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Prof George Tsokos
Editor-in-Chief
Clinical Immunology

Dear Professor Tsokos,

Please find enclosed a revised version of manuscript YCLIM_2017_547 entitled ‘A novel de novo 
activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID)’ 
submitted to be considered for publication in Clinical Immunology. We are delighted with the 
positive nature of the reviewer’s comments, and only very small edits of the submitted documents 
were required to address these. Please find included point-by-point responses to the reviewer’s 
comments. We have also included a revised version of the manuscript, figures and supplementary 
tables.

We hope that these responses will be deemed adequate by the editorial and reviewing teams. We 
look forward to hearing the outcome of your decision.

Yours sincerely,

Mark A. Russell,

Research Fellow



Response to reviewers:

We thank the reviewers of the manuscript for such positive comments, and we are pleased to 
respond to the minor points which are raised.

Reviewer 1: In Figure 1, the description of the mutation should be A>T rather than A<T.

This has now been amended in the manuscript.

Reviewer 1: I recommend including the vaccination history of the patient.
Reviewer 2: Were vaccine titers checked in this patient?  Poor vaccine responses would also help in 
categorizing this patient’s clinical phenotype under CVID.

The patient was started on immunoglobulin replacement for probable CVID prior to referral to 
specialist immunology services. Test vaccinations were not given. We felt that stopping 
immunoglobulin replacement to assess vaccination responses could not be justified. The patient 
received annual inactivated 'flu vaccine. She had received all routine UK childhood vaccinations, 
namely, diphtheria, tetanus, polio (Sabin), pertussis, measles, mumps, rubella and Bacillus Calmette–
Guérin (BCG). A statement in the text (highlighted) has been included to clarify that test vaccinations 
were not performed, and to ensure that the reader is clear that we have not measured vaccine 
responses we have included a row in supplementary table 1 stating that this information is not 
available.
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Abstract

Common variable immunodeficiency (CVID) is characterised by repeated infection 

associated with primary acquired hypogammaglobulinemia. CVID frequently has a complex 

aetiology but, in certain cases, it has a monogenic cause. Recently, variants within the gene 

encoding the transcription factor STAT3 were implicated in monogenic CVID. Here, we 

describe a patient presenting with symptoms synonymous with CVID, who displayed 

reduced levels of IgG and IgA, repeated viral infections and multiple additional co-

morbidities. Whole-exome sequencing revealed a de novo novel missense mutation in the 

coiled-coil domain of STAT3 (c.870A>T; p.K290N). Accordingly, the K290N variant of STAT3 

was generated, and a STAT3 responsive dual-luciferase reporter assay revealed that the 

variant strongly enhances STAT3 transcriptional activity both under basal and stimulated 

(with IL-6) conditions. Overall, these data complement earlier studies in which CVID-

associated STAT3 mutations are predicted to enhance transcriptional activity, suggesting 

that such patients may respond favourably to IL-6 receptor antagonists (e.g. tocilizumab).

Abbreviations:

CMV, cytomegalovirus; CVID, Common variable immunodeficiency; STAT, signal transducer 
and activator of transcription; RSV, respiratory syncytial virus.

Keywords:

Common variable immunodeficiency; CVID; hypogammaglobulinemia; STAT3; whole exome 
sequencing.



1. Introduction

Common variable immunodeficiency (CVID) is the most common severe primary antibody 

deficiency disorder, characterised by acquired hypogammaglobulinemia and failure to mount 

an appropriate antibody response to infection or vaccination. CVID patients present with 

repeated bacterial infections and an increased incidence of certain autoimmune and 

neoplastic disorders [1]. The disease is thought to have a complex polygenic and 

multifactorial aetiology in most cases although causative mutations in single genes have 

been identified in a small proportion of patients [2]. Among the monogenic forms, mutations 

in PIK3CD and LRBA comprise approximately half of all reported cases, while mutations in a 

further 30 additional genes have also been proposed in the remainder [2]. STAT3 is one 

such gene and a recent study identified three potential gain-of-function mutations in STAT3 

among patients with CVID [3]. This is consistent with the emerging consensus that the 

majority of genes associated with monogenic CVID encode signalling proteins (including 

both receptors and downstream effectors) present in immune cells [2].  

STAT3 is a transcription factor whose activity is controlled by numerous cytokines, growth 

factors and hormones. It becomes phosphorylated on specific tyrosine residues in response 

to receptor activation and then dimerises before entering the nucleus to regulate the 

transcription of specific target genes. Interestingly, activating germline mutations in the 

STAT3 gene are relatively rare and the majority of such mutations are inactivating and 

implicated in conditions such as autosomal dominant hyper IgE syndrome [4, 5]. By contrast, 

where these have been described, the activating variants appear to predispose to various 

polyautoimmune diseases, including neonatal diabetes mellitus [6-8]. In the current report, 

we have employed whole exome sequencing of a patient with CVID to reveal a novel, 

causative, de novo mutation in the coiled-coil domain of STAT3. Functional studies show 

that this mutation strongly activates STAT3 under both basal conditions and following 

stimulation with IL-6, implying that this constitutive activation mediates the disease 

pathology.

