Estructura cristalina y molecular de la 4 Etoxi isonitrosoacetanilida*

por F. Plana,*** C. Miravitlles,** J. L. Briansó ** y M. Font-Altaba **

RESUMEN

Esta estructura pertenece a la serie de las isonitrosoacetanilidas, serie que constituye una línea de investigación de la Sección de Cristalografía del C. S I. C. de Barcelona. En clla el radical etoxi, sustituye al hidrógeno de posición PARA del anillo bencénico. La estructura fue resuelta por medio de la difracción de los rayos X y de la Adición Simbólica, Grupo espacial P2¹/C. Dimensiones de la celda elemental: a == 11.788 Å, b = 9.999 Å, c = 8.895 Å, $\beta = 100,35^{\circ}$, Z = 4.

SUMMARY

This structure is part of the isonitrosoacetanilide serie, this serie is a research field of the Crystallographic Department of the C. S. I. C. in Barcelona. In this structure the ethoxy group is in the PARA position of the benzene ring. This structure has been solved by X-Ray diffraction and direct methods. Space group: P2i/C. Unit cell dimensions: a = 11.788 Å, b = 9.999 Å, c = 8.895 Å, $\beta = 100,35^{\circ}$, Z = 4.

Introducción

La 4 etoxi isonitrosoacetanilida. $C_{10}H_{12}N_2O_3$ fue sintetizada en los laboratorios del Departamento de

FIG. 1. — Fórmula desarrollada de la 4etoxi isonitrosoacetanilida.

Química Analítica de la Universidad de Barcelona, para su utilización como reactivo analítico específico del paladio y cobalto (F. BUSCARONS y R. MENA, 1963). En la fig. 1 damos la fórmula desarrollada del compuesto.

La determinación de la estructura cristalina, configuración molecular y uniones entre moléculas, es de interés en el estudio cristaloquímico de los derivados de la isonitrosoacetanilida, por sustitución de los H del anillo bencénico por grupos funcionales.

CONSTANTES CRISTALOGRÁFICAS

Los cristales fueron obtenidos a temperatura ambiente por medio de la evaporación de una solución de polvo cristalino en etanol. En dichos cristales se efectuó el estudio morfológico, óptico y roentgenográfico previo a la determinación de la estructura cristalina. Los índices de refracción se determinaron por inmersión de los cristales orientados según las direcciones principales de vibración en series de líqui-

FIG. 2. - Cristal de 4 etoxi isonitrosoacetanilida,

 ^{*} Este trabajo forma parte de la tesis doctoral del primero que suscribe.
** Sección de Cristalografía del Instituto "Jaime Almera", C. S. I. C.

^{***} Departamento de Cristalografía y Mineralogía, Universidad de Barcelona.

dos de índices de refracción conocidos, Cargille, cuyos incrementos eran de 0,002 y a 23° C de temperatura. Las demás constantes ópticas se determinaron por medio de una platina universal en fotomicroscopio Zeiss. (M. FONT-ALTABA 1967).

En la fig. 2 mostramos el dibujo de un cristal de 4 etoxi-isonitrosoacetanilida, la cara (110) se presenta como forma dominante y la (011) como subdominante.

La relación paramétrica morfológica es: 1,17895: 1:0,88950. En la fig. 3 damos la proyección estereográfica del cristal.

Todas las constantes físico-cristalográficas están resumidas en la tabla 1.

TABLA	1
-------	---

Monoclínico
P21/c
1,1789:1:0,8895
11.788 Å
9.999 Å
8.895 Å
103,35°
1.031,11 Å ³
4
1,54178 Å
$1.308 \text{ g} \cdot \text{cm}^{-3}$
1.310 g·cm ⁻³
201°C
a: 1.671
$\beta: 1.692$
γ: 1.734
(—)
(100)
14°
$2V = 72^{\circ}$

A partir de los cristales de $0,12 \times 0,07 \times 0,22$ milímetros se calcularon los parámetros de la celda elemental sobre diagramas Weissenberg y a partir de un difractómetro automático de cristal único (Siemens A.E.D.).

