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PERSISTENCE OF PERIODIC SOLUTIONS FOR HIGHER
ORDER PERTURBED DIFFERENTIAL SYSTEMS VIA

LYAPUNOV-SCHMIDT REDUCTION

MURILO R. CÂNDIDO2, JAUME LLIBRE2, AND DOUGLAS D. NOVAES1

Abstract. In this work we first provide sufficient conditions to assure the
persistence of some zeros of functions having the form

g(z, ε) = g0(z) +

k∑

i=1

εigi(z) +O(εk+1),

for |ε| 6= 0 sufficiently small. Here gi : D → Rn, for i = 0, 1, . . . , k, are smooth
functions being D ⊂ Rn an open bounded set. Then we use this result to
compute the bifurcation functions which controls the periodic solutions of the
following T–periodic smooth differential system

x′ = F0(t, x) +
k∑

i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D.

It is assumed that the unperturbed differential system has a sub-manifold of
periodic solutions Z, dim(Z) ≤ n. We also study the case when the bifurcation
functions have a continuum of zeros. Finally we provide the explicit expressions
of the bifurcation functions up to order 5.

1. Introduction

This work contains two main results. The first one (see Theorem A) provides
sufficient conditions to assure the persistence of some zeros of smooth functions
g : Rn × R→ Rn having the form

(1) g(z, ε) = g0(z) +
k∑

i=1

εigi(z) +O(εk+1).

The second one (see Theorem B) provides sufficient conditions to assure the
existence of periodic solutions of the following differential system

(2) x′ = F (t, z, ε) = F0(t, x) +
k∑

i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D.
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Here S1 = R/T , for some T > 0, and the assumption t ∈ S1 means that the system
is T -periodic in the variable t. As usual δ1(ε) = O (δ2(ε)) means that there exists
a constant c0 > 0, which does not depends on ε, such that |δ1(ε)| ≤ c0 |δ2(ε)| for
ε sufficiently small (see [16]).

It is assumed that either g(z, 0) vanishes in a submanifold of Z ⊂ D, or that
the unperturbed differential system x′ = F0(t, x) has a submanifold Z ⊂ D of
T -periodic solutions. In both cases dim(Z) ≤ n. The second problem can be
often reduced to the first problem, standing as its main motivation.

Regarding the first problem, assume that for some z∗ ∈ Z, g(z∗, 0) = 0. We
shall study the persistence of this zero for the function (1), g(x, ε), assuming that
|ε| 6= 0 is sufficiently small. By persistence we mean the existence of continuous
branches χ(ε) of simple zeros of g(x, ε) (that is g(χ(ε), ε) = 0) such that χ(0) = z∗.
It is well known that if the n × n matrix ∂xg(z∗, 0) (the Jacobian matrix of the
function g with respect to the variable x evaluated at x = z∗) is nonsingular
then, as a direct consequence of the Implicit Function Theorem, there exists a
unique smooth branch χ(ε) of zeros of g(x, ε) such that χ(0) = x∗. However if the
matrix ∂xg(x∗, 0) is singular (has non trivial kernel) we have to use the Lyapunov–
Schmidt reduction method to find branches of zeros of g (see, for instance, [8]).
Here we generalize some results from [4, 5, 14], providing a collection of functions
fi, i = 1, . . . , k, each one called bifurcation function of order i, which control the
persistence of zeros contained in Z.

The second problem goes back to the works of Malkin [17] and Roseau [18],
whose have studied the persistence of periodic solutions for the differential system
(2) with k = 1. Let x(t, z, ε) denote its solution such that x(0, z, ε) = z. In order
to find initial conditions z ∈ D such that the solution x(t, z, ε) is T -periodic we
may consider the function g(z, ε) = z− x(T, z, ε), and then try to use the results
previously obtained from the first problem. Indeed, if Z ⊂ D is a submanifold of
T -periodic solutions of the unperturbed system x′ = F0(t, z) then g(z, 0) vanishes
on Z. When dim(Z) = n this problem is studied at an arbitrary order of ε, see
[9, 11], even for nonsmooth systems. When dim(Z) < n, this approach has
already been used in [4], up to order 1, and in [5, 6], up to order 2. In [14]
this approach was used up to order 3 relaxing some hypotheses assumed in those
previous 3 works. In [10], assuming the same hypotheses of [4, 5, 6], the authors
studied this problem at an arbitrary order of ε. Here, following the ideas from
[11, 14], we improve the results of [10] relaxing some hypotheses and developing
the method in a more general way.

This paper is organized as follows. In section 2 we state our main results:
Theorem A, in subsection 2.1, dealing with bifurcation of simple zeros of the
equation g(z, ε) = 0; and Theorem B, in subsection 2.2, dealing with bifurcation
of limit cycles of the differential equation x′ = F (t, z, ε). In sections 3 and 4 we
prove Theorems A and B, respectively. In section 5, as an application of Theorem
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B, we study the birth of limit cycles in a 3D polynomial system. Finally, in section
6, we study the case when the averaged functions have a continuum of zeros. In
this last situation we also provide some results about the stability of the limit
cycles.

2. Statements of the main results

Before we state our main results we need some preliminary concepts and
definitions. Given p, q and L positive integers, γj = (γj1, . . . , γjp) ∈ Rp for
j = 1, . . . , L and z ∈ Rp. Let G : Rp → Rq be a sufficiently smooth function,
then the L-th Frechet derivative of G at z is denoted by ∂LG(z), a symmet-
ric L–multilinear map, which applied to a “product” of L p-dimensional vectors

denoted as
L⊙

j=1

γj ∈ RpL gives

∂LG(z)
L⊙

j=1

γj =

p∑

i1,...,iL=1

∂LG(z)

∂bi1 · · · ∂biL
γ1i1 · · · γLiL .

The above expression is indeed the Gâteaux derivative

∂LG(z)
L⊙

j=1

γj =
∂

∂τ1∂τ2 . . . ∂τL
G (z + τ1γ1 + τ2γ2 + · · ·+ τLγL)

∣∣∣
τ1=···=τL=0

= ∂
(
. . . ∂

(
∂G(z)γ1

)
γ2 . . .

)
γL.

We take ∂0 as the identity operator.

2.1. The Lyapunov–Schmidt reduction method. We consider the function

(3) g(z, ε) =
k∑

i=0

εigi(z) +O(εk+1),

where gi : D → Rn is a Ck+1 function, k ≥ 1, for i = 0, 1, . . . , k, being D an open
bounded subset of Rn. For m < n, let V be an open bounded subset of Rm and
β : Cl(V )→ Rn−m a Ck+1 function, such that

(4) Z = {zα = (α, β(α)) : α ∈ Cl(V )} ⊂ D.
As usual Cl(V ) denotes the closure of the set V .

As the main hypothesis we assume that

(Ha) the function g0 vanishes on the m–dimensional submanifold Z of D.

Using the Lyapunov–Schmidt reduction method we shall develop the bifurca-
tion functions of order i, for i = 1, 2, . . . , k, which control, for |ε| 6= 0 small
enough, the existence of branches of zeros z(ε) of (3) bifurcating from Z, that is
from z(0) ∈ Z. With this purpose we introduce some notation. The functions
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π : Rm ×Rn−m → Rm and π⊥ : Rm ×Rn−m → Rn−m denote the projections onto
the first m coordinates and onto the last n −m coordinates, respectively. For a
point z ∈ D we also consider z = (a, b) ∈ Rm × Rn−m.

For i = 1, 2, . . . , k, we define the bifurcation functions fi : Cl(V ) → Rm of
order i as

(5) fi(α) = πgi(zα) +
i∑

l=1

∑

Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb πgi−l(zα)

l⊙

j=1

γj(α)cj , and

(6) Fk(α, ε) =
k∑

i=1

εifi(α),

where γi : V → Rn−m, for i = 1, 2, . . . , k, are defined recurrently as

(7)

γ1(α) = −∆−1α π⊥g1(zα) and

γi(α) = −i!∆−1α

(∑

S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
∂I
′
b π
⊥g0(zα)

i−1⊙

j=1

γj(α)cj

+
i−1∑

l=1

∑

Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)cj

)
.

Here Sl is the set of all l-tuples of non–negative integers (c1, c2, · · · , cl) satisfying
c1 +2c2 + · · ·+ lcl = l, L = c1 +c2 + · · ·+cl, and S ′i is the set of all (i−1)-tuples of
non–negative integers satisfying c1+2c2+· · ·+(i−1)ci−1 = i, I ′ = c1+c2+· · ·+ci−1
and ∆α =

∂π⊥g0
∂b

(zα).

We clarify that S0 = S ′0 = ∅, and when cj = 0, for some j, then the term γj

does not appear in the “product”
l⊙

j=1

γj(α)cj .

