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Abstract

Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet
crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times
the planet’s orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low
obliquity, at least two additional spot crossings should have been observed. They were not observed, giving
evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range
40°–140°, i.e., both spin–orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small
collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low
obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits (“warm
Jupiters,” with  a R 8min ). This demonstrates a connection between stellar obliquity and planet properties, in
contradiction to some theories for obliquity excitation.
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1. Introduction

A star’s obliquity is a fundamental geometric property of a
planetary system, and an intriguing piece of the puzzle of
planet formation and orbital evolution (as recently reviewed by
Winn & Fabrycky 2015). Many methods have been devised to
test for alignment between stellar rotation and planetary orbital
motion: the Rossiter–McLaughlin effect (Queloz et al. 2000),
gravity darkening (Barnes 2009; Masuda 2015), v isin statistics
(Schlaufman 2010), asteroseismology (Chaplin et al. 2013),
and the spot-tracking method (Nutzman et al. 2011; Sanchis-
Ojeda et al. 2011; Mazeh et al. 2015a). One of these methods,
the spot-tracking method, takes advantage of precise and
continuous time-series photometry of stars with transiting
planets, which the Kepler mission has provided (Borucki
et al. 2011). When a transiting planet crosses in front of a
starspot, the loss of light is briefly reduced, because the hidden
portion of the star has a lower intensity than the surrounding
photosphere. The detection and timing of these events can
sometimes reveal the stellar obliquity. One approach is to seek
evidence for multiple crossings of the same spot, which are
more likely to occur for a spin-aligned star than a tilted star
(see, e.g., Désert et al. 2011; Nutzman et al. 2011; Sanchis-
Ojeda et al. 2011).

WASP-107b is a transiting planet discovered by Anderson
et al. (2017). The host star is a K dwarf of mass 0.69 M . The
planet has an orbital period of 5.7 days and a radius of
0.95RJup. Despite this near-Jovian size, radial-velocity mon-
itoring revealed the planet’s mass to be only about twice that of
Neptune’s ( M0.12 Jup). This makes the planet difficult to
classify and demonstrates that such a relatively low mass is
sufficient to accrete a large gaseous envelope.

WASP-107 happened to be within the field of view of K2
Campaign 10, which is one of the star fields along the ecliptic
that are being monitored by the Kepler telescope (Howell
et al. 2014). Thanks to a proposal by Anderson et al. (2017),
WASP-107 was observed with one-minute sampling (“short

cadence”). In this paper, we report on our analysis of the K2
photometry and our assessment of the stellar obliquity, based
on observations of starspot crossings. The following section
describes the data reduction. In Section 3, we refine the basic
transit parameters and identify spot crossings. Section 4 is
concerned with the stellar rotation period, a crucial ingredient
in the analysis of starspot crossings. In Section 5, we present
evidence for a high obliquity by modeling the intersections
between the planet’s transit chord and the possible paths of
starspots. We discuss the implications in Section 6.

2. K2 Photometry

WASP-107 (or EPIC 228724232) was observed by Kepler
from 2016July6 to September20 in the short-cadence mode.
We disregarded the first 6 days of data, which were of lower
quality because of a 3.5 pixel pointing error that was
subsequently corrected. A further complication was the loss
of Module 4 during this campaign, resulting in a 14-day gap in
data collection. Thus, the useful data comprises an interval of
about 7 days, followed by the 14-day gap, and then a
continuous interval of nearly 50 days.
We downloaded the pixel files from the Mikulski Archive

for Space Telescopes.3 To reduce the spurious intensity
fluctuations caused by the rolling motion of the spacecraft,
we used an approach similar to that described by Vanderburg &
Johnson (2014). We considered a circular aperture of radius
4.5pixels centered on the brightest pixel and fitted a two-
dimensional Gaussian function to the intensity distribution
within the aperture. Then, we decorrelated the aperture-
summed flux and the X and Y positions of the fitted Gaussian
function. Figure 1 shows the corrected time series, including
stellar variability, transit signals, and some residual systematic
effects.
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3. Light Curve Analysis