Por medio de dicho difractómetro se recogieron las intensidades de 2.083 reflexiones, de las cuales se dieron por observadas 1.957. Se realizaron las correcciones de Lorentz-polarización. (No se estimó necesaria la de absorción.) Los factores de temperatura (B) y de escala (K) resultaron ser de:

DETERMINACIÓN DE LA ESTRUCTURA

La estructura cristalina fue determinada empleando métodos directos. La adición simbólica, se utilizó de acuerdo con los programas de la serie L. S. A. M., originales de GERMAIN, MAIN y WOOLFSON (1970). Se emplearon 499 $|E_{hkl}|$ con valor superior a 1,1224. En la tabla 2 damos la estadística de los E_{hkl} .

TABLA 2

$ E_{hkl} > 3$.			0,53 %
$ E_{hkl} > 2$.		• •	4,37 %
$ E_{hkl} > 1$.	•	•	21,76 %
	-	 	

Las reflexiones (221) (437) (383) nos fijan el origen. Los tres símbolos A, B, C correspondieron a las reflexiones:

$$A = (220)$$
 $B = (\overline{2}20)$ $C = (222)$

El símbolo A interviene en 144 relaciones entre símbolos, el B en 1, y el C en 171, de los que se deduce que el símbolo B no juega papel alguno en la adición simbólica.

Los conjuntos de signos y sus probabilidades están expresados en la tabla 3.

TABLA 3															
A	В	С	Criterios de probabilidad												
+	+	+	1.645,4	2.572,7	1.866	445									
÷	_	+	1.645,4	2.572,7	1.866	445									
	+		1.762,5	2.929,8	1.920	444									
		—	1.762,5	2.929,8	1.920	444									
	+	+-	1,260,2	2.126,5	1.655	446									
		+	1.242,0	2.107,1	1.633	434									
+	+		1.205,3	2.055,6	1.635	446									
+		—	1.197,6	2.043,0	1.606	445									

El conjunto de signos número 4 nos dio la solución, después de una síntesis tridimensional de Fourier.

AFINAMIENTO DE LA ESTRUCTURA

Cinco ciclos de afinamientos isotrópicos por mínimos cuadrados, nos dieron un índice R de: 14,27 %. Ocho nuevos ciclos anisotrópicos, incluyendo un test para eliminar reflexiones con un elevado porcentaje de error, nos redujeron el índice R a 7,12 % (con 1.814 reflexiones).

Un Fourier de diferencias nos permitió localizar los hidrógenos en una celda elemental.

Tres ciclos de afinamientos globales, con B_{iso} para los hidrógenos y anisotrópicos para los restantes átomos, nos hicieron descender el índice R a: 6,95 % incluyendo todas las reflexiones observadas (2.083 re-

