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Abstract 

Understanding the impact of warming on organisms, communities and 

ecosystems is a central problem in ecology. Although species responses to 

warming are well documented, our ability to scale up to predict community and 

ecosystem properties is limited. Improving understanding of the mechanisms 

that link patterns and processes over multiple levels of organisation and across 

spatial and temporal scales promises to enhance our ability to predict whether 

the biosphere will exacerbate, or mitigate, climate warming. In this thesis, I 

combine ideas from metabolic theory with a variety of experimental approaches 

to further our understanding of how warming will impact photosynthesis and 

respiration across scales. Firstly, I show how phytoplankton can rapidly evolve 

increased thermal tolerance by downregulating rates of respiration more than 

photosynthesis. This increased carbon-use efficiency meant that evolved 

populations allocated more fixed carbon to growth. I then explore how 

constraints on individual physiology and community size structure influence 

phytoplankton community metabolism. Using metabolic theory, I link 

community primary production and respiration to the size- and temperature-

dependence of individual physiology and the distribution of abundance and 

body size. Finally, I show that selection on photosynthetic traits within and 

across taxa dampens the effects of temperature on ecosystem-level gross 

primary production in a set of geothermal streams. Across the thermal-gradient, 

autotrophs from cold streams had higher photosynthetic rates than autotrophs 

from warm streams. At the ecosystem-level, the temperature-dependence of 

gross primary productivity was similar to that of organism-level photosynthesis. 

However, this was due to covariance between biomass and stream 

temperature; after accounting for the effects of biomass, gross primary 

productivity was independent of temperature. Collectively, this work 

emphasises the importance of ecological, evolutionary and physiological 

mechanisms that shape how metabolism responds to warming over multiple 

levels of organisation. Incorporating both the direct and indirect effects of 

warming on metabolism into predictions of the biosphere to climate futures 

should be considered a priority. 
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Chapter 1: Introduction 

“The problem is not to choose the correct scale of description, but rather to 

recognise that change is taking place on many scales at the same time, and 

that it is the interaction among phenomena at different scales that must occupy 

our attention” 

Simon Levin, 1992 

 

Few articles have been more influential to ecology in the last 25 years than 

Simon Levin’s Robert MacArthur Award Lecture entitled “The problem with 

pattern and scale in ecology” (Levin 1992). In it, he emphasises the importance 

of pattern and scale to our ecological thinking, describing how ecological 

processes acting at one scale can generate patterns and affect other ecological 

phenomena at entirely different ones. As ecologists (and PhDs are no 

exception), we have a tendency to focus on a specific set of research questions 

and study systems which arbitrarily define the spatial, temporal and 

organisational scales at which we see the world. For example, macroecologists 

traditionally ask questions about ecological patterns at very large spatial 

extents and broad temporal scales, whereas community ecologists are 

concerned with interactions among species and ecosystem functions at finer 

resolutions and smaller spatial scales. There is no correct scale at which to 

describe most ecological processes. Ecosystems and natural communities are 

complex systems in which organisms are changed by the environment that they 

themselves modify through evolutionary and ecological processes (Levin 

1998). They are complex networks where individuals simultaneously affect and 

are affected by their biotic and abiotic environments.  
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Twenty-five years on, the problem of linking patterns and mechanisms across 

scales remains a central problem in ecology, especially given the rise of climate 

change as a global issue. From 1880 – 2012, average global temperatures 

increased by 0.85 ºC and are projected to increase by 3 - 5 ºC over the next 

century (IPCC 2008). Worryingly, this warming appears to be gathering pace, 

with nine of the ten warmest years on record being from the turn of the century 

(NOAA 2017). From September 2015 to August 2016, every month broke all-

time temperature records (NOAA 2017). Although the evidence of global 

warming is overwhelming, regional and local changes in temperature are more 

complex. The rate of climate warming varies on diurnal and seasonal 

timescales, with greater warming in summer at mid- to high latitudes and the 

inverse pattern in some tropical regions (Xia et al. 2014). Consequently, global 

mean changes in temperature only explain around 60% of local temperature 

change for most of the planet (Sutton et al. 2015), but it is at these regional 

scales that changes in temperature will matter most to individual organisms and 

populations.  

 

Global responses of species to warming include decreases in body size 

(Gardner et al. 2011), changes in physiology and phenology (Walther et al. 