Recently in [15] the Bell polynomials were used to provide an alternative for-
mula for recurrences of kind (5) and (7). This new formula can make easier the
computational implementation of the bifurcation functions (6).

The next theorem is the first main result of this paper. For sake of simplicity
we take f0 = 0.

Theorem A. Let ∆α denote the lower right corner (n−m)× (n−m) matrix of
the Jacobian matrix D g0(zα). In additional to hypothesis (Ha) we assume that

(i) for each α ∈ Cl(V ), det(∆α) 6= 0;
(ii) for some r ∈ {1, . . . , k}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically

zero;
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(iii) there exists a small parameter ε0 > 0 such that for each ε ∈ [−ε0, ε0] there
exists aε ∈ V satisfying Fk(aε, ε) = 0;

(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k+ r+ 1)/2 such
that ∣∣∂αFk(aε, ε) · α

∣∣ ≥ P0|ε|l|α|, for α ∈ V.
Then, for |ε| 6= 0 sufficiently small, there exists z(ε) such that g(z(ε), ε) = 0 with
|π⊥z(ε)− π⊥zaε| = O(ε) and |π z(ε)− π zaε| = O(εk+1−l).

Theorem A is proved in section 3.

In the next corollary we present a classical result in the literature, which is a
direct consequence of Theorem A.

Corollary 1. In addiction to hypothesis (Ha) we assume that f1 = f2 = · · · =
fk−1 = 0, that is r = k, and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists
α∗ ∈ V such that fk(α

∗) = 0 and det (Dfk(α
∗)) 6= 0, then there exists a branch

of zeros z(ε) with g(z(ε), ε) = 0 and |z(ε)− zα∗| = O(ε).

Corollary 1 is proved in section 3

2.2. Continuation of periodic solutions. As an application of Theorem A we
study higher order bifurcation of periodic solutions of the following T–periodic
Ck+1, k ≥ 1, differential system

(8) x′ = F (t, x, ε) = F0(t, x) +
k∑

i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D.

Here S1 = R
/

(T Z) with TZ = {T, 2T, . . . } and the prime denotes derivative
with respect to time t. Now the manifold Z, defined in (4), is seen as a set of
initial conditions of the unperturbed system

(9) x′(t) = F0(t, x).

In fact we shall assume that all solutions of the unperturbed system starting
at points of Z are T -periodic, recall that the dimension of Z is m ≤ n. Formally,
let x(·, z, 0) : [0, tz) → Rn denote the solution of (9) such that x(0, z, 0) = z, we
assume that

(Hb) Z ⊂ D, for each α ∈ Cl(V ) the unique solution x(t, zα, 0) of (9) is T -
periodic.

As usual x(·, z, ε) : [0, t(z,ε)) → Rn denotes a solution of system (8) such that
x(0, z, ε) = z. Moreover, let Y (t, z) be a fundamental matrix solution of the linear
differential system

(10) y′ =
∂

∂x
F0(t, x(t, z, 0))y.
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For sake of simplicity when z = zα ∈ Z we denote Yα(t) = Y (t, zα).

Given fundamental matrix solution Y (t, z), the averaged functions of order i,
gi : Cl(V )→ Rn, i = 1, 2, . . . , k, of system (8) is defined as

(11) gi(z) = Y (T, z)−1
yi(T, z)

i!
,

where
(12)

y1(t, z) = Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0))ds,

yi(t, z) = i!Y (t, z)

∫ t

0

Y (s, z)−1
(
Fi(s, x(s, z, 0))

+
∑

S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙

j=1

yj(s, z)
bj

+
i−1∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bj

)
ds.

Using now the functions gi as stated in (11) we define the functions fi, Fk, and
γi given by (5), (6), and (7), respectively.

Recently in [15] the Bell polynomials were used to provide an alternative for-
mula for the recurrence (12). This new formula can also make easier the compu-
tational implementation of the bifurcation functions (11).

The next theorem is the second main result of this paper. Again, for sake of
simplicity, we assume that f0 = 0.

Theorem B. Let ∆α denote the lower right corner (n − m) × (n − m) matrix
of the matrix Y (0, z)−1 − Y (T, z)−1. In additional to hypothesis (Hb) we assume
that

(i) for each α ∈ Cl(V ), det(∆α) 6= 0;
(ii) for some r ∈ {1, . . . , k}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically

zero;
(iii) there exists a small parameter ε0 > 0 such that for each ε ∈ [−ε0, ε0] there

exists aε ∈ V satisfying Fk(aε, ε) = 0;
(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k+ r+ 1)/2 such

that ∣∣∂αFk(aε, ε) · α
∣∣ ≥ P0|εl||α|, for α ∈ V.

Then, for |ε| 6= 0 sufficiently small, there exists a T -periodic solution ϕ(t, ε) of
system (8) such that |π ϕ(0, ε) − π zaε| = O(εk+1−l), and |π⊥ϕ(0, ε) − π⊥zaε| =
O(ε).
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Theorem B is proved in section 4.

In the next corollary we present a classical result in the literature, which is a
direct consequence of Theorem B.

Corollary 2. In addiction to hypothesis (Hb) we assume that f1 = f2 = · · · =
fk−1 = 0, r = k and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists
α∗ ∈ V such that fk(α

∗) = 0 and det (Dfk(α
∗)) 6= 0, then there exists a T -

periodic solution ϕ(t, ε) of (8) such that |ϕ(0, ε)− zα∗| = O(ε).

Corollary 2 is proved in section 4. An application of Theorem B is performed
in Section 5.

It is worth to emphasize that Theorem B is still true when m = n. In fact,
assuming that V is an open subset of Rn then Z = Cl(V ) ⊂ D and the projections
π and π⊥ become the identity and the null operator respectively. Moreover, in this
case the bifurcation functions fi : V → Rn, for i = 1, 2, . . . , k, are the averaged
functions fi(α) = gi(α) defined in (11). Thus we have the following corollary,
which recover the main result from [11].

Corollary 3. Consider m = n, zα = α ∈ Z and the hypothesis (Hb). Thus the
result of Theorem B holds without any assumption about ∆α.

3. Proof of Theorem A and Corollary 1

A useful tool to study the zeros of a function is the Browder degree (see the
Appendix 6.2 for some of their properties). Let g ∈ C1(D), Cl(V ) ⊂ D and
Zg = {z ∈ V : g(z) = 0}. We also assume that Jg(z) 6= 0 for all z ∈ Zg, where
Jg(z) is the Jacobian determinant of g at z. This assures that the set Zg is formed
by a finite number of isolated points. Then the Brouwer degree of g at 0 is

(13) dB(g, V, 0) =
∑

z∈Zg

sign (Jg(z)) .

As one of the main properties of the Brouwer degree we have that: “if d(f, V, 0) 6=
0 then there exists x0 ∈ V such that f(x0) = 0”(see item (i) of Theorem 8 from
Appendix 6.2).

The next result is a key lemma for proving Theorem A.

Lemma 4. Let V be an open bounded subset of Rm. Consider the continuous
functions fi : Cl(V ) → Rn, i = 0, 1, · · · , κ, and f, g, r : Cl(V ) × [−ε0, ε0] → Rn

given by

g(x, ε) = f0(x) + εf1(x) + · · ·+ εκfκ(x) and f(x, ε) = g(x, ε) + εκ+1r(x, ε).

Let Vε ⊂ V , R = max{|r(x, ε)| : (x, ε) ∈ Cl(V ) × [−ε0, ε0]} and assume that
|g(x, ε)| > R|ε|κ+1 for all x ∈ ∂Vε and ε ∈ [−ε0, ε0] \ {0}. Then for each ε ∈
[−ε0, ε0] \ {0} we have dB (f(·, ε), Vε, 0) = dB (g(·, ε), Vε, 0).
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Proof. For a fixed ε ∈ [−ε0, ε0] \ {0}, consider a continuous homotopy between
g(·, ε) and f(·, ε) given by gt(x, ε) = g(x, ε) + t (f(x, ε)− g(x, ε)) = g(x, ε) +
t εκ+1r(x, ε). We claim that 0 6∈ gt(∂Vε, ε) for every t ∈ [0, 1]. As usual ∂Vε
denotes the boundary of the set Vε. Indeed, assuming that 0 ∈ gtε(∂Vε, ε),
for some tε ∈ [0, 1], we may find xε ∈ ∂Vε such that gtε(xε, ε) = 0 and, con-
sequently, g(xε, ε) = −tεεκ+1r(xε, ε). Thus |g(xε, ε)| ≤ R|ε|κ+1, which con-
tradicts the hypothesis |g(xε, ε)| > R|ε|κ+1. From Theorem (8) (iii) we con-
clude that dB(gt(·, ε), Vε, 0) is constant for t ∈ [0, 1] and then dB (f(·, ε), Vε, 0) =
dB (g(·, ε), Vε, 0). �

