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Abstract 
 
 Botulinum neurotoxins are the most potent toxins known. The double receptor binding 

modality represents one of the most significant properties of botulinum neurotoxins and 

largely accounts for their incredible potency and lethality. Despite the high affinity and the 

very specific binding, botulinum neurotoxins are versatile and multi-tasking toxins. Indeed 

they are able to act both at the somatic and at the autonomic nervous system. 

In spite of the preference for cholinergic nerve terminals botulinum neurotoxins have been 

shown to inhibit to some extent also the noradrenergic postganglionic sympathetic nerve 

terminals and the afferent nerve terminals of the sensory neurons inhibiting the release of 

neuropeptides and glutamate, which are responsible of nociception. Therefore, there is 

increasing evidence that the therapeutic effect in both motor and autonomic disorders is 

based on a complex mode of botulinum neurotoxin action modulating the activity of efferent 

as well as afferent nerve fibres. 

  

Introduction 

 Botulinum Neurotoxins (BoNTs) are a large group of bacterial protein exotoxins 

produced by phylogenetically distinct strains of the genus Clostridium, and they are the 

causative agents of botulism characterized by a flaccid neuromuscular paralysis (Rossetto 

et al., 2014; Williamson et al., 2016; Pirazzini et al., 2017). A recent and ongoing major 

revolution in the BoNT field is the identification of dozens and dozens of novel BoNT 

isoforms (Peck et al., 2017; Montecucco and Rasotto, 2015). Many toxin variants named 
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subtypes have been identified within serotypes (distinguished using an alpha-numeric code 

BoNT/A1, /A2,….. BoNT/B1, /B2 etc.) and many more are expected to be reported soon 

(Montecucco and Rasotto 2015; Peck et al. 2017). BoNTs are the most potent toxins known 

and display lethal doses in the low ng/kg range (Pirazzini et al., 2017). For this reason and 

due to the lack of immunological protection in the population, BoNTs are included as a 

Category A selected agents by the U.S. Centers for Disease Control and Prevention. At the 

same time, thanks to scientific and clinical research BoNTs have been developed as 

therapeutics for the treatment of human disorders characterized by muscular 

hypercontraction and also of autonomic conditions of glandular hypersecretion (Pirazzini et 

al., 2017; Hallett et al., 2013; Naumann et al., 2013).  

 Despite the existence of a high number of variants, all BoNTs are structurally similar 

and consist of a light chain (L, 50 kDa) and a heavy chain (H, 100 kDa). The complete 

crystallographic structure reveals three different domains, each with different function in the 

intoxication process: the L chain is a zinc-metalloprotease that specifically cleaves the three 

SNARE proteins necessary for neurotransmitter exocytosis; the N-terminal HN domain 

assists the translocation of the L chain across the membrane of intraneuronal acidic vesicles 

into the cytosol; the C-terminal HC domain is responsible for presynaptic binding and 

endocytosis and consists of two sub-domains (HCN and HCC) with different folding and 

membrane binding properties. 

The key aspect to explain the extreme toxicity of BoNTs is their unique mode of binding and 

the ensuing selectivity targeting peripheral nerve terminals. This will be the focus of the 

present article. 

 

Binding 

 BoNTs bind with high affinity to the presynaptic plasma membrane of skeletal and 

autonomic cholinergic nerve terminals in numbers estimated to be, for BoNT/A or /B, in the 

order of hundreds of molecules per square micrometers at the rat neuromuscular junction 

(NMJ) (Dolly et al., 1984). Indeed they have evolved a unique binding mode based on the 

sequential interactions, with two independent receptors (Montecucco, 1986; Rummel, 

2016). With no exceptions, all BoNTs initially bind to polysialogangliosides (PSGs). The 

glycan part of ganglioside receptors provides abundance and specificity and accumulates 

the toxins onto unmyelinated areas of nerve endings thus facilitating the interaction with a 

second receptor (Rummel, 2016; Hamark et al., 2017). The second interaction provides a 

high affinity binding and is thus responsible for toxin internalization and the ensuing 



 

 

trafficking. In most cases it is the luminal domain of a synaptic vesicle (SV) protein, which is 

serotype-specific. The SV calcium sensors Synaptotagmin I/II (Syt-I and Syt-II) were 

identified as specific receptors for BoNT/B (Nishiki et a., 1994; Dong et al., 2003), /G 

(Rummel et al., 2004; Dong et al., 2007) and the mosaic serotype /DC (Peng et al., 2012). 

