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Abstract

Image instance retrieval is the problem of retrieving images from a database which
contain the same object. Convolutional Neural Network (CNN) based descriptors are
becoming the dominant approach for generating global image descriptors for the in-
stance retrieval problem. One major drawback of CNN-based global descriptors is that
uncompressed deep neural network models require hundreds of megabytes of storage
making them inconvenient to deploy in mobile applications or in custom hardware.
In this work, we study the problem of neural network model compression focusing on
the image instance retrieval task. We study quantization, coding, pruning and weight
sharing techniques for reducing model size for the instance retrieval problem. We
provide extensive experimental results on the trade-off between retrieval performance
and model size for different types of networks on several data sets providing the most
comprehensive study on this topic. We compress models to the order of a few MBs: two
orders of magnitude smaller than the uncompressed models while achieving negligible
loss in retrieval performance. 1

1. Introduction
Image instance retrieval is the problem of retrieving images from a database representing

the same object or scene as the one depicted in a query image. The first step of a typical
retrieval pipeline starts with the comparison of vectors representing the image content known as
global image descriptors. Deep neural networks have seen rapid progress in the last few years,
and starting with their remarkable performance on the ImageNet large scale image classification
challenge [1]–[3], they have become the dominant approach in a wide range of computer vision
tasks. In recent work [4]–[7], Convolutional Neural Networks (CNN) have also been used to
generate global feature descriptors for image instance retrieval, and are rapidly becoming the
dominant approach for the retrieval problem.

While CNNs provide high performance, they suffer from one major drawback. State-of-the-art
CNNs like AlexNet [1], VGG [2] and Residual Networks [3] consist of hundreds of millions
of neurons. Stored in floating point precision, these networks require hundreds of megabytes for
storage. Also, neural networks are getting deeper and deeper, as performance gains are obtained
with increasing amounts of training data and increasing the number of layers: e.g., deep residual
networks can be hundreds or even thousands of layers deep [3].

There are many practical reasons why smaller networks are desirable. First, there are several
applications, where image classification or retrieval needs to be performed on a mobile device,

1. V. Chandrasekhar, L. Jie and Q. Liao contributed equally.
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which require the CNN to be stored on the client. Mobile applications which are hundreds of
megabytes in size are not practical. Second, as networks get larger, it is not feasible to train them
on a single machine. Large neural networks are trained across multiple machines, and one of
the key bottlenecks in training is the neural network weights or gradient data that are transferred
between machines in the distributed gradient descent optimization step. Better weight compression
will make training larger networks more practical. Third, there is immediate need for smaller
networks for efficient hardware implementations of deep neural networks. Storing the entire
network on chip will allow fast access, reduce processing latency and improve energy efficiency.
Fourth, emerging MPEG standards like Compact Descriptors for Visual Search (CDVS) [8] and
Compact Descriptors for Video Analysis (CDVA) 2 require feature extraction to be performed with
a few MB of memory to enable efficient implementations of streaming hardware. Without model
compression, deep learning based descriptors cannot be adopted in these emerging standards.
Most of the recent work on model compression has been focused on compressing models for
the image classification task: identifying the category that a query image belongs to. The two
tasks: image classification and instance retrieval, while related, pose different requirements. CNNs
consist of alternating convolutional and downsampling layers, and finally a set of one or more
fully connected layers that map to a set of output classes or labels. For image classification tasks,
the fully connected layers serve as the classifier, mapping rich feature representations to output
classes. On the other hand, for image retrieval tasks, intermediate layers of the CNN have been
shown to be effective high dimensional global descriptors [4].

We highlight some of the recent work on model compression, where the primary focus has been
on reducing model size while maintaining high image classification accuracy. For architectures
like [1], the fully connected layers contain the highest number of parameters. As a result, in [9],
Gong et al. propose Vector Quantization techniques for parameters in the fully connected layers,
while leaving the convolutional layers untouched. In their recent work, Han et al. [10], [11]
propose quantization and coding techniques for compressing neural networks. Han et al. prune the
network by learning only the important connections required for the classification task. Following
pruning, scalar quantization and huffman coding are used to further reduce model size. In [12],
the authors propose a new architecture called SqueezeNet, which contains 50× fewer parameters
than AlexNet [1], while achieving similar classification performance. The number of parameters
in the network is reduced by smart choice of filter sizes and number of filters at each layer. 6-bit
quantization is used to further reduce model size.

