brought to you by CORE

Genetic Modifiers of the Intermediate Phenotypes in Sickle Cell Anemia

<u>Aguiar L</u>^{1,2,3}, Matos A^{1,2,3}, Gil A^{1,2,3}, Ferreira J^{1,2,3}, Alonso I^{1,2,3}, Rebelo I^{4,5}, Braga L⁶, Almeida S⁷, Kjollerstrom P⁶, Faustino P^{3,8}, Bicho M^{1,2,3}, Inácio A^{1,2,3}

¹Instituto De Investigação Científica Bento Da Rocha Cabral, Lisboa

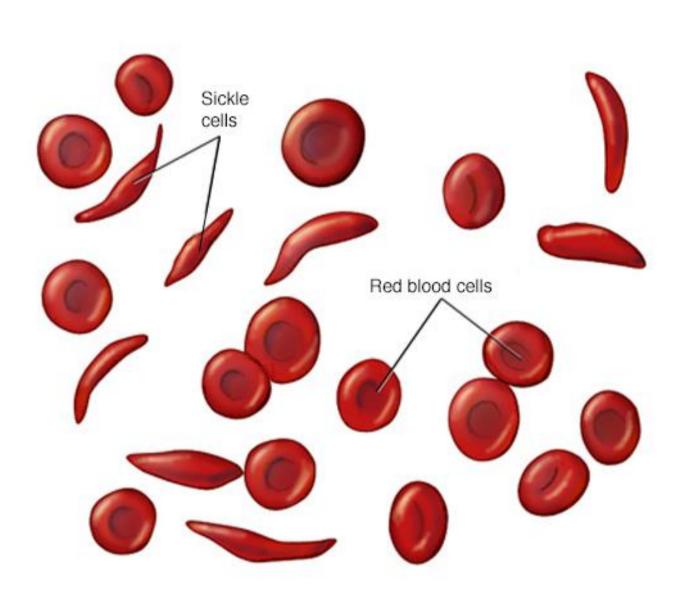
²Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Lisboa

³Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa

⁴Departamento de Bioquímica, Faculdade de Farmácia da Universidade do Porto, Porto

⁵Instituto de Biologia Molecular e Celular, Porto

⁶Unidade de Hematologia, Hospital de Dona Estefânia, Lisboa


⁷Serviço de Genética Médica, Hospital de Dona Estefânia, Lisboa

⁸Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa

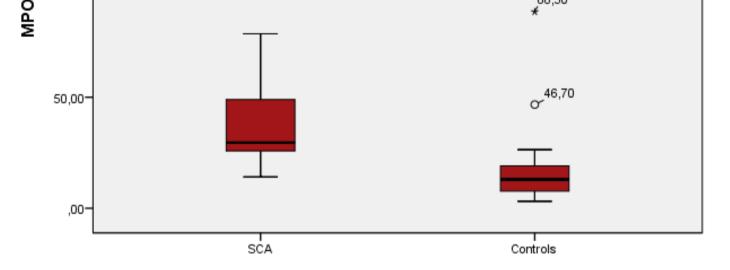
INTRODUCTION

Sickle cell anemia (SCA) is an inherited blood disorder characterized by the presence of hemoglobin S (HbS). This disease is caused by a mutation in the beta-globin gene (HBB:c.20A>T) on 11p15.5. The easily ability of Hb S to polymerize in deoxygenated conditions gives rise to abnormal sickled red blood cells (Figure 1) (Rees *et al*, 2010). Vaso-occlusion and hemolytic anemia are the major features of this disease, however SCA patients present clinical and hematologic variability that cannot be only explained by the single mutation in the betaglobin gene. Others genetic modifiers and environmental effects are important in the clinical phenotype (Steinberg & Sebastiani, 2012).

METHODS

• We studied the association between several hematological and biochemical parameters and some genetic variants in 26

(In http://www.mayoclinic.org/diseases-conditions/sickle-cell-anemia/home/ovc-20303267)


Figure 1 - Normal and sickled red blood cells .