The above lemma provides a stratagem to track zeros of the perturbed function
f(x, ε) using a shrinking neighborhood around the zeros of g(x, ε) that preserves
its Brouwer degree. The way how it works can be blurry at the first moment, so
to make it clear we present the following example:

Example 1. Consider the real function f(x, ε) = g(x, ε) + ε2r(x, ε) with (x, ε) ∈
[−1, 1] × [−ε0, ε0], g(x, ε) = x2 − εx, and |r(x, ε)| ≤ 1/5. The function g(x, ε)
has two zeros a = 0 and aε = ε. Taking Vε = (ε/2, 3ε/2) we have that, for
|ε| 6= 0 sufficiently small, aε ∈ Vε and dB (g(·, ε), Vε, 0) = 1 (see Definition (13)).
Furthermore ∂Vε = {ε/2, 3ε/2}, |g(ε/2, ε)| = ε2/4, and |g(3ε/2, ε)| = 3ε2/4.
Thus |g(x, ε)| > ε2/5 ≥ ε2 max{|r(x, ε)| : (x, ε) ∈ [0, 1] × [−ε0, ε0]}. Therefore
from the previous lemma we know that dB (f(·, ε), Vε, 0) = 1. From the above
property of the Brouwer degree we conclude that there exists αε ∈ Vε such that
f(αε, ε) = 0.

Now we recall the Faá di Bruno’s Formula (see [12]) about the lth derivative of
a composite function.

Faá di Bruno’s Formula If u and v are functions with a sufficient number of
derivatives, then

dl

dtl
u(v(t)) =

∑

Sl

l!

b1! b2!2!b2 · · · bl!l!bl
u(L)(v(t))

l⊙

j=1

v(j)(t)bj ,

where Sl is the set of all l–tuples of non–negative integers (b1, b2, · · · , bl) which
are solutions of the equation b1 + 2b2 + · · ·+ lbl = l and L = b1 + b2 + · · ·+ bl.

The remainder of this section consists in the proof of Theorem A, which is split
in several claims, and the proof Corollary 1

Proof of Theorem A. We consider g = (πg, π⊥g), gi = (πgi, π
⊥gi) for i = 0, 1, 2, . . . , k,

and z = (a, b) ∈ Rm × Rn−m for z ∈ D. So

∂g

∂z
(zα, 0) = D g0(zα) =




∂πg0
∂a

(zα)
∂πg0
∂b

(zα)

∂π⊥g0
∂a

(zα)
∂π⊥g0
∂b

(zα)


 .
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We write ∆α =
∂π⊥g0
∂b

(zα). From hypotheses, π⊥g(α, β(α), 0) = π⊥g0(zα) = 0

and

det

(
∂π⊥g

∂b
(α, β(α), 0)

)
= det

(
∂π⊥g0
∂b

(zα)

)
= det (∆α) 6= 0.

Thus applying the Implicit Function Theorem it follows that there exists an open
neighborhood U × (−ε1, ε1) of Cl(V ) × {0} with ε1 ≤ ε0, and a Ck+1 function
β : U × (−ε1, ε1) → Rn−m such that π⊥g(a, β(a, ε), ε) = 0 for each (a, ε) ∈
U × (−ε1, ε1) and β(α, 0) = β(α) for every α ∈ Cl(V ).

From here, this proof will be split in several claims.

Claim 1. The equality (∂iβ/∂εi)(α, 0) = γi(α) holds for i = 1, 2, . . . , k.

Firstly, it is easy to check that (∂β/∂ε)(α, 0) = γ1(α). Now, for some fixed
i ∈ {1, 2, . . . , k}, we assume by induction hypothesis that (∂sβ/∂εs)(α, 0) = γs(α)
for s = 1, . . . , i− 1. In what follows we prove the claim for s = i. Consider

π⊥g(α, β(α, ε), ε) =
k∑

i=0

εiπ⊥gi(α, β(α, ε)) +O(εk+1) = 0.

Expanding each function ε 7→ π⊥gi
(
α, β(α, ε)

)
in Taylor series we obtain

π⊥g(α, β(α, ε), ε) =
k∑

i=0

(
εi

i∑

l=0

1

l!

∂l

∂εl
π⊥gi−l

(
α, β(α, ε)

) ∣∣∣
ε=0

)
(14)

+O(εk+1) = 0.

Applying the the Faà di Bruno’s formula we obtain

∂l

∂εl
π⊥gi−l

(
α, β(α, ε)

) ∣∣∣
ε=0

=
∑

Sl

(
l!

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

)
(15)

l⊙

j=1

∂j

∂εj
β(α, 0)bj

)
.

Substituting (15) in (14) we get

π⊥g(α, β(α, ε), ε) =
k∑

i=0

εi

(
i∑

l=0

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

)

l⊙

j=1

∂j

∂εj
β(α, 0)bj

)
+O(εk+1) = 0.
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Since the previous equation is equal to zero for |ε| sufficiently small, the coeffi-
cients of each power of ε vanish. Then for 0 ≤ i ≤ k and (α, ε) ∈ U × (−ε1, ε1)
we have

i∑

l=0

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

) l⊙

j=1

∂j

∂εj
β(α, 0)bj = 0.

This equation can be rewritten as

0 =
i−1∑

l=0

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

) l⊙

j=1

∂j

∂εj
β(α, 0)bj

+
∑

S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
b π
⊥g0

(
α, β(α, 0)

) i−1⊙

j=1

∂j

∂εj
β(α, 0)bj(16)

+
1

i!
∂bπ

⊥g0
(
α, β(α, 0)

) ∂i
∂εi

β(α, 0).

Here S ′i is the set of all (i − 1)-tuples of non–negative integers satisfying b1 +
2b2 + · · · + (i− 1)bi−1 = i, I ′ = b1 + b2 + · · · + bi−1. Finally, using the induction
hypothesis, equation (16) becomes

∂iβ

∂εi
(α, 0) = −i!∆−1α


∑

S′i

1

b1! b2!2!b2 · · · b(i−1)!(i− 1)!bi−1
∂I
′
b π
⊥g0(zα)

i−1⊙

j=1

γj(α)bs

+
i−1∑

l=0

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)bs

)
= γi(α).

This concludes the proof of Claim 1.

Claim 2. Let δ : U × (−ε1, ε1) → Rm be the Ck+1 function defined as δ(α, ε) =
πg(α, β(α, ε), ε). Then the equality (∂iδ/∂εi)(α, 0) = i!fi(α) holds for i = 1, 2, . . . , k.

From (3) the function δ reads

δ(α, ε) =
k∑

j=0

εjπgj(α, β(α, ε)) +O(εk+1).

So computing its ith-derivative, 0 ≤ i ≤ k, in the variable ε, we get

∂iδ

∂εi
(α, ε) =

i∑

j=0

i∑

q=0

(
i

q

)
(εj)(i−q)

∂qπgj
∂εq

(α, β(α, ε)) +O(ε).
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Taking ε = 0 and l = i− j we obtain

∂iδ

∂εi
(α, 0) =

i∑

l=1

i!

l!

∂lπgi−l
∂εl

(α, β(α, ε))

∣∣∣∣∣
ε=0

+ i!πgi(zα).

Finally using the Faà di Brunno’s formula and Claim 1 we have

∂iδ

∂εi
(α, 0) =

i∑

l=1

i!

l!

∑

Sl

l!

c1!c2!2!c2 . . . cl!l!cl
∂Lb πgi−l(zα)

l⊙

s=1

γs(α)cs + i!πgi(zα)

= i!fi(α).

This concludes the proof of Claim 2.

Using Claim 2 the function δ(α, ε) can be expanded in power series of ε as

δ(α, ε) =
k∑

i=0

εi

i!

∂iδ

∂εi
(α, 0) +O(εk+1) = Fk(α, ε) +O(εk+1),

and, from hypothesis (ii), we have

(17) δ̃(α, ε) :=
δ(α, ε)

εr
= Gk(α, ε) +O(εk−r+1),

where Gk(α, ε) = fr(α) + εfr+1(α) + . . . + εk−rfk(α). Obviously the equations

δ(α, ε) = 0 and δ̃(α, ε) = 0 are equivalent for ε 6= 0.

Denote R(ε0) = max{|δ̃(α, ε) − Gk(α, ε)| : (α, ε) ∈ Cl(V ) × [−ε0, ε0]}. From

the continuity of the functions δ̃ and Gk and from the compactness of the set
Cl(V )× [−ε0, ε0] we know that R(ε0) <∞ and R(0) = 0. In order to study the

zeros of δ̃(α, ε) we use Lemma 4, for proving the following claim.

