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Abstract

We define an indefinite Wishart matrix as a matrix of the form A = W TWΣ, where Σ is an indefinite diagonal

matrix and W is a matrix of independent standard normals. We focus on the case where W is L × 2 which has

engineering applications. We obtain the distribution of the ratio of the eigenvalues of A. This distribution can

be “folded” to give the distribution of the condition number. We calculate formulas for W real (β = 1), complex

(β = 2), quaternionic (β = 4) or any ghost 0 < β < ∞. We then corroborate our work by comparing them against

numerical experiments.

Problem Statement

Let W be an L × 2 matrix whose elements are drawn from a normal distribution. Let the two real eigenvalues of

A = WTWΣ be denoted by λ1 and λ2. The condition number of A is σ =

∣

∣

∣

∣

λmax
∣

∣

∣

∣

∣

∣

∣
λmin

∣

∣

∣

, where |λmax| = max (|λ1| , |λ2|)

and
∣

∣λmin
∣

∣ = min (|λ1| , |λ2|). What is the condition number distribution of A = WTWΣ, where Σ =

[

x1

x2

]

is full rank with sgn (x2) = −sgn (x1)? Though much is known when Σ is positive definite [5], to the extent of our
knowledge, the indefinite case is rarely considered. We work out the distribution of the ratio of the eigenvalues and
the condition number of A as it has applications in hypersensitive ground based radars [1, 2].

A ghost β−normal is a construction that works in many ways like a real (β = 1), complex (β = 2), and quaternionic
(β = 4) standard normal [6]. In particular, its absolute value has a χβ distribution on [0,∞) . In general, we allow W
to be an L× 2 matrix sampled from a β−normal distribution but we immediately turn this into a problem involving

real matrices namely the condition number of RΣRT , where R ∼
[

χLβ χβ

χ(L−1)β

]

.

Distribution of the Ratio of the Eigenvalues

We first write W = QR, where Q is an L× 2 orthogonal matrix and R is an 2× 2 upper triangular matrix [3, reduced
QR factorization]. Note that WΣWT = QRΣRTQT and that A is similar to RΣRT . The elements of R may be
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chosen to be non-negative in which case it is well known that they have independent χ-distributions

R ≡
[

a b
c

]

∼
[

χLβ χβ

χ(L−1)β

]

(1)

and that [5]

χk ∼ xk−1e−x2/2

2k/2−1Γ(k/2)
, x ≥ 0 (2)

where k denotes degrees of freedom and β = 1 corresponds to entries being real, β = 2 complex, β = 4 quaternionic
and general β for any ghost [6]. The positivity of R1,2 merits some comment as it does not generalize well beyond two
columns. With two columns, even for β 6= 1, a phase can be pulled out of the rows and columns of R and absorbed
elsewhere without any loss of generality.

Comment: The concept of a QR decomposition is often sensible for W ’s with entries drawn from β−normal
distribution. As with reals, complex, and quaternions, R can be chosen to have positive diagonal elements for rank 2
matrices, and R12 can be chosen non-negative as well, by absorbing "phases" or unit-ghosts either into Q or RΣRT .

This argument follows the ghost methodology described in [6]. However, mathematically the point of departure
can be the computation of the condition number distribution for the real matrix RΣRT without any mention of the
ghosts or their interpretation.

The joint distribution of the elements a, b, c of R with parameters L and β is:

ρR (a, b, c;L, β) =
2−βL+3aβL−1bβ−1cβ(L−1)−1 exp

[

− 1
2

(

a2 + b2 + c2
)]

Γ
(

βL
2

)

Γ
(

β
2

)

Γ
[

β
2 (L− 1)

] ; (3)

in particular

ρR (a, b, c;L, β = 1) =
2aL−1cL−2 exp

[

− 1
2

(

a2 + b2 + c2
)]

πΓ (L− 1)
,

ρR (a, b, c;L, β = 2) =
2−2L+3 (L− 1)a2L−1bc2L−3 exp

[

− 1
2

(

a2 + b2 + c2
)]

Γ2 (L)
,

ρR (a, b, c;L, β = 4) =
2−4(L−1) (L− 1) (2L− 1) a4L−1b3c4L−5 exp

[

− 1
2

(

a2 + b2 + c2
)]

Γ2 (2L)
.