2002) and range-shifts (Parmesan 2006). However, at local and regional 

scales, studies often report more idiosyncratic responses to environmental 

change (Tylianakis et al. 2008). Although the average species response to 

climate warming is well documented, the response of any given species or 

community is highly variable and based on many biotic and abiotic factors. For 

example, decreasing body size has been described as the “third universal 
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response” to warming, but individual studies regularly find contrasting results 

(Yvon-Durocher et al. 2015)  As a consequence, attempts to “scale up” species 

responses to predict community change has proved difficult due to the 

alteration and uncoupling of interactions between species that can lead to 

complex and non-linear community responses and feedbacks (Tylianakis et al. 

2008; Montoya & Raffaelli 2010; Walther 2010). Consequently, our ability to 

predict community responses to warming is hindered by our ability to predict 

aggregate species-level responses. Improving the links between organisational 

levels and spatiotemporal scales will help build bridges across ecological 

disciplines and further our ability to predict individual, community and 

ecosystem responses to climate change. 

 

Carbon cycling, climate warming and phytoplankton 

For the last 420,000 years, the climate system has operated within relatively 

constrained limits of atmospheric carbon dioxide (CO2) concentrations, cycling 

between around 180 and 280 ppm (parts per million) in 100,000 year cycles 

(Petit et al. 1999). However, since the Industrial Revolution, the world has left 

this stable range, and the atmospheric CO2 concentration now sits consistently 

above 400 ppm. The biosphere plays an essential role in the carbon cycle 

(Falkowski et al. 2000). Photosynthesis harnesses light energy to convert CO2 

into organic carbon, where it is stored as organic matter and eventually returns 

to the atmosphere through the process of respiration (Falkowski et al. 2000). 

This release through respiration occurs over vastly different timescales, from 

near instantaneous return by the plant that photosynthesised that carbon 

molecule, to being released thousands of years later, after being locked away 
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in the deep ocean. At the ecosystem level, gross primary production (GPP; the 

photosynthesis of all the autotrophs within a community) is the largest flux in 

the global carbon cycle (Beer et al. 2010), transferring CO2 from the 

atmosphere to the biosphere, fuelling food webs and biological production 

(Field 1998; Falkowski et al. 2008). Understanding how the metabolic response 

of ecosystems will change with climate warming (i.e. whether they will absorb 

more or less CO2) is essential for predicting whether the biosphere will 

accelerate or mitigate warming. 

 

In terrestrial ecosystems, scientists worry that global warming could be 

accelerated through a positive feedback between temperature and soil 

respiration that could lead to widespread loss of soil carbon (Cox et al. 2000). 

Soil respiration increases as a direct result of temperature, as individual 

metabolic rates are strongly temperature dependent (Davidson & Janssens 

2006; Bond-Lamberty & Thomson 2010; Carey et al. 2016). Indirect effects of 

temperature on soil respiration such as thermal adaptation, changes in 

community composition, or reductions in labile carbon could constrain this 

increase after long-term warming (Bradford et al. 2010; Bradford 2013; 

Romero-Olivares et al. 2017). However, a recent meta-analysis looking at long-

term temperature responses of soil respiration across biomes found limited 

evidence of thermal adaptation (Carey et al. 2016). Instead, soil respiration 

increased exponentially up to 25 ºC but decreased at temperatures above this. 

There is a need to better understand to what extent thermal adaptation and 

other indirect effects of temperature may be able to dampen the temperature 

response of metabolism in the long-term.  
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Phytoplankton, the mainly microscopic autotrophs of the aquatic world, play a 

key role in the global carbon cycle. Although phytoplankton comprise only 

~0.2% of the global autotrophic biomass, they contribute ~50% of global net 

primary productivity (Falkowski 1994; Field 1998). Approximately 25% of the 

carbon fixed in the upper ocean sinks into the interior (Falkowski et al. 2000). 

Most of this is oxidised through heterotrophic respiration in the water column. It 

is thought that <1% of fixed carbon reaches the open-ocean seafloor, where it 

is locked away for long periods of time in sediments (Falkowski et al. 2000; Lee 

et al. 2004). Through this process, phytoplankton play a key role in the 

“biological pump” that acts to lock away large amounts of carbon for hundreds 

of years. Phytoplankton responses to warming are similar to the responses 

documented for other species. For example, mesocosm experiments 

(Daufresne et al. 2009), macroecological (Moran et al. 2010) and 

palaeoecological studies (Finkel et al. 2005) have all found that smaller 

phytoplankton are likely to be favoured in a warmer world. Smaller 

phytoplankton have lower sinking rates which could impact the “biological 

pump” and modify the residence time of carbon in the deep ocean by reducing 

the carbon export from the upper ocean to the interior (Falkowski 1998; Bopp 

et al. 2005).  