Material and methods

2.1 Whole exome sequencing 

After obtaining written informed consent, genomic DNA was extracted from EDTA blood 

(QiAmp DNA Mini Kit; Qiagen, Hilden, Germany) or saliva samples (prepIT·L2P; DNA 

Genotek, Ottawa, Canada) from the affected individual and available family members. The 

project was approved by the East London and City Health Authority Research Ethics 

Committee and was conducted according to the Declaration of Helsinki Principles. 



The blood-derived DNA of the affected individual was subjected to whole exome 

sequencing. Exome capture and enrichment was performed using the NimbleGen SeqCap 

EZ Human Exome Library protocol (Roche Nimblegen, Madison, WI, USA). The subsequent 

DNA library was sequenced with 100 bp paired-end reads on the HiSeq 2000 platform 

(Illumina, San Diego, CA, USA). Resulting sequence data were aligned to the hg18 human 

reference genome using the Novoalign alignment tool (Novocraft Technologies Sdn Bhd, 

Petaling Jaya, Malaysia). Sequence variants were called with SAMtools and annotated via 

multiple passes through ANNOVAR [9].

2.2 Mutagenesis

The QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, 

USA) was employed to generate mutations within the human STAT3 gene (Source 

Bioscience, Nottingham, UK) using manufacturer’s guidelines. The primer pairs used to 

create each mutation were K290N; Fd: 

TCCCCTTTGTAGGAAACATTTTGCTGCAACTCCTCC Rv: 

TGGAGGAGTTGCAGCAAAATGTTTCCTACAAAGGGG Y640F; Fd: 

AGTCCGTGGAACCATTCACAAAGCAGCAGCTG Rv: 

AGCTGCTGCTTTGTGAATGGTTCCACGGACTG V637M Fd: 

AGACCCAGATCCAGTCCATGGAACCATACACAAAG, Rv: 

TGCTTTGTGTATGGTTCCATGGACTGGATCTGGGTC. The STAT3 insert was sequenced 

to confirm the success of mutagenesis (Source Bioscience). Finally STAT3 inserts were 

ligated between the AflII and EcoRV restriction sites within the polylinker of a 

pcDNA5/FRT/TO vector.

2.3 Cell culture

HEK293 cells were cultured in DMEM base media supplemented with 10% foetal bovine 

serum, 2mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cells were 

cultured at 37oC and 5% CO2, and were sub-cultured upon reaching 80% confluence. 

2.4 STAT3 Reporter Assay

STAT3 transcriptional activity was investigated using the STAT3 responsive dual 

firefly/Renilla luciferase Cignal reporter system (Qiagen). Cells were seeded at a density of 1 

x 105 cells/well in a 24-well plate, and transfected into cells with 200ng of the Cignal reporter 

construct alongside 400ng of STAT3 constructs using Attractene transfection reagent 

according to the manufacturer’s guidelines (Qiagen). STAT3 activity was assessed 24h after 

transfection using a dual luciferase reporter system (Promega, Madison, WI, USA).



2.5 Western Blotting

Whole cell protein was extracted from HEK293 cells after lysis [10]. Protein was equalised, 

then denatured, prior to its loading onto pre-cast 4-12% Bis-Tris polyacrylamide gels 

(Thermo Fisher Scientific, Boston, MA, USA). Proteins were separated by electrophoresis, 

before their transfer onto PVDF membrane using a XCell II Blot module (Thermo Fisher 

Scientific). Immunoblotting was conducted using an iBind Flex Western device according to 

the manufacturer’s instructions (Thermo Fisher Scientific). Membranes were probed initially 

with antibodies raised against STAT3 (1:1000; Cell Signalling, Beverly, MA, USA; antibody 

registry: AB_331269) or β-actin (1:2000; Sigma-Aldrich, Poole, UK; antibody registry: 

AB_476744) and then subsequently with alkaline phosphatase conjugated secondary 

antibodies raised in the appropriate species. Bands were detected following exposure of 

membranes to CDP Star chemiluminescent reagent (Sigma-Aldrich) and then visualised 

using a cDigit blot scanner (LI-COR Biosciences, Lincoln, NE, USA).

Results

3.1 Patient description

The patient was diagnosed with common variable immunodeficiency (CVID) at age 14 on the 

basis of panhypogammaglobulinaemia and resistant idiopathic thrombocytopaenic purpura, 

for which splenectomy was performed (Supplementary table 1). She did not receive test 

vaccination. She had a history of haemolytic anaemia and idiopathic uveitis. Immunoglobulin 

replacement was started at CVID diagnosis. From early adulthood, the clinical course was 

complicated by CVID-related inflammatory arthritis, small and large intestinal inflammation, 

episodes of unexplained ascites, declining respiratory function, chronic hepatic dysfunction 

and chronic renal impairment. Inflammatory markers were consistently elevated. 

Furthermore, invasive cytomegalovirus (CMV) with gastric ulcer, typical CMV-related gastric 

inclusions and viraemia detected on PCR developed while taking mycophenolate and low 

dose prednisolone, prescribed for the inflammatory complications of CVID. After treatment 

with intravenous ganciclovir she required ongoing valganciclovir prophylaxis to prevent 

recurrent CMV viraemia, despite stopping mycophenolate, and maintaining corticosteroid 

dose at less than 10mg daily. 