<u>sim</u>	Ng	2 <u>X/a</u>	<u> </u>	Z/c	<u>B.iso</u>	<u>B11</u>	B22	B33	B12	B13	B23
с	1	0.30880 (31)	-0.02564 (36)	0.54272 (42)	2.50	0.00453 (25)	0.00657 (34)	0.00675 (43)	-0.00057 (63)	0.00165 (53)	0.00143 (48)
с	2	0.29585 (34)	0.02303 (42)	0.68462 (43)	2.87	0.00478 (28)	0.00895 (41)	0.00657 (46)	-0.00185 (70)	-0.00087 (57)	0.00251 (54)
с	3	0.20676 (36)	0.10915 (46)	0.69921 (45)	3.33	0.00554 (29)	0.00992 (44)	0.00807 (48)	-0.00350 (78)	-0.00005 (61)	-0.00430 (59)
с	4	0.12769 (33)	0.14657 (40)	0.56638(44)	2,99	0.00462 (27)	0.00797 (39)	0.00898 (51)	-0.00034 (71)	0.00139 (60)	0.00146 (51)
с	5	0.13902 (34)	0.09612 (45)	0.42661 (45)	3.23	0.00594 (31)	0.00942 (45)	0.00678 (49)	0.00203 (76)	0.00072 (62)	0.00400 (60)
с	6	0.23017 (35)	0.01090 (44)	0.41345 (44)	3.12	0.00575 (29)	0.00937 (45)	0.00632 (45)	0.00153 (75)	0.00146 (59)	0.00333 (56)
с	7	-0.04923 (38)	0.25917 (53)	0.46553 (54)	3.81	0.00623 (30)	0.01168 (55)	0.00975 (57)	0.00381 (90)	0.00067 (69)	0.00578 (70)
с	8	-0.13382 (50)	0.34805 (71)	0.52827 (69)	5.25	0.00896 (47)	0.01722 (85)	0.01400 (91)	-0.00079 (139)	0.00188 (107)	0.01406 (105)
с	9	0.43642 (29)	-0.17377 (34)	0,42211 (37)	2.28	0.00429 (23)	0.00538 (33)	0.00574 (41)	-0.00015 (58)	0.00123 (49)	-0.00010 (44)
с	10	0.52891 (31)	-0.27559 (36)	0.46991 (41)	2.50	0.00514 (26)	0.00670 (39)	0.00646 (43)	-0.00:46 (63)	0.00048 (54)	0.00115 (48)
N	I	0.40117 (27)	-0.11718 (33)	0.54220 (34)	2.82	0.00501 (23)	0.00821 (33)	0.00622 (37)	0.00020 (58)	0.00142 (48)	0.00353 (44)
N	2	0.54683 (26)	-0.35693 (32)	0.36550 (34)	2.53	0.00426 (22)	0.00706 (31)	0.00730 (39)	0.00037 (55)	0.00067 (48)	0.00169 (41)
0	1	0.04202 (25)	0.23257 (35)	0.59167 (36)	3.83	0,00613 (22)	0.01184 (40)	0.01072 (41)	-0.00579 (64)	-0.00248 (50)	0.00785 (48)
0	2	0.39722 (25)	-0.15161 (28)	0.28744 (29)	2.91	0.00701 (23)	0.00788 (28)	0.00583 (32)	0.00090 (48)	0,00179 (44)	0.00340 (46)
0	3	0.63130 (26)	-0.45045 (31)	0.42259 (34)	3.51	0.00686 (23)	0.00944 (33)	0.00964 (40)	-0.00384 (59)	-0.00127 (50)	0.00759 (46)
н	12	0.3499 (59)	-0.0140 (66)	0.7793 (77)	3.71						
н	13	0.1927 (55)	0,1326 (65)	0.8096 (70)	3.71						
н	15	0.0795 (53)	0.1314 (67)	0.3542 (70)	3.71						
н	16	0.2389 (56)	-0.0451 (68)	0.3338 (77)	3.71						
Н	21	0.4329 (56)	-0.1355 (67)	0.6458 (70)	3.71						
н	33	0.6214 (53)	-0.4963 (65)	0.3276 (75)	3.71						
н	110	0.5722 (54)	-0.3028 (64)	0.5794 (79)	3.71						
н	171	-0.0772 (57)	0.1554 (67)	0.4000 (73)	3.71						
Н	172	-0.0145 (53)	0.2919 (66)	03645 (74)	3.71						
Н	181	-0.1169 (52)	0.4147 (66)	0.5451 (72)	3.71					-	
н	182	-0.1974 (54)	0.3510 (68)	0.5067 (70)	3.71						
н	183	-0 1240 (58)	0 2727 (45)	0 6002 (72)	2 71						

TABLA 4

flexiones). En la tabla 4 damos las coordenadas de los átomos y sus parámetros de agitación térmica.

Descripción de la estructura

A partir de los parámetros atómicos, calculamos todas las distancias intramoleculares, puentes de hidrógeno y ángulos de enlace, que se encuentran en la tabla 5.