Claim 3. Consider aε ∈ V as given in hypothesis (iii) and ε ∈ [−ε0, ε0]. Then,
there exist ε0 > 0 sufficiently small and, for each ε ∈ [−ε0, ε0], a neighborhood
Vε ⊂ V of aε such that |Gk(α, ε)| > R(ε0)|εk−r+1| for all α ∈ ∂Vε. Moreover
Vε = B(aε, Q|ε|k+1−l) for some Q > 0.

The parameter ε0 > 0 will be chosen later on. Given ε ∈ [−ε0, ε0], since
Gk(α, ε) is a Ck+1 function, k ≥ 1, we have that

(18) Gk(aε + h, ε) = ∂αGk(aε, ε)h+ ρ(h), ρ(h) = O(|h|2),
for every h ∈ Rm such that [aε, aε + h] ⊂ V . Moreover, hypotheses (ii) and (iv)
imply that

(19)
∣∣∂αGk(aε, ε) · α

∣∣ ≥ P0|ε|l−r|α| for α ∈ V.
Combining expressions (18) and (19) we obtain the following inequality:

|Gk(aε + h, ε)| ≥
(
P0 − |ε|r−l

|ρ(h)|
|h|

)
|ε|l−r|h|.(20)
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Take Vε = B(aε, Q|ε|k+1−l) ⊂ V . A point αε ∈ ∂Vε reads αε = aε + hε, where
hε = uQ|ε|k+1−l ∈ Rm and |u| = 1. Moreover, since ρ(h) = O(|h|2) we get

|ε|r−l |ρ(hε)|
|hε|

= |ε|r−lO
(
Q|ε|k+1−l) = O

(
Q|ε|k+r+1−2l).

From hypothesis (iii), k + r + 1 − 2l ≥ 0. So, in particular, O
(
Q|ε|k+r+1−2l) =

O(Q). Thus, from definition of the symbol O, there exists c0 > 0, which does
not depend on ε and Q, such that |ε|r−l|ρ(hε)|/|hε| ≤ c0Q. So the inequality (20)
reads

|Gk(aε + hε, ε)| ≥ (P0 −Qc0)Q|ε|k−r+1.

Note that the polynomial P(Q) = (P0 −Qc0)Q is positive for 0 < Q < P0/c0
and reach its maximum at Q∗ = P0/(2c0). Moreover P(Q∗) = P 2

0 /(4c0). Since
R(0) = 0, there exists ε0 > 0 small enough in order that R(ε0) < P 2

0 /(4c0) =
P(Q∗). Accordingly, taking Q = Q∗ it follows that |Gk(α, ε)| > R(ε0)|εk−r+1| for
all α ∈ ∂Vε and ε ∈ [−ε0, ε0]. This concludes the proof of Claim.

Applying Lemma 4 for g = δ̃, as defined in (17), κ = k − r, and Vε =

B(aε, Q|ε|k+1−l) we conclude that dB
(
δ̃(·, ε), Vε, 0

)
= dB

(
Gk(·, ε), Vε, 0

)
6= 0. Fi-

nally, denoting z(ε) =
(
α(ε), β

(
α(ε), ε

))
it follows that g(z(ε), ε) = 0.

Moreover, let zaε = (aε, β(aε)), then |πz(ε)− πzaε| = |α(ε)− aε| = O
(
εk+1−l)

and, since β is Lipschtiz,
∣∣π⊥z(ε)− π⊥zaε

∣∣ =
∣∣β(α(ε), ε)− β(aε, 0)

∣∣ ≤ L|(α(ε), ε)− (aε, 0)| = O(ε).

This concludes the proof of Theorem A. �

Proof of Corollary 1. The basic idea of the proof is to show that Fk(α) satisfies
all the hypotheses of Theorem A. From hypotheses, Fk(α, ε) = εkfk(α) and
Dfk(α

∗) = ε−k∂αFk(α∗, ε) is a homeomorphism on Rn. Thus there exist constants
b, c > 0 such that

b|α| < |Jfk(α∗).α| =
∣∣∣∣

1

εk
∂αFk(α∗, ε).α

∣∣∣∣ < c|α|,

for all α ∈ Rm. Therefore b
∣∣εk
∣∣ |α| <

∣∣∂αFk(α∗, ε).α
∣∣ < c

∣∣εk
∣∣ |α|, which implies

that Fk(α∗) satisfies hypothesis (iii) of Theorem A, with l = r = k. Indeed
(k + r + 1)/2 = k + 1/2 > k = l. Hence the proof follows directly from Theorem
A. �

4. Proof of Theorem B and Collorary 2

The next result is needed in the proof of Theorem B.
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Lemma 5 (Fundamental Lemma). Let x(t, z, ε) be the solution of the T -periodic
Ck+1 differential system (8) such that x(0, z, ε) = z. Then the equality

x(t, z, ε) = x(t, z, 0) +
k∑

i=1

εi
yi(t, z)

i!
+O(εk+1)

holds for (t, z) ∈ S1 ×D.

Proof. The solution x(t, z, ε) can be written as

(21)

x(t, z, ε) = z +
k∑

i=0

εi
∫ t

0

Fi(s, x(s, z, ε))ds+O(εk+1), and

x(t, z, 0) = z +

∫ t

0

F0(s, x(s, z, 0))ds.

Moreover the result about differentiable dependence on parameters implies that
ε 7→ x(t, z, ε) is a Ck+1 map. So, for i = 0, 1, . . . , k − 1, we compute the Taylor
expansion of Fi(t, x(t, z, ε)) around ε = 0 as
(22)

Fi(t, x(t, z, ε)) = Fi (t, x(t, z, 0)) +
k−i∑

l=1

εl

l!

(
∂l

∂εl
Fi(t, x(t, z, ε))

) ∣∣∣∣∣
ε=0

+O(εk−i+1).

Using the Faá di Bruno’s formula to compute the l–derivatives of Fi(t, x(t, z, ε))
in the variable ε we get
(23)

∂l

∂εl
Fi(t, x(t, z, ε))

∣∣∣∣∣
ε=0

=
∑

Sl

l!

b1! b2!2!b2 · · · bl!l!bl
∂LFi(t, x(t, z, 0))

l⊙

j=1

yj(t, z)
bj ,

where

(24) yj(t, z) =

(
∂j

∂εj
x(t, z, ε)

) ∣∣∣∣∣
ε=0

.

Substituting (23) in (22) the Taylor expansion of Fi(s, x(t, z, ε)) becomes

(25)

Fi(s, x(s, z, ε)) = Fi (s, x(s, z, 0))

+
k−i∑

l=1

∑

Sl

εl

b1! b2!2!b2 · · · bl!l!bl
∂LFi (s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bj +O(εk−i+1),

for i = 0, 1, . . . , k − 1. Furthermore, for i = k,

(26) Fk(s, x(s, z, ε)) = Fk (s, x(s, z, 0)) +O(ε).
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From (21), (25), and (26), we get the following equation:

(27) x(t, z, ε) = z +Q(t, z, ε) +
k∑

i=0

εi
∫ t

0

Fi(s, x(s, z, 0))ds+O(εk+1),

where

Q(t, z, ε) =
k−1∑

i=1

εi
i∑

l=1

∑

Sl

∫ t

0

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bjds.

Finally, from (27)

x(t, z, ε) = z +

∫ t

0

F0(t, x(s, z, 0))ds+
k−1∑

i=1

εi

(∫ t

0

Fi(s, x(s, z, 0))

+
i∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bj ds

)

+εk
∫ t

0

Fk (s, x(s, z, 0)) + εk+1

∫ t

0

R(s, x(s, z, ε), ε)ds+O(εk+1).

Now using this last expression of x(t, z, ε) we conclude that functions yi(t, z),
defined in (24) for i = 1, 2, . . . , k − 1, can be computed recurrently from the
following integral equation

(28)

yi(t, z) =

(
∂ix

∂εi
(t, z, ε)

) ∣∣∣∣∣
ε=0

= i!

∫ t

0

(
Fi(s, x(s, z, 0)) +

i∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LFi−l(s, x(s, z, 0))
l⊙

j=1

yj(s, z)
bj

)
ds

=

∫ t

0

(A(s)yi(s, z) +Bi(s)) ds,

where

A(s) = ∂F0(s, x(s, z, 0)),

Bi(s) = i!
(
Fi(s, x(s, z, 0)) +

∑

S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙

j=1

yj(s, z)
bj +

i−1∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bj
)
.
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The integral equation (28) is equivalent to the Cauchy problem

∂

∂t
yi(t, z) = A(t)yi(t, z) +Bi(t), with yi(0, z) = 0,

which has a unique solution given by

yi(t, z) = Y (t, z)

∫ t

0

Y (s, z)−1Bi(s)ds

= i!Y (t, z)

∫ t

0

Y (s, z)−1
(
Fi(s, x(s, z, 0))

+
∑

S′i

1

b1! b2!2!b2 · · · bi!i!bi
∂I
′
F0(s, x(s, z, 0))

i−1⊙

j=1

yj(s, z)
bj

+
i−1∑

l=1

∑

Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙

j=1

yj(s, z)
bj

)
ds.

