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Abstract
We provide a method for estimating brain metabolic state based on a reduced-order model of EEG
burst suppression. The model, derived from previously suggested biophysical mechanisms of burst
suppression, describes important electrophysiological features and provides a direct link to
cerebral metabolic rate. We design and fit the estimation method from EEG recordings of burst
suppression from a neurological intensive care unit and test it on real and synthetic data.

I. INTRODUCTION
Burst suppression is an electroencephalographic (EEG) pattern in which periods of high
voltage activity (bursts) alternate with periods of isoelectric quiescence (suppression) (see
Figure 1). It is characteristic of a profoundly inactivated brain and occurs in conditions such
as deep general anesthesia [1], hypothermia [2] and coma [3]. That these different conditions
lead to seemingly similar brain activity suggests that burst suppression is the result of a
fundamental, low-order process that is prominent when higher-level brain activity is
depressed.

The main features of burst suppression have been well described [4], [5], [6]. Classically,
burst suppression is thought to be a global state where bursts begin and end nearly
simultaneously across the entire scalp. It is different from typical faster EEG oscillatory
patterns, in that suppression epochs can be very irregular and may last several seconds.
Importantly, burst suppression is not a homogeneous state but, instead, varies continuously
as a function of brain inactivation. As the brain becomes progressively more inactivated, the
amount of suppression, relative to the amount of burst, increases. This variation has been
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traditionally quantified with the burst suppression ratio [6], which measures the amount of
suppression in a sliding window of EEG data. Recent research on the burst suppression
probability [7] (BSP) has provided a statistically rigorous, and window-free, approach to
estimating the burst suppression state.

Here, we introduce a method for estimating not simply burst suppression, but the underlying
brain metabolic state. Our method is based on a recent nonlinear, biophysical model [5],
which attributes the parametric increase in suppression duration with brain inactivation to
decreases in brain metabolism.

We begin by characterizing the relationship between brain metabolic state and observable
EEG features, namely the lengths and variability of bursts and suppressions. We then
introduce and fit a reduced state-space model of burst suppression to recordings from
neurological intensive care unit (ICU) patients. From this model, we demonstrate the
inference of the underlying metabolic state.

The remainder of this paper is organized as follows. Section II provides a brief background
on the biophysical mechanisms of burst suppression and the resulting models. Section III
introduces the reduced state-space model and methods for metabolic state inference. Brief
conclusions are formulated in Section IV.

II. BACKGROUND
A. Neurophysiology of Burst Suppression

Although many features of burst suppression have been described, the neurophysiological
mechanisms that are responsible for creating it are less well understood. In the context of
general anesthesia, the early work by Steriade [8] helped establish certain neural correlates
of burst suppression, describing the participation of different cell types in bursts and
suppressions, though an underlying mechanism was not suggested. Other studies [9] have
suggested that burst suppression involves enhanced excitability in cortical networks, and
have implicated fluctuations in calcium as related to the alternations between bursts and
suppressions.

B. Existing Models of Burst Suppression
A unifying biophysical model for burst suppression – one that accounts for its
characteristics, and also its range of etiologies – was recently proposed [5]. The key insight
of the model is that each of the conditions associated with burst suppression (general
anesthesia, hypoxic/ischemic coma, hypothermia) is associated with decreased cerebral
metabolic rate of oxygen (CMRO). The model links this decrease in CMRO to deficiencies
in ATP (adenosine triphosphate, the energetic substrate for neuronal activity) production in
cortical networks (see Figure 2). The termination of each burst is a reflection of ATP
consumption due to the neuronal activity underlying fast EEG oscillations, whereas
suppressions are governed by the slow dynamics of ATP regeneration.

