤ 1/α.

In sum, Eqs. (12) and (13) hold if b ≤ 1/α.
We need to find the range of α. To do this, we show the

existence of x satisfying both of 1/α ≤ x and x ≤ α− 1:

1/α ≤ α− 1 ⇔ α2 − α− 1 ≥ 0,

which is always true if α ≥ 1+
√
5

2 .

VIII. EVALUATION

We looked at the speedup factor of the EDF-AD-E for
task drop, which provides a theoretical upper bound on the
number of LO-tasks to be dropped for a task set and its runtime
scenario. In this section, we evaluate the runtime performance
of EDF-AD-E in comparison with the existing approaches, via
simulation with synthetic workloads. In addition, to show that
our approach does not sacrifice schedulability, we compare
EDF-AD-E with the existing approaches in terms of MC-
schedulability.
Task Set Generation. We generate random task sets according
to the workload-generation algorithm [5]. Let U b be the upper
bound of both LO-criticality and HI-criticality utilizations. A
random task is generated as follows (all task parameters are
randomly drawn in uniform distribution): for a task τi,
• Ui (task utilization) is a real number drawn from the range

[0.02, 0.2].
• Ti (task period) is an integer drawn from the range

[20, 300].
• Ri (the ratio of uHi /u

L
i ) is a real number drawn from the

range [1, 4].
• Pi (the probability that the task is a HI-task) is a real

number from the range [0,1]. If Pi < PHI (default value
of PHI is 0.5), set χi := LO and CLi := bUi · Tic.
Otherwise, set χi := HI , CHi := bUi · Tic, and
CLi := bUi · Ti/Ric.

Repeat generating a task in the task set until max(ULH +
ULL , U

H
H ) > U b. Then, discard the task added last.

The Deadline Miss Ratio. We compare EDF-AD-E with
EDF-VD [5] in terms of deadline miss ratio (DMR)8 of LO-
tasks. For a given randomly-generated task set schedulable

8DMR is the ratio of the number of the unfinished jobs over the total
number of jobs released in a given time interval. We assume that an LO-task
in the dropped state releases its job but does not execute.
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Fig. 2. The DMR for Different PMS
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Fig. 4. The DMR for Different Simulation Duration

by EDF-VD, we simulate the behavior of tasks with a given
probability of mode switch for any HI-task, denoted as PMS

(the default value of PMS is 0.4), for 10,000 time units.
According to EDF-VD [5], on idle tick, the system is switched
back to the initial state (all HI-tasks are in LO-mode and all
LO-tasks are active).

Fig. 2 shows the average DMR with varying utilization
bound U b for different probabilities of mode switch: PMS =
0.1, PMS = 0.4 and PMS = 0.7. For each utilization bound,
we generate 5,000 systems. The result shows that EDF-AD-

E significantly outperforms EDF-VD because the resource-
efficient scheduling of EDF-AD-E minimizes the additional
resource request at mode switch and the EDF-AD-E task
dropping algorithm selects the minimal set of LO-tasks upon
the resource request.

In higher utilization (U b > 0.85), the DMR of EDF-VD
is decreasing. We observed that the schedulable system tends
to have a smaller number of HI-tasks in higher utilization.
To pass the schedulability condition in higher utilization, the
system should have unbalanced distribution of HI-tasks and
LO-tasks (either relatively a larger number of HI-tasks or
relatively a larger number of LO-tasks). Due to the selection
of Ri, relatively large numbers of HI-tasks may not pass the
schedulability test. Thus, the system tends to have relatively
small numbers of HI-tasks, which affects the frequency of
mode-switches. As the number of mode switches decreases,
the DMR of EDF-VD (dropping all LO-tasks) decreases.
Fig. 3 shows DMR varying PHI from 0.05 to 0.95 in incre-
ments of 0.5 (U b = 0.8). EDF-VD shows a higher DMR for
a higher PHI (a large number of mode switches at runtime)
while EDF-AD-E shows a little variance for different values
of PHI.

Fig. 4 shows DMR varying simulation durations (U b = 0.85
and PMS = 0.4). It shows that the simulation duration does
not affect the simulation results. Due to the return protocol
to LO-mode, the DMR of EDF-VD and EDF-AD-E are
converged in a large simulation duration.
MC-schedulability. We compare the MC-schedulability of
EDF-AD and EDF-AD-E with the existing MC schedul-
ing algorithms, which are regular EDF, EDF-VD [5], and
ICG [16]9. We mathematically compute the schedulability of
the randomly-generated systems via schedulability test of each
scheduling algorithms.

Fig. 5 shows the acceptance ratio (the ratio of schedulable
task sets) over varying utilization bound U b from 0.55 to
1.0 in increments of 0.05. Each data point is based on 5,000
systems. Although EDF-AD has higher acceptance ratio than

9The MC-schedulability of the ICG is maximum when the interference
constraint graph is fully connected from HI-tasks to LO-tasks (which means
that any mode switch drop all LO-tasks).
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regular EDF, we confirmed that EDF-AD has lower MC-
schedulability than EDF-VD for all utilization ranges and ICG
for some utilization ranges. Our goal is to improve runtime
performance of LO-tasks without sacrifice in schedulability.
We already showed that EDF-AD-E strictly dominates EDF-
VD in Sec. VI-B. The simulation result also confirmed that
EDF-AD-E dominates EDF-VD.

IX. CONCLUSION

We present the MC-ADAPT framework that makes online
adaptive task dropping utilizing the dynamic system state
under task-level mode switch. The framework focuses resource
efficiency of mixed-criticality systems by improving the sur-
vivality of low-criticality tasks even under deviance of high-
criticality tasks. To evaluate the quality of task dropping, we
propose the speedup factor for the task dropping problem
while the speedup factor for the MC scheduling problem only
evaluates MC scheduling algorithms in terms of the worst-
case schedulability. We derive that the speedup factor of MC-
ADAPT for task drop is 1.619.

As a future work, to further support LO-tasks, we would like
to extend our framework by developing an efficient criticality
resuming protocol from HI-mode to to LO-mode under task-
level criticality mode. It will be interesting to compare our
new scheduling policy with bailout protocol [20], system-
level criticality resuming protocol. Orthogonally, we plan to
conduct real-world case studies and comprehensive experi-
ments including other adaptive MC scheduling approaches
with different assumption [16]–[18] (e.g., [18] assumes a
predefined threshold limit parameter for system-level mode
switch and [17] considers only harmonic workloads) in terms
of schedulability, deadline miss ratio, and runtime overheads.
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