The first change of variables computes the matrix whose condition number we are seeking, RΣRT as: R

[

x1

x2

]

RT =
[

a2x1 + b2x2 bcx2

bcx2 c2x2

]

≡
[

d f
f e

]

. From Eq. (1) we see that a, b, c are real and non-negative. The old and new

variables are related by

c =
√

e/x2, b =
f

x2

√

e/x2

, a =

√

1

x1

(

d− f2

e

)

. (4)

Note that c > 0 implies sgn (e) = sgn (x2) and f = bcx2 ⇒ sgn (f) = sgn (x2). The Jacobian associated with this

transformation is
∣

∣

∣

∂(a,b,c)
∂(d,e,f)

∣

∣

∣
=

∣

∣

∣

1
4ac2x1x2

2

∣

∣

∣
.

We make the eigenvalue decomposition of the symmetric matrix
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[

d f
f e

]

≡
[

cos θ − sin θ
sin θ cos θ

] [

λ1

λ2

] [

cos θ sin θ
− sin θ cos θ

]

, θ ∈
[

0,
π

2

]

; (5)

implying

d = λ1 cos
2 θ + λ2 sin

2 θ (6)

e = λ1 sin
2 θ + λ2 cos

2 θ (7)

f =
sin2θ

2
(λ1 − λ2) . (8)

The Jacobian associated with this transformation is
∣

∣

∣

∂(d,e,f)
∂(λ1,λ2,θ)

∣

∣

∣
= |λ1 − λ2|. The choice of θ ∈

[

0, π
2

]

nails down the

ordering of the eigenvalues

x2 < 0 < x1 ⇒ f < 0 ⇒ λ1 < 0 < λ2

x1 < 0 < x2 ⇒ f > 0 ⇒ λ2 < 0 < λ1.
(9)

In summary, given θ ∈
[

0, π2
]

, the constraints on d, e, f are

x2 < 0 < x1 ⇒ d > f2

e , e < 0, f < 0, ⇒ λ1 < 0 < λ2

x1 < 0 < x2 ⇒ d < f2

e , e > 0, f > 0 ⇒ λ2 < 0 < λ1.

Intersecting t ≡ −λ2

λ1
≥ 0 with the constraint space, we obtain

tan2 θ > t. (10)

It is easy to see this is required by Eq. (7). Conversely given sgn (e) = sgn (x2) and tan2 θ > t = −λ2

λ1

we can solve for
d and f so that d, e and f meet all of the constraints.

The next change of variables is to write the distribution as a ratio of the eigenvalues, i.e., u = λ1, t =
−λ2

λ1
, and

θ. The Jacobian associated with this transformation is
∣

∣

∣

∂(λ1,λ2,θ)
∂(u,t,θ)

∣

∣

∣
= |u|. Since we are interested in the condition

number, we integrate u over

{

[0,∞) : x2 > 0
[0,−∞) : x2 < 0

, while applying the constraint (10)

ρ (t, θ;L, β) =

∣

∣

∣

∣

∣

∣

2 (−x1x2)
βL

2 Γ (βL) t
βL

2
−1 (t+ 1)

β

Γ
(

β
2

)

Γ
[

β
2 (L− 1)

]

Γ
(

βL
2

)

(sin θ cos θ)
β−1 [

t cos2 θ − sin2 θ
]β(L−1)

[

x1

(

t2 cos2 θ + sin2 θ
)

− x2t
]βL

∣

∣

∣

∣

∣

∣

, (11)

where here and below implicitly x1 and x2 are parameters as well. This in the special cases reads

ρ (t, θ;L, β = 1) =
2 (−x1x2)

L/2
Γ (L) t

L
2
−1 (t+ 1)√

πΓ
(

L
2

)

Γ
[

1
2 (L− 1)

]

∣

∣

∣

∣

∣

[

t cos2 θ − sin2 θ
]L−1

[

x1

(

t2 cos2 θ + sin2 θ
)