TABLA 5

DISTANCIAS INTRAMOLECULARES Y ANGULOS DE ENLACE

c ₁ - c ₂	1.387 (5) Å	$c_{6} - c_{1} - c_{2}$	119.5 (3)
$c_2 - c_3$	1.383 (6) 🎗	$c_1 - c_2 - c_3$	121.1 (3) [°]
$c_{3} - c_{4}$	1.414 (5) Å	$c_2 - c_3 - c_4$	118.8 (3) ⁰
$c_4 - c_5$	1.370 (5) Å	$c_3 - c_4 - c_5$	120.0 (3) [°]
$c_{5} - c_{6}$	1.394 (6) Å	$c_4 - c_5 - c_6$	120.4 (3) [°]
C1 - N1	1.424 (4) Å	$c_{5} - c_{6} - c_{1}$	120.0 (3) [°]
$N_1 - C_9$	1.340 (4) Å	$C_3 - C_4 - O_1$	114.8 (3) ⁰
c ₆ - c ₁	1.387 (5) Å	$o_1 - c_4 - c_5$	125.1 (3) [°]
c, - 02.	1.222 (4) Å	$c_4 - o_1 - c_7$	117.2 (3) [°]
c ₉ - c ₁₀	1.496 (5) &	$o_1 - c_7 - c_8$	105.7 (4)°
с ₁₀ - N ₂	1.281 (4) 🖁	C ₁ - N ₁ - C ₉	128.6 (3) [°]
N ₂ -0 ₃	1.393 (4) Å	$N_1 - C_9 - O_2$	125.9 (3)°
c ₄ - 0 ₁	1.377 (5) Å	N ₁ - C ₉ - C ₁₀	112.2 (3) [°]
0 ₁ - C ₇	1.429 (5) Å	0 ₂ - C ₉ - C ₁₀	121.7 (3)°
c ₇ - c ₈	1.517 (8) Å	$C_9 - C_{10} - N_2$	115 .8 (3)°
с ₂ - н ₁₂	1.02 (6) Å	c ₁₀ - N ₂ - O ₃	111.4 (3)°
с ₃ - н ₁₃	1.05 (6) Å	C6 - C1 - N1	124.2 (3)°
с ₅ - н ₁₅	0.93 (6) Å	$C_2 - C_1 - N_1$	116.1 (3) ^o
с ₆ - н ₁₆	0.92 (6) Å	с ₁ - с ₂ - н ₁₂	118.(4) [°]
N ₁ - H ₂₁	0.94 (6) X	$C_3 - C_2 - H_{12}$	121. (4) [°]
о ₃ - н ₃₃	0.94 (6) Å	с ₂ - с ₃ - н ₁₃	119. (6) [°]
с ₁₀ - н ₁₁₀	1.04 (6) Å	C ₄ - C ₃ - H ₁₃	122.(3)°
с ₇ - н ₁₇₂	1.10 (6) Å	C ₄ - C ₅ - H ₁₅	107. (4)°
C ₇ - H ₁₇₁	1.20 (6) X	C ₆ - C ₅ - H ₁₅	132. (4) ⁰
с ₈ - н ₁₈₁	0.70 (6) A	с ₅ - с ₆ - н ₁₆	129. (4) ⁰
С ₈ - Н ₁₈₂	0.74 (6) A	$C_1 - C_6 - H_{16}$	108. (4)
с <mark>в - н</mark> 183	1.02 (6) A	$C_1 - N_1 - H_{21}$	106. (4)
		$C_9 = N_1 = H_{21}$	124. (4)
		$C_9 - C_{10} - H_{110}$	130. (4)
		$N_2 - C_2 - H_{110}$	113. (4)
		N ₂ - O ₃ - H ₃₃	92. (4)
		$O_1 - C_7 - H_{171}$	108. (3)
		$C_8 - C_7 - H_{171}$	123. (3)
		$H_{171} = C_7 = H_{172}$	88. (4) ⁻
		$O_1 - C_7 - H_{172}$	111. (3)
		C ₈ - C ₇ - H ₁₇₂	119. (3)
		$C_7 = C_8 = H_{181}$	117 · (5)
		$C_7 = C_8 = n_{182}$	1 27. (3) 01 /=\ ⁰
		⁷ ⁻ ⁸ ⁻ ¹ 83	81. (3) 104 (7) ⁰
		ⁿ 181 - ^C 8 - ⁿ 182	(04.(/)
		$H_{181} - C_8 - H_{183}$	123. (7)
		^H 182 ^{- C} 8 ^{- H} 183	101. (7)