In this work, we propose quantization, pruning and coding techniques for compression of deep
networks, with a focus on the image instance retrieval task, unlike [9], [10], [12]. We also study
the problem in the context of state-of-the-art deep residual networks. For residual networks, we
propose sharing parameters across different layers to reduce the number of weights. Quantization
and coding techniques specific to residual networks are further applied to reduce model size.
We perform extensive evaluation of trade-off between retrieval performance and model size for
different types of networks on several data sets, providing the most comprehensive study on this
topic. We compress models to the order of a few MBs: two orders of magnitude smaller than
uncompressed deep networks, while achieving negligible loss in retrieval accuracy.

The paper is organized as follows. In Section 2, we discuss how CNNs are used for the image
instance retrieval task. Following that, in section 3, we discuss quantization, coding, pruning and
weight sharing techniques for state-of-the-art deep networks. In Section 4, we provide detailed
experimental results and analysis of proposed methods.

2. The MPEG CDVS/CDVA evaluation framework including test dataset is available upon request at
http://www.cldatlas.com/cdva/dataset.html

http://www.cldatlas.com/cdva/dataset.html


layer name AlexNet VGG-16 ResNet50 ResNet152 Shared ResNet

conv1 5×5, 96
[

3×3, 64
3×3, 64

]
7×7, 64 7×7, 64 7×7, 64

conv2 x 3×3, 256

[
3×3, 128
3×3, 128

] [
1×1, 64
3×3, 64

1×1, 256

]
×3

[
1×1, 64
3×3, 64
1×1, 256

]
×3

[
3×3, 64
3×3, 64

]
×2

conv3 x 3×3, 384

[
3×3, 256
3×3, 256
1×1, 256

] [
1×1, 128
3×3, 128
1×1, 512

]
×4

[
1×1, 128
3×3, 128
1×1, 512

]
×8

[
3×3, 128
3×3, 128

]
×3

conv4 x 3×3, 384

[
3×3, 512
3×3, 512
1×1, 512

] [
1×1, 256
3×3, 256
1×1, 1024

]
×6

[
1×1, 256
3×3, 256
1×1, 1024

]
×36

[
3×3, 256
3×3, 256

]
×10

conv5 x 3×3, 256

[
3×3, 512
3×3, 512
1×1, 512

] [
1×1, 512
3×3, 512
1×1, 2048

]
×3

[
1×1, 512
3×3, 512

1×1, 2048

]
×3

[
3×3, 512
3×3, 512

]
×3

Table 1. Architectures for different networks. Fully connected layers are discarded. Building blocks are
shown in brackets, with the numbers of blocks stacked.

2. Image Retrieval with Deep Networks

A typical image instance retrieval system starts with the comparison of vectors representing
the image content, known as global image descriptors.

There is a growing body of work focused on using activations directly extracted from CNNs
as global descriptors for image instance retrieval. All popular CNN architectures share a set
of common building blocks: a succession of convolution-downsampling operations designed
to model increasingly high-level visual representations of the data. Table 1 shows the model
architecture for different networks considered in this work.

Initial studies [5], [13] proposed using representations extracted from fully connected layers
of CNNs as a global descriptor for image retrieval. Promising results over traditional handcrafted
descriptors like Fisher Vectors based on local SIFT features, were reported first in [4], [5], [13].
Recent papers [6], [14], [15] show that spatial max and average pooling of feature maps output
by intermediate convolutional layers is an effective representation, and higher performance can
be achieved compared to using fully connected layers.

Proposed techniques in [6], [14], [15] provide limited invariance to translation, but not to scale
or rotation changes. To alleviate the scale issue, Tolias et al. [16] proposed averaging of max
pooled features over a set of multi-scale region of interest (ROI) feature maps in the image,
similar to the R-CNN approach [17] used for object detection. Inspired from a recently proposed
invariance theory for information processing [18], we proposed a Nested Invariance Pooling
(NIP) method to produce compact and performant descriptors, invariant to translation, scale and
rotation [7].