− x2t
]L

∣

∣

∣

∣

∣

ρ (t, θ;L, β = 2) =
(−x1x2)

L
Γ (2L) tL−1 (t+ 1)

2

Γ (L− 1) Γ (L)

sin2θ
[

t cos2 θ − sin2 θ
]2(L−1)

[

x1

(

t2 cos2 θ + sin2 θ
)

− x2t
]2L

ρ (t, θ;L, β = 4) =
(−x1x2)

2L
Γ (4L) t2L−1 (t+ 1)

4

4Γ [2 (L− 1)] Γ (2L)

sin32θ
[

t cos2 θ − sin2 θ
]4(L−1)

[

x1

(

t2 cos2 θ + sin2 θ
)

− x2t
]4L

.

3



Lastly we integrate θ from [0, π/2] to obtain the distribution corresponding to the absolute value of the ratio of
the eigenvalues ρ (t;L, β). We denote the density after integrating θ with the same symbol ρ without any confusion.
In terms of the Gauss hypergeometric function [7], 2F1 (a, b; c; z) we obtain,

ρ(t;L, β) =
2βL−1 (−x1x2)

βL

2 Γ
(

βL
2 + 1

2

)

Γ [β (L− 1) + 1] (t+ 1)
β
t
βL

2
− β

2
−1

√
πΓ

[

β
2 (L− 1)

]

Γ
(

βL− β
2 + 1

)

|tx2 − x1|βL

(

x1 − tx2

tx1 − x2

)βL

(12)

× 2F1

(

βL,
β

2
;βL − β

2
+ 1;

x1 − tx2

x2 − tx1

)

.

In particular,

ρ (t;L, β = 1) =
2L−1(−x1x2)

L/2Γ
(

1
2 (L + 1)

)

Γ (L) (t+ 1) t
L
2
− 3

2

√
πΓ

(

1
2 (L− 1)

)

Γ
(

L+ 1
2

)

|tx2 − x1|L
(

x1 − tx2

tx1 − x2

)L

× 2F1

(

L,
1

2
;L+

1

2
;
x1 − tx2

x2 − tx1

)

,

ρ (t;L, β = 2) =
22(L−1) (x1t− x2) (−x1x2)

L Γ
(

L− 1
2

)

(t+ 1) tL−2

√
πΓ (L− 1) (x1 − x2) (tx2 − x1)

2L

(

x1 − tx2

tx1 − x2

)2L

,

ρ (t;L, β = 4) =
24L−1(−x1x2)

2LΓ
(

2L+ 1
2

)

Γ (4L− 3) (t+ 1)4 t2L−3

√
πΓ [2 (L− 1)] Γ (4L− 1) (tx2 − x1)

4L

(

x1 − tx2

tx1 − x2

)4L

× 2F1

(

4L, 2; 4L− 1;
x1 − tx2

x2 − tx1

)

.

Distribution of the Condition Number

We can turn ρ (t;L, β) to the condition number distribution by “folding” the distribution about one, i.e., take σ ≡
max

(

t, 1t
)

. Therefore by folding the answer about one we can form the true condition number distribution from
ρ(t;L, β). Mathematically,

1 =

ˆ +∞

0

dtρ(t;L, β) =

ˆ 1

0

dtρ (t;L, β) +

ˆ ∞

1

dtρ (t;L, β)
σ→ 1

t=

ˆ ∞

1

dσ

(

1

σ2
ρ

(

1

σ
;L, β

)

+ ρ(σ;L, β)

)

≡
ˆ ∞

1

dσf(σ;L, β)

This way we arrive at the desired distribution function, f (σ, L, β), for the condition number of the indefinite
Wishart matrices

f (σ;L, β) ≡ 1

σ2
ρ

(

1

σ
;L, β

)

+ ρ (σ;L, β) , (13)

4



where ρ is as in Eq. (12).