Las moléculas del 4 etoxi isonitrosoacetanilida están ligadas por medio de dos puentes de hidrógeno. Dichos puentes quedan establecidos entre:

$$N_1-H_{21}$$
 (i) ... N_2 (iii) = 3.076 (4) Å
 O_3-H_{33} (ii) ... O_2 (i) = 2.723 (4) Å

siendo: (i) = x, y, z (ii) = 1-x, 1/2 + y, 1/2-z(iii) = x, y + 1/2, 1/2 + z

El enlace que encontramos en el caso de la isonitrosoacetanilida establecido entre N-H ... O, aquí lo encontramos establecido entre nitrógenos de moléculas vecinas deducidas una de otra por el plano de deslizamiento C.

En cuanto al enlace O-H ... O, es el constante en todas las estructuras de la serie resueltas hasta el momento presente.

is	onitro	2.743 Å		
2	etoxi	iso.	acetanilida	2.675 Å
4	etoxi	iso.	acetanilida	2.723 Å

Los átomos de la presente estructura, definen tres planos medios moleculares.

Plano 1. - Queda determinado por los átomos del anillo bencénico. Su ecuación es la siguiente:

$$0,6076 \text{ X} + 0,7829 \text{ Y} - 0,1339 \text{ Z} - 0,8416 = 0$$

Las distancias de todos los átomos al plano que definen no sobrepasan las 35 milésimas.

Plano 2. - Lo constituyen los tres átomos del grupo etoxi. La ecuación es:

$$0,5463 \text{ X} + 0,8087 \text{ Y} - 0,2180 \text{ Z} - 0,4909 = 0$$

Plano 3. - Queda formado por los átomos del grupo isonitroso acetil. Su ecuación:

$$0,7607 X + 0,6489 Y - 0,0159 Z - 2,1800 = 0$$

Las distancias de los átomos al plano son:

N_1	0,0810 (22)
N_2	
O_2	0,0138 (19)
O ₃	-0,0192 (21)
C ₉	0,0299 (24)
C10	0,1424 (25)

F16. 4. --- Perspectiva de una molécula con lo elipsoides de agitación térmica de los átomos.

FIG. 5. — Proyección XY del contenido de una celda elemental.

H F3 PC H F FC FO PAGE

 H
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 -7.8
 1.43
 <t *0 FO rizikit - seet a suttervisert a luteritestistert a strike. 1. a this strettis stret a the strettis strettis strettis a

 X
 0
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1423
 1423
 1423
 1423
 1423

