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TRANSCRITICAL AND ZERO–HOPF BIFURCATIONS

IN THE GENESIO SYSTEM

PEDRO TONIOL CARDIN AND JAUME LLIBRE

Abstract. In this paper we study the existence of transcritical and
zero–Hopf bifurcations of the third–order ordinary differential equation

...
x + aẍ + bẋ + cx− x2 = 0,

called the Genesio equation, which has a unique quadratic nonlinear
term and three real parameters. More precisely, writing this differential
equation as a first order differential system in R3 we prove: first that
the system exhibits a transcritical bifurcation at the equilibrium point
located at the origin of coordinates when c = 0 and the parameters (a, b)
are in the set {(a, b) ∈ R2 : b 6= 0} \ {(0, b) ∈ R2 : b > 0}, and second
that the system has a zero–Hopf bifurcation producing a periodic orbit
near the equilibrium point located at the origin when a = c = 0 and
b > 0.

1. Introduction

In [4] Genesio and Tesi, inspired by the problem of determining condi-
tions under which a nonlinear dynamical system presents chaotic behaviour,
introduced the following third–order ordinary differential equation

(1)
...
x + aẍ+ bẋ+ cx− x2 = 0,

where a, b and c are parameters and the dot indicates derivative with respect
to the time t. If we define y = ẋ and z = ẏ the differential equation (1)
becomes the first–order differential system

(2)

ẋ = y,

ẏ = z,

ż = −cx− by − az + x2,

which is commonly known as the Genesio system. Based on the harmonic
balance principle the authors in [4] presented two practical methods for
predicting the existence and the location of chaotic motions. For instance,
system (2) exhibits chaotic dynamical behaviors when a = 1.2, b = 2.92 and
c = 6.
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We can find in the literature several articles concerning system (2). For
instance, issues on synchronization of Genesio chaotic system have been
studied in the articles [9, 10, 3, 15]. Already in [16] the authors studied
the Hopf bifurcation and the existence of Silnikov homoclinic orbit for this
system. Stability analysis and Hopf bifurcation of the Genesio system with
distributed delay feedback has been studied in [5].

In this paper we have two main objectives. The first one is to show that
system (2) exhibits a transcritical bifurcation, i.e. there is an exchange of
stability that takes place at the critical points of this system at a certain
bifurcation value. The analysis of transcritical bifurcation occurring in the
Genesio system will be carried out with respect to the parameter c.

The second objective is to study the existence of the zero–Hopf equilibria
and of the zero–Hopf bifurcations in the Genesio system (2). We recall
that a zero–Hopf equilibrium of a three–dimensional autonomous differential
system is an isolated equilibrium point of system whose linear part at the
equilibrium has a zero eigenvalue and a pair of purely imaginary eigenvalues.

Usually the main tool for studying a zero–Hopf bifurcation is to pass the
system to the normal form of a zero–Hopf bifurcation. However, our analysis
of the zero–Hopf bifurcation occurring in the Genesio system will use the
averaging theory, a summary of the results of this theory that we need here
is given in section 2. The averaging theory has already been used to study
Hopf and zero–Hopf bifurcations in some others differential systems, see for
instance [1, 2, 7, 8].

As far as we know nobody has studied the existence or non–existence of
transcritical bifurcations, zero–Hopf equilibria, and zero–Hopf bifurcations
in the Genesio system (2).

Our main results are the following ones.

Theorem 1. Consider the Genesio system (2) and assume that the param-
eters a and b vary in the set K given by

K = {(a, b) ∈ R2 : b 6= 0} \ {(0, b) ∈ R2 : b > 0}.
Then system (2) exhibits a transcritical bifurcation at the equilibrium point
located at the origin of coordinates when c = 0.

Next proposition characterizes when the equilibrium points of system (2)
are zero–Hopf equilibria.

Proposition 1. Differential system (2) has a unique zero–Hopf equilibrium
localized at the origin of coordinates when a = c = 0 and b > 0.