Anderson et al. (2017) found the stellar rotation period to be
nearly three times as long as the orbital period. If the stellar
obliquity were near 0° or 180°, then the spots would move
along the transit chord as the star rotates. In such a situation,
whenever we see a spot-crossing anomaly during transit epoch
n, we would also expect to see one in epochs -n 3 or +n 3,
as long as the starspot persists for at least one rotation. We
checked for this pattern by scrutinizing the data obtained during
each of the 9 transits. A spot-crossing anomaly was obvious to
the eye in epoch 4, but none were visible in epoch 7 (and epoch
1 occurred during the data gap). A second spot crossing took
place in epoch 6, but none were detected in epochs 3 or 9. A
third possible anomaly, weaker than the others, was seen in
epoch 11, but none were seen in epoch 8. Thus, it was
immediately clear that WASP-107 is unlikely to have a
perfectly prograde or retrograde orbit. A tilt of order R Rp
radians (∼10°) is needed for the spots to leave the transit chord
as they rotate across the visible stellar hemisphere.

For quantitative analysis, we modeled each transit light curve
with the Batman code written by Kreidberg (2015). We
considered a 7 hr window around the time of mid-transit and
allowed the out-of-transit flux to be a quadratic function of time
in order to account for longer-term stellar variability. The free
parameters included the planet-to-star radius ratio ( R Rp ), the
ratio of stellar radius to orbital distance ( R a), and the impact
parameter ( ºb a I Rcos ). We took the limb-darkening
profile to be quadratic, with both coefficients u1 and u2 as
free parameters. We also took into account the effect of
untransited starspots, which increase the transit depth beyond
what it would be in the absence of spots. To do so, we
introduced an additional parameter DFspot specific to each
transit, such that

=
- D

- D
( )‐

F
F F

F1
. 1calc,spot

calc,no spot spot

spot

Here, ‐Fcalc,no spot is the calculated flux using Batman, and
Fcalc,spot is the calculated flux that is compared to the observed
flux. With this definition, ºF 1calc,spot outside of the transits;

this was needed because we normalized the data in this manner.
We adopted the usual c2 likelihood function and found the
maximum-likelihood solution using the Levenberg–Marquardt
algorithm as implemented in the Python package lmfit
(Newville et al. 2014).
To determine the number of spot-crossing events during each

transit, we modeled the spot-crossing anomalies as Gaussian
functions of time:
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where A, tanom, and sanom represent, respectively, the amplitude,
time, and duration of the anomaly. To identify anomalies more
objectively, we fitted each transit several times: with no
anomalies, one anomaly, two anomalies, and so forth. Then we
used the Bayesian Information Criterion,

= +( ) ( ) ( )L N MBIC 2 log log , 3max

to decide which number of anomalies provides the best fit to
the data. In this equation, Lmax is the maximum likelihood, N is
the number of model parameters, and M is the number of data
points. We demanded ΔBIC>10. Only three anomalies
passed this criterion: the same three that were visually obvious.
Table 1 reports their properties based on the Markov Chain
Monte Carlo (MCMC) code of Foreman-Mackey et al. (2013).
The quoted value is based on the 50% level of the cumulative
posterior distribution, and the uncertainty interval is based on
the 16% and 84% levels.
To refine the transit parameters, we excluded data within

s2 anom of the fitted time of each anomaly. Then, we produced a
phase-folded anomaly free light curve, which was subjected to
another MCMC analysis. Table 2 reports the results. Finally, to
model the effects of the identified spot-crossing anomalies in
detail, we switched from the phenomenological model of
Equation (2) to the more physically motivated model spot-
rod (Béky et al. 2014). In this model, the transit light curve is
calculated for a limb-darkened photosphere with uniform and
circular spots.

Figure 1. Corrected K2 photometry of WASP-107. Colored arrows indicate the transits during which spot-crossing anomalies were detected. Outside of transits, the
time between the two clearest minima is 16.8days, which agrees with the previously measured rotation period. The data used to create this figure are available.
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4. Stellar Rotation Period

Knowledge of the stellar rotation period is important for the
analysis of spot crossings. The K2 time series (Figure 1) shows
variability at the 0.3% level on a timescale of ∼10 days, with
what appear to be two cycles of a quasiperiodic function. These
variations are characteristic of starspots being carried around by
stellar rotation. One estimate of the rotation period is the
interval between the two clearest minima, which we found to
be 16.8±1.2days by fitting quadratic functions to the data
surrounding each minimum. Another measure comes from the
periodogram (Lomb 1976; Scargle 1982). After masking out
the transits, the periodogram of the time series has a peak at

-
+17.7 2.8

8.8 days. Likewise, the autocorrelation method (McQuillan
et al. 2013) gives an estimate of -

+17.0 1.6
2.1 days. All of these

estimates agree with (and are probably less accurate than) the
period of 17.1±1.0days reported by Anderson et al. (2017)
based on two seasons of WASP photometry. In what follows,
we adopt = P 17.1 1.0rot days.