This model provided an explanation for why three cardinal features of burst suppression –
the spatial synchrony of bursts onsets across the scalp, the increase in suppression durations
with increasing brain inactivation, and the long timescales of suppressions – can arise across
its disparate etiologies. The present paper is intended to provide a simplification of the
model in [5], and simultaneously, to describe a fourth cardinal feature that was not
previously explored, namely the variability of burst lengths at different burst suppression
levels. This, in turn, enables the estimation of brain metabolism (CMRO) from EEG
recordings.
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III. PROBABILISTIC MODELING AND ESTIMATION OF BURST
SUPPRESSION
A. Simplified Burst Suppression Model

Based on [5], we present a reduced order state-space model for burst suppression governed
by the following:

(1)

Here, a(t) is the concentration of local ATP in a cortical region, kc is the rate of ATP
consumption during each burst, kr is the rate of ATP regeneration during each suppression,
and u(a) indicates whether burst activity can or cannot be sustained. We select

(2)

meaning that burst activity can only be initiated when ATP levels increase beyond the
threshold α.

By fixing the parameter kc = 1, (1) can be rewritten as

(3)

where x, a value from 0 to 1, is the brain metabolic state. A value of x = 0 corresponds to full
CMRO (when ATP regeneration equals consumption), while x = 1 is complete metabolic
depression.

Figure 3 illustrates the output of the model for two different values of x. When x is
moderate, the model produces epochs of burst and suppression that are commensurate in
length. When x is reduced to a low value, the bursts are much shorter (due to more rapid
consumption) and the suppressions are longer (due to slower regeneration).

The model (1) offers increased analytical tractability as compared to the full nonlinear
model in [5]. In particular, we can derive explicit expressions for burst and suppression
lengths (LS and LB) at different metabolic state levels as:

(4)

where

(5)

The burst suppression state itself can then be quantified in terms of the suppression lengths,
relative to the total length of a burst-suppression cycle, specifically:

(6)
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Note that in practice, (6) can be estimated using the burst suppression probability (BSP) [7]
algorithm. Through (4) and (6), we can estimate x based on measurement of burst
suppression and calculation of burst and suppression lengths from the EEG.

B. Automatic EEG Segmentation
In order to infer the metabolic state in our model, we must first establish a method to
segment EEG recordings into bursts and suppressions. That is, if xt, t = 0, 1, 2, … is the
sampled EEG signal, then we must obtain a corresponding binary series nt where nt = 1 if xt
is in a suppression and 0 if it is in a burst.

While several algorithms have been developed for this purpose [10], [11], we choose to use
adaptive variance thresholding as follows:

(7)

(8)

(9)

where γ is a tunable filter parameter and  is an amplitude threshold. We have applied
this method to a variety of EEG recordings of burst suppression from the neurological ICU
[12] and, as illustrated in Figure 4, it can reliably segment the EEG into bursts and
suppressions.

From the binary signal nt it is straightforward to obtain empirical lengths of bursts and
suppression (simply, the lengths of consecutive 0s or 1s), facilitating estimation of metabolic
state.

C. Inference of Metabolic State
In order to estimate the metabolic state x as a function of time, and to account for anticipated
stochastic effects in burst and suppression lengths, we introduce a probabilistic model as
follows:

(10)

This model is a rectified Gaussian random walk and, if σ is suitably small, implies that x
does not exhibit large and sudden temporal changes.

We will, furthermore, make a Markovian assumption that

(11)

and, in particular, that

(12)
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where Li denotes the length of the ith event (either a burst or suppression) and H(·) denotes
the entire history.

What remains is to define the probabilities for continuation:

(13)

and switching:

(14)

Based on the characterization from (4) and (6), we choose to model these probabilities using
the Weibull hazard function

(15)

and its cumulative distribution function (CDF)

(16)

Note that (15) and (16) are common in medical survival analysis and reliability engineering.