- pediatric SCA patients (mean age of 8.6 years) followed-up in Hospital de Dona Estefânia, in Lisbon.
- MPO and PIGF were determined by ELISA (R&D Systems Inc.). Amplification of DNA samples for the rs1050829 characterization, in the glucose-6-phosphate dehydrogenase (*G6PD*) gene, was performed by PCR followed by restriction fragment length analysis. A multiplex PCR assay was used for simultaneous amplification of glutathione S-transferases mu (*GSTM1*) and theta (*GSTT1*). All statistical tests were performed with SPSS 24.0 software.
- Association studies were performed using T test/ ANOVA parametric tests or Mann-Whitney/Kruskal-Wallis nonparametric tests, all performed with SPSS 24.0 software.

RESULTS			
The following significant associations were		200,00-	
observed (Table I, II, III and IV; Figure 2, 3, 4 and	Table I - Association between MPO concentration and the presence or	200,00	
5):	absence of SCA		152.60
		150,00-	152,60 *
 We observed higher levels of MPO (p<0.001) 	MPO (ng/mL)		126,50
and PIGF (p=0.048) in SCA patients.		Ę	*
		156 U) 100,00-	
• Moreover in these nationts we found		0	88,50

Moreover, in these patients we found associations between: 1) lower levels of total hemoglobin and the *GSTM1* null genotype (p=0.044); 2) higher levels of HbS with the rs1050829_G genotype (hemizygous males) in the *G6PD* gene (p=0.026).

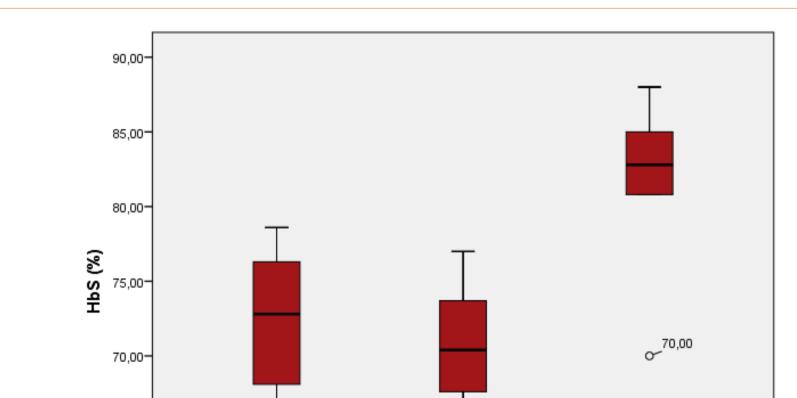
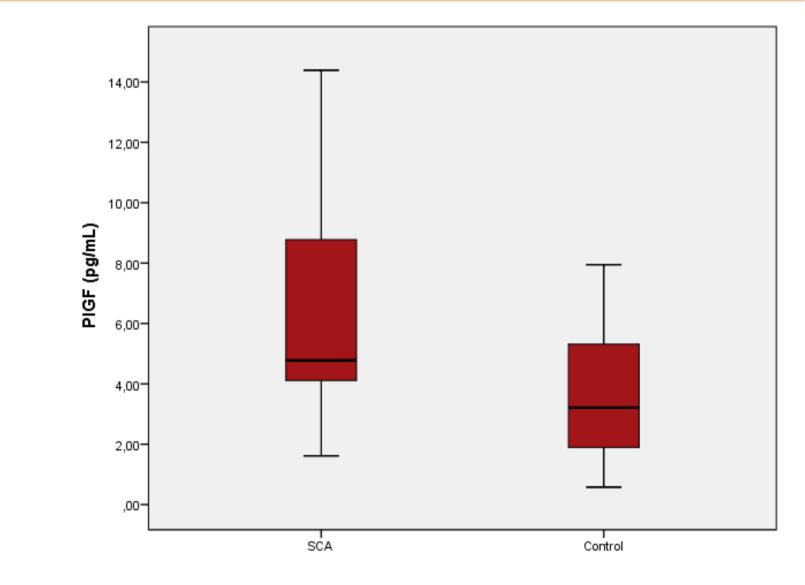

Population Minimum Median Maximum *p*-value* N **SCA** patients 14 29,56 14,14 78,63 < 0.001 Controls 152,60 13,00 3,10 34 * Mann-Whitney test

Figure 2 - Box plot showing distribution of MPO concentration among SCA patients and controls.


