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PERIODIC ORBITS OF CONTINUOUS AND
DISCONTINUOUS PIECEWISE LINEAR

DIFFERENTIAL SYSTEMS VIA FIRST INTEGRALS

JAUME LLIBRE1 AND MARCO ANTONIO TEIXEIRA2

Abstract. The continuous or discontinuous piecewise linear dif-
ferential systems are completely integrable in every piece. Using
the first integrals of these differential systems we illustrate for two
of such systems, one in R3 and the other in R4, how to study
analytically their periodic solutions.

1. Introduction and statement of the main result

1.1. The goal. This paper is part of a general program involving the
study of continuous and discontinuous piecewise differential systems in
Rn of the form

u̇ = f(u) + sign(u1)g(u),

where u = (u1, . . . , un), and f, g : Rn → Rn are smooth functions. Note
that we have two different differential systems, one in the half–space
u1 > 0 and the other in u1 < 0. Eventually on the hyperplane u1 = 0
the piecewise differential system can be continuous or discontinuous.

Our main concern is to discuss the existence and robustness of peri-
odic orbits for such piecewise differential systems assuming that both
differential systems, the one in u1 > 0 and the other in u1 < 0, have
first integrals.

We point out that, as far as we know, there is no developed theory
of singularity of mappings (Morse Theory or similar) treating such
objects.

1.2. Historical facts and motivations. Control Theory is a natural
source of mathematical models of these systems (see, for instance, [?]).
It is worth mentioning that Anosov in [2] studied a class of relay systems
in Rn of the form

u̇ = Au + sign(u1) k
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where A is an n × n real matrix and k = (k1, . . . , kn) is a constant
vector in Rn.

Jacquemard and Teixeira in [7] analyzed the simplest model of a
relay system

....
x = −sign(x). The focus was to detect the existence

and robustness of a one–parameter families of periodic orbits through
reversible polynomial perturbations.

It is worthwhile to cite Ekeland [4] and Klok [8], where the main
problem in the classical calculus of variations was carried out to study
discontinuous Hamiltonian vector fields.

1.3. Integrability for smooth systems. Consider Ck differential
systems of the form

(1) ẋ = f(x), x ∈ Ω ⊂ Rn,

where k ∈ N ∪ {∞, ω}, the dot denotes derivative with respect to
the independent variable t, Ω is an open subset of Rn, and f(x) =
(f1(x), . . . , fn(x)) is a Ck function defined in Ω. As usual N denotes
the set of positive integers, and C∞ and Cω denote the sets of infinitely
derivable functions and analytic functions, respectively.

A first integral of system (1) is a continuous function H(x) defined in
a full Lebesgue measure subset Ω1 of Ω, which is not locally constant on
any positive Lebesgue measure subset of Ω1; moreover H(x) is constant
along each orbit of system (2) in Ω1. If H(x) is C1 then it is a first
integral if and only if it satisfies

∂H

∂x1

f1(x) + . . . +
∂H

∂xn

fn(x) = 0,

for all the points x where H(x) is defined.

System (2) is Cr completely integrable in Ω, if it has n−1 functionally
independent Cr first integrals in Ω. The functions H1(x), . . . , Hk(x) are
functionally independent in Ω if their gradients ∇H1, . . . , ∇Hk have
rank k in a full Lebesgue measure subset of Ω.

The easiest class of completely integrable systems are the linear dif-
ferential systems in Rn, i.e. the differential systems of the form

ẋ = Ax + b,

where x, b ∈ Rn and A is an n × n real matrix. Clearly the domain
of definition Ω of a linear differential system is the whole Rn. In fact,
every linear differential system is completely integrable with Darboux
first integrals. Here a first integral is Darboux if it is a real function
which can be written in the form

f1(x)λ1 · · · fk(x)λkeg(x)/h(x),



PERIODIC ORBITS VIA FIRST INTEGRALS 3

where fi(x) for i = 1, . . . , k, g(x) and h(x) are complex polynomials,
and the λi for i = 1, . . . , k are complex numbers. For more details on
Darboux first integrals see, for instance, [5, 11].