This protein binding site is located adjacent but non-overlapping to the ganglioside binding 

pocket at the C-terminal tip of the HC-subunit. Binding is mediated by hydrophobic 

interactions but also by one major salt bridge. In vitro binding experiments have shown that 

the affinity of BoNT/B and BoNT/G to the luminal domain of Syt-I and Syt-II decreases in the 

order B-Syt-II>>G-Syt-I>G-Syt-II>>B-Syt-I (Rummel et al., 2007). Remarkably, it has been 

recently shown that human Syt-II is not a high affinity receptor for BoNT/B and G due to a 

phenylalanine to leucine mutation in its luminal domain, which eliminates one of the three 

major interactions between Syt-II and BoNT/B (Peng et al., 2012; Strotmeier et al., 2012). 

This mutation is present only in humans and chimpanzees and might explain the observed 

disparity of BoNT/B potency in human and mice (Tao et al., 2017). Noteworthy Syt-II is 

present in every endplate in diaphragm muscle whereas only a subpopulation of NMJs 

additionally expresses Syt-I (Pang et al. 2006). The F54L mutation in human Syt-II, together 

with the low expression at the NMJ of Syt-I, explains why high doses of BoNT/B are required 

to achieve therapeutic effects in neuromuscular disorders. In contrast, the predominant 

presence of Syt-I in autonomic and sensory neurons (Li et al. 1994) might explain the 

observed autonomic effects of BoNT/B and the lower BoNT/A:BoNT/B ratio for autonomic 

indications  (Kranz et al. 2011). 

In addition to species-specificity differences in receptor binding, also subtype binding 

dissimilarities have been reported. Kozaki and co-workers identified a type B BoNT (now 

named BoNT/B2) produced by the strain 111 isolated from a case of infant botulism in Japan 

(Kozaki et al., 1998). This neurotoxin has a significant amino acid difference in the receptor 

binding domain with respect to BoNT/B1 (Ihara et al. 2003). Indeed, the latter binds both 

Syt-I and II, while BoNT/B2 binds only Syt-II. Therefore toxin subtypes may have different 

receptor recognition sites targeting different nerve terminals (e.g. autonomic versus motor 

neurons) depending on the receptor isoform expressed. 

Other BoNTs use synaptic vesicle proteins different from synaptotagmins. BoNT/A and /E 

interact with a luminal loop of the glycoprotein SV2, a multi-spanning integral protein of 

synaptic vesicles of unknown function (Dong et al., 2006; Mahrhold et al., 2006; Binz and 

Rummel, 2009; Benoit et al., 2014, Yao et al., 2016). This loop is transiently exposed on the 

surface of nerve terminals upon SV exocytosis and becomes available for toxin binding. 



 

 

Three isoforms of SV2 (A, B, C) are expressed at motor nerve terminals, but SV2C appears 

to be the one binding BoNT/A (Mahrhold et al., 2006; Benoit et al., 2014; Mahrhold et al., 

2016) whilst BoNT/E binds isoforms A and B, but not C (Dong et al., 2008). In addition to 

the protein-protein HC/A-SV2C contacts, which involve mostly the backbones of the two 

proteins (Benoit et al., 2014), protein-glycan interaction is required for high affinity binding 

of BoNT/A1 to SV2C and the glycan linked to asparagine N559 is specifically involved 

(Mahrhold et al., 2016; Yao et al., 2016).  

Glutamine 1292 is a key residue in the SV2 glycan-binding site of the toxin and mutation 

G1292R severely decreases the toxicity in BoNT/A1 (Weisemann et al. 2014; Yao et al., 

2016). This residue is conserved in seven of the eight BoNT/A subtypes and, notably, 

BoNT/A4, which is the only one with an arginine residue (R1292) has ~1,000-fold reduced 

biological activity with respect to BoNT/A1 (Whitemarsh et al., 2013; Montecucco and 

Zanotti, 2016).  