In Figure 2, we provide a brief overview of NIP descriptors, which form the basis for all image
retrieval experiments in this work. Figure 2(a) shows a single convolution-pooling operation
for a single input layer and single output neuron. Figure 2(b) shows how a succession of
convolution and pooling layers results in a set of feature maps fi. A number of scale and rotation
transformations are applied to the input image to obtain a series of feature maps. In Figure 2(c), we
show how feature maps are pooled in a nested fashion by computing statistical moments at each
step (average, standard deviation, max). The particular sequence of transformation groups and
statistical moments are provided in [7], [19]. Key to achieving high performance is stacking mul-
tiple transformation groups in a nested fashion, and pooling with increasing orders of moments.
Detailed evaluation provided in [19] shows that NIP is robust to scale and rotation changes, and
significantly outperforms other CNN based descriptors. Next, we discuss compression of models
shown in Table 1.



Figure 1. (a) A single convolution-pooling operation from a CNN schematized for a single input
layer and single output neuron. (b) A specific succession of convolution and pooling operations
learnt by the CNN (depicted in red) computes the feature, the last convolution layer, fi for each
feature map i from the RGB image data. A number of transformations g are applied to the input x
in order to vary the response fi(g.x). (c) Starting with raw pool5 descriptors, an arbitrary number of
transformation group invariances are stacked up. GS , GT , GR corresponds to transformation groups
scale, translation and rotation respectively, while AGS

, SGT
,MGR

refers to statistical moments
average, standard deviation and max respectively, which are computed in a nested fashion.

3. Model Compression
State-of-the-art CNNs commonly consist of alternating convolutional and downsampling layers,

and finally one or more fully connected layers that map to a set of output classes or labels. Since
we are interested in the task of instance retrieval and not image classification, fully-connected
layers which produce inferior global descriptors can be discarded. We consider the following class
of networks in this work: AlexNet [1], VGG [2], 52-layer and 152-layer residual networks [3]
(ResNet), and residual networks with shared parameters (Shared ResNet) [20]. Table 1 details the
relevant part of the architecture of the different networks.

Table 2 lists the number of parameters in convolutional layers for each network. In Figure 2(a),
we plot the number of parameters for each convolutional layer. We note there are millions of
parameters in the convolution layers, and the number of parameters typically increases with depth.
For AlexNet and VGG, the majority of parameters lie in the fully connected layers: discarding
fully connected layers reduces the number of parameters in the network from 60M to 2.3M
for AlexNet [1]. For residual networks, the number of parameters in the convolutional layers
far exceeds the number of parameters in the fully connected layers, as there are many more
convolutional layers and less fully connected layers. Even after discarding fully connected layers,
uncompressed VGG and ResNets require more than 50 and 100 MB, motivating the need for
compression. Next, we discuss four building blocks for model compression.

3.1. Quantization and Coding
In Figure 2(b) and (c), we show the distribution of weights in different convolutional layers

conv1 to conv5 for AlexNet. We note that the convolutional weight parameters follow a Laplacian
distribution. The distributions become more peaky (decreasing variance) with depth. This is
intuitive as feature response maps become increasingly sparse with depth as higher level object
representations are learnt. Similar trends are observed for other networks.
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Figure 2. (a) Number of parameters in convolutional layers for different networks. (b) Distribution of weights
for conv1 layer of AlexNet and decision boundaries of Lloyd-Max quantizer. (c) Distribution of weights across
different convolutional layers for AlexNet.

For each layer, we explore both scalar and vector quantization (VQ) techniques using the
Lloyd-Max algorithm. For simplicity, we ignore entropy in the centroid training step. For VQ,
we consider blocks of 2 and 4 with the number of codewords in the range of 256-1024. VQ
additionally requires the codebook to be transmitted along with the network. With increasing
codebook size, the size of codebook data becomes non-negligble compared to the weights. In [9],
Gong et al. focus on compressing fully connected layers with VQ with large codebooks, which
is less applicable for compressing convolutional layers. Further, we explore applying different
quantization parameters to different layers and study their impact on retrieval performance.

We also explore how variable length coding with Huffman codes can be used to further reduce
model size. Variable length coding can reduce model size when models need to be transmitted
over a network. However, it is not feasible to uncompress the network each time feature extraction
needs to be performed, in which case, fixed length coding is preferred. Detailed experimental
results are provided in Section 4.