1.4. Setting the problem. The study of the piecewise linear differ-
ential systems, continuous or discontinuous, mainly started with the
book of Andronov, Vitt and Khaikin [1] and still continues receiving a
big attention by researchers, because these systems appear in a natural
way modeling processes in mechanics, electronics, economy, ..., see for
more details the books [3, 12], and the hundreds of references quoted
therein.

To study analytically the periodic solutions of a differential system
is a very difficult task, usually impossible of doing. Our goal here
is to show that the periodic orbits of piecewise differential systems,
continuous or discontinuous, which are completely integrable in each
piece, “sometimes” can be studied analytically using the first integrals
of these systems. This “sometimes” means that for such differential
systems in theory always can be studied their periodic orbits using the
first integrals, but in the practice the computations that must be done
prevent frequently of doing this study.

More precisely, in this work we study analytically the periodic orbits
of the following two discontinuous piecewise linear differential systems:

(2)
ẋ = y,
ẏ = z,
ż = −sign(x)y,

and

(3)

ẋ = y,
ẏ = z,
ż = u,
u̇ = sign(x),

using their first integrals. As usually the sign function is defined as
follows

sign(x) =





−1 if x < 0,
0 if x = 0,
1 if x > 0.

So x = 0 is the plane or hyperplane of discontinuity of the piecewise
linear differential systems (2) or (3), respectively. Hence, both discon-
tinuous piecewise linear differential systems are formed by two linear
differential systems, one defined in the half–space x ≥ 0 and the other
in the half–space x ≤ 0.
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The discontinuous piecewise linear differential systems (3) is the ba-
sic model of a semi–linear vector field see the book [13] for some prop-
erties of these systems.

If the discontinuous piecewise linear differential systems (2) or (3)
have a periodic solution which cross two times the plane or hyperplane
of discontinuity, then in its neighborhood it is defined a Poincaré return
map. Then the usual way of studying the periodic solutions of these
differential systems is looking for the fixed points of such Poincaré
return map. Usually this is done splitting the Poincaré return map
as the composition of two Poincaré maps, one from x = 0 to itself
defined only in the half–space x ≥ 0, and the other from x = 0 to
itself defined only in the half–space x ≤ 0. For studying each one of
these two Poincaré maps we must compute the solutions of the linear
differential systems in x ≥ 0 and in x ≤ 0, with initial conditions a
point p in x = 0, and compute the times that these two solutions need
for reaching again the plane or hyperplane x = 0 by first time, for one
solution in forward time and for the other in backward time. Once
these two times are known, we must impose that the two solutions
starting at the point p of x = 0 reached by first a same point of x = 0.
The problem for applying this algorithm usually comes from the fact
that we cannot compute explicitly the required times. For illustrating
the described algorithm see for instance [10].

There are other ways for computing the periodic solutions which
cross two times the plane or hyperplane of discontinuity. Thus the re-
cent developments of the averaging theory for discontinuous differential
systems allow to study these periodic solutions, but again for applying
this theory we need to know some explicit values of the independent
variable of the system, which sometimes are not possible to compute.
See for more details [9].

The goal of this work is to study the periodic solutions which cross
two times the plane or hyperplane of discontinuity of the discontinuous
piecewise linear differential systems (2) and (3) using the first integrals
of their linear differential systems. As we said before this way of com-
puting the mentioned periodic solutions also have frequently problems
of computation. In any case we shall see that sometimes it works very
well, as we shall show in the study of the periodic solutions of the
two discontinuous piecewise linear differential systems (2) and (3). We
remark that the study of the existence or non–existence of the peri-
odic solutions of system (3) for the other two methods here mentioned
(Poincaré return map or averaging theory) is extremely difficult.
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We have chosen discontinuous piecewise linear differential systems
for illustrating how to use the first integrals for computing periodic
solutions, but the same technique can be used for continuous piecewise
linear differential systems.

Our main results are the following two theorems.

