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ABSTRACT 
In this paper, we proposed highly efficient all-dielectric Huygens’ metasurfaces working at mid-IR frequencies. The 
meta-atom of the designed Huygens’ metasurface is a cubic dielectric resonator or its variety, which is made from PbTe 
that possesses a high refractive index of around 5 at mid-IR frequencies. By overlapping spectrally both the magnetic 
and electric dipole modes of the high-index dielectric resonators, a full phase coverage of 2π and an equal-magnitude 
transmission could be achieved, which are essential conditions for realizing a metasurface. Two Huygens’ metasurfaces 
for beam bending are designed with a phase change between two consecutive meta-atoms of π/4 and π/3, respectively. 
The simulation results agree well with the design theory. 
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1. INTRODUCTION  
 
Metasurfaces1,2 are planar 2D structures with subwavelength thicknesses, allowing complete control of the phase, 
amplitude, and/or the polarization of the incident light. Compared to conventional bulky optical devices, which rely on 
the phase accumulation along the long propagation distances, metasurfaces facilitate strong light-matter interaction with 
subwavelength resonant elements, which allow us to tailor the phase profile across the thin interfaces. In the early stage 
of the development of metasurfaces, metallic resonators (i.e., antennas) and/or their counterparts (i.e., slot antennas)3–7  
were usually adopted as the building block to realize a number of fascinating functionalities, e.g., anomalous reflection 
and refraction, holography, flat lens. However, the use of metallic resonators exhibits high intrinsic ohmic losses at 
infrared and higher frequencies, which hinders their use in metamaterials based on resonance. In order to satisfy 2π 
phase coverage and near equal transmission, which are required by a metasurface, the cross-polarized component of the 
incident light is utilized, which further reduces the efficiency of the metasurface. For instance, the cross-polarized 
transmission amplitudes for the C-shape and V-shape resonators are typically less than 0.4 and 0.153,6,7, respectively. 
Much research effort has been devoted to improve the efficiency of the metasurface by using reflection type structures 8–

11 or multilayer structures12–15. Recently, experimental demonstrations of a new type of multilayer metasurface called 
Huygens’ surfaces at microwave frequencies and telecommunication wavelengths have been presented16–18, in which the 
crossed magnetic and electric dipoles (Huygens’ source) can both be induced by the multi metallic layers. Although the 
efficiency is improved, the Huygens’ surfaces based on these metallic layers still suffer from large ohmic loss. It is 
reported that high-index dielectric resonators (DRs) can naturally support both magnetic and electric resonances19, which 
represent a promising alternative for the development of high-efficiency Huygens’ surfaces because they replace lossy 
ohmic currents with low-loss displacement currents. Thus, high-efficiency dielectric Huygens’ surfaces have been 
studied and experimentally demonstrated at telecommunication wavelengths based on silicon.  
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