3.2. Pruning
One technique for reducing model size is more coarse quantization of weight parameters.

Another approach to trade-off model size for performance is to prune entire convolutional layers
of the network, motivated by the visualization work in [21]. Zeiler and Fergus propose techniques
for visualizing filter responses at different layers of a deep network [21]. The first convolutional
layer typically learns Gabor-like filters, while the last layer represents high level concepts like cats
and dogs. As we go deeper into the network, the representations become more specific to object
categories, while earlier layers provide more general feature representations for instance retrieval.
We reduce the number of parameters by varying the starting representation in Figure 2(c) for
NIP based on earlier convolutional layers: conv2 to conv4, instead of just the last layer before the
fully connected layer: pool5. Layers after the chosen convolutional layer are dropped from the
network. Note that this pruning approach is different from the pruning proposed in [10] where
connections are removed if they do not impact classification accuracy.

3.3. Weight Sharing
We propose sharing weights across layers to reduce the number of parameters in residual

deep networks (ResNets). A ResNet adopts repeated residual blocks to facilitate learning ultra
deep representations. A residual block typically consists of two or more convolutional layers and
a identity shortcut mapping connecting its beginning and end. A biological-inspired work [20]
showed that repeated residual blocks is isomorphic to a specific type of recurrent network (RNN)



AlexNet VGG ResNet-52 ResNet-152 Shared ResNet
# of parameters 2.3M 14.7M 25.5M 60M 8.4M

Table 2. Number of parameters (only convolutional) for each model

unrolled over time (see Figure 4(a)). Enforcing weight sharing (like RNN does) across repeated
residual blocks preserves the performance of the corresponding ResNet while significantly lowers
the number of parameters. In our experiments, we build on [20] and repeat the residual blocks
conv1 to conv4 2, 3, 10 and 3 times respectively as illustrated in Figure 4(a). The resulting
intermediate feature map sizes are also shown in Figure 4(a). These networks are trained on the
ImageNet dataset, like the others. Quantization and coding are further applied to reduce model
size.

4. Experimental Results

We study the trade-off between model size and performance on four popular instance retrieval
data sets: Holidays, Oxford buildings (Oxbuild), UKBench (UKB) and Paris6k. Following standard
protocol for Holidays, Oxford5k and Paris6k, retrieval performance is measured by Mean Average
Precision (mAP). For UKBench, we report the average number of true positives within the top
4 retrieved images (4×Recall@4). We start with off-the-shelf networks pre-trained on ImageNet
classification data set. When comparing pooling layers to fully connected layers on AlexNet, we
resize all images to (227×227) as fixed size input images are required. For all other experiments,
if the longer side of input image exceeds 1024 pixels, we down sample the image to 1024, while
maintaining aspect ratio.

To evaluate the performance of layer pruning, we choose 4 different layers for each network
architecture. In particular, pool1, pool2, conv3 relu, pool5 for AlexNet, pool3, pool4, conv5a relu,
pool5 for VGG, res3d relu, res4c relu, res4f relu, pool5 for ResNet-50 and res3b7 relu,
res4b15 relu, res4b35 relu, pool5 for ResNet-152. For Shared ResNet, we use the 4 layers
following convolutional layers conv1 to conv4 shown in Table 1. For NIP feature extraction,
we use 4 rotations (0 to 360 degrees with step size 90 degrees), and for each rotated image,
we sample 20 ROIs with 3 different scales. We study the trade-off between model size and
performance in Figures 3, 4 and 5. For each curve, the model size is varied by pruning each
network back to intermediate layers as discussed above. Different curves represent compression
with different quantization parameters. We make several interesting observations.
• We first compare the performance of the last convolutional layer pool5 and full connected

layers fc6, fc7 and fc8 for AlexNet on the Holidays data set in Figure 3(a). Performance for
pool5 is higher than the fully connected layers. A significant drop is observed for fc8, which
represents the layer corresponding to ImageNet class labels. This confirms that fully connected
layers can be discarded for the instance retrieval problem, while drastically reducing network
size. Similar trends are observed on other data sets, and confirms observations made in [15].

• We compare Scalar Quantization (SQ) and Vector Quantization (VQ) for AlexNet on the
Holidays data set in Figure 3(b). k64-b2 for VQ corresponds to codebook size of 64 and
block size of 2. We note that there is only a small gain with VQ compared to 4-bit or 5-
bit SQ. This is intuitive, as one can expect weight parameters to be independent, and large
codebooks for VQ are not feasible. From here on, we use SQ in the rest of the experiments.