 

Climate warming will also alter phytoplankton communities through changes in 

species composition (Yvon-Durocher et al. 2011) which will be driven by 

differences in the ability of individual species to adapt (Lohbeck et al. 2012; 

Schaum & Collins 2014; Schlüter et al. 2014; Geerts et al. 2015) or change their 
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phenotype (Schaum et al. 2013; Magozzi & Calosi 2014). The amount of 

plasticity and evolutionary potential of key traits (such as growth rate, 

photosynthesis and respiration) within each species, relative to the variability 

among species (Thomas et al. 2012), will go a long way to determining the 

extent of species turnover in phytoplankton communities in a warmer world. 

Phytoplankton metabolic rates will also increase with temperature; 

phytoplankton photosynthesis is thought to be less sensitive to temperature 

change than respiration (López-Urrutia et al. 2006; Regaudie-de-Gioux & 

Duarte 2012). Consequently, the ability of ocean ecosystems to sequester 

carbon is predicted to reduce with climate warming. However, the potential for 

temperature-driven changes of key traits in phytoplankton communities – due 

to mechanisms such as thermal adaptation - that could influence ecosystem-

level fluxes has not been explored (but see Listmann et al. 2016). To date, most 

studies on adaptation to climate change in phytoplankton have concentrated 

on the response to elevated CO2 (Collins & Bell 2004; Lohbeck et al. 2012; 

Schaum & Collins 2014) and generally test the capacity for, rather than the 

mechanism of, adaptation, and little is known on the impacts on functioning of 

any adaptive response. 

 

The metabolic theory of ecology 

One of the most successful attempts at linking patterns and theory across 

scales in the last twenty years is undoubtedly the metabolic theory of ecology 

(MTE) (Brown et al. 2004). In the late 1800s, Henrieus van’t Hoff and Svante 

Arrhenius described the temperature-dependence of chemical reactions and by 

the mid 1900s scientists were regularly demonstrating the temperature-
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dependence of biological rates. In seemingly unrelated research, comparative 

analyses described the allometric scaling of individual metabolic rate with 

differences in average species body size (Kleiber 1932). Kleiber’s law shows 

that smaller individuals have a higher metabolic rate per-unit-biomass than 

larger individuals. The seminal paper on MTE (coincidentally another Robert 

MacArthur Award Lecture) brought together these patterns, and principles from 

physics, chemistry and ecology, to lay the foundations of a theory that explains 

ecological processes in terms of energy transfer (Brown et al. 2004). 

Metabolism is the biological processing of energy and sets the pace of life, 

determining the rates of almost all biological activities. Metabolism controls the 

uptake of energy, its conversion to other substrates in the body or cell, its 

transfer to other organisms through consumption, and its eventual excretion 

back into the environment (Brown et al. 2004). MTE was founded on a single 

equation that links an individual’s body size and temperature to its metabolic 

rate, which is edited slightly here from the original in an attempt to keep notation 

throughout the thesis consistent.  

! " = 	!("&)()*+(
,
-./

0 ,
-.)               (1.1) 

! "  is the rate of metabolism of an individual at temperature, ", in Kelvin (K). 

Instead of the intercept being at 0 K (-273.15 ºC), !("&)	is the rate at a common 

temperature, "& (K).  2 is a scaling exponent that describes how metabolic rates 

change with increases in mass, (. 3 (eV) is the activation energy that describes 

the temperature-dependence of metabolism and 4 is Boltzmann’s constant 

(8.62 × 10
-5

 eV K
-1

). Early work on MTE put forward the idea that the values of 

the size-scaling and temperature-dependence of metabolic rate were constant 

across species  (Gillooly et al. 2001; Savage & Allen 2004; Banavar et al. 2010), 
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being  3 ≈	0.65 eV for the relationship of metabolic rates with temperature and 

2	 ≈	¾ for the size-scaling of metabolism. However, the idea of, and evidence 

for, such “universal” values received a mixed response, generating 

considerable scepticism and controversy. Some ecologists argued for 

alternative universal values (2	 ≈ 	 6
7
) and others that “universal temperature-

dependence” does not allow for taxon-specific deviations or the effects of 

thermal adaptation or acclimation at longer timescales (Clarke 2004; White et 

al. 2010; Huey & Kingsolver 2011).  