Theorem 1. Every periodic orbit of the discontinuous piecewise linear
differential system (2) which intersects the discontinuous plane x = 0
in two points, does it at the points (0, y, z) and (0, −y, z), for all y and
z satisfying z > 0 and y2 − z2 < 0.

Theorem 1 is proved in section 2. The proof of Theorem 1 only uses
the first integrals of this system.

Theorem 2. Every periodic orbit of the discontinuous piecewise lin-
ear differential system (3) which intersects the discontinuous hyper-
plane x = 0 in two points, does it at the points (0, −u3/3, 0, u) and
(0, u3/3, 0,−u) for all u ̸= 0.

Theorem 2 is proved in section 3. The proof of Theorem 2 uses the
first integrals of the system and the fact that we know explicitly in
function of the time the solutions of a linear differential system.

2. Proof of Theorem 1

The discontinuous piecewise linear differential system (2) in R3 is
formed by the following two linear differential systems

(4)
ẋ = y,
ẏ = z,
ż = −y,

in the half–space x > 0, and

(5)
ẋ = y,
ẏ = z,
ż = y,

in the half–space x < 0. Note that both systems have the points
of the x–axis contained in the half–spaces where they are defined as
equilibrium points.

Since both differential systems are linear we always can compute two
independent first integrals for each system, see for instance [5]. Thus
two independent first integrals for system (4) are

H1 = x + z, and H2 = y2 + z2.
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So the orbits of system (4) are contained in the sets

γh1h2 = {H1 = h1} ∩ {H2 = h2} ∩ {x > 0},
for all (h1, h2) ∈ R2 when these sets are non–empty.

In a similar way two independent first integrals for system (5) are

F1 = x − z, and F2 = y2 − z2.

So the orbits of system (5) are contained in the sets

γf1f2 = {F1 = f1} ∩ {F2 = f2} ∩ {x < 0},

for all (f1, f2) ∈ R2 when these sets are non–empty.

We note that the set γh1h2 , when it is non–empty and h2 > 0, is
formed by the piece of the connected curve obtained from the inter-
section of the plane H1 = h1 with the cylinder H2 = h2 and with the
half–space x > 0. So under these assumptions the set γh1h2 is a con-
nected arc contained in x > 0 which does not contain equilibria, so it is
an orbit of system (4). If γh1h2 is non–empty and h2 = 0, then γh1h2 is
an equilibrium point. In short, always that the set γh1h2 is non–empty
it is formed by a unique orbit of system (4).

It is easy to check that the set γf1f2 is always non–empty. If f2 ̸= 0, is
formed by one or two arcs of the curve obtained from the intersection
of the plane F1 = f1 with the hyperboloid of two sheets F2 = f2

contained in the half–space x < 0. Moreover these one or two arcs do
not contain equilibria (because the equilibria need that f2 = 0), so γf1f2

is formed by one or two orbits of system (5). If f2 = 0, then γf1f2 is the
intersection of the plane F1 = f1 with the two planes F2 = 0 and with
the half–space x < 0. The intersection {F1 = f1} ∩ {F2 = 0} is formed
by two straight lines intersecting at the equilibrium point (f1, 0, 0). The
intersection of these two straight lines with the half–space x < 0, can
contain either 5 orbits (one of them is the equilibrium point (f1, 0, 0)),
or 2 orbits.

We want to study when an orbit of γh1h2 and an orbit of γf1f2 can
connect forming a periodic orbit of the discontinuous piecewise linear
differential system (2), i.e. when the two orbits reach the plane x = 0
in the same two points. In such a case they form a periodic solution
because from system (2) these two points are crossing points. More
precisely, let X+ (resp. X−) be the vector field associated to the linear
differential system (4) (resp. (5)) in the half–space x ≥ 0 (resp. x ≤ 0).
Let p be a point of the discontinuity plane x = 0, when the segment
connecting the endpoints of the vectors X+(p) and X−(p) does not
intersect the plane x = 0, then p is a crossing point. For more details
on crossing points see [6].
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From the previous study done on the orbits of systems (4) and (5) it
follows that an orbit of γh1h2 and an orbit of γf1f2 can connect forming
a periodic orbit only if h2 > 0 and f2 ̸= 0.