This novel host recognition strategy, which in addition to protein–protein interactions uses 

the simultaneous recognition of an N–glycan leads to several implications: 

 N-glycans vary from individual to individual and could contribute to explain the different 

clinical response, in term of onset and duration of neuroparalysis, among different human 

patients treated with the same dose of injected BoNT/A1.  

 as invertebrate and vertebrate N-glycans are different (Moremen et al., 2012), this may 

contribute, together with the absence of gangliosides, to the lack of sensitivity of 

invertebrates to BoNTs. 

 different laboratories use various cell models, which may have SV2 with a different 

glycosylation pattern and this may have an impact on the biological activity of the toxin 

tested in a toxicity assay. 

The double receptor binding accounts for the extreme potency of BoNTs but does not 

explain their apparent selectivity for cholinergic nerve terminals, which may be provided by 

additional receptor(s) still to be identified (Montecucco et al., 2004).  

 

BoNTs affect different peripheral neurons 

 The natural target of BoNTs is represented by the neuromuscular junction, where 

BoNT poisoning results in flaccid paralysis due to the blockade of acetylcholine release. 

When injected into skeletal muscles, BoNT/A acts at the extrafusal as well as intrafusal 

neuromuscular junctions (Filippi et al., 1993; Rosales et al., 1996; Currà et al., 2004). 

Actually, it blocks the acetylcholine release of both the α-motorneuronal endings (extrafusal) 



 

 

and the γ-motorneuronal endings (intrafusal), i.e. the efferent nerve fibres of the somatic 

nervous system supplying skeletal muscles. Moreover, BoNT/A has been shown to block 

cholinergic pre and post-ganglionic nerve terminals of the parasympathetic and sympathetic 

autonomic nervous system supplying smooth muscle or secretory glands. The action of 

BoNT at both the somatic and the autonomic nervous system explains its efficacy in the 

treatment of movement disorders as well as autonomic disorders as demonstrated in several 

randomized clinical trials (Naumann et al., 2015).  

Although the preference for cholinergic nerve terminals have been shown, BoNTs bind also 

to the afferent nerve terminals of the sensory neurons inhibiting the release of neuropeptides 

such as calcitonin gene-related peptide (CGRP) (Durham and Cady, 2004; Meng et al., 

2007; Dolly and O’Connell 2012), substance P (Welch et al., 2000) and glutamate (Cui et 

al., 2004) and thus causing the analgesic effect reported in animal models of inflammatory 

and neuropathic pain (Marinelli et al., 2010; Aoki and Francis, 2011). 

The ability of BoNT/A to affect efferent as well as afferent nerves is exemplified by its 

beneficial effect in different bladder control disorders (Chancellor et al., 2008).  

 

Versatility of BoNT/A: The Bladder Paradigm 

 The bladder is innervated by parasympathetic (cholinergic) and sympathetic 

(adrenergic) efferent nerve terminals and by sensory (peptidergic) afferent nerve terminals. 

Bladder storage and voidance involve a complex interplay of efferent and afferent signals in 

a way that parasympathetic, sympathetic, somatic, and sensory nerves can work 

synergistically (Ikeda et al., 2012). Functional impairment at various levels may result in 

bladder control disorders, which can be roughly classified as disturbances of storage and 

disturbances of emptying. Different human bladder disorders, such as the Overactive 

Bladder (OAB) or the Neurogenic Detrusor Overactivity (NDO) characterized by urinary 

incontinence greatly benefit of the treatment with BoNT/A.  

The inhibitory effect of BoNT/A on different bladder nerve terminals derives from the 

presence, at different extent, of BoNT/A high affinity binding sites. Indeed SV2 is expressed 

in all type of terminals with the highest expression in the parasympathetic nerve terminals 

followed by the sympathetic and sensory ones (Coelho et al., 2010). Accordingly, expressed 

SNAP25 is cleaved in almost all cholinergic parasympathetic neurons and in half of 

adrenergic sympathetic and sensory neurons after intramural BoNT/A injection throughout 

the whole bladder (Coelho et al., 2012a and 2012b).  



 

 

In the treatment of OAB or NDO, the effect of BoNT/A on efferent signalling (mainly via 

acetylcholine and ATP) is thought to dampen detrusor smooth muscle contractions, thereby 

limiting detrusor overactivity (if present) and reducing the sensation of urgency (Ikeda et al., 

2012). Moreover, increasing evidence shows that BoNT/A inhibits also afferent sensory 

signalling in the bladder (Kanai et al., 2011; Ikeda et al., 2012). In fact it can reduce afferent 

sensitization by inhibiting CGRP and SP release from peripheral afferent nerve endings  

projecting to this organ (Rapp et al., 2006; Coelho et al., 2014).  