The combination of Prot, R , and v isin can be used to
calculate the stellar inclination angle i :


 

p
= = ( )i

v i

v

v i

R P
sin

sin sin

2
. 4

rot

Anderson et al. (2017) reported  = v isin 2.5 0.8 kms−1

based on the observed broadening of the star’s spectral lines. On
the other hand, p= = v R P2 3.0 0.2rot kms−1 using the
stellar radius in Table 2. The comparison provides only a very
loose constraint on the orientation of the star:  = isin 0.8 0.3.

5. Spot-crossing Anomalies

At the time of an observed spot-crossing anomaly, the planet
and the spot overlap on the sky. Given the rotation period and
the star’s orientation, we can calculate the spot’s motion in the
immediate future and past. For obliquities near 0°or 180°, the
spot moves parallel to the transit chord and is likely to be
crossed during the subsequent transits or to have been crossed
in the previous transits. For higher obliquities, this is unlikely,
because the spot’s path only intersects the transit chord at one
location. The underlying assumptions are that the spot lasts for
at least one stellar rotation and that the spot is not much larger
than the planet. These assumptions seem justified here, given
the apparent coherence of the stellar variability over the ≈60-
day observing interval and the small amplitude of the
variations.

To determine the allowed range of obliquities for WASP-
107, we used a Monte Carlo procedure. In each of 104

realizations, we drew values of Prot, icos , and the sky-
projected obliquity λ, from uniform distributions. We held the
transit parameters fixed in this part of the analysis, because they
are so precisely constrained. Given the rotation period and
stellar orientation as well as the observed times of the 3
anomalies, we calculated the trajectories of each of the 3 spots

over the entire time interval of the K2 observations. Then, we
computed a “badness of fit” statistic, by totaling up the number
of data points for which an intersection between the planet and
a spot was predicted but not observed.
Figure 3 illustrates the geometry. The left panel shows the

star at epoch 4 for the case l = 0 and  = i 90 . The starspot’s
location along the transit chord is fixed by the observed timing
of the flux anomaly. The right panel shows the calculated
location of the starspot at epoch 7. According to this model, a
flux anomaly should have been observed about one-quarter of
the way through the transit, but it was not. The dotted line
shows all of the possible locations for the starspot when λ is
allowed to vary. For high enough λ, the spot can avoid being
crossed. Similar plots can be made for the anomalies observed
in epochs 6 and 11.
The middle and right panels of Figure 2 illustrate the success

of high-obliquity models and the failure of low-obliquity
models. The data points are the residuals after subtracting the
best-fitting transit model, allowing the spot-crossing anomalies
to be seen more clearly. In the middle panel, a good fit is
achieved by a model with true obliquity Y = 45 . Of course,
many other high-obliquity models also fit the data. In the right
panel, we show 20 spot models drawn randomly from our
Monte Carlo procedure, all having Y < 40 . None of them

Table 2
System Parameters of WASP-107

Parameter References

Stellar Parameters
( )T Keff 4430±120 A

( )glog dex 4.5±0.1 A
[ ] ( )Fe H dex +0.02±0.10 A

v isin (km s−1) 2.5±0.8 A

 ( )M M 0.69±0.05 A

 ( )R R 0.66±0.02 A
Apparent V mag 11.6 A

( )P daysrot 17.1±1.0 A
u1 0.6666±0.0062 B
u2 0.015±0.011 B

Planetary Parameters
( )P days 5.7214742±0.0000043 B
( )T BJDc 2457584.329897±0.000032 B

a R 18.164±0.037 B
( )a au 0.0558±0.0018 B

*R Rp 0.14434±0.00018 B

( )R Rp Jup 0.948±0.030 B

( )M Mp Jup 0.12±0.01 B

( )i 89.8±0.2 B

ºb a i Rcos 0.07±0.07 B
( )e assumed 0 A

Note. A: Anderson et al. (2017); B: this work.