We take an arbitrary point of the plane of discontinuity, for instance
the point (0, y0, z0). We evaluate the four first integrals H1, H2, F1

and F2 in this point and we get the four values h1 = z0, h2 = y2
0 + z2

0 ,
f1 = −z0 and f2 = y2

0 − z2
0 , respectively. Now we study how many

points of the orbit {H1 = h1} ∩ {H2 = h2} ∩ {x ≥ 0} are in the plane
x = 0, solving the system

H1 = h1, H2 = h2, x = 0,

we get two points (0,±y0, z0). We also analyze how many points of the
orbits {F1 = f1} ∩ {F2 = f2} ∩ {x ≤ 0} are in the plane x = 0, solving
the system

F1 = f1, F2 = f2, x = 0,

again we get the two points (0,±y0, z0). If these two points belong to
the same orbit of the set {F1 = f1} ∩ {F2 = f2} ∩ {x ≤ 0}, then we
have a periodic orbit of the discontinuous piecewise linear differential
system (2).

If we parameterize the orbit {H1 = h1}∩{H2 = h2} in the half–space
x ≥ 0 using the variable x we obtain the arc

(6) {(x,±
√

y2
0 + z2

0 − (z0 − x)2, z0 − x) : 0 ≤ x ≤ z0 +
√

y2
0 + z2

0}.

Note that this orbit is symmetric with respect to the y–axis, it is con-
tained in x ≥ 0 and its endpoints are the two points (0, ±y0, z0) on the
plane x = 0.

Again we parameterize the curve {F1 = f1} ∩ {F2 = f2} in the
half–space x ≤ 0 using the variable x. This curve is formed by

• the two orbits {(x,
√

x2 + y2
0, x) : x ≤ 0} and {(x, −

√
x2 + y2

0, x) :
x ≤ 0} if z0 = 0, each orbit has only one endpoint in the plane
x = 0;

• the two orbits {x,
√

(x + z0)2 + y2
0 − z2

0 , z0 + x)} : x ≤ 0} and

{x,−
√

(x + z0)2 + y2
0 − z2

0 , z0 + x)} : x ≤ 0} if either z0 < 0 or
z0 > 0 and y2

0 − z2
0 > 0, each orbit has only one endpoint in the

plane x = 0;

• the two orbits

(7) {x,±
√

(x + z0)2 + y2
0 − z2

0 , z0 + x)} : −z0 +
√

z2
0 − y2

0 ≤ x ≤ 0}
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and

{x, ±
√

(x + z0)2 + y2
0 − z2

0 , z0 + x)} : x ≤ −z0 −
√

z2
0 − y2

0},

if z0 > 0 and y2
0 −z2

0 < 0, the first orbit has its two endpoints at
the points (0, ±y0, z0) of the plane x = 0, and the second orbit
has its endpoints at infinity;

We note that y2
0 − z2

0 ̸= 0 otherwise f2 = 0.

In short, if z0 > 0 and y2
0 − z2

0 < 0 then the orbit (6) of the linear
differential system (4) together with the orbit (7) of the linear differ-
ential system (5) form a periodic orbit of the discontinuous piecewise
linear differential system (2), and this periodic orbit intersect the plane
of discontinuity x = 0 at the two points (0,±y0, z0). This completes
the proof of Theorem 1.

3. Proof of Theorem 2

The discontinuous piecewise linear differential system (3) in R4 is
formed by the following two linear differential systems

(8)

ẋ = y,
ẏ = z,
ż = u,
u̇ = 1,

in the half–space x > 0, and

(9)

ẋ = y,
ẏ = z,
ż = u,
u̇ = −1,

in the half–space x < 0. Note that both systems have no equilibrium
points.

Since both differential systems are linear we always can compute
three independent first integrals for each system, see for instance [5].
Thus three independent first integrals for system (8) are

H1 = 8x − 8yu + 4zu2 − u4, H2 = 3y − 3zu + u3, H3 = 2z − u2.