More recently, at the age of 34 the patient was admitted to hospital with diarrhoea, vomiting, 

acute on chronic renal failure and was diagnosed with norovirus II. Thereafter the patient 

had several subsequent hospital admissions with episodes of acute on chronic renal failure, 

weight loss (8 Kg, 13% of body weight), anorexia, nausea, intermittent diarrhoea and 



difficulty maintaining an adequate trough IgG despite high doses of immunoglobulin. 

Parenteral feeding was commenced to manage the malnutrition that had developed in 

association with the chronic norovirus infection. During this period persistent rhinovirus was 

detected in respiratory secretions, and subsequent acute respiratory deterioration was 

associated with respiratory syncytial virus (RSV) acquisition. The respiratory viruses were 

successfully treated but despite a high blood level of ribavirin, norovirus was persistently 

detected in stool. The patient had previously had normal B cell (CD19+) numbers, mildly 

elevated T cells (CD3+) with inverted CD4+/8+ ratio and raised NK cells (CD16+/56+) in 

peripheral blood (Supplementary table 2). After contracting norovirus, B cell numbers fell, 

becoming undetectable in blood and bone marrow after a year. T-cell numbers fell more 

slowly to below the lower limit of normal and a large granular lymphocyte population 

(CD57+/CD8+) was evident (Supplementary table 2). The patient eventually succumbed, at 

the age of 38 years, to a combination of dialysis-dependent renal failure and infection. There 

was no family history of CVID or autoimmunity, although one sibling had received successful 

treatment for Hodgkin’s lymphoma. 

3.2 Identification of mutation

DNA was extracted from the blood or saliva of the patient, her siblings and parents. Variants 

were identified by whole exome sequencing and filtered for novelty by comparison to 

dbSNP137, 1000 genomes and an in-house database. From these analyses a heterozygous 

missense mutation in exon nine of STAT3 (c.870A>T; [p.K290N] (GenBank: NM_139276)) 

was identified. The mutation was a de novo event and not found in samples taken from 

either parent or two siblings, as confirmed by Sanger sequencing (Fig 1a). To our knowledge 

this mutation has not yet been reported in dbSNP, 1000 Genomes, and ExAC Browser. The 

mutation was signalled as damaging upon analysis by PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/) with a score of 0.990 and was predicated as 

disease-causing by Mutation Taster (http://mutationtaster.org/). The K290N mutation resides 

within the coiled-coil domain of the STAT3 protein, a region which is highly conserved across 

multiple species (Fig 1b).

3.3 The K290N mutation increases STAT3 activity

To examine the effects of the K290N mutation on STAT3 activity, the mutant form was 

constructed and transfected into HEK293 cells in parallel with the wildtype. Western blotting 

analysis revealed a marked increase in STAT3 protein levels relative to cells transfected with 

empty vector, within 24h. Importantly, transfection with equal quantities of DNA encoding 

either K290N or wildtype STAT3 cDNA resulted in similar expression of STAT3 protein (Fig 

2a).

http://mutationtaster.org/


A STAT3-specific reporter assay was used to examine the transcriptional activity of the 

variant and revealed that introduction of the K290N substitution caused a ~16-fold increase 

in basal activity relative to the wildtype (Fig 2b). Treatment of cells with IL-6 for 24h 

promoted an increase in wildtype STAT3 activity (by ~19-fold) and led to a further 

enhancement of STAT3-K290N activity (totalling ~60-fold) above unstimulated wildtype cells, 

respectively (Fig 2c). Importantly, under these conditions, IL-6 also elicited a marked 

increase in the activity of the STAT3-K290N mutant beyond that observed in unstimulated 

cells expressing the mutant form. 

In these experiments, previously reported mutations which either enhance (Y640F) or inhibit 

(V637M) the activity of STAT3 were tested in parallel, to validate the assay system. These 

forms of STAT3 altered transcriptional activity in the expected directions under both IL-6 

stimulated and unstimulated conditions (Fig 2b & c). 

Discussion

We demonstrate that a novel de novo mutation in STAT3, discovered in a patient with CVID, 

results in a profound increase in transcriptional activity resulting from an amino acid 

substitution (asparagine for lysine) located at position 290 within the coiled-coil domain of 

the protein. As such, the present work supports earlier evidence in which activating 

mutations in STAT3 were also found in three other patients with CVID [3]. These vary in that 

they occur at different residues within the protein, but it seems significant that three of the 

variants (including that identified here) lie within the coiled-coil domain. Furthermore, each 

promotes the acquisition of gain-of-function properties by enhancing the transcriptional 

activity of STAT3 [3]. Taken together, the data suggest very strongly that mutations with the 

coiled-coil domain of STAT3 can promote the transcriptional activity of STAT3 and that this 

altered phenotype is pathogenic for CVID. 

The clinical phenotype of the patient was typical for CVID. The patient presented with 

reduced IgG and IgA levels, however IgM was within the normal range, these observations 

are similar to those described in CVID patients with other mutations in STAT3 [3]. In 

addition, in the current study changes in the immune cell profile were noted, including an 

elevation in CD3+ T-cells and a reduction in the CD4+/CD8+ cell ratio. Similar profiles have 

been observed in previously published CVID cases [11]. The patient experienced repeated 

infections as well as liver and gastrointestinal disease, however malignancy, although 

commonly reported in CVID patients [1], did not develop. These data highlight the variability 

of CVID even when caused by mutations within the same gene. In the case of STAT3, the 



mode of activation probably differs in subtle ways for each mutation leading to the variable 

patient phenotypes. Such considerations should be included in the planning of the clinical 

management for a patient with the disease.