Since

x(t, z, 0) = z +

∫ t

0

F0(t, x(s, z, 0))ds,

we obtain

x(t, z, ε) = x(t, z, 0) +
k∑

i=1

εi
yi(t, z)

i!
+O(εk+1).

This concludes the proof of the lemma �

Proof of Theorem B. Let x(·, z, ε) : [0, t(z,ε)) 7→ Rn denote the solution of system
(8) such that x(0, z, ε) = z. By Theorem 8.3 of [1] there exists a neighborhood
U of z and ε1 sufficiently small such that t(z,ε) > T for all (z, ε) ∈ U × (−ε1, ε1).
Let h(z, ε) : U × (−ε1, ε1) 7→ Rn be the displacement function defined as

(29) h(z, ε) = x(T, z, ε)− z.

Clearly x(·, z, ε), for some (z, ε) ∈ U×(−ε1, ε1), is a T -periodic solution of system
(8) if and only if h(z, ε) = 0. Studying the zeros of (29) is equivalent to study
the zeros of

(30) g(z, ε) = Y (T, z)−1h(z, ε).

From Lemma 5 we have

(31) x(t, z, ε) = x(t, z, 0) +
k∑

i=1

εi
yi(t, z)

i!
+O(εk+1).
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for all (t, z) ∈ S1 × D, where yi is defined in (12). Hence substituting (31) into
(30) it follows that

(32) g(z, ε) =
k∑

i=0

εigi(z) +O(εk+1),

where g0(z) = Y −1(t, z) (x(t, z, 0)− z) and, for i = 1, 2, . . . , k, the function gi is
defined in (11).

From hypothesis (Hb) we know that g0(z) vanishes on the manifold Z, therefore
hypothesis (Ha) holds for the function (32). Moreover

∂g0
∂z

(z) = Y (T, z)−1
(
∂x

∂z
(T, z, 0)− Id

)

= Y (T, z)−1
(
Y (T, z)Y (0, z)−1 − Id

)

= Y (0, z)−1 − Y (T, z)−1,

which from hypothesis has its lower right corner (n − m) × (n − m) matrix as
being a nonsingular matrix ∆α. Hence the result follows directly by applying
Theorem A. �

5. Birth of a limit cycle in a 3D polynomial system

Consider the following 3D autonomous polynomial differential system

u̇ =− v + ε
(
u3 − u2 − uv2 − πv3

)
,

v̇ =u+ ε
(
πu3 − 1

)
,(33)

ẇ =w − εu.
In the next proposition, as an application of Theorem B, we provide sufficient
conditions for the existence of an isolated periodic solution for the differential
system (33).

Proposition 6. For |ε| > 0 sufficiently small system (33) has an isolated periodic
solution ϕ(t, ε) =

(
u(t, ε), v(t, ε), w(t, ε)

)
, such that

u(t, ε) =
√

8 ε cos t+O(ε),

v(t, ε) =
√

8 ε sin t+O(ε), and(34)

w(t, ε) =O(ε).

We emphasize that the expression (34) is not saying that the period of the
solution ϕ(t, ε) is 2π. That is because we cannot assure the period of the order ε
functions.
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Proof. Writing the differential system (33) in the cylindrical coordinates (u, v, w) =
(r cos θ, r sin θ, w) we get

ṙ =
ε

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))− 4 sin θ

)
,

θ̇ =1 +
ε

4r

(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ) + 3πr)− 4 cos θ

)
,

ẇ =w − εr cos θ.

Since θ̇ 6= 0 for |ε| 6= 0 sufficiently small, we can take θ as the new independent
variable. So

(35)

dr

dθ
= εF11(θ, z) + ε2F21(θ, z) +O1(ε

3),

dz

dθ
= z + εF12(θ, z) + ε2F22(θ, z) +O2(ε

3),

where z = (r, w) ∈ R2 and

F11(θ, z) =
1

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))

− 4 sin θ
)
,

F12(θ, z) =
−1

4

(
4 cos θ

(
r2 − z

)
+ r2z(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr)
)
,

F21(θ, z) =
−1

16r

(
− 4 sin θ + r3 + r2(−3 cos θ − cos(3θ) + r(π sin(4θ)

+ 2 cos(2θ) + cos(4θ)))
)(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr)− 4 cos θ
)
,

F22(θ, z) =
1

16r2
(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ) + 3πr)− 4 cos θ

)
(
4 cos θ

(
r2 − z

)
+ r2z(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr
)
.

The differential system (35) is 2π-periodic in the variable θ and it is written in
the standard form form (8) with F0(θ, z) =

(
0, z
)
, F1(θ, z) =

(
F11(θ, z), F12(θ, z)

)

and F2(θ, z) =
(
F21(θ, z), F22(θ, z)

)
. Moreover the solution of the unperturbed

differential system (9) for a initial condition z0 = (r0, w0) is given by

Φ(θ, z0) =
(
r0, w0e

θ
)
.

Consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Clearly for each
zα ∈ Z, the solution Φ(θ, zα) is 2π–periodic, and therefore the differential system
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(35) satisfies hypothesis (Hb). Furthermore the linear differential system (10)
corresponding to (35) has the following fundamental matrix solution

Y (θ, z) =
∂Φ

∂z
(θ, z0) =

(
1 0
0 eθ

)
,

which satifies Y (0, z) = Id. Now in order to compute the bifurcation functions
(5) for the differential system (35) we first obtain the functions (12) corresponding
to this system,

y0(θ, z) = Y (θ, z)−1
(
0, (eθ − 1)w

)
,

y1(θ, z) = Y (θ, z)−1
(
r2

48

(
−36 sin θ − 4 sin(3θ) + 6πr sin2(2θ) + 3r sin(4θ)

)

1

48

(
12
(
θr3 − 4

)
+ 24 cos θ

(
r3 sin θ + 2

))
,
r2

2
(cos θ − sin θ)

− eθr

48
(w((36πθ − 3)r + 16) + 24) +

eθw

48

(
48 sin θ + r2(12 cos θ

+ 4 cos(3θ)− 3r(π sin(4θ) + cos(4θ))
))
,

y2(2π, z) = Y (2π, z)−1
(−πr(3r + 4)

4
,
e−2π

40

(
((3− 2π)r − 6)r2 + 10

)

+
1

40

(
r2((π(7 + 15π)− 3)r + 6)− 10

))
,

and from (11)

(36) gi(z) = Y (2π, z)
yi(2π, z)

i!
for i = 0, 1, 2.

So the bifurcation functions (5) corresponding to the functions (36) become

(37) f1(α) =
πα3

2
, f2(α) = πα(3α + 4), and F2(α, ε) = εf1(α) + ε2f2(α).

Now we must check that the function (37) satisfies the hypotheses for ap-
plying Theorem B. So det(∆α) =

∣∣Dwπ
⊥g0(zα)

∣∣ = 1 − e−2π 6= 0, and for

aε =
√

9ε2 + 8ε+ 3ε we have that

F2(aε, ε) = 0 and |∂αF2(aε, ε)| ≥ ε2
(

8−
∣∣9ε+ 3

√
ε(8 + 9ε)

∣∣
)
.

Thus it is easy to find P0 > 0 satisfying |∂αF2(aε, ε)| ≥ ε2P0. Hence, in terms of
Theorem B, we have r = 1, k = 2, l = 2, and (k + r + 1)/2 = 2 = l. So we can
apply Theorem B in order to prove the existence of an isolated periodic solution(
r(θ, ε), z(θ, ε)

)
of the differential system (35) such that

r(0, ε) =
√

9ε2 + 8ε+ 3ε+O(ε) =
√

8ε+O(ε) and w(0, ε) = O(ε).
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Since θ(t) = t + O(ε), this proofs ends by going back through the cylindrical
coordinate change of variables. �

6. Averaged functions with a continuum of zeros

One of the main difficulties in applying the averaging method for finding peri-
odic solutions is to compute the zeros of the averaged function associated to the
differential system. In this section we are going to show how Theorems A and B
can be combined in order to deal with this problem. To be precise, consider the
T -periodic differential system x′ = F (t, x, ε) as defined in (8), with F0 = 0. Note
that Y (t, z) = Id for every t ∈ S1 and z ∈ D.

As shown in the proof of Theorem B, x(t, z, ε) is a T -periodic solution of (8)
if and only if z is a zero of the displacement function h, defined in (29). In this
case h(z, ε) = g(z, ε), which reads

(38) h(z, ε) = x(T, z, ε)− z =
k∑

i=1

εigi(z) +O(εk+1),

where the averaged functions gi(z), for i = 1, 2, . . . , k, are defined in (11). In
order to apply Theorem B we first compute

(39) Fk(α, ε) =
k∑

i=1

εigi(α),

as defined in (6), and then we try to find aε ∈ V such that Fk(aε, ε) = 0. After
that, if all the hypotheses of Theorem B are fulfilled we obtain, from its proof,
the existence of a branch of zeros z(α) of the displacement function (38).