Table IV - Association between HbS and G6PD genotypes

HbS (%)									
<i>G6PD</i> genotype	N	Mean	Standard deviation	<i>p-</i> value*					
A/AA	10	71,90	5,60	0.026					
AG	3	70,73	6,11						
G	5	81,32	6,90						
* ANOVA									

Table II - Association between PIGF concentration and the presence orabsence of SCA

PIGF (pg/mL)					
Population	N	Mean	Standard deviation	<i>p</i> -value*	
SCA patients	13	6,24	3,95	0.048	
Controls	23	3,69	2,35		
* T test		'			

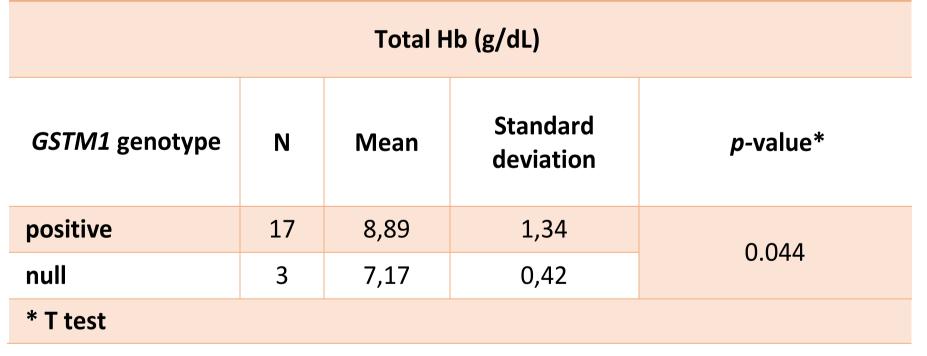
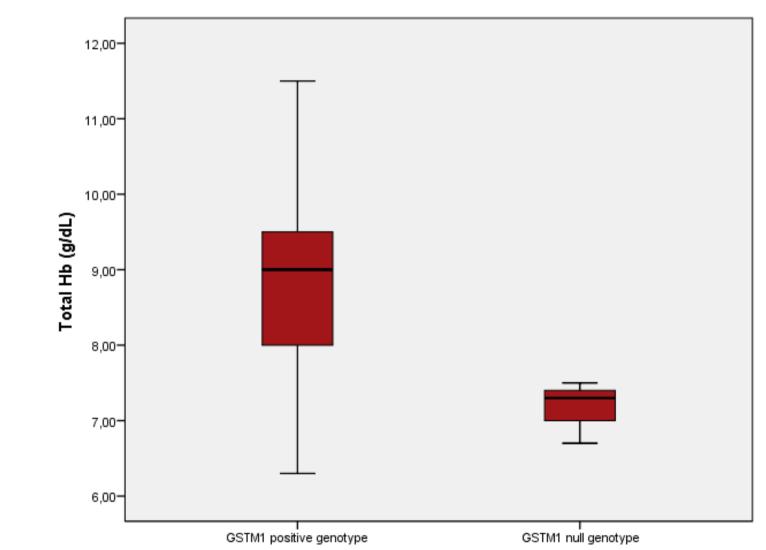
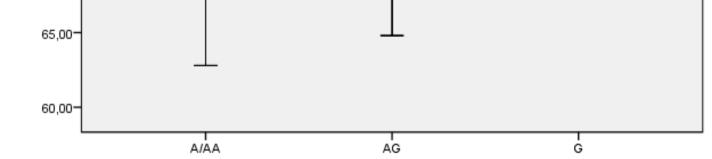




 Table III - Association between total haemoglobin and GSTM1 genotypes

Figure3 - Box plot showing distribution of PIGF concentration among SCA patients and controls.

Figure 4 - Box plot showing distribution of total haemoglobin among positive and null genotypes at *GSTM1* gene.

Figure 5 - Box plot showing distribution of HbS in rs1050829 genotypes at *G6PD* gene.

CONCLUSIONS

We suggest that the mentioned polymorphisms in *GSTM1* and *G6PD* genes may act as genetic modifiers in SCA, which could be useful for the prediction of increased susceptibility to complications. Furthermore, our results reinforce the importance to study biochemical parameters for a better understanding of the clinical outcome of this disease.

<u>References:</u>

Rees, D.C., Williams, T.N. & Gladwin, M.T. (2010) Sickle-cell disease. *The Lancet*, **376**, 2018–2031 Steinberg, M.H. & Sebastiani, P. (2012) Genetic modifiers of sickle cell disease. *American Journal of Hematology*, **87**, 795–803