In what follows we shall study when the Genesio system (2) having a
zero–Hopf equilibrium point at the origin of coordinates has a zero–Hopf
bifurcation producing some periodic orbit. For doing this we consider ε–
perturbations of the values of the parameters for which system (2) has a
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zero–Hopf equilibrium. The small parameter ε is necessary in order to apply
the averaging theory, and the analysis of the zero–Hopf bifurcation will be
carried out with respect to it.

Theorem 2. Consider the Genesio system (2) with the parameters a = εα,
b = ω2 + εβ and c = εγ, with ω > 0 and ε a sufficiently small parameter.
Then this system exhibits a zero–Hopf bifurcation at the equilibrium point lo-
cated at the origin of coordinates when ε = 0 if γ2−α2ω4 > 0. Moreover, the
periodic orbit (x(t, ε), y(t, ε), z(t, ε)) bifurcating from this equilibrium point
satisfies that (x(0, ε), y(0, ε), z(0, ε)) is

ε

(
γ − αω2

2
−
√
γ2 − α2ω4

√
2

, 0,
ω2
√
γ2 − α2ω4

√
2

)
+O(ε2),

if ε > 0 is sufficiently small. If λ± = (−αω2 ±
√

3α2ω4 − 2γ2)/(2ω3), then
this periodic orbit is stable when Re(λ±) < 0, and unstable if Re(λ+) > 0 or
Re(λ−) > 0.

Theorem 1 is proved in section 3, and Proposition 1 and Theorem 2 are
proved in section 4. The rest of the article is organized as follows. In
section 2, we present the basic definitions and results necessary for proving
Theorems 1 and 2.

2. Preliminaries

2.1. Transcritical bifurcation. Consider the following differential equa-
tion in Rn

(3) ẋ = f(x, µ)

depending on a parameter µ ∈ R. We assume that f is enough differentiable.
The following theorem (see [13]) states the necessary conditions in order that
system (3) exhibits a transcritical bifurcation. See also [6] page 149, or [11]
page 338. We will use Theorem 3 for proving Theorem 1.

In the theorem below we use the notation Dxf to denote the Jacobian
matrix of the function f . We also use the notation (∂f/∂µ) to indicate the
vector of partial derivatives of the components of f with respect to µ ∈ R.
AT will denote the transpose of the matrix A.

Theorem 3. Consider the one–parameter family (3) and assume that there
is x0 ∈ Rn such that f(x0, µ) = 0 for all µ, i.e. x0 is an equilibrium point
of system (3) for all parameter values. Furthermore, when µ = µ0 suppose
that the following hypotheses hold.

(H1) The Jacobian matrix M = Dxf(x0, µ0) has a simple eigenvalue λ =
0 with eigenvector v, and MT has an eigenvector w corresponding
to the eigenvalue λ = 0.
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(H2) M has k eigenvalues with negative real parts, and n−k−1 eigenvalues
with positive real parts.

(H3) wT
(
(∂f/∂µ)(x0, µ0)

)
= 0.

(H4) wT
(
Dx(∂f/∂µ)(x0, µ0)v

)
6= 0.

(H5) wT
(
D2

xf(x0, µ0)(v, v)
)
6= 0.

Then system (3) exhibits a transcritical bifurcation at the equilibrium point
x0 at the bifurcation value µ = µ0.

2.2. Averaging theory. In this subsection we present some basic results
on the averaging theory, which will be used in the proof of Theorem 2. For
a general introduction to the averaging theory see for instance the book of
Sanders, Verhulst and Murdock [12].

Consider the following initial value problem

(4) ẋ = εF (t,x) + ε2G(t,x, ε), x(0) = x0,

and the averaged differential equation

(5) ẏ = εf(y), y(0) = x0.

In equations (4) and (5), x,y ∈ D, where D ⊂ Rn is an open set, t ∈ [0,∞)
and ε is a small positive parameter. The functions F : [0,∞) × D → Rn
and G : [0,∞) × D × (0, ε0] → Rn are assumed be periodic of period T in
the variable t, and f : D → Rn is given by

(6) f(y) =
1

T

∫ T

0
F (t,y)dt.

The next theorem establishes that, under certain conditions, the equilib-
rium points of the averaged equation (5) correspond to T–periodic solutions
of system (4). See [14] for a proof.