This task can be very complicate because there is no general method to find

aε. Although if there exist r ∈ {1, . . . , k}, an open subset Ṽ ⊂ D, and a smooth

function β̃ : Cl(Ṽ )→ D such that g1 = . . . = gr−1 = 0, gr 6= 0, and gr
(
α̃, β̃

(
α̃
))

=

0 for all α̃ ⊂ Ṽ then Theorem A may be used to reduce the dimension of system
(39), helping then to find the solution aε. This strategy is a general method which
generalizes the results obtained in [7]. This procedure will be illustrated in the
next subsection.

6.1. Maxwell-Bloch system. In nonlinear optics, the Maxwell–Bloch equa-
tions are used to describe laser systems. For instance, in [2], these equations
were obtained by coupling the Maxwell equations with the Bloch equation (a lin-
ear Schrödinger like equation which describes the evolution of atoms resonantly
coupled to the laser field). Recently in [13], it was identified weak foci and centers
in the Maxwell-Bloch system, which can be written as

u̇ =− au+ v,

v̇ =− bv + uw,(40)
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ẇ =− c(w − δ)− 4uv.

For c = 0 the differential system (40) has a singular line {(u, v, w)|u = 0, v = 0};
for c 6= 0 and ac(δ − ab) ≤ 0 the differential system (40) has one equilibrium
p0 = (0, 0, δ); and for c 6= 0 and ac(δ − ab) > 0 the differential system (40) has
three equilibria p± =

(
± u∗,±v∗, w∗

)
and p0 where

u∗ =

√
c(δ − ab)

4a
, v∗ = a

√
c(δ − ab)

4a
, w∗ = ab.

Using the above strategy we shall prove the following result:

Proposition 7. Let ω ∈ (0, ∞), (a, b, c) =
(
a0−b1ε+a2ε

2, −a0+b1ε+b2ε
2, c1ε+

c2ε
2
)

and δ = −a20 − ω2 with a0(a2 + b2) > 0, c1 6= 0 and ε a small parameter.
Then for |ε| 6= 0 sufficiently small the Maxwell-Bloch differential system (40) has
an isolated periodic solution ϕ(t, ε) =

(
u(t, ε), v(t, ε), w(t, ε)

)
such that

u(t, ε) =ε ω

√
2(a2 + b2)

a0
sin t+O(ε2),

v(t, ε) =ε ω

√
2(a2 + b2)

a0

(
a0 sin t+ ω cos t

)
+O(ε2), and(41)

w(t, ε) =δ − ε 4ω2(a2 + b2)

c1
+O(ε2).

We emphasize again that the expression (41) does not imply that the period
of the solution ϕ(t, ε) is 2π. That is because we cannot assure the period of the
order ε2 functions.

Proof. Applying the change of variables (u, v, w) = (εV, ε(a0V + ωU), δ + εW ),
the differential system (40) reads

U̇ = − ωV +
ε

ω

(
VW − 2a0b1V − b1ωU

)
+ ε2

(a0(a2 − b2)V
ω

− b2U
)
,

V̇ =ωU + εb1V − ε2a2V,(42)

Ẇ = ε
(
− c1W − 4V (a0V + ωU)

)
− ε2c2.

In order to apply the strategy described above we must write the differential
system (42) in the standard form (8). To this end we proceed as usual: first we
consider the cylindrical change of variables (U, V,W ) = (r cos θ, r sin θ, w), where

r > 0; after checking that θ̇ = ω + O(ε) 6= 0, for |ε| 6= 0 sufficiently small, we
take θ as the new independent variable. Therefore the differential system (42)
becomes equivalent to the non-autonomous differential system

(43)
dz

dθ
=

(
ṙ

θ̇
,
ẇ

θ̇

)
= εF1(θ, z) + ε2F2(θ, z) +O(ε3),
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where z = (r, w) ∈ R+ × R and θ ∈ S1. Moreover
(44)

F1(θ, z) =

(
r

2ω2

(
(w − 2a0b1) sin(2θ)− 2b1ω cos(2θ)

)
,

−
(
c1w + 4r2 sin θ(ω cos θ + a0 sin θ)

)

ω

)
,

F2(θ, z) =

(
1

2ω4

(
2b1ω cos θ + (2a0b1 − w) sin θ

)(
2b1ω cos(2θ) + (2a0b1

−w) sin(2θ)
)

+ rω2
(
(a2 − b2)(ω cos(2θ) + a0 sin(2θ))− (a2 + b2)

)
,(

2b1ω cos θ + (2a0b1 − w) sin θ
)

ω2

(
c1w + 4r2 sin θ(ω cos θ + a0 sin θ)

)
)
.

Now the prime denotes the derivative with respect to the variable θ.

For the differential system (43) we have that F0(θ, z) = 0. Then x(θ, z, 0) =
(r, w) is the solution to the unperturbed system and Y (t, z) = Id is its corre-
sponding fundamental matrix. In this case the averaged functions reads
(45)

g1(z) =

(
0,−2π

(
2a0r

2 + c1w
)

ω

)
,

g2(z) =

(
πr
(
3a0r

2 + c1w − 2(a2 + b2)ω
2
)

2ω3
,
π

ω3

(
(2a0b1 − w)(6a0r

2 + c1w)

+2c1π(2a0r
2 + c1w)ω + 2

(
(2b1 + c1)r

2 − c2w
)
ω2
)
)
.

From here instead of following the steps of Theorem B we are going to use
Theorem A to find directly a branch of zeros of the displacement function (38).
To do this we define the function g̃(z, ε) = h(z, ε)/ε, where now g̃(z, ε) = g̃0(z) +
εg̃1(z) + O(ε2) with g̃0(z) = g1(z) and g̃1(z) = g2(z). Note that the averaged
function g̃0(z) = g1(z) vanishes on the manifold

Z̃ =

{
zα =

(
α,−2a0α

2

c1

)
: α > 0

}
.

Furthermore, ∆α = −(2πc1)/ω is the lower right corner of the Jacobian matrix

Dg̃0(zα) for all zα ∈ Z̃. Computing then the bifurcation function (5) correspond-
ing to g̃(z, ε) we get

f̃1(α) =
πα
(
a0α

2 − 2(a2 + b2)ω
2
)

2ω3
,
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and F̃1(α, ε) = εf̃1(α). Solving the equation F̃1(α, ε) = 0 we find

aε = α0 = ω

√
2(a2 + b2)

a0
.

Moreover,
∣∣∣∂αF̃1(α0, ε)

∣∣∣ = 2επ(a2 + b2)/ω so it is clear that hypotheses (iii) and

(iv) of Theorem A are fulfilled with l = 1, r = 1 and k = 1. Thus, for |ε| 6= 0
sufficiently small, it follows that there exists

(46) z(ε) =


ω
√

2(a2 + b2)

a0
,−4ω2(a2 + b2)

c1


+O(ε)

such that g̃(z(ε), ε) = h(z(ε), ε)/ε = 0 for every |ε| 6= 0 sufficiently small. There-
fore we conclude that there exists a 2π-periodic solution periodic (r(θ, ε), w(θ, ε))
of the non-autonomous differential system (43) satisfying (r(θ, 0), w(θ, 0)) = z(0).
Since θ(t) = ωt + O(ε), this proofs ends by going back through the cylindrical
coordinate change of variables and then doing (u, v, z) = ε(V, a0V +ωU,W ) . �

6.2. Stability. We have seen that the averaged functions (45) up to order 2
were sufficient for detecting the existence of a periodic solution of the differential
system (40). Now we show that the higher order averaged functions may play an
important role for studying the stability of the periodic solution ϕ(t, ε) provided
by Theorem B.

Clearly the stability of the periodic solution ϕ(t, ε) can be derived from the
eigenvalues of the Jacobian matrix of the displacement function Dzh(z(ε), ε) eval-
uated at z(ε) = ϕ(0, ε) . From equation (46) we can write z(ε) = z0 + O(ε2).
Moreover, since in this case Y (t, z) = Id then Dzh(z(ε), ε) = εDg1(z0) + O(ε),
where

Dg1(z0) =

(
0 0

−8π
√

2a0(a2 + b2) −
2πc1
ω

)
.

So a first approximation of the eigenvalues λ± of the Jacobian matrix Dzh(z(ε), ε)
is given by

(47) λ+ = O(ε2), λ− = −ε2πc1
ω

+O(ε2).