In addition, BoNT/A injection for overactive bladder treatment is also associated with a 

significant decrease of purinergic receptors P2X3 and capsaicin receptors TRPV1, most 

probably by reducing the SNARE dependent receptor trafficking (Apostolidis et al., 2005; 

Dolly and Lawrence, 2014; Liu et al., 2014). These two receptors are involved in nociception 

in the suburothelial sensory nerve fibres and these inhibitory mechanisms mediated by 

BoNT/A are expected to impair nociceptive input from urinary bladder. 

The proof of concept that BoNT/A has a strong activity on sensory terminals is that 

intrathecal administration of toxin has a predominant effect on sensory fibres and is enough 

to control neurogenic detrusor overactivity in chronic spinal cord injured rats (Coelho et al., 

2016).  

 

Duration of action 

It is well established that the clinical effect of BoNT is markedly longer in autonomic 

disorders than in motor indications. The effect of BoNT/A injected in skeletal muscle lasts 3 

to 4 months whereas the effect of the neurotoxin injected in the bladder lasts 6 to 9 months. 

Even longer is the duration of action of BoNT/A in the treatment of hyperhidrosis (up to 30 

months) (Naumann and Lowe, 2001; Heckmann, 2001). The reason why autonomic 

disorders have prolonged clinical benefit compared with movement disorders is unclear but 

different hypothesis can be made: 

1) the longer duration of action in the autonomic disorders could result from the impairment 

of both pre- and postganglionic neurons and the different time of recovery of the two neurons 

which increases the probability of maintaining inhibition of parasympathetic or sympathetic 

function. Comparative studies on the persistence of cleaved SNAP-25 in preganglionic and 

postganglionic fibers are necessary to test this hypothesis. (Coelho et al., 2012a).  

2) the mechanisms of the recovery of motor and of the autonomic nerve terminals could be 

different and could depend on different mediators. It is long known that the BoNT poisoned 

NMJ undergoes a profound remodelling with novel nerve terminals, which sprout from their 



 

 

unmyelinated motor axon terminal and, to a lesser extent, from the first node of Ranvier 

(Duchen, 1971; Juzans et al., 1996; Meunier et al., 2002). The sprouts are guided by 

proliferating perisynaptic Schwann cells and eventually reach novel muscle fibres to form 

new nerve-muscle contacts even though are poorly efficient in ACh release (Rogozhin et 

al., 2008), providing a limited contribution to the recovery of the neurotransmission from 

nerve to the muscle fibre. With time sprouts degenerate and the original NMJ reacquires full 

function. In contrast, no information is available on the events that take place after the 

blockade of an autonomic nerve terminal.  

 3) the toxin life-time could be different in motor and autonomic nerve terminals. The long 

lifetime of the LC protease of BoNT/A within the nerve cytosol is one of the major 

determinants of its duration of action. It has been recently shown that BoNT/A L chain is 

extraordinarily stable because it escapes the action of ubiquitin ligases, by recruiting de-

ubiquitinases, i.e. specialized enzymes that remove polyubiquitin chains (Shoemaker and 

Oyler, 2013; Tsai et al., 2017). No comparative studies of the toxin lifetime in the motor and 

in the autonomic nerve terminal are available.  

  

Concluding remarks  

It has been known for a long time that botulinum neurotoxins block acetylcholine release 

from nerve terminals, and therefore leads to cessation of somatic motor and/or 

parasympathetic transmission. Recently, it has been found that BoNTs also interferes with 

sensory transmission and this has opened new avenues in their clinical application for 

different pain conditions. A number of studies have examined the potential of targeting 

BoNT/A to afferent nerves through modification of its protein structure (Duggan et al., 2002; 

Meng et al., 2009), which would offer increased efficacy and a reduction in adverse side 

effects (e.g., urinary retention, antibody formation). Indeed, there is a growing area of 

research that aims at changing binding specificity, affinity, and duration of BoNT action to 

obtain tailor-made therapeutic agents. In addition, the identification of many different BoNT 

variants with different binding properties and nerve terminal specificity could potentially 

represent a natural goldmine for novel therapeutic applications.  
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