Theorem 4. Consider the initial value problems (4) and (5) and suppose
that F , its Jacobian DxF , its Hessian DxxF , G and its Jacobian DxG are
continuous and bounded by a constant independent of ε in [0,∞) × D and
ε ∈ (0, ε0]. Further we assume that F and G are T–periodic in t, with T
independent of ε. Then the following statements hold.

(a) For t ∈ [0, 1/ε] we have x(t)− y(t) = O(ε) as ε→ 0.

(b) If p is an equilibrium point of system (5) such that

(7) detDyf(p) 6= 0,

then there exists a periodic solution x(t, ε) of period T of system (4)
such that x(0, ε)− p = O(ε) as ε→ 0.



TRANSCRITICAL AND ZERO–HOPF BIFURCATIONS IN THE GENESIO SYSTEM 5

(c) If all the real parts of the eigenvalues of the matrix Dyf(p) are neg-
ative, then the periodic solution x(t, ε) is stable. If some real part
of the eigenvalues is positive, then the periodic solution x(t, ε) is
unstable.

3. Proof of Theorem 1

We recall that the analysis of transcritical bifurcation occurring in the
Genesio system will be carried out with respect to the parameter c. So
using the notation of subsection 2.1, we have µ = c and the vector field f
associated with the Genesio system (2) is given by

f(x, c) = (y, z,−cx− by − az + x2),

where x = (x, y, z) ∈ R3. Note that, in order to simplify the notation, we
are using (x, y, z) instead of (x1, x2, x3).

The vector field f has two equilibrium points x0 = (0, 0, 0) and xc =
(c, 0, 0) which collide at the origin when c = 0. Moreover, when c = 0 we
have that the matrix

M = Dxf(x0, 0) =




0 1 0
0 0 1
0 −b −a




has a simple eigenvalue λ = 0. In fact, the characteristic polynomial of M
is given by

p(λ) = −λ3 − aλ2 − bλ,
whose roots are

λ = 0, λ± =
−a±

√
a2 − 4b

2
.

Since by hypothesis the parameters a and b belong to the set K = {(a, b) ∈
R2 : b 6= 0} \ {(0, b) ∈ R2 : b > 0}, then both eigenvalues λ± have nonzero
real part.

The transcritical bifurcation is characterized by the exchange of stability
of the equilibrium point xc = (c, 0, 0) when the parameter c passes through
the bifurcation value c = 0. Note that it is a difficult task to study the
stability of the equilibrium point xc, for c 6= 0, by analyzing the roots of the
characteristic polynomial of the matrix Dxf(xc, c), that is the polynomial
q(λ) = −λ3 − aλ2 − bλ + c. Thus, we will use Theorem 3 to show that the
system (2) exhibits a transcritical bifurcation.

Note that the vectors v = (1, 0, 0) and w = (b, a, 1) are eigenvectors of the
matrices M and MT , respectively, corresponding to the eigenvalue λ = 0.
Furthermore, we have that

wT
(
(∂f/∂c)(x0, 0)

)
=
(
b a 1

)



0
0
0


 = 0,
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wT
(
Dx(∂f/∂c)(x0, 0)v

)
=
(
b a 1

)



0 0 0
0 0 0
−1 0 0






1
0
0


 = −1 6= 0,

wT
(
D2

xf(x0, 0)(v, v)
)

=
(
b a 1

)



0
0
2


 = 2 6= 0.

Thus, all the hypotheses of Theorem 3 are satisfied. Therefore, the system
(2) exhibits a transcritical bifurcation at the equilibrium point at the origin
at the bifurcation value c = 0. This completes the proof of Theorem 1.