Clearly the stability of the periodic solution ϕ(t, ε) cannot be completely de-
scribed by these expressions. Now we show how the higher order bifurcation
functions and averaging functions can be used to better analyses the stability of
the periodic solution.

We recall that, after some changes of coordinates, the differential system (40)
can be transformed into the standard form (43). Expanding it in power series of
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ε up to order 3, the differential system (43) becomes

dz

dθ
= εF1(θ, z) + ε2F2(θ, z) + ε3F3(θ, z) +O(ε4),

where F1 and F2 are given in (44) and

F3(θ, z) =

(
πr

4ω5

(
− 3(a0b1 − w)

(
5a0r

2 + c1w
)
− 2c1π(2a0r

2 + c1w)ω +
(
4a0b1(a2

+ b2)− 3(2b1 + c1)r
2 − 2(a2 + b2 − c2)w

)
ω2
)
,

π

12ω5

(
12πω

(
a20
(
6r4 − 16b1c1r

2
)

+ 2a0c1w
(
7r2 − 2b1c1

)
+ 3c21w

2
)

− 2ω2
(
w
(
6a0(a2c1 − 2b1c2 − b2c1) + 6b21c1 − 9r2(4b1 + 3c1) + 8π2c31

)

+a0r
2
(
36a0(a2 − b2) + 108b21 + 36b1c1 + 2

(
8π2 − 3

)
c21 − 45r2

)
+ 6c2w

2
)

+ 24πω3
(
r2(2a0(a2 + b2 + c2)− c1(2b1 + c1)) + 2c1c2w

)

− 9(w − 2a0b1)
2
(
10a0r

2 + c1w
)

+ 24r2ω4(c2 − 2a2)

)
.

From (12) and (5) we compute the third averaged function and the second bifur-
cation function, respectively, as

g3(z) =

(
πr

4ω5

(
ω2
(
4a0b1(a2 + b2)− 2z(a2 + b2 − c2)− 3r2(2b1 + c1)

)

−3(2a0b1 − z)
(
5a0r

2 + c1z
)
− 2πc1ω

(
2a0r

2 + c1z
))
,

π

12ω5

(
12πω

(
a20
(
6r4 − 16b1c1r

2
)

+ 2a0c1z
(
7r2 − 2b1c1

)
+ 3c21z

2
)

−2ω2
(
z
(
6a0(a2c1 − 2b1c2 − b2c1) + 6b21c1 − 9r2(4b1 + 3c1) + 8π2c31

)

+a0r
2
(
36a0(a2 − b2) + 108b21 + 36b1c1 + 2

(
8π2 − 3

)
c21 − 45r2

)

+6c2z
2
)

+ 24πω3
(
r2(2a0(a2 + b2 + c2)− c1(2b1 + c1)) + 2c1c2z

)

−9(z − 2a0b1)
2
(
10a0r

2 + c1z
)

+ 24r2ω4(c2 − 2a2)
)
)

and

f̃2(α) = −πr (10a20r
2 (b1c1 + r2) + ω2 (c1r

2(2b1 + c1)− 4a0(a2 + b2) (b1c1 + r2)))

4c1ω5
.

So F̃2(α, ε) = εf̃1(α) + ε2f̃2(α). As shown in the previous subsection aε = α0

is a simple root of the function f̃1(α). Using the Implicit Function Theorem we
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find a branch of zeros of the equation F2(α, ε) = 0 having the form α = aε =
α0 + εα1 +O(ε2), where

α1 =

√
a2 + b2

2a0

(
8a20b1c1 + ω2(16a0(a2 + b2) + c1(2b1 + c1))

2|a0|c1ω

)
.

Note that aε satisfies the hypotheses (iii) and (iv) of Theorem A for r = 1, l = 1
and k = 2. Using the relation |πz(ε)− πzaε| = |α(ε)− aε| = O

(
ε2
)
, provided by

Theorem A, we write α(ε) = α0 + εα1 + O(ε2). From Claim 1 of the proof of
Theorem A we get

β(α(ε), ε) =β
(
α(ε)

)
+ εγ1

(
α(ε)

)
+O(ε2)

=β
(
α0 + εα1 +O(ε2)

)
+ εγ1

(
α0 + εα1 +O(ε2)

)
+O(ε2).

Expanding β(α(ε), ε) in powers series of ε we have β(α(ε), ε) = β0 + εβ1 +O(ε2)
where

β0 =
(a2 + b2)ω

2

c1
,

β1 =
4(a2 + b2)

(
6a20b1c1 +

(
16a0(a2 + b2) + c1(2b1 + c1)

)
ω2
)

a0c21
.

Finally we obtain z(ε) =
(
α(ε), β

(
α(ε), ε

))
= z0 + εz1 +O(ε2), with z0 = (α0, β0)

and z1 =
(
α1, β1

)
. Then we compute the Jacobian matrix of the displacement

function (29) evaluated at z(ε) as

Dzh(z(ε), ε) = εDzg1(z(ε)) + ε2Dzg2(z(ε)) +O(ε3)

= εDzg1
(
z0 + εz1 +O(ε2)

)
+ ε2Dzg2

(
z0 + εz1 +O(ε2)

)
+O(ε3)

= εDzg1(z0) + ε2
(
D2
zg1(z0)z1 +Dzg2(z0)

)
+O(ε3)

Let Dzg1(z0) =
(
pij
)
2×2 and Dzg2(z0) =

(
qij
)
2×2 then expanding Dzh(z(ε), ε)

in Taylor series around ε = 0 we have Dzh(z(ε), ε) = εA1 + ε2A2 + O(ε3) with
A1 = Dzg1(z0) and A2 =

(
Dzpij(z0).z1 + qij(z0)

)
2×2. Therefore we may improve

the approximation (47) of the eigenvalues λ± of Dzh(z(ε), ε) as

λ+ =ε2
2π(a2 + b2)

ω
+O(ε3),

λ− =− ε2c1π

ω
+ ε2

2π
(
a0b1c1 + ω

(
c21π − c2ω

))

ω3
+O(ε3).

Hence we can deduce the following statements about the stability of the periodic
solution ϕ(t, ε) = x(t, z(ε), ε). Recall that from, hypotheses of Proposition 7,
a0(a2 + b2) > 0. So:

(a) If εc1 < 0 the solution ϕ(t, ε) has at least one unstable direction,



25

(b) If a2+b2 > 0 and a0 > 0 then the solution ϕ(t, ε) has at least one unstable
direction,

(c) If a2+b2 < 0, εc1 > 0 and a0 < 0 then the solution ϕ(t, ε) is asymptotically
stable.

The following figures illustrate the behavior of the Maxwell–Block system (40)
satisfying the hypotheses of Proposition 7 with a0 = −1, a2 = −2, b1 = 1,
b2 = −2, c1 = 2, c2 = 1, ω = 1 and ε = 1/25.

0.070 0.075 0.080
y

-1.86

-1.84

-1.82

-1.80

-1.78

-1.76

-1.74

z

(a) (b)

Figure 1. (A) Transversal section with u = 0 and v > 0. (B) Solution

starting at (0, εω2(2(a2 + b2)/a0)1/2, δ − 4εω2(a2 + b2)/c1) being attracted by
the limit cycle (41).

Appendix: Bifurcation functions up to order 5.

In this appendix we develop the recurrences given by Theorems A and B to
compute explicitly the expressions of the bifurcation functions and the averaged
functions up to order 5. As far as we know we are the first to provide these
expressions.

From the recurrences (5) and (7), we explicitly develop the expressions of the
bifurcation functions fi : V → Rm, for i = 1, 2, .., 5, as stated in Theorem A.
Recall that Γα = (∂πg0/∂b)(zα). So

f1(α) =Γαγ1(α) + πg1(zα),

γ1(α) =−∆−1α π⊥g1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πg0
∂b2

(zα)γ1(α)2 +
∂πg1
∂b

(zα)γ1(α) + πg2(zα),
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γ2(α) =−∆−1α

(
∂2π⊥g0
∂b2

(zα)γ1(α)2 + 2
∂π⊥g1
∂b

(zα)γ1(α) + 2π⊥g2(α)

)
,

f3(α) =
1

6
Γαγ3(α) +

1

6

∂3πg0
∂b3

(zα)γ1(α)3 +
1

2

∂2πg0
∂b2

(zα)γ1(α)� γ2(α)

+
1

2

∂2πg1
∂b2

(zα)γ1(α)2 +
1

2

∂πg1
∂b

(zα)γ2(α) +
∂πg2
∂b

(zα)γ1(α)

+ πg3(zα),

γ3(α) =−∆−1α

(
∂3π⊥g0
∂b3

(zα)γ1(α)3 + 3
∂2π⊥g0
∂b2

(zα)γ1(α)� γ2(α)

+ 3
∂2π⊥g1
∂b2

(zα)γ1(α)2 + 2
∂π⊥g1
∂b

(zα)γ2(α) + 6
∂π⊥g2
∂b

(zα)γ1(α)