The coiled-coil domain plays an important role in regulating the nuclear import of STAT3, 

and it is known that modification of residues within this domain can disrupt or abrogate 

nuclear translocation. This process is thought to be regulated by at least two distinct regions 

within the coiled-coil domain and, in particular, residues located between amino acids 150-

163 [12] and at 214-215 have been implicated [13]. Clearly, the mutation we have identified 

(K290N) lies outside these regions and might not, then, be immediately implicated in altered 

nuclear localisation. However, changes in the folding of STAT3 arising from the loss of a 

positively charged lysine residue might influence its nuclear retention and, it is also possible 

that the mutation leads to the generation of a novel nuclear localisation sequence per se. In 

this context, the use of predictive algorithms (NetNGlyc 1.0 

(http://www.cbs.dtu.dk/services/NetNGlyc/) reveals that the K290N mutation generates a 

novel motif (QNVSYK) at which N-glycosylation is predicted to occur (on the substituted 

asparagine residue). Such a change in glycosylation status could influence the subcellular 

localisation of the protein, including facilitation of nuclear entry [14]. In the present work, we 

have not proven directly that the K290N mutant is preferentially retained in the nucleus 

although this would be consistent with the activating phenotype and with a recent report 

documenting sustained nuclear retention as a mechanism for STAT3 activation associated 

with another activating variant [15].

In support of the present data, others have reported that increased tyrosine phosphorylation 

of STAT3 (and, therefore, enhanced nuclear import and activation of transcriptional activity) 

is detectable in the memory B-cell population of patients with CVID [16]. This was associated 

with elevated apoptotic rates in these cells, both under control conditions and upon 

stimulation with relevant cytokines, and could provide one mechanism by which B-cells are 

depleted in the disease. Given that we find a greatly enhanced response to IL-6 in the 

K290N mutant, IL-6 receptor antagonists, such as tocilizumab, may provide a relatively non-

toxic therapeutic option for managing the autoimmunity. Indeed, this approach has been 

used successfully in other disease contexts, such as rheumatoid arthritis, where activation of 

STAT3 has been implicated as causative [17, 18].

Finally, it is important to emphasise that, while constitutive activation of STAT3 can lead to 

the development of CVID, it is also clear that alternative pathological phenotypes can 

develop from such mutations. For example, certain activating germline mutations in STAT3 

http://www.cbs.dtu.dk/services/NetNGlyc/


have been implicated in the early onset of poly-autoimmune phenotypes rather than 

hypogammaglobulinaemia [6]. Furthermore, somatic mutations leading to STAT3 activation 

have also been described in patients with rare forms of cancer [19, 20]. It remains to be 

established why different gain-of-function mutations in STAT3 cause variable disease 

phenotypes but this may be related to differences in the degree of activation associated with 

each mutation and their propensity to alter protein-protein interactions within the signalling 

cascade. 
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Figure legends

Figure 1. A de novo mutation identified in the coiled-coil domain of STAT3 in a CVID patient. 

(a) Whole exome sequencing identified a mutation (K290N) within STAT3 from a patient with 

CVID, this was absent from parents and siblings of the affected individual. (b) The mutation 

was located within the coiled-coil domain of STAT3, and was in a highly conserved region of 

the protein. Other reported STAT3 mutations associated with CVID are also indicated.    

Figure 2. Transfection of K290N-STAT3 into cells increased STAT3 activity. (a) HEK293 

cells were transfected with equal amounts of an empty vector, wildtype STAT3 or K290N 

and expression of STAT3 was studied by Western blotting. Results are representative of two 

separate experiments. (b) Cells were alternatively transfected with wildtype, K290N and 

mutations which are known to activate (Y640F) and inactivate (V637M) STAT3. These cells 

were either grown in the presence or absence of 20ng/ml IL-6, and transcriptional activity 

was determined using a dual-luciferase reporter assay (n = 3-6). ***p<0.001.



Highlights:

 A case study of a female patient with common variable immunodeficiency

 A novel de novo missense mutation was identified within the coiled-coil region of the STAT3 
gene

 The variant enhanced STAT3 transcriptional activity under basal and stimulated conditions
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Abstract

Common variable immunodeficiency (CVID) is characterised by repeated infection 

associated with primary acquired hypogammaglobulinemia. CVID frequently has a complex 

aetiology but, in certain cases, it has a monogenic cause. Recently, variants within the gene 

encoding the transcription factor STAT3 were implicated in monogenic CVID. Here, we 

describe a patient presenting with symptoms synonymous with CVID, who displayed 

reduced levels of IgG and IgA, repeated viral infections and multiple additional co-

morbidities. Whole-exome sequencing revealed a de novo novel missense mutation in the 

coiled-coil domain of STAT3 (c.870A>T; p.K290N). Accordingly, the K290N variant of STAT3 

was generated, and a STAT3 responsive dual-luciferase reporter assay revealed that the 

variant strongly enhances STAT3 transcriptional activity both under basal and stimulated 

(with IL-6) conditions. Overall, these data complement earlier studies in which CVID-

associated STAT3 mutations are predicted to enhance transcriptional activity, suggesting 

that such patients may respond favourably to IL-6 receptor antagonists (e.g. tocilizumab).