 

More recent work has shown that these values might represent the average, 

but that there is considerable variation in these parameter values. For example, 

although an average size scaling exponent of ≈ ¾ is found across animal 

species, this is dependent on the taxonomic level at which it is measured, with 

50% of taxonomic orders falling outside the range of 0.68 - 0.82 (Isaac & 

Carbone 2010). In addition, when extended over all the major domains of life, 

size-scaling has been found to be isometric (2	~	1) in algae and unicellular 

protists (DeLong et al. 2010; Huete-ortega et al. 2017) and super-linear in 

cyanobacteria and other prokaryotes (2	 > 	1)  (DeLong et al. 2010; García et 

al. 2015). Along similar lines, the temperature-dependence of metabolism may 

have an average value of 3	 ≈ 0.65 eV, but this value has been found to vary 

across different biological rates (i.e. respiration, velocity, consumption and 

feeding), between taxa, and between terrestrial and aquatic environments (Dell 

et al. 2011; Pawar et al. 2012; Rall et al. 2012). Regardless of the constancy of 

the values of 3 and 2, MTE has provided a theory built up from first principles 

that gives a set of a priori, quantitative, testable predictions (Marquet et al. 
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2015). After all, the role of MTE, and theory generally, is not to capture all the 

complexity of the natural world, but rather to retain only the essential 

information. Seen in this light, MTE regularly succeeds in its efforts to capture 

the key constraints on ecological processes to understand empirical patterns.  

 

With an explicit (some would argue mechanistic) term to explain the effect of 

temperature on metabolic rate, MTE has proved particularly useful in studying 

the effects of warming on individuals, populations and ecosystems. At the 

population-level, the temperature-dependence of growth and reproduction 

rates can predict potential effects of temperature on population abundance and 

MTE can predict how warming affects population-level properties (Allen et al. 

2002; Savage et al. 2004). Across-species, mismatches in temperature 

responses between herbivores and plants, and predator and prey have been 

used to show how dynamics and species interactions will change with warming 

(Kordas et al. 2011; O’Connor et al. 2011; Rall et al. 2012; Dell et al. 2013). 

These responses have been scaled up to explain the effect of warming on food-

web dynamics (Connor et al. 2009; Yvon-Durocher et al. 2015; Moorthi et al. 

2016) and changes in other community properties such as size structure (Yvon-

Durocher et al. 2011). Individual and community-level responses to warming 

can be combined to predict ecosystem-level properties. Metabolic scaling 

theory has been used to combine the effects of temperature on individual 

physiology and community structure to predict and explain variation in 

ecosystem functioning (Enquist et al. 2003; Yvon-Durocher et al. 2011) and 

global patterns of biodiversity (Allen et al. 2002). Throughout this introduction, 
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and the rest of the thesis, I will expand on some of the applications of metabolic 

theory summarised here. 

 

Most of the studies using and extending MTE have ignored, or been unable to 

quantify, indirect effects of temperature on metabolic rates. For example, 

thermal adaptation (i.e. the change in physiological phenotype due to changes 

in genotype) and thermal acclimation (i.e. the change in physiological 

phenotype from a single genotype (West-Eberhard 2003)) could alter the 

temperature-dependence of metabolism at longer timescales. The ability of Eq. 

1.1 to account for the effect of thermal adaptation and acclimation has long 

been a point of controversy. Previous studies using MTE have measured 

metabolic rate for many species at each species’ average temperature. This 

shows the relationship between average metabolic rate and average 

temperature across species (Gillooly et al. 2001). These across-species 

relationships reflect the long-term temperature response of metabolic rate and 

likely incorporate any effects of thermal adaptation or acclimation. The effects 

of thermal adaptation and acclimation can be accounted for in MTE through 

changes in the metabolic normalisation constant, !("&). This effect is thought 

to be small as the temperature-dependence of across-species relationships are 

similar to the direct effect of temperature on enzyme kinetics (Gillooly et al. 