 1121
 1121
 1121
 1121
 1121

 1121
 1121
 1121
 1121
 1121

 1121
 1121
 1121
 1121
 1121
 1121

 1121
 1121
 1121
 1121
 1121
 < 12345 5476 10112 1314

TABLA 6

₩ FO	ĸ	H FO F	c ،	F 0	₽C	н	FO	FC	н	F0 FĆ	н	FO	fC	H	Fa	FC	н	fû	₽ ¢	н	FO	FC	н	FG	FC	н	FO	FC .	н	fû	FČ	PAGE	4
-8 12 -9 36	12 30	i 198 i 2 i03 -5 3 i34 -14 4 25 i 5 i0	9 8 K= 3 9 1	3, 1 229	-241	-10 -11 M-	11 12 5, 1-	11 -9 7	0 1 1 2 3	29 127 0° -3 7 -11 16 16 51 -66		101 178 103 69 31	-105 161 -113 73 -27 125	3 4 5 4 7 - 1	46 71 40 28 0 ⁰ 73	50 - 67 - 80 - 20 1 74	5 -1 -2 -3	39 .34 69 82 L9L 38	40 29 62 85 -199 -35	-7 -8 K-	39 17 7, L=	0 -9 8	012345	160 68 69 22 8 10	-156 68 -71 24 -1		55 38 47 36	53 - 36 47 34		09 35 27 - 76	3 32 34 72		
0 35 1 109 2 .18 3 £1 4 31	-117 -24 -27	7 73 1 7 73 1 9 0 -1 204 -22 -2 44 4 -3 107 -10	6 1 6 1 6 1	49 249 30 12 5	-39 241 -43 25 -7 -5	123456	26 12 45 112 38 70	-23 -2 -40 111 -35 -72	5 -1 -2 -3 -4 -5	83 82 40 -141 0* 8 32 -33 45 -40 34 -35		61 58 20 75 35 42	-65 52 -15 85 -42 -55	-2 -3 -4 -5 -7	165 157 68 16 28 14	152 -155 67 23 -27 -14	-5 -8 -7 -1 -1 -10	43 59 56 51 22 38	83 -64 60 -45 24 36		67 37 8 58 47 0*	-71 -33 -56 40		105 26 78 18 69 18	110 -23 76 -17 -69 21	0 1 2 3 -1	32 8 33 42 18	-27 8 -29 -40 -30	-3 -4 -5 -4 -7	45 32 34 38	3¥ 36 30 37 15		
5 4 -1 25 -2 16 -3 14 -4 11 -9 14	-5 -22 17 18 -11	-6 14 -5 21 1 -6 16 -1 -7 97 14 -8 40 -4 -9 129 13	777177	72 126 142 28 5 112 6 48	#1 -114 157 23 -128 68	*****	14 41 13 157 10 25	-14 -55 15 136 4 24	-7 -7 -1	24 -23 25 -22 15 17 1, L+ 7	- 10 - 11	29 50 17	2 -25 -48 92	-10 -11	28 15 38 7 3, L=	32 - 14 - 38 - 3	K.* 0 1 2	3, L+ 11 131 115	-112	177 K	40 18 16 8, 1-	-17	777	70 40 22 3. L	-71 40 -10		39 65 71 63 15 11	-35 62 67 -63 -16 9	K= 0 1 2 -1	2, L+ 13 0, -	10 13 -2 76 2		
-6 27 -7 00 -8 7 K= 9, L	37 4 • •	-10 33 -1 -11 119 -11 -12 34 1 Ke 2, Le	· · · · · · · · · · · · · · · · · · ·	167 21 10 31 40	-152 -19 3 20 -49	-7 -7 -10	40 10 31 61 32	-2 -25 59 -31		36 41 16 8 6 6 29 30 79 -78 78 82	0123	132 42 162 77	134 58 164 66 C	01234	97 18 30 38	28 - 89 21 - 35 - 36	345-123	107 19 67 101	109 -14 29 112 -5	. 1444	19 13 30 20	-25 -3 -3 -17		12 12 16 32 17 50	4 16 18 26 17 -41	K.	41 41 10 45	9 13 - 39	-3-4-5-7	38 95 - 40 37 - 17 42 -	39 85 34 35 21 44		
1 0e 2 33 3 33 -1 18 -2 0e -3 29	- 12 28 14 - 21 - 7	i 14 2 2 240 -2 3 45 4 71 4 5 8	0 1 7 7 2	2 72 2 29 2 28 2 28 4 28	72 -24 -2 -2 79		25 30 28 67	-24 45 -17 45 -83		62 57 27 21 48 -65 6 9	+ -1 -2 -3	47 04 79 209 116	-52 -35 -4 -76 213 -113	-12-34-5	237 43 14 47 87	13 - 232 - 95 - 46 85	-5 -4 -7 -8 -9	117 46 41 49	-109 51 -41 -44 -1	0 1 2 3	41 51 70 57 32	, 59 -43 -24	1717177	115 24 43 0 42 42	-30 116 20 -42 -7 -41	-3 -4 -3	37 54 78 0, L*	- 37 - 51 80 10		3, 1. 09. 113 -1 22 -	1C 25 27		
-4 41 -5 34 -6 17 4 10, L	-11	T 54	1 1 1 1	5 28 5 30 7 16 8 18 1 35 2 40	-29 28 11 -14 24 31		7 69 47 35 23 41	-7 -50 -43 20 -43	0 -1 -2 -3	24 23 44 48 12 13 29 -30 49 43	-5 -6 -7 -9 -10	230 103 23 32 53	234 -104 17 -33 -93 11	-6 -7 -9 -10	0* 8 35 19 65	2 -4 -34 -23 59	X U 2 3	6, 1. 40 90 14	2 -15 -30 88 -16	*****	1 C1 70 32 54 10 21	-967 -67 -18 -18 -26	-1 K- 0 L	40 41 L4 102 14	-93 -93 -93 -93	0-2312	17 39 48 29 48 53	14 34 -46 -19 39 -52	-3 -3 -4	08 - 36 - 29 - 15	15 94 31 13		
0 44 -1 15 -2 37 L= L, L 0 23L	11 11 -39 - 7 244	-5 13 -6 97 -1 -7 42 1 -8 92 -1 -9 110 11 -10 0* -11 55 1 +12 27 -1		44 5 30 7 29 8 52 9 50	-33 -33 -33 -33 -35 -50	7777 2	24 12 87 39 7, 12	-14 -10 85 -63 7		35 34 0, L* 8 275 -267 115 -111 254 241	- 11 K• 1 2	2, L 97 17 12	- #1 - #2 - #2 - #	U 1 2 3	0* 25 63 43 112	3 19 - 10 44 - 105	-1 -2 -3 -5 -8	40 47 25 41 75	46 -46 -27 -20 56 73	1777. 1777. 17	29 139 49 8 2; L*	-30 162 -32 -3	1444 000	31 35 49 85 108 54 34	34 -29 -44 -64 102 -66 -31	-3 -5 -7 KP	27 48 176 83 30 1; i=	26 -51 171 -62 30 10	0 -1 -3 -4	14 22 44 25 - 7	15 15 15 18 2		