Table 1
Spot-crossing Anomalies Observed in K2

Epoch tanom (BJD − 2,454,833) Amplitude A Duration sanom (days) Spot #

4 2774.20512±0.00022 0.00298±0.00012 0.00493±0.00022 1
6 2785.64242±0.00044 0.00156±0.00012 0.00493±0.00041 2
11 2814.26773±0.00096 0.00064±0.00017 0.0031±0.0010 3
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provide a satisfactory fit, because they predict anomalies when
none are seen.

Figure 4 summarizes the results. The left panel shows the
badness-of-fit, as a function of Prot and the true obliquity Ψ.
Two horizontal lines indicate the 1σ range of the measured
rotation period. All of the best fits are obtained for obliquities
between 40° and 140°. Interestingly, there is a narrow range of
rotation periods surrounding 17.16 days for which the obliquity
must be restricted to a smaller interval to provide a good fit.
This is because rotation periods in this range are nearly exactly
three times longer than the orbital period. When this is the case,
rotation brings the spot back to the transit chord just in time to
intersect the planet, regardless of the stellar orientation. The
right panel of Figure 4 shows the density (in parameter space)
of all of the models that fit the data well and do not predict any
unobserved anomalies. Here, we see more clearly that the

successful models require the obliquity to be in the range from
about 40° and 140°. Evidently, the star is tilted at some large
angle, though we cannot specify the value of the angle with any
precision.

6. Discussion

Should there be any doubt about our spot analysis, the high
obliquity can be confirmed by detecting the Rossiter–
McLaughlin (RM) effect during transits. The expected signal
amplitude is

 D » » -( ) ( )V R R v i0.7 sin 36 m s . 5pRM
2 1

The situation brings to mind the case of HAT-P-11 (Bakos
et al. 2010), in which the order of events was reversed. Winn
et al. (2010b) found a high obliquity through RM spectroscopy,

Figure 2. Transits of WASP-107. Left: all of the transits observed by K2. Epoch 1-3 are missing due to the loss of Module 4. Vertical offsets were applied to separate
the individual transits. The dotted green line is the best-fitting model with no starspots. Middle: success of a high-obliquity model. Shown are residuals after
subtracting the best-fitting no-spot model. The red curve is a representative model with obliquity Y = 45 (λ=45°, iå=90°). Right: failure of low-obliquity models.
The blue curves are 20 representative models with Y < 40 . By construction, these models fit the observed anomalies in Epochs 4, 6, and 11; however, they also
predict additional spot-crossing events that are not observed.
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but with a low signal-to-noise ratio; this finding was
subsequently confirmed by spot modeling (Sanchis-Ojeda &
Winn 2011; Deming et al. 2015). With an apparent magnitude
V=11.6, WASP-107 is about 2mag fainter than HAT-P-11.
This will make the RM observation more challenging, but
probably not impossible given that the transit depth of WASP-
107 is five times larger than that of HAT-P-11.

In fact, these two systems form an interesting pair for
comparison. Both planets are “super-Neptunes” that orbit K
dwarfs at similar orbital distances. For WASP-107 and HAT-P-
11, respectively, the stellar masses are 0.69 and 0.80 M , the

a R values are 18.1 and 15.1, and the planet masses are 1.5
and 2.2 times the mass of Neptune. Additionally, both stars
have high obliquities. The one prominent difference is that
WASP-107b has a much larger diameter and is nine times less
dense.

Both HAT-P-11 and WASP-107 are also exceptions to the
general trend that relatively low-mass stars (  M M1.2 or

T 6200eff K) have low obliquities. Figure 5 gathers together
all of the reliable obliquity measurements based on the RM
effect, spot modeling, or asteroseismology.4 The size of each
data point encodes our confidence in each system’s departure
from perfect alignment; the largest points are almost certainly
misaligned. The data are shown as a function of M Mp and

a Rmin , i.e., the pericenter distance -( )a e1 in units of the
stellar radius. Red points are for stars with >T 6200eff K, while
blue points are for cooler stars.
We call attention to two patterns: (1) for hot stars, the chance

of being significantly misaligned does not seem to depend on
either of these two parameters; (2) for cool stars, the misaligned

Figure 3. Illustration of the geometric model. Left: the star during Epoch 4, when a spot-crossing anomaly was observed just before mid-transit. The dark circle is the
starspot and the gray bar is the path of the transiting planet. Right: the predicted situation in Epoch 7 for zero obliquity and =P 18.1rot days. A spot-crossing anomaly
should occur about one-quarter of the way through the transit, but is not observed. One way to avoid a spot crossing is to rotate the sky projection of the stellar rotation
axis. By adjusting this angle λ, the predicted spot location can be changed to anywhere along the dotted line.