2001; Gillooly 2006). This had led many to the conclusion that kinetic 

constraints on enzymes control metabolic rates from individuals to ecosystems. 

Despite this line of thinking, multiple studies, from individuals to ecosystems, 

have documented changing physiological responses after long-term exposure 

to different temperatures (Bradford et al. 2008; Scafaro et al. 2016). In the short-
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term, metabolism is likely to be determined by biochemical constraints, but in 

the long-term other indirect effects of temperature on metabolism could become 

increasingly important. But at present, there is little research using a metabolic 

theory framework that considers whether the temperature-dependence of 

metabolism changes through time.  

 

The rest of this introduction describes the impact of some of these indirect 

effects, with an emphasis on how thermal adaptation or acclimation could affect 

the temperature-dependence of metabolism across organisational and 

temporal scales. The within-species response of metabolic rate and 

temperature describes how the metabolism of a single species responds to 

short-term temperature change, whereas the across-species temperature 

response compares metabolic rates among species that differ in average 

temperature. Thus, within- and across-species responses reflect short- and 

long-term effects of temperature on species metabolic rate respectively. The 

ideas presented in the remainder of the introduction can be applied to any level 

of organisation (e.g. genotypes, populations, communities or ecosystems), 

where the mechanisms through which temperature influences metabolic rates 

may differ through time or space. 

 

Thermal adaptation and MTE  

The original formulation of MTE includes an exponential temperature response, 

but rates do not increase forever, and applications of the traditional Boltzmann-

Arrhenius function are sensitive to the range of temperatures measured (Pawar 

et al. 2016). Therefore, there is a need to improve the resolution of our data 
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collection to improve model fitting and further our understanding of the thermal 

responses of biological traits. Thankfully, physiological ecology has measured 

the temperature response of organismal rates over a wide range of 

temperatures for decades. During acute exposure to a range of temperatures, 

metabolic rates (e.g. respiration and photosynthesis) and other biological rates 

such as locomotion (Gilchrist 2017) and growth (Eppley 1972) typically increase 

exponentially up to an optimum before falling off steeply (Figure 1.1).  These 

biological rates are strongly linked to an organism’s fitness and generally have 

a reversible response to acute temperature change (Angilletta 2009). As in 

MTE, increases in metabolic rates up to the optimum are assumed to be driven 

by laws of thermodynamics and enzyme kinetics. In contrast, the steep declines 

after the optimum may be attributable to factors such as protein denaturation 

and stability (DeLong et al. 2017), disruption of cellular membrane structures 

(Wu 2004) and – in aquatic environments – the nonlinear decrease in the 

solubility of carbon dioxide, needed for photosynthesis, and oxygen for 

respiration (Portner & Knust 2007; Schulte et al. 2011). These thermal 

response curves are sensitive to changes in average temperature and thermal 

variability (Gilchrist 2017), and have been used to show patterns of thermal 

adaptation within (McLean et al. 2005; Knies et al. 2009) and across species 

(Thomas et al. 2012). Such response curves have been used to predict 

competitive interactions between phenotypes (Schaum et al. 2017) and to 

predict the consequences of warming on performance and fitness (Deutsch et 

al. 2008; Vasseur et al. 2014), and hence shifts in community composition 

(Thomas et al. 2012).  
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Many different model formulations have been used to fit thermal response 

curves (Angilletta 2006; DeLong et al. 2017). Throughout this thesis I use a 

modified version of the Sharpe-Schoolfield curve (Schoolfield et al. 1981), 

which extends the temperature-dependence of the original MTE equation to 

incorporate a decline in metabolic rates beyond the optimum (Figure 1.1). 
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This extension of the traditional Boltzmann equation has two extra parameters: 

3C (eV) characterises the high temperature-induced inactivation of enzyme 

kinetics and "C (K) is the temperature at which half the rate is inactivated due 

to high temperatures. In this expression, ! "& 	is the rate of metabolism 

normalised to a reference temperature (e.g. 10 ºC), where no high temperature 

inactivation occurs. Equation 1.2 yields an optimum temperature, "DEF, (K):  
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                           (1.3) 

from which the maximal rate, !("DEF),	 can be calculated. As the Sharpe-

Schoolfield model has four parameters, it requires high-resolution data to 

adequately fit the model, but it is capable of fitting a wide variety of different 