Abbreviations:

CMV, cytomegalovirus; CVID, Common variable immunodeficiency; STAT, signal transducer 
and activator of transcription; RSV, respiratory syncytial virus.

Keywords:

Common variable immunodeficiency; CVID; hypogammaglobulinemia; STAT3; whole exome 
sequencing.



1. Introduction

Common variable immunodeficiency (CVID) is the most common severe primary antibody 

deficiency disorder, characterised by acquired hypogammaglobulinemia and failure to mount 

an appropriate antibody response to infection or vaccination. CVID patients present with 

repeated bacterial infections and an increased incidence of certain autoimmune and 

neoplastic disorders [1]. The disease is thought to have a complex polygenic and 

multifactorial aetiology in most cases although causative mutations in single genes have 

been identified in a small proportion of patients [2]. Among the monogenic forms, mutations 

in PIK3CD and LRBA comprise approximately half of all reported cases, while mutations in a 

further 30 additional genes have also been proposed in the remainder [2]. STAT3 is one 

such gene and a recent study identified three potential gain-of-function mutations in STAT3 

among patients with CVID [3]. This is consistent with the emerging consensus that the 

majority of genes associated with monogenic CVID encode signalling proteins (including 

both receptors and downstream effectors) present in immune cells [2].  

STAT3 is a transcription factor whose activity is controlled by numerous cytokines, growth 

factors and hormones. It becomes phosphorylated on specific tyrosine residues in response 

to receptor activation and then dimerises before entering the nucleus to regulate the 

transcription of specific target genes. Interestingly, activating germline mutations in the 

STAT3 gene are relatively rare and the majority of such mutations are inactivating and 

implicated in conditions such as autosomal dominant hyper IgE syndrome [4, 5]. By contrast, 

where these have been described, the activating variants appear to predispose to various 

polyautoimmune diseases, including neonatal diabetes mellitus [6-8]. In the current report, 

we have employed whole exome sequencing of a patient with CVID to reveal a novel, 

causative, de novo mutation in the coiled-coil domain of STAT3. Functional studies show 

that this mutation strongly activates STAT3 under both basal conditions and following 

stimulation with IL-6, implying that this constitutive activation mediates the disease 

pathology.

Material and methods

2.1 Whole exome sequencing 

After obtaining written informed consent, genomic DNA was extracted from EDTA blood 

(QiAmp DNA Mini Kit; Qiagen, Hilden, Germany) or saliva samples (prepIT·L2P; DNA 

Genotek, Ottawa, Canada) from the affected individual and available family members. The 

project was approved by the East London and City Health Authority Research Ethics 

Committee and was conducted according to the Declaration of Helsinki Principles. 



The blood-derived DNA of the affected individual was subjected to whole exome 

sequencing. Exome capture and enrichment was performed using the NimbleGen SeqCap 

EZ Human Exome Library protocol (Roche Nimblegen, Madison, WI, USA). The subsequent 

DNA library was sequenced with 100 bp paired-end reads on the HiSeq 2000 platform 

(Illumina, San Diego, CA, USA). Resulting sequence data were aligned to the hg18 human 

reference genome using the Novoalign alignment tool (Novocraft Technologies Sdn Bhd, 

Petaling Jaya, Malaysia). Sequence variants were called with SAMtools and annotated via 

multiple passes through ANNOVAR [9].

2.2 Mutagenesis

The QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, 

USA) was employed to generate mutations within the human STAT3 gene (Source 

Bioscience, Nottingham, UK) using manufacturer’s guidelines. The primer pairs used to 

create each mutation were K290N; Fd: 

TCCCCTTTGTAGGAAACATTTTGCTGCAACTCCTCC Rv: 

TGGAGGAGTTGCAGCAAAATGTTTCCTACAAAGGGG Y640F; Fd: 

AGTCCGTGGAACCATTCACAAAGCAGCAGCTG Rv: 

AGCTGCTGCTTTGTGAATGGTTCCACGGACTG V637M Fd: 

AGACCCAGATCCAGTCCATGGAACCATACACAAAG, Rv: 

TGCTTTGTGTATGGTTCCATGGACTGGATCTGGGTC. The STAT3 insert was sequenced 

to confirm the success of mutagenesis (Source Bioscience). Finally STAT3 inserts were 

ligated between the AflII and EcoRV restriction sites within the polylinker of a 

pcDNA5/FRT/TO vector.

2.3 Cell culture

HEK293 cells were cultured in DMEM base media supplemented with 10% foetal bovine 

serum, 2mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cells were 

cultured at 37oC and 5% CO2, and were sub-cultured upon reaching 80% confluence. 

2.4 STAT3 Reporter Assay

STAT3 transcriptional activity was investigated using the STAT3 responsive dual 

firefly/Renilla luciferase Cignal reporter system (Qiagen). Cells were seeded at a density of 1 

x 105 cells/well in a 24-well plate, and transfected into cells with 200ng of the Cignal reporter 

construct alongside 400ng of STAT3 constructs using Attractene transfection reagent 

according to the manufacturer’s guidelines (Qiagen). STAT3 activity was assessed 24h after 

transfection using a dual luciferase reporter system (Promega, Madison, WI, USA).