• We compare Fixed Length Coding (FLC) and Variable Length Coding (VLC) for AlexNet on
the Holidays data set in Figure 3(c). We observe a small but consistent gain of ∼15-20%
with variable length coding, which can be useful when models need to be transmitted over a
network. From here on, we use FLC in the rest of the experiments.



Layer Resnet-50 ResNet-50 ResNet
4-bit Conv 4-bit Conv
32-bit BN 4-bit BN

pool5 0.8382 0.7806 0.7591

Table 3. Coarse quantization of Batch Normalization (BN) parameters leads to drop in performance.
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Figure 3. (a) Comparing pool5 and fully connected layers on AlexNet. (b) Comparing SQ and VQ for varying
parameters on AlexNet. (c) Comparing fixed length and variable length coding on AlexNet.

• For compression of residual networks, we make two key observations. First, we observe that
performance drops drastically for 3-bit quantization for residual networks in Figure 4(b),
compared to AlexNet in Figure 3(b)-(c). Residual networks are a lot deeper, and the quanti-
zation error accumulates over the layers leading to the steep drop. The residual networks in
consideration also have batch normalization layers, which zero-center the data at every layer.
Quantizing the Batch Normalization (BN) weights coarsely results in a drop in performance
as shown in Table 3. As a result, we maintain the BN weights with floating point precision,
while coarsely quantizing weight parameters in the rest of the experiments.

We compare different model compression schemes in Figure 5 and make the following salient
observations.
• Points 3,4,5 on the x axis correspond to 1, 10 and 100 MB models respectively. We observe

that there is negligible loss in retrieval performance with 4-bit quantization for AlexNet and
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networks. Retrieval performance drops steeply for 3-bit quantization.
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VGG. For residual networks, this is achieved with 5-bit quantization. 2-bit quantization results
in significant drop in performance for all models, and are not shown in the interest of space.
Compressed models in the order of 5-10 MB achieve performance almost similar to their
uncompressed counterparts on each data set while being one to two orders of magnitude
smaller.

• Both pruning layers and coarser quantization of weight parameters provide similar trade-off
in performance and model size.

• Comparing compressed models, we note that compressed VGG achieves the highest perfor-
mance on Oxford5k, while compressed ResNet achieves the highest performance on the other
three data sets. Compressed AlexNet results in smaller networks, but performs significantly
worse than top performing schemes.

• Compressed SqueezeNet [12] (C-SqueezeN) models are only 0.5 MB in size, and provide
good trade-off in size and performance. However, they perform significantly worse than the
best schemes. The aggressive optimizations used for reducing parameters in the SqueezeNet
architecture hurt retrieval performance significantly.

• For Shared ResNet, we first compare the models with and without parameter sharing, denoted
as Shared ResNet and Shared ResNet w/o PS respectively. Compared to no parameter sharing,
3-4 × smaller models are achieved by sharing weights. Further quantization of Shared ResNet
results in smaller models. One thing to note is that the Shared ResNet are trained from
scratch on the ImageNet data set, and peak performance for our trained models is lower
than the uncompressed ResNet-50 of [3]. Performance of compressed Shared ResNet can be
further improved by starting with better residual network models. An alternative approach is
to enforce shared weights across layers in the ResNet models of [3] and fine-tune the network
again.

The experimental results above provide the most comprehensive study of model compression
for the instance retrieval problem. We provide several interesting directions for future work.
Models need to be made smaller further without losing retrieval performance: e.g., the Compact
Descriptors for Visual Search (CDVS) standard only allows for 1 MB of memory for feature
extraction in the low memory mode to enable streaming hardware implementations. Mathematical
modelling of the distribution of weights would provide interesting insights for learning more
compact models. More sophisticated pruning techniques can be explored to reduce model size,
with the explicit objective of maintaining high retrieval performance. Performance of deep residual
networks with shared weights needs to be improved further, and is a promising direction for
achieving smaller performance models.

5. Conclusion
In this work, we studied the problem of neural network model compression focusing primarily

on the image instance retrieval task. We studied quantization, coding, pruning and weight sharing
techniques for reducing model size for the instance retrieval problem. Our compressed models
are in the order of a few MBs: two orders of magnitude smaller than the uncompressed models
while achieving negligible loss in retrieval accuracy. We provide extensive experimental results
on the trade-off between retrieval performance and model size for different types of networks on
several data sets, providing the most comprehensive study on this topic.
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