4. Proof of Proposition 1 and Theorem 2

Proof of Proposition 1. We saw that the characteristic polynomial of the
linear part of system (2) at the equilibrium point xc = (c, 0, 0) is q(λ) =
−λ3 − aλ2 − bλ + c. We want to find the parameter values for which the
polynomial q has a zero eigenvalue and a pair of purely imaginary eigenval-
ues, that is the parameter values for which q is of the form −λ(λ2 +B) with
B > 0. In order to simplify the expressions, we will put B = ω2, with ω > 0.
Thus, imposing the condition q(λ) = −λ(λ2 +ω2), we obtain that a = c = 0
and b = ω2. Hence, when a = c = 0 and b > 0 there is a unique zero–Hopf
equilibrium point at the origin of coordinates. Moreover, if we put b = ω2,
with ω > 0, then the eigenvalues are 0 and ±iω. This completes the proof
of Proposition 1. �

Proof of Theorem 2. We shall use the averaging theory of first order de-
scribed in subsection 2.2 (see Theorem 4) in order to study if from the
zero–Hopf equilibrium point located at the origin of coordinates, it bifur-
cates some periodic orbit by moving the parameters a, b and c of system
(2). Thus, let the parameters a, b and c of system (2) be given by a = εα,
b = ω2 + εβ and c = εγ, with ε > 0 a sufficiently small parameter. Then,
the Genesio system (2) becomes

(8)

ẋ = y,

ẏ = z,

ż = −εγx− (ω2 + εβ)y − εαz + x2.

The first step in order to write our differential system (8) in the normal form
for applying the averaging theory is to write the linear part at the origin
of system (8) when ε = 0 into its real Jordan normal form, that is into the
form 


0 −ω 0
ω 0 0
0 0 0


 .
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To do this, we apply the linear change of variables (x, y, z) → (X,Y, Z),
where

(9) x =
Z − ωX
ω2

, y = Y, z = ωX.

In the new variables (X,Y, Z), system (8) becomes

(10)

Ẋ =
Z2 − 2ωXZ + ω2X2 − ω6Y

ω5
+ ε

(γ − αω2)ωX − βω2Y − γZ
ω3

,

Ẏ = ωX,

Ż =
(ωX − Z)2

ω4
+ ε

(γ − αω2)ωX − βω2Y − γZ
ω2

.

Now we re–scale the variables (X,Y, Z) as follows (X,Y, Z)→ (εu, εv, εw).
Then system (10) becomes

(11)

u̇ = −ωv + ε
(γ − αω2)ω3u− βω4v − γω2w + ω2u2 − 2ωuw + w2

ω5
,

v̇ = ωu,

ẇ = ε
(γ − αω2)ω3u− βω4v − γω2w + ω2u2 − 2ωuw + w2

ω4
.

Now we pass the differential system (11) to cylindrical coordinates (r, θ, w)
defined by u = r cos θ and v = r sin θ, and we obtain

(12)

ṙ =
ε

ω5

[
(w − γω2)w − ωr(2w − γω2 + αω4) cos θ

+ω2r2 cos2 θ − βω4r sin θ
]

cos θ,

θ̇ = ω +
ε

ω5r

[
(γω2 − w)w + ωr(2w − γω2 + αω4) cos θ

−ω2r2 cos2 θ + βω4r sin θ
]

sin θ,

ẇ =
ε

ω4

[
(w − γω2)w − ωr(2w − γω2 + αω4) cos θ

+ω2r2 cos2 θ − βω4r sin θ
]
.

In system (12) we take θ as the new independent variable, and we get

(13)

dr

dθ
= εF1(θ, r, w) +O(ε2),

dw

dθ
= εF2(θ, r, w) +O(ε2),
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where

F1(θ, r, w) =
1

ω6

[
(w − γω2)w − ωr(2w − γω2 + αω4) cos θ + ω2r2 cos2 θ

− βω4r sin θ
]

cos θ,

F2(θ, r, w) =
1

ω5

[
(w − γω2)w − ωr(2w − γω2 + αω4) cos θ + ω2r2 cos2 θ

− βω4r sin θ
]
.