2.5 Western Blotting

Whole cell protein was extracted from HEK293 cells after lysis [10]. Protein was equalised, 

then denatured, prior to its loading onto pre-cast 4-12% Bis-Tris polyacrylamide gels 

(Thermo Fisher Scientific, Boston, MA, USA). Proteins were separated by electrophoresis, 

before their transfer onto PVDF membrane using a XCell II Blot module (Thermo Fisher 

Scientific). Immunoblotting was conducted using an iBind Flex Western device according to 

the manufacturer’s instructions (Thermo Fisher Scientific). Membranes were probed initially 

with antibodies raised against STAT3 (1:1000; Cell Signalling, Beverly, MA, USA; antibody 

registry: AB_331269) or β-actin (1:2000; Sigma-Aldrich, Poole, UK; antibody registry: 

AB_476744) and then subsequently with alkaline phosphatase conjugated secondary 

antibodies raised in the appropriate species. Bands were detected following exposure of 

membranes to CDP Star chemiluminescent reagent (Sigma-Aldrich) and then visualised 

using a cDigit blot scanner (LI-COR Biosciences, Lincoln, NE, USA).

Results

3.1 Patient description

The patient was diagnosed with common variable immunodeficiency (CVID) at age 14 on the 

basis of panhypogammaglobulinaemia and resistant idiopathic thrombocytopaenic purpura, 

for which splenectomy was performed (Supplementary table 1). She had a history of 

haemolytic anaemia and idiopathic uveitis. Immunoglobulin replacement was started at CVID 

diagnosis. From early adulthood, the clinical course was complicated by CVID-related 

inflammatory arthritis, small and large intestinal inflammation, episodes of unexplained 

ascites, declining respiratory function, chronic hepatic dysfunction and chronic renal 

impairment. Inflammatory markers were consistently elevated. Furthermore, invasive 

cytomegalovirus (CMV) with gastric ulcer, typical CMV-related gastric inclusions and 

viraemia detected on PCR developed while taking mycophenolate and low dose 

prednisolone, prescribed for the inflammatory complications of CVID. After treatment with 

intravenous ganciclovir she required ongoing valganciclovir prophylaxis to prevent recurrent 

CMV viraemia, despite stopping mycophenolate, and maintaining corticosteroid dose at less 

than 10mg daily. 

More recently, at the age of 34 the patient was admitted to hospital with diarrhoea, vomiting, 

acute on chronic renal failure and was diagnosed with norovirus II. Thereafter the patient 

had several subsequent hospital admissions with episodes of acute on chronic renal failure, 

weight loss (8 Kg, 13% of body weight), anorexia, nausea, intermittent diarrhoea and 



difficulty maintaining an adequate trough IgG despite high doses of immunoglobulin. 

Parenteral feeding was commenced to manage the malnutrition that had developed in 

association with the chronic norovirus infection. During this period persistent rhinovirus was 

detected in respiratory secretions, and subsequent acute respiratory deterioration was 

associated with respiratory syncytial virus (RSV) acquisition. The respiratory viruses were 

successfully treated but despite a high blood level of ribavirin, norovirus was persistently 

detected in stool. The patient had previously had normal B cell (CD19+) numbers, mildly 

elevated T cells (CD3+) with inverted CD4+/8+ ratio and raised NK cells (CD16+/56+) in 

peripheral blood (Supplementary table 2). After contracting norovirus, B cell numbers fell, 

becoming undetectable in blood and bone marrow after a year. T-cell numbers fell more 

slowly to below the lower limit of normal and a large granular lymphocyte population 

(CD57+/CD8+) was evident (Supplementary table 2). The patient eventually succumbed, at 

the age of 38 years, to a combination of dialysis-dependent renal failure and infection. There 

was no family history of CVID or autoimmunity, although one sibling had received successful 

treatment for Hodgkin’s lymphoma. 

3.2 Identification of mutation

DNA was extracted from the blood or saliva of the patient, her siblings and parents. Variants 

were identified by whole exome sequencing and filtered for novelty by comparison to 

dbSNP137, 1000 genomes and an in-house database. From these analyses a heterozygous 

missense mutation in exon nine of STAT3 (c.870A>T; [p.K290N] (GenBank: NM_139276)) 

was identified. The mutation was a de novo event and not found in samples taken from 

either parent or two siblings, as confirmed by Sanger sequencing (Fig 1a). To our knowledge 

this mutation has not yet been reported in dbSNP, 1000 Genomes, and ExAC Browser. The 

mutation was signalled as damaging upon analysis by PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/) with a score of 0.990 and was predicated as 

disease-causing by Mutation Taster (http://mutationtaster.org/). The K290N mutation resides 

within the coiled-coil domain of the STAT3 protein, a region which is highly conserved across 

multiple species (Fig 1b).