We proceed to fit (16) to the burst suppression level, which can be well-estimated from the
segmented EEG using the burst suppression probability (BSP) algorithm [7]. In particular,
we compute an empirical CDF for (13) and (14) by finding, for each suppression and burst,
the corresponding BSP level. We then fit (16) to these CDFs using the constraints

(17)

for bursts and

(18)

for suppressions. For this, we use a nonlinear least squares numerical method over the free
parameters ai, bi, ci. Figure 5 illustrates the empirical CDF for switching from the EEGs of
20 ICU patients1 and the resulting fit for two BSP levels. In both cases, the functions (17)–
(18), together with (16), are able to closely match the empirical CDFs. Figure 6 illustrates
these fits, as compared to the empirical CDFs for switching, across the entire range of BSP
values. As shown, the resulting model characterization is close to what we find from our
data.

The one-to-one relationship (6) relates our continuation and switching functions (for BSP)
directly to metabolic state. We can thus proceed to perform inference of the metabolic state

1These data were collected at the Massachusetts General Hospital as part of routine clinical monitoring and with institutional review
board approval.
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through a direct application of Bayes formula to (12). We illustrate the estimation using
synthetic data generated from the model (1). Figure 7A illustrates the burst and suppression
output (nt) from the model when x(t) is a realization of the random walk (10). Through (12)–
(16), and the fits of (17)–(18) obtained empirically from our ICU data (i.e., Figure 6), we
obtain the posterior probability density function of metabolic state x at each point in time.
The mean of each distribution is the metabolic state estimate, which is plotted in Figure 7C
and compared with the true value. Clearly, the estimate closely tracks the true value. One
feature of note is that the estimate does not immediately change at each switch from burst to
suppression. Instead, and consistent with our model, it remains stable during each burst and
suppression until such time as its length is improbable given the current BSP estimate.

IV. CONCLUSIONS
We have provided a reduced-order model for burst suppression that links the EEG directly
to reductions in cerebral metabolic rate. From this model, we developed a probabilistic
inference scheme to estimate brain metabolic state from measured EEG activity. The
resulting method was fit and tested on EEG data gathered from patients in the neurological
ICU. We then tested the method on synthetic burst suppression data, showing correct
inference of metabolic state.

Further testing is, of course, necessary to validate the use of this method in the clinical
setting. Nevertheless, the model provides justification for the practice of pharmacologically
inducing burst suppression as a therapeutic target for brain protection in neurological
intensive care settings such as unrelenting seizures (refractory status epilepticus), severe
traumatic brain injury, and in cardiac surgery during circulatory arrest [13]. The model and
estimation scheme may also help inform strategies for optimizing burst suppression when
using anesthetic drugs. An eventual goal is to provide a neurophysiologically-principled
basis for inferring and tracking brain metabolism in the ICU or surgical settings.
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Fig. 1.
Example of burst suppression. (A) Continuous EEG activity, (B) Burst suppression
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Fig. 2.
ATP-based mechanism for burst suppression. ATP is depleted through the course of each
burst, leading to suppression. During suppression ATP gradually recovers until, eventually,
activity begins again
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Fig. 3.
Example of model output for different values of metabolic state. (A) x = 0.8, (B) x = 0.1.
Simulated EEG signal shown for schematic purposes only.
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Fig. 4.
Examples of ICU burst suppression with automatic segmentation. Segmented bursts (i.e., nt
= 0) are shown in red, while suppressions (i.e., nt = 1) are blue. (A,B) Patterns containing
epileptiform spikes, (C,D) Patterns with distinct bursts and suppressions, (E,F) Patterns with
less distinct bursts
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Fig. 5.
Example of CDF for switching and resulting fits for two BSP levels. (A) BSP of 0.2, (B)
BSP of 0.7
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Fig. 6.
Empirical1 and fit switching probability functions vs. BSP for suppressions (A,B) and bursts
(C,D). The fitted functions (B,D) closely match the empirical CDFs (A,C). White indicates
values close to 1 (high probability of switching) whereas black indicates values close to 0
(low probability of switching).
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Fig. 7.
Example of inference of metabolic state from simulated burst suppression. (A) Simulated
bursts and suppressions from (1), (B) Probability density function of metabolic state x
estimated from (12)–(18) (and corresponding fits). (C) Inferred x (red trace) as compared to
the true value used to generate (A) (blue trace).
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