Únicamente el átomo C_{10} queda significativamente por encima de dicho plano medio del grupo. Fueron calculados los ángulos entre los tres planos medios, resultando ser dichos ángulos de:

Entre	plano	1	у	plano	2	•	•		6°
Entre	plano	1	у	plano	3			•	13°

Para finalizar este trabajo incluimos la figura 4, donde está representada una molécula de la 4 etoxi isonitrosoacetanilida, con sus elipsoides de agitación térmica, de la figura 5 que es la proyección XY de las moléculas de la celda elemental y de la tabla 6 donde damos la lista de los factores de estructura observados y calculados.

Los autores del presente trabajo, agradecen al Profesor R. GAV, y a los doctores Hospital y Hauw de la Universidad de Talence, Francia, las facilidades dadas en la recogida de los datos experimentales por medio de un difractómetro automático Siemens, A.E.D.

BIBLIOGRAFÍA

- AHMED, F. R. (1969): Crystallographic programs for a IBM 360 systems. National Research Council of Canada.
- BOWEN, H. J. M. (1958): Tables of Interatomic distances and configuration in molecules and ions. *The Chem. Soc. London.*
- BRIANSÓ, J. L., MIRAVITLLES, C., PLANA, F. y FONT-ALTABA, M. (1972): Acta Geológica Hispánica, VII, 3, págs. 73-76.
- BRIANSÓ, J. L., MIRAVITLLES, C. y FONT-ALTABA, M. (1972): Acta Geológica Hispánica, VII, 3, págs. 77-82.

BROWN, C. J. (1966): Acta Cryst., 21, 442.

- BUSCARONS, F., MENA, R. (1963): Chim. Anal., vol. 4, núm. 2, págs. 72-79.
- CHRISTOPH, G. G. y FLEISCHER, E. B. (1973): Acta Cryst., B 29, 121.
- GERMAIN, G., MAIN, P. y WOOLFSON, M. M. (1970): Acta Cryst., B 26, 274.
- PAULING, L. (1945): The nature of chemical bond, Ithaca Cornell. Univ. Press.