3.3 The K290N mutation increases STAT3 activity

To examine the effects of the K290N mutation on STAT3 activity, the mutant form was 

constructed and transfected into HEK293 cells in parallel with the wildtype. Western blotting 

analysis revealed a marked increase in STAT3 protein levels relative to cells transfected with 

empty vector, within 24h. Importantly, transfection with equal quantities of DNA encoding 

either K290N or wildtype STAT3 cDNA resulted in similar expression of STAT3 protein (Fig 

2a).

http://mutationtaster.org/


A STAT3-specific reporter assay was used to examine the transcriptional activity of the 

variant and revealed that introduction of the K290N substitution caused a ~16-fold increase 

in basal activity relative to the wildtype (Fig 2b). Treatment of cells with IL-6 for 24h 

promoted an increase in wildtype STAT3 activity (by ~19-fold) and led to a further 

enhancement of STAT3-K290N activity (totalling ~60-fold) above unstimulated wildtype cells, 

respectively (Fig 2c). Importantly, under these conditions, IL-6 also elicited a marked 

increase in the activity of the STAT3-K290N mutant beyond that observed in unstimulated 

cells expressing the mutant form. 

In these experiments, previously reported mutations which either enhance (Y640F) or inhibit 

(V637M) the activity of STAT3 were tested in parallel, to validate the assay system. These 

forms of STAT3 altered transcriptional activity in the expected directions under both IL-6 

stimulated and unstimulated conditions (Fig 2b & c). 

Discussion

We demonstrate that a novel de novo mutation in STAT3, discovered in a patient with CVID, 

results in a profound increase in transcriptional activity resulting from an amino acid 

substitution (asparagine for lysine) located at position 290 within the coiled-coil domain of 

the protein. As such, the present work supports earlier evidence in which activating 

mutations in STAT3 were also found in three other patients with CVID [3]. These vary in that 

they occur at different residues within the protein, but it seems significant that three of the 

variants (including that identified here) lie within the coiled-coil domain. Furthermore, each 

promotes the acquisition of gain-of-function properties by enhancing the transcriptional 

activity of STAT3 [3]. Taken together, the data suggest very strongly that mutations with the 

coiled-coil domain of STAT3 can promote the transcriptional activity of STAT3 and that this 

altered phenotype is pathogenic for CVID. 

The clinical phenotype of the patient was typical for CVID. The patient presented with 

reduced IgG and IgA levels, however IgM was within the normal range, these observations 

are similar to those described in CVID patients with other mutations in STAT3 [3]. In 

addition, in the current study changes in the immune cell profile were noted, including an 

elevation in CD3+ T-cells and a reduction in the CD4+/CD8+ cell ratio. Similar profiles have 

been observed in previously published CVID cases [11]. The patient experienced repeated 

infections as well as liver and gastrointestinal disease, however lung disease and 

malignancy, although commonly reported in CVID patients [1], did not develop. These data 

highlight the variability of CVID even when caused by mutations within the same gene. In the 



case of STAT3, the mode of activation probably differs in subtle ways for each mutation 

leading to the variable patient phenotypes. Such considerations should be included in the 

planning of the clinical management for a patient with the disease.

The coiled-coil domain plays an important role in regulating the nuclear import of STAT3, 

and it is known that modification of residues within this domain can disrupt or abrogate 

nuclear translocation. This process is thought to be regulated by at least two distinct regions 

within the coiled-coil domain and, in particular, residues located between amino acids 150-

163 [12] and at 214-215 have been implicated [13]. Clearly, the mutation we have identified 

(K290N) lies outside these regions and might not, then, be immediately implicated in altered 

nuclear localisation. However, changes in the folding of STAT3 arising from the loss of a 

positively charged lysine residue might influence its nuclear retention and, it is also possible 

that the mutation leads to the generation of a novel nuclear localisation sequence per se. In 

this context, the use of predictive algorithms (NetNGlyc 1.0 

(http://www.cbs.dtu.dk/services/NetNGlyc/) reveals that the K290N mutation generates a 

novel motif (QNVSYK) at which N-glycosylation is predicted to occur (on the substituted 

asparagine residue). Such a change in glycosylation status could influence the subcellular 

localisation of the protein, including facilitation of nuclear entry [14]. In the present work, we 

have not proven directly that the K290N mutant is preferentially retained in the nucleus 

although this would be consistent with the activating phenotype and with a recent report 

documenting sustained nuclear retention as a mechanism for STAT3 activation associated 

with another activating variant [15].

In support of the present data, others have reported that increased tyrosine phosphorylation 

of STAT3 (and, therefore, enhanced nuclear import and activation of transcriptional activity) 

is detectable in the memory B-cell population of patients with CVID [16]. This was associated 

with elevated apoptotic rates in these cells, both under control conditions and upon 

stimulation with relevant cytokines, and could provide one mechanism by which B-cells are 

depleted in the disease. Given that we find a greatly enhanced response to IL-6 in the 

K290N mutant, IL-6 receptor antagonists, such as tocilizumab, may provide a relatively non-

toxic therapeutic option for managing the autoimmunity. Indeed, this approach has been 

used successfully in other disease contexts, such as rheumatoid arthritis, where activation of 

STAT3 has been implicated as causative [17, 18].

Finally, it is important to emphasise that, while constitutive activation of STAT3 can lead to 

the development of CVID, it is also clear that alternative pathological phenotypes can 

develop from such mutations. For example, certain activating germline mutations in STAT3 

http://www.cbs.dtu.dk/services/NetNGlyc/


have been implicated in the early onset of poly-autoimmune phenotypes rather than 

hypogammaglobulinaemia [6]. Furthermore, somatic mutations leading to STAT3 activation 

have also been described in patients with rare forms of cancer [19, 20]. It remains to be 

established why different gain-of-function mutations in STAT3 cause variable disease 

phenotypes but this may be related to differences in the degree of activation associated with 

each mutation and their propensity to alter protein-protein interactions within the signalling 

cascade. 
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Figure legends

Figure 1. A de novo mutation identified in the coiled-coil domain of STAT3 in a CVID patient. 