So the orbits of system (4) are contained in the sets

γh1h2h3 = {H1 = h1} ∩ {H2 = h2} ∩ {H3 = h3} ∩ {x > 0},
for all (h1, h2, h3) ∈ R3 when these sets are non–empty.

In a similar way three independent first integrals for system (9) are

F1 = 8x + 8yu + 4zu2 + u4, F2 = 3y + 3zu + u3, F3 = 2z + u2.
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So the orbits of system (5) are contained in the sets

γf1f2,f3 = {F1 = f1} ∩ {F2 = f2} ∩ {F3 = f3} ∩ {x < 0},

for all (f1, f2, f3) ∈ R3 when these sets are non–empty.

Again we are looking for the periodic orbits of the discontinuous
piecewise linear differential system (3) which have two points on the
hyperplane of discontinuity x = 0. Let (0, y0, z0, u0) one of these two
points. We evaluate the six first integrals H1, H2, H3 F1, F2 and F3

in this point and we get the six values h1 = −8y0u0 + 4z0u
2
0 − u4

0,
h2 = 3y0 − 3z0u0 + u3

0, h3 = 2z0 − u2
0, f1 = 8y0u0 + 4z0u

2
0 + u4

0, f2 =
3y0 + 3z0u0 + u3

0 and f3 = 2z0 + u2
0, respectively. Now we study how

many points of the set γh1h2h3 ∩ γf1f2,f3 are in the hyperplane x = 0.
Of course, if the system has periodic orbits having two points in the
hyperplane x = 0, there must exist sets set γh1h2h3 ∩ γf1f2,f3 having
at least two points in the hyperplane x = 0. We claim that all the
sets γh1h2h3 ∩ γf1f2,f3 have exactly two points in the hyperplane x = 0
if u0 ̸= 0, the points (0, y0, z0, u0) and (0, −y0, z0,−u0); if u0 = 0 the
sets γh1h2h3 ∩ γf1f2,f3 have a unique point in the hyperplane x = 0,
the point (0, y0, z0, 0). So when u0 = 0 the discontinuous piecewise
linear differential system (3) has no periodic solutions through the point
(0, y0, z0, 0).

Now we shall prove the claim. The points of the set γh1h2h3 ∩ γf1f2,f3

which are on the hyperplane x = 0 are the solutions of the system

Hk = hk, Fk = fk, for k = 1, 2, 3,

restricted to x = 0, i.e. we must solve the system

(10)

8x − 8yu + 4zu2 − u4 = −8y0u0 + 4z0u
2
0 − u4

0,
3y − 3zu + u3 = 3y0 − 3z0u0 + u3

0,
2z − u2 = 2z0 − u2

0,
8x + 8yu + 4zu2 + u4 = 8y0u0 + 4z0u

2
0 + u4

0,
3y + 3zu + u3 = 3y0 + 3z0u0 + u3

0,
2z + u2 = 2z0 + u2

0.

Adding the third and the sixth equations we get that z = z0. Then
from the third we get u = ±u0. Now assume u = u0, then from the
second it follows that y = y0. Finally from the first we obtain that
x = 0. Therefore we get the known solution (x, y, z, u) = (0, y0, z0, u0).
Consider now u = −u0 ̸= 0, then system (10) reduces to

8x + 8yu0 = −8y0u0,
3y + 3z0u0 − u3

0 = 3y0 − 3z0u0 + u3
0,

8x − 8yu0 = 8y0u0,
3y − 3z0u0 − u3

0 = 3y0 + 3z0u0 + u3
0.
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Adding the first and the third equation we get x = 0. Then from the
first we get y = −y0. So we have obtained the solution (x, y, z, u) =
(0,−y0, z0, −u0). Finally assume that u = u0 = 0, then system (10)
becomes

8x = 0,
3y = 3y0,
8x = 0,
3y = 3y0.

So system (10) has a unique solution (x, y, z, u) = (0, y0, z0, 0). Hence
the claim is proved.