shaped curves (e.g. it can fit both symmetrical and negatively skewed 

responses). In addition, other parameters that are known to underlie an 

organism’s susceptibility to climate change (Stillman 2003; Sunday et al. 2011, 

2012), such as the critical thermal maxima, J"KLM, and minima, J"KNI, can be 

calculated empirically as the temperatures at which rates go below a proportion 

of the maximal rate (Figure 1.1). These temperatures determine a species’ 

thermal tolerance – the range of temperatures at which an organism can grow 

– which is expected to be critical for determining species’ responses to global 
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warming (Pörtner; & Farrell 2008; Kearney et al. 2009). Approaches using 

thermal response curves to predict competitive interactions and future 

distributions typically assume that there is no rapid evolution or local adaptation 

of the thermal response curves (Sinclair et al. 2016), but the importance of 

evolution in altering responses to climate change is widely acknowledged 

(Munday et al. 2013). Thermal history can influence the shape and position of 

the thermal response due to local thermal adaptation. For example, optimum 

temperatures across different phytoplankton and terrestrial autotroph species 

correlate with their average environmental temperature (Thomas et al. 2012). 

What is not known is the rate at which these evolutionary responses are able 

to occur with climate change, but rapid evolution has been shown in Daphnia 

magna, that change their thermal limits in response to increased water 

temperature (Geerts et al. 2015). Throughout the thesis, I treat the parameters 

underlying the shape of the thermal response curve - 3, ! "& , 3C, "DEF, !("DEF), 

J"KLM, J"KNI (Figure 1.1) - as metabolic traits on which I expect temperature-

dependent selection to act on both within and among species.  
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Figure 1.1. A typical thermal response curve.  
Rates rise up to an optimum before rapidly declining. The modified Sharpe-
Schoolfield model is used to characterise the shape of this curve, from which 
extra parameters of interest can be empirically estimated. These parameters 
are treated as “metabolic traits” which are expected to be under temperature-
driven selection.  
 

At the intracellular level, enzymes perform better at higher temperatures.  

Scaling up this logic, the hotter-is-better hypothesis predicts that organisms 

adapted to lower temperatures (with a lower "DEF)  have lower maximal rates, 

!("DEF),	than organisms at higher temperatures, as adaptation is unable to 

overcome thermodynamic constraints (Knies et al. 2009). This idea has 

received broad support when looking at estimates of maximal rate across 

species differing in optimum temperature (Frazier et al. 2006; Angilletta 2009; 

Angilletta et al. 2010). Theory suggests that the acute thermal response curve 

of each species sits on an across-species curve that represents the relationship 

between maximal rate and optimum temperature (Figure 1.2). Under a special 
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case of the hotter-is-better hypothesis, the only way to adapt to a new 

temperature would be for a species to shift its thermal optima, "DEF, along this 

across-species curve. This would result in a corresponding shift in the maximal 

rate, and a single activation energy governs the short-term temperature 

response within species and the long-term temperature response across-

species (Figure 1.2a). Studies have compared short-term thermal response 

curves within and across-species of phytoplankton (Eppley 1972) and across-

genotypes within a species of bacteria (Knies et al. 2009), but more studies are 

needed to adequately evaluate this hypothesis. These ideas are similar to what 

MTE has previously found (i.e. the similarity of the across-species temperature-

dependence of metabolism to the temperature-dependence at the cellular 

level), but studies using MTE usually compare rates at average, not maximal, 

temperatures. As the distance between optimum and environmental 

temperature narrows as temperatures increase (Thomas et al. 2012), these two 

patterns should not be directly compared. But most species do not operate at 

their optimum temperature, so it may be more appropriate to analyse the 

across-species curve at average environmental temperature to understand the 

impact of metabolic trait differences on performance (Figure 1.2). 

 

Alternatively, long-term warming could result in thermal adaptation and 

acclimation that may compensate for the effects of low temperature on 

metabolism (Figure 1.2b). Metabolic-cold adaptation describes the ecological 

phenomenon where cold-adapted organisms have higher rates of metabolism 

at a common temperature than warm-adapted organisms (Addo-Bediako et al. 