(a) Whole exome sequencing identified a mutation (K290N) within STAT3 from a patient with 

CVID, this was absent from parents and siblings of the affected individual. (b) The mutation 

was located within the coiled-coil domain of STAT3, and was in a highly conserved region of 

the protein. Other reported STAT3 mutations associated with CVID are also indicated.    

Figure 2. Transfection of K290N-STAT3 into cells increased STAT3 activity. (a) HEK293 

cells were transfected with equal amounts of an empty vector, wildtype STAT3 or K290N 

and expression of STAT3 was studied by Western blotting. Results are representative of two 

separate experiments. (b) Cells were alternatively transfected with wildtype, K290N and 

mutations which are known to activate (Y640F) and inactivate (V637M) STAT3. These cells 

were either grown in the presence or absence of 20ng/ml IL-6, and transcriptional activity 

was determined using a dual-luciferase reporter assay (n = 3-6). ***p<0.001.
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Supplementary Table 1: Laboratory parameters

Aged 14-20y Aged 35-38y

Blood count
Haemoglobin
(NR 11.5-16.5g/dL) 

Neutrophils
(NR 2-7.5x109/L) 

Lymphocytes
(NR 1.5-4x109/L)

CD3+ cells
(NR 918-2023x106/L)

CD4+/8+ cell ratio
(NR 0.9-1.9) 

CD19+ cells*
(NR 42-461x106/L)

CD56+ cells
(NR 41-339x106/L) 

Platelets
(NR 150-400x109/L)

8.2-13.0g/dL 

2.3-9.4x109/L 

2.0-6.7x109/L

3601-4526x106/L ()

0.55 ()

574-552x106/L ()

96x106/L

9-12x109/L ()

9.4-10.5g/dL ()

7.9-11.8x109/L ()

2.0-9.5x109/L

1944-8927x106/L ()

0.47-0.8 ()

<1-48x106/L ()

77-278x106/L

257-345x109/L

C-reactive protein
(NR<5)

30-64mg/L () 44-116mg/L ()

Creatinine
(NR<90)

142-168 µmol/L() 231-306** µmol/L()

Liver function
Aspartate aminotransferase 
(AST) (NR 13-35U/L)

Alanine aminotransferase 
(ALT) (NR 7-35 U/L)

Alkaline phosphatase (AP) 
(NR 30-130 U/L)

Gamma-glutamyl transferase 
(GGT) (NR 5-39 U/L)

16-23 U/L

11-29 U/L 

111-183 U/L 

96-158U/L ()

14–18 U/L

7-8 U/L

75-505 U/L

164-464 U/L ()

Immunoglobulins

IgG (NR 7-16g/L)

IgA (NR 0.8-4g/L)

IgM (NR 0.4-2g/L)

4.5g/L()

0.3-0.4g/L ()

0.8-0.9g/L 

10-13g/L***

0.05-0.11g/L ()

0.45- 0.63g/L 
Vaccine Responses N/A N/A
*switched memory B cells not tested, **dialysis-dependent from age 3, ***post-

immunoglobulin replacement. NR=normal range 



Supplementary Table 2. Histological findings 

Tissue Age at 

sampling

Report

Spleen 13 years Lymphocytosis of red pulp

Focal aggregates of foamy macrophages

Liver 28 years Prominent lymphoid aggregates centred around the bile ducts 

with moderate fibrous expansion, focal bridging necrosis and 

some ductopenia. Mild interface hepatitis and sinusoidal 

dilatation in hepatic lobules, with foci of hepatocyte dropout and 

associated chronic inflammation. 

Duodenum 34 years Almost devoid of surface glandular epithelium. Intact villi are of 

normal architecture with no villous blunting or increase in 

intraepithelial lymphocytes. No nodular lymphoid hyperplasia, 

granuloma, active inflammation or ulceration. No giardia, 

cryptosporidia or CMV. Absent CD138+ plasma cells within 

lamina propria. 

Termimal 

ileum

34 years Mild villous distortion, oedema and patchy neutrophilic infiltrate 

within the lamina propria with focal cryptitis. Absent plasma 

cells. No granuloma formation. No luminal organisms or CMV-

like viral inclusions.

Colon 35 years Preserved crypt architecture showing paucicellular lamina 

propria with no plasma cells. No active inflammation or 

granulomata. 

Bone 

Marrow

35 years Hypocellular. Three haemopoietic series identified with 

maturation. Few Megakaryocytes and occasional T 

lymphocytes present. No dysplastic features, fibrosis or 

granulomas. 

Flow cytometry: Reversed CD4:CD8 ratio. High percentage of 

LGLs (large granular lymphocytes). Fifteen percent of all white 

blood cells are CD14+ CD11B+ monocytes. Absent B-cells. No 

obvious infiltrate.

Peripheral 

blood

35 years Flow cytometry: Reversed CD4:CD8 ratio. Increased CD57+ 

CD8+ population. Absent B-cells. 