Using the notation of subsection 2.2, we have t = θ, T = 2π, x = (r, w)T

and

F (θ, r, w) =

(
F1(θ, r, w)
F2(θ, r, w)

)
and f(r, w) =

(
f1(r, w)
f2(r, w)

)
.

It is immediate to check that system (13) satisfies all the assumptions of
Theorem 4.

Now we compute the integrals (6). We obtain that

f1(r, w) =
1

2π

∫ 2π

0
F1(θ, r, w)dθ =

r(γω2 − αω4 − 2w)

2ω5
,

f2(r, w) =
1

2π

∫ 2π

0
F2(θ, r, w)dθ =

2w2 − 2γω2w + ω2r2

2ω5
.

The system f1(r, w) = f2(r, w) = 0 has a unique solution (r∗, w∗) with
r∗ > 0, namely

r∗ =
ω
√
γ2 − α2ω4

√
2

, w∗ =
ω2(γ − αω2)

2
.

The Jacobian (7) at (r∗, w∗) takes the value

det
∂(f1, f2)

∂(r, w)

∣∣∣∣
(r,w)=(r∗,w∗)

=
γ2 − α2ω4

2ω6
,

which is nonzero by hypothesis. Moreover the eigenvalues of the Jacobian
matrix

∂(f1, f2)

∂(r, w)

∣∣∣∣
(r,w)=(r∗,w∗)

are given by

−αω2 ±
√

3α2ω4 − 2γ2

2ω3
.

The rest of the proof of Theorem 2 follows immediately from Theorem 4
if we show that the periodic solution corresponding to (r∗, w∗) provides a
periodic orbit bifurcating from the origin of coordinates of the differential
system (8) at ε = 0.
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Theorem 4 garantes for ε > 0 sufficiently small the existence of a periodic
solution (r(θ, ε), w(θ, ε)) of system (13) such that

(r(0, ε), w(0, ε))→
(
ω
√
γ2 − α2ω4

√
2

,
ω2(γ − αω2)

2

)
,

when ε → 0. From the second equation of system (12) we obtain that
θ(t, ε) = ωt + O(ε). Moreover, we have that (r(t, ε), θ(t, ε), w(t, ε)) is a
periodic solution of system (12) such that

(r(0, ε), θ(0, ε), w(0, ε))→
(
ω
√
γ2 − α2ω4

√
2

, 0,
ω2(γ − αω2)

2

)
,

when ε → 0. So for ε > 0 sufficiently small system (11) has the periodic
solution

(u(t, ε), v(t, ε), w(t, ε)) = (r(t, ε) cos θ(t, ε), r(t, ε) sin θ(t, ε), w(t, ε)),

such that

(u(0, ε), v(0, ε), w(0, ε))→
(
ω
√
γ2 − α2ω4

√
2

, 0,
ω2(γ − αω2)

2

)
,

when ε→ 0. This periodic solution in the differential system (10) writes as
(X(t, ε), Y (t, ε), Z(t, ε)) = (εu(t, ε), εv(t, ε), εw(t, ε)), and it satisfies that

(X(0, ε), Y (0, ε), Z(0, ε))→
(
εω
√
γ2 − α2ω4

√
2

, 0,
εω2(γ − αω2)

2

)
,

when ε → 0. Finally, we have that system (8) has the periodic solu-
tion (x(t, ε), y(t, ε), z(t, ε)) obtained from solution (X(t, ε), Y (t, ε), Z(t, ε))
through the change of variables (9). It satisfies that (x(0, ε), y(0, ε), z(0, ε))
is

ε

(
γ − αω2

2
−
√
γ2 − α2ω4

√
2

, 0,
ω2
√
γ2 − α2ω4

√
2

)
+O(ε2),

if ε is sufficiently small. Thus (x(0, ε), y(0, ε), z(0, ε))→ (0, 0, 0) when ε→ 0.
Therefore, it is a periodic solution starting at the zero–Hopf equilibrium
point located at the origin of coordinates when ε = 0. This completes the
proof of Theorem 2. �
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