Figure 4.Monte Carlo search for stellar orientations consistent with the data. Left: the quality of fit as a function of obliquity and rotation period. Horizontal gray lines
bound the 1σ range in the measured rotation period. The color encodes the number of data points where anomalies are predicted but not observed. Dark blue indicates
a good fit, and dark red a poor fit, with white in between. Right: similar, but this time the color represents the density of good-fitting (no unobserved anomalies) models
in parameter space. In these models, the true obliquity lies between about 40° and 140°.

4 The data were collated with the help of TEPCat (Southworth 2011), René
Heller’s webpage, exoplanet.eu, and exoplanets.org. For those few systems
with more than one planet, we used the properties of the most massive planet.
We omitted 55Cnc e, because although Bourrier & Hébrard (2014) reported a
high obliquity, we are persuaded by the more precise data of López-Morales
et al. (2014), which states that the obliquity is unknown.
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stars are all in the zone  a R 8min . Similar patterns were
noted earlier by Winn et al. (2010a), who speculated that the
key physical mechanism distinguishing these cases is tidal
realignment. In this picture, more rapid realignment is possible
for cool stars, because of more rapid dissipation associated with
their thick convective envelopes; and it is also more rapid for
massive close-in planets, because of the stronger tides they
raise. Indeed, Albrecht et al. (2012) showed that for cool stars,
the boundary between aligned and misaligned stars could be
expressed as a threshold value of  

-( ) ( )M M a Rp
2 5, a

parameter that should be proportional to tidal dissipation rate
in the theory of Zahn (1977). Through modeling of the
structure of each star, Valsecchi & Rasio (2014) even found
evidence that the aligned stars tend to have thicker convective
zones.

However, tidal realignment theories suffer from a theoretical
problem: they need to avoid concomitant orbital decay (Winn
et al. 2010a; Dawson 2014). This problem might be superable
(Lai 2012; Li & Winn 2016), but another problem emerged
recently from a study by Mazeh et al. (2015b). They found
statistical evidence for the hot/cool obliquity distinction even
in cases where tidal interactions should be utterly negligible,
i.e., low-mass planets in wide orbits. We also see from Figure 5
that while high a Rmin is associated with misalignment, there
is no evidence for any separate dependence on M Mp , even
though this parameter should also be important in determining
tidal effects. For these reasons, scenarios involving tidal
realignment are questionable.

Many scenarios have been presented to try and explain the
high obliquities of some planet-hosting stars. Any successful
theory must explain why the obliquity distributions are
different for hot and cool stars. Judging from Figure 5, a
successful theory should probably also distinguish between
wide- and close-orbiting planets around cool stars.

Mechanisms that simply tilt the protoplanetary disk at an
early stage, such as the chaotic accretion of Bate et al. (2010) or
the stellar flybys of Batygin (2012), do not have these
properties. Neither do theories involving planet scattering or
the Kozai effect (see, e.g., Fabrycky & Tremaine 2007;
Chatterjee et al. 2008). These theories could be combined with
a tidal realignment mechanism to produce the hot/cool
distinction, but as we have already said, this solution is
problematic. Rogers et al. (2012) proposed a mechanism to tilt
hot stars, but were silent about the cool stars with high
obliquities. Matsakos & Königl (2015) and Spalding & Batygin
(2015) presented two ways to avoid the theoretical problem
with tidal realignment. The former authors propose the host
stars were realigned by ingesting a hot Jupiter that is no longer
observable, while the latter authors, following Lai et al. (2011),
invoke magnetic interactions with the inner edge of the
protoplanetary disk. However, they do not discuss why these
processes should depend on the a Rmin of the innermost
surviving giant planet. In short, we are not aware of any single
proposed mechanism that can explain all of the obliquity data.
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