2002); ! "& 	decreases with increasing environmental temperature. Previous 
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work on aquatic and terrestrial autotrophs has shown that they regularly 

adapt/acclimate to long-term temperature change through alterations in the 

respiratory and photosynthetic normalisation constants (Atkin et al. 2015; Reich 

et al. 2016; Scafaro et al. 2016). If complete adaptation occurs, the decrease 

in the normalisation would be the exact inverse of the activation energy that 

governs the rise in metabolic rate with acute temperature change. The 

response of a species to short-term warming is still controlled by biochemical 

constraints, but decreases in ! "& 	 across species completely compensate for 

the direct effect of temperature on metabolism, such that rates are independent 

of long-term average temperature (3 = 0 eV). However, the metabolic 

normalisation constant may not be able to completely compensate for the direct 

effect of temperature on metabolism. In these instances, the across-species 

temperature-dependence would be greater than zero, but less sensitive to 

temperature than the average within-species response (Figure 1.2c).   
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Figure 1.2. Possible models of thermal adaptation.  
Under the hotter-is-better hypothesis (a), biochemical constraints alone control 
metabolic rates. As average and optimum temperatures increase, a 
corresponding increase in metabolic rate occurs. However complete thermal 
adaptation (b) may result in long-term effects of temperature on metabolism 
that override the short-term effect of temperature on metabolism such that rates 
are invariant with temperature. In (c), partial thermal adaptation results in a 
partial decrease in the temperature-dependence across species but rates still 
increase with increases in rates with average temperature.  
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Plant metabolism: a tale of two fluxes 

Traditional MTE assumes that selection acts to maximise metabolic rate within 

a given individual (Brown et al. 2004). This seems relatively straightforward in 

heterotrophs where there is only a single metabolic process, respiration, that 

determines rates of energy uptake, transformation to other compounds, and 

ultimately, allocation to growth. Population and ontogenetic growth rates have 

been linked to body size and temperature (West et al. 2001; Savage et al. 2004) 

and the temperature-dependence of growth in heterotrophs is similar to that of 

metabolic rate (i.e. respiration) (Savage et al. 2004). This suggests that 

metabolism and growth are closely linked. 

 

In phytoplankton and terrestrial autotrophs, the relationship between fitness 

and metabolic rate is  further complicated by the presence of two metabolic 

fluxes: photosynthesis and respiration (Raven & Geider 1988). As 

phytoplankton possess simple lifecycles such that growth (a main component 

of fitness) is simply proportional to the balance between photosynthesis (the 

gross fixation of inorganic carbon into organic compounds) and respiration (the 

total remineralisation of the organic carbon back into the environment). 

However, previous work has suggested that rates of respiration are often more 

sensitive to temperature than photosynthesis. This is thought to be due to 

fundamental differences in their biochemical pathways and rate-limiting 

enzymes (Allen et al. 2005; López-Urrutia et al. 2006; Anderson-Teixeira et al. 

2011; Yvon-Durocher et al. 2012). Under light-saturating conditions, the 

temperature-dependence of photosynthesis is thought to be mainly determined 

by the net difference between carboxylation (CO2 fixation) and photorespiration 
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(O2 fixation at the site of photosynthesis) at the active site of the Rubisco 

enzyme (Bernacchi et al. 2001). As photorespiration tends to have a stronger 

response to temperature than carboxylation, light saturated photosynthesis has 

a shallower activation energy than respiration (Coleman & Colman 1980; 

Bernacchi et al. 2001; Allen et al. 2005), whose temperature-dependence is 

generally thought to be controlled mainly by the response of ATP synthesis.  

 

The model approximating a weaker temperature-dependence of 

photosynthesis, relative to respiration, was based on the metabolic pathways 

of C3 plants, which have no general mechanism to reduce photorespiration 

(Allen et al. 2005). Carbon concentrating mechanisms (CCMs) allow autotrophs 

to elevate the internal CO2 concentration relative to O2. Consequently, the 

temperature-dependence of photosynthesis might differ across plant types if 

there are systematic differences in the prevalence of CCMs that transport 

carbon dioxide into the cell. In terrestrial autotrophs, there are two broad types 

of CCM: C4 and CAM (Crassulacean Acid Metabolism). In C4 plants, the initial 

fixation of carbon dioxide and subsequent carboxylation by Rubisco are 

separated in different parts of the cell, whereas in CAM plants these processes 

occur at different times, with CO2 fixation occurring in the night and Rubisco 

carboxylation in the day. A number of CCM variants have been found in 

different groups of phytoplankton, which are essential to overcome the 

difficulties of attaining carbon from an aquatic environment (Giordano et al. 