+ 6π⊥g3(α)

)
,

f4(α) =
1

24
Γαγ4(α) +

1

24

∂4πg0
∂b4

(zα)γ1(α)4 +
1

4

∂3πg0
∂b3

(zα)γ1(α)2 � γ2(α)

+
1

8

∂2πg0
∂b2

(zα)γ2(α)2 +
1

6

∂2πg0
∂b2

(zα)γ1(α)� γ3(α)

+
1

6

∂3πg1
∂b3

(zα)γ1(α)3 +
1

2

∂2πg1
∂b2

(zα)γ1(α)� γ2(α) +
1

6

∂πg1
∂b

(zα)γ3(α)

+
1

2

∂2πg2
∂b2

(zα)γ1(α)2 +
1

2

∂πg2
∂b

(zα)γ2(α) +
∂πg3
∂b

(zα)γ1(α) + πg4(zα),

γ4(α) =−∆−1α

(
∂4π⊥g0
∂b4

(zα)γ1(α)4 + 3
∂2π⊥g0
∂b2

(zα)γ2(α)2 + 4
∂2π⊥g0
∂b2

(zα)γ1(α)� γ3(α)

+ 6
∂3π⊥g0
∂b3

(zα)γ1(α)2 � γ2(α) + 4
∂π⊥g1
∂b

(zα)γ3(α) + 12
∂2π⊥g1
∂b2

(zα)γ1(α)� γ2(α)

+ 4
∂3π⊥g1
∂b3

(zα)γ1(α)3 + 12
∂π⊥g2
∂b

(zα)γ2(α) + 12
∂2π⊥g2
∂b2

(zα)γ1(α)2

+ 24
∂π⊥g3
∂b

(zα)γ1(α)

)
,

f5(α) =
1

120
Γαγ5(α) +

1

12

∂2πg0
∂b2

(zα)γ2(α)� γ1(α) +
1

24

∂2πg0
∂b2

(zα)γ1(α)� γ4(α)

+
1

8

∂3πg0
∂b3

(zα)γ1(α)� γ2(α)2 +
1

12

∂3πg0
∂b3

(zα)γ1(α)2 � γ3(α)

+
1

12

∂4πg0
∂b4

(zα)γ1(α)3 � γ2(α) +
1

120

∂5πg0
∂b5

(zα)γ1(α)5
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+
1

24

∂πg1
∂b

(zα)γ4(α) +
1

8

∂2πg1
∂b2

(zα)γ2(α)2 +
1

6

∂2πg1
∂b2

(zα)γ1(α)� γ3(α)

+
1

4

∂3πg1
∂b3

(zα)γ1(α)2 � γ2(α) +
1

24

∂4πg1
∂b4

(zα)γ1(α)4 +
1

6

∂πg2
∂b

(zα)γ3(α)

+
1

2

∂2πg2
∂b2

(zα)γ1(α)� γ2(α) + πg4(zα) +
1

6

∂3πg2
∂b3

(zα)γ1(α)3

+
1

2

∂πg3
∂b

(zα)γ2(α) +
1

2

∂2πg3
∂b2

(zα)γ1(α)2 +
∂πg4
∂b

(zα)γ1(α)

+ πg5(zα),

γ5(α) =−∆−1α

(
10
∂2π⊥g0
∂b2

(zα)γ2(α)� γ3(α) + 5
∂2π⊥g0
∂b2

(zα)γ1(α)� γ4(α)

+ 15
∂3π⊥g0
∂b3

(zα)γ1(α)� γ2(α)2 + 10
∂3π⊥g0
∂b3

(zα)γ1(α)2 � γ3(α)

+ 10
∂4π⊥g0
∂b4

(zα)γ1(α)3 � γ2(α) +
∂5π⊥g0
∂b5

(zα)γ1(α)5

+ 5
∂π⊥g1
∂b

(zα)γ4(α) + 15
∂2π⊥g1
∂b2

(zα)γ2(α)2 + 20
∂2π⊥g1
∂b2

(zα)γ1(α)� γ3(α)

+ 30
∂3π⊥g1
∂b2

(zα)γ1(α)2 � γ2(α) + 5
∂4π⊥g1
∂b4

(zα)γ1(α)4

+ 20
∂π⊥g2
∂b

(zα)γ3(α) + 60
∂2π⊥g2
∂b2

(zα)γ1(α)� γ2(α)

+ 20
∂3π⊥g2
∂b3

(zα)γ1(α)3 + 60
∂π⊥g3
∂b

(zα)γ2(α)

+ 60
∂2π⊥g3
∂b2

(zα)γ1(α)2 + 120
∂π⊥g4
∂b

(zα)γ1(α)

)

The averaged functions, as stated in Theorem B, are computed as follows:

gi(z) = Y (T, z)−1
yi(T, z)

i!
.

So, from the recurrence (12), we explicitly develop the expressions of yi, for
i = 0, 1, . . . , 5.

y0(t, z) =x(t, z, 0)− z,

y1(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1F1(τ, x(τ, z, 0))dτ,

y2(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1
[

2F2(τ, x(τ, z, 0)) + 2
∂F1

∂x
(τ, x(τ, x, 0))y1(τ, z)
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+
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)2

]
dτ,

y3(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1
[

6F3(τ, x(τ, z, 0)) + 6
∂F2

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 3
∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 3

∂F1

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 3
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) +

∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

]
dτ,

y4(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1
[

24F4(τ, x(τ, z, 0)) + 24
∂F3

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 12
∂2F2

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 12

∂F2

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 12
∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) + 4

∂3F1

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

+ 4
∂F1

∂x
(τ, x(τ, z, 0))y3(τ, z) + 3

∂2F0

∂x2
(τ, x(τ, z, 0))y2(τ, z)2

+ 4
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 6
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y2(τ, z) +

∂4F0

∂x4
(τ, x(τ, z, 0))y1(τ, z)4

]
dτ

y5(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1
[

120F5(τ, x(τ, z, 0)) + 120
∂F4

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 60
∂2F3

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 60

∂F3

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 60
∂2F2

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) + 20

∂3F2

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

+ 20
∂F2

∂x
(τ, x(τ, z, 0))y3(τ, z) + 20

∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 15
∂2F1

∂x2
(τ, x(τ, z, 0))y2(τ, z)2 + 30

∂3F1

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y2(τ, z)

+ 5
∂4F1

∂x4
(τ, x(τ, z, 0))y1(τ, z)4 + 5

∂F1

∂x
(τ, x(τ, z, 0))y4(τ, z)

+ 10
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)
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+ 5
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y4(τ, z)

+ 15
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z)2

+ 10
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y3(τ, z)

+ 10
∂4F0

∂x4
(τ, x(τ, z, 0))y1(τ, z)3 � y2(τ, z) +

∂5F0

∂x5
(τ, x(τ, z, 0))y1(τ, z)5

]
dτ.

Appendix: Basic results on the Brouwer degree

In this appendix we present the existence and uniqueness result from the degree
theory in finite dimensional spaces. We follow the Browder’s paper [3], where are
formalized the properties of the classical Brouwer degree. We also present some
results that we shall need for proving the main results of this paper.

Theorem 8. Let X = Rn = Y for a given positive integer n. For bounded open
subsets V of X, consider continuous mappings f : Cl(V ) → Y , and points y0 in
Y such that y0 does not lie in f(∂V ) (as usual ∂V denotes the boundary of V ).
Then to each such triple (f, V, y0), there corresponds an integer d(f, V, y0) having
the following three properties.

(i) If d(f, V, y0) 6= 0, then y0 ∈ f(V ). If f0 is the identity map of X onto Y ,
then for every bounded open set V and y0 ∈ V , we have

d
(
f0
∣∣
V
, V, y0

)
= ±1.

(ii) (Additivity) If f : Cl(V )→ Y is a continuous map with V a bounded open
set in X, and V1 and V2 are a pair of disjoint open subsets of V such that

y0 /∈ f(Cl(V )\(V1 ∪ V2)),
then,

d (f0, V, y0) = d (f0, V1, y0) + d (f0, V1, y0) .

(iii) (Invariance under homotopy) Let V be a bounded open set in X, and
consider a continuous homotopy {ft : 0 ≤ t ≤ 1} of maps of Cl(V ) in to
Y . Let {yt : 0 ≤ t ≤ 1} be a continuous curve in Y such that yt /∈ ft(∂V )
for any t ∈ [0, 1]. Then d(ft, V, yt) is constant in t on [0, 1].

Theorem 9. The degree function d(f, V, y0) is uniquely determined by the three
conditions of Theorem 8.

For the proofs of Theorems 8 and 9 see [3].
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in Natural Philosophy, Vol.8 Springer–Verlag, Berlin–New York, 1966.
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