The condition number distribution written explicitly is

f (σ;L, β) =
2βL−1 (−x1x2)

βL
2 Γ

(

βL
2 + 1

2

)

Γ [β (L− 1) + 1] (σ + 1)
β
σ

βL

2
−β

2
−1

√
πΓ

[

β
2 (L− 1)

]

Γ
(

βL− β
2 + 1

) (14)

×
[

∣

∣

∣

1

σx1−x2

∣

∣

∣

βL

2F1(βL,β
2
;βL−β

2
+1;r)+

∣

∣

∣

1

σx2−x1

∣

∣

∣

βL

2F1(βL,β
2
;βL−β

2
+1; 1

r )
]

where r ≡ σx2 − x1

σx1 − x2
, σ = [1,∞) .

In particular,

f (σ;L, β = 1) =
2L−1(−x1x2)

L/2Γ
(

L
2 + 1

2

)

Γ (L) (σ + 1)σ
1

2
L− 3

2

√
πΓ

(

L
2 − 1

2

)

Γ
(

1
2 + L

) (15)

×
[

∣

∣

∣

1

x2−σx1

∣

∣

∣

L

2F1( 1

2
,L;L+ 1

2
;r)+

∣

∣

∣

1

σx2−x1

∣

∣

∣

L

2F1( 1

2
,L;L+ 1

2
; 1
r )
]

,

f (σ;L, β = 2) =
1

4

(−4x1x2)
LΓ(L− 1

2 )(σ + 1)√
π(x1 − x2)Γ(L− 1)σ4

[

σL+2(σx1 − x2)

(x2 − x1σ)2L
+

σL+2(x1 − σx2)

(x2σ − x1)2L

]

, (16)

f (σ;L, β = 4) =
24L−1 (−x1x2)

2L
Γ
(

2L+ 1
2

)

Γ [4 (L− 1) + 1] (σ + 1)
4
σ2L−3

√
πΓ [2 (L− 1)] Γ (4L− 1)

(17)

×
[

(

1

σx1−x2

)

4L

2F1(4L,2;4L−1;r)+
(

1

σx2−x1

)

4L

2F1(4L,2;4L−1; 1
r )
]

.

Special Cases

Consider the case where x1 = −x2 ≡ x which implies r = −1 and the eigenvalues of A and −A are equi-distributed .
The condition number density is

f (σ;L, β) =
2σ

βL

2
− β

2
−1Γ (βL− β + 1) (σ + 1)

−β(L−1)

β (L− 1)
{

Γ
[

β
2 (L− 1)

]}2

and in particular takes the very simple form

f (σ;L = 2, β = 1) =
2

π
√
σ(σ + 1)

. (18)

Alternatively as β → ∞ the limiting condition number is non-random and equal to the condition number of the
matrix

[ √
L 1√

L− 1

] [

x1

x2

] [ √
L 1√

L− 1

]T

.

This is a simple consequence of the fact that lims→∞
1√
s
χs = 1 and the condition number is independent of scaling.
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Numerical Results

In this section we compare the theoretical condition number distribution, Eq. (14), (red curves) against Monte Carlo
data (black dots) for the three special cases of real, complex and quaternionic matrices W . In all the plots the number
of trials used to generate Monte Carlo data was 105.

Real Matrices β = 1
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Figure 1: Real W matrices, β = 1, given by Eq. (15)
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Figure 2: Real W matrices, β = 1, given by Eq. (15)
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Complex Matrices β = 2
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Figure 3: Complex W matrices, β = 2, given by Eq. (16)
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Figure 4: Complex W matrices, β = 2, given by Eq. (16)
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Quaternionic Matrices β = 4
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Figure 5: Quaternionic W matrices, β = 4, given by Eq. (17)

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06
Quaternions, L=6, x1=33, x2=−2

condition number

de
ns

ity

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Quaternions, L=4, x1=0.231, x2=−4.40

condition number

de
ns

ity

Figure 6: Quaternionic W matrices, β = 4, given by Eq. (17)

General β

Here we plot Eq. (14) for a fixed set of parameters L, x1, x2 for various ghosts.
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Figure 7: The condition number density Eq. (14) for various ghosts. As β → ∞ the distribution becomes non-random
and can be represented by a delta function around 2.395.

Future Work

The natural generalization would be to extend the results to L × N indefinite matrices. We satisfied ourselves with
N = 2 given its relevance for applications [1, 2].
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