2005; Raven et al. 2011). If these CCMs result in an increase in the 

concentration of CO2 then the activation energy of photosynthesis may be 

higher in phytoplankton compared to the predictions derived based on C3 
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photosynthesis (Galmes et al. 2015). Further work is needed to quantify the 

temperature-dependence of photosynthesis and respiration in phytoplankton, 

and to investigate the extent to which these two fundamental fluxes have 

different responses to temperature. 

 

If photosynthesis has a lower activation energy than respiration, at 

temperatures below the optimum, increases in temperature will cause 

respiration rates to rise relatively more than those of photosynthesis. 

Consequently, the ratio of respiration to gross photosynthesis (R/P ratio) 

increases as a function of temperature, which means the fraction of carbon 

available for growth, termed carbon-use efficiency (CUE = 1 – R/P) declines as 

temperatures rise in the short-term. This reduction in energetic efficiency is 

likely to impose a major selection pressure on phytoplankton physiology when 

it goes over a certain threshold. However, R/P ratios are commonly found to be 

stable over a range of growth temperatures in terrestrial autotrophs (Gifford 

1995; Lewis H. Ziska 1998; Dewar et al. 1999; Atkin et al. 2007). This suggests 

that land plants can alter their rates of photosynthesis and/or respiration to 

offset and counteract the differential temperature sensitivities of respiration and 

photosynthesis. Downregulation of the respiratory normalisation constant in 

response to increasing temperature is widespread in plants (Atkin & Tjoelker 

2003; Loveys et al. 2003; Atkin et al. 2015). In plants, these are usually 

acclimatory adjustments as terrestrial autotrophs are long-living and therefore 

experience lots of variation in their abiotic environment within a single 

generation. The same trees can acclimate to seasonal changes in temperature 
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(Atkin et al. 2000) and such responses are likely key for maintaining fitness 

across a broad range of conditions.  

 

In contrast, phytoplankton have much shorter generation times (hours to days), 

which limits the exposure of individual phytoplankton to temperature variation. 

Instead, the opportunity for evolutionary responses to changes in the 

environment, either through sorting on pre-existing genetic variation within 

populations, or de novo mutation (Lohbeck et al. 2012), is much greater in 

absolute time. Previous work on the temperature response of phytoplankton 

physiology and metabolism has concentrated mostly on acclimation responses 

(Vona et al. 2004; Staehr & Birkeland 2006). These studies generally measured 

phytoplankton responses to different temperatures after just 1-10 generations 

of growth and measure the ability of phytoplankton to rapidly adjust their 

physiology, metabolism and growth. However, as climate change will occur 

slowly, over many (hundreds) of generations in phytoplankton, adaptive 

responses to temperature could be critically important. As of yet, no work has 

explored the impact of long-term warming (i.e. on evolutionary timescales) on 

thermal response curves of phytoplankton metabolism and its link to 

phytoplankton fitness. This is something I will consider in Chapter 2. 

 

Using MTE to link individuals to ecosystems 

Metabolic theory makes the simple assumption that rates of flux at higher levels 

of organisation are simply the sum of the metabolic rates of the lower levels of 

organisation within it. This has allowed body size and temperature constraints 

on individual physiology to be scaled up to predict community and ecosystem 
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flux (Enquist et al. 2003, 2016; Yvon-Durocher & Allen 2012) and has 

successfully predicted   ecosystem properties (López-Urrutia et al. 2006; 

Enquist et al. 2007; Schramski et al. 2015). The effects of temperature on rates 

of ecosystem metabolism are typically assessed in two different types of study. 

In the first, the temperature-dependence is derived by analysing seasonal 

variation in metabolism and temperature (Raich & Schlesinger 1992; Lloyd & 

Taylor 1994; Enquist et al. 2003; Yvon-Durocher et al. 2010, 2012). Such 

“within-ecosystem” analyses aim to capture the short-term effects of 

temperature on ecosystem flux and are somewhat analogous to the acute 

temperature response measured at the species and population levels. 

However, even over seasonal temperature variation experienced over several 

months, phytoplankton will go through many generations and thermal 

adaptation and changes in metabolic traits due to species turnover may occur 

in this time.  

 

These within-ecosystem studies may be less informative for understanding how 

gradual changes in temperature over longer timescales (as to be expected with 

climate warming) will influence