In short, we have proved that if the discontinuous piecewise linear dif-
ferential system (3) has some periodic orbit intersecting the hyperplane
x = 0 in two points, these two points must be of the form (0, y0, z0, u0)
and (0,−y0, z0,−u0) with u0 ̸= 0.

The solution of the linear differential system (8) starting at the point
(0, y0, z0, u0) when t = 0 is

x+(t) =
1

24
(t4 + 4u0t

3 + 12z0t
2 + 24y0t),

y+(t) =
1

6
(t3 + 3u0t

2 + 6z0t + 6y0),

z+(t) =
1

2
(t2 + 2u0t + 2z0),

u+(t) = t + u0.

Similarly the solution of the linear differential system (9) starting at
the point (0, y0, z0, u0) when t = 0 is

x−(t) =
1

24
(−t4 + 4u0t

3 + 12z0t
2 + 24y0t),

y−(t) =
1

6
(−t3 + 3u0t

2 + 6z0t + 6y0),

z−(t) =
1

2
(−t2 + 2u0t + 2z0),

u−(t) = −t + u0.

Assume that a periodic solution of the discontinuous piecewise linear
differential system (3) exists passing through the two points (0, y0, z0, u0)
and (0,−y0, z0, −u0). Then we can define t+ the time that the solution
(x+(t), y+(t), z+(t), u+(t)) needs for reaching by first time the point
(0,−y0, z0, −u0) assuming that x+(t) > 0 in the interval of time with
endpoints 0 and t+. In a similar way let t− be the time that the so-
lution (x−(t), y−(t), z−(t), u−(t)) needs for reaching by first time the
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point (0,−y0, z0,−u0) assuming that x−(t) < 0 in the interval of time
with endpoints 0 and t−. Then we have

x+(t+) = 0, y+(t+) = −y0, z+(t+) = z0, u+(t+) = −u0,
x−(t−) = 0, y−(t−) = −y0, z−(t−) = z0, u−(t−) = −u0.

From the equation u+(t+) = −u0 we get that t+ = −2u0. Then the
equations x+(t+) = 0, y+(t+) = −y0 and z+(t+) = z0 reduce to

(11) u4
0 − 3u2

0z0 + 3u0y0 = 0, u3
0 − 3u0z0 + 3y0 = 0.

Similarly from the equation u−(t−) = −u0 we get that t− = 2u0. Then
the equations x−(t−) = 0, y−(t−) = −y0 and z−(t−) = z0 reduce to

(12) u4
0 + 3u2

0z0 + 3u0y0 = 0, u3
0 + 3u0z0 + 3y0 = 0.

Recall that u0 cannot be zero. Then the solutions of system (11) and
(12) with u0 ̸= 0 are y0 = −u3

0/3 and z0 = 0.

Summarizing if a periodic solution of the discontinuous piecewise
linear differential system (3) exists having two points in the hyper-
plane x = 0, these two points must be of the form (0, −u3

0/3, 0, u0) and
(0, u3

0/3, 0,−u0) with u0 ̸= 0. Then

x+(t) =
1

24
(t4 + 4u0t

3 − 8u3
0t),

and

x−(t) =
1

24
(−t4 + 4u0t

3 − 8u3
0t).

The zeros of the polynomial t4 + 4u0t
3 − 8u3

0t in the variable t are

0, −2u0, −(1 +
√

5)u0 and (
√

5 − 1)u0.

While zeros of the polynomial −t4 + 4u0t
3 − 8u3

0t in the variable t are

0, 2u0, (1 +
√

5)u0 and (1 −
√

5)u0.

Therefore it follows that x+(t) > 0 in the interval of time with end-
points 0 and t+, and that x−(t) < 0 in the interval of time with end-
points 0 and t−. This implies that the unique periodic solutions of the
discontinuous piecewise linear differential system (3) having two points
in the hyperplane of discontinuity x = 0 are the ones passing through
the two points (0,−u3

0/3, 0, u0) and (0, u3
0/3, 0, −u0) for all u0 ̸= 0. This

completes the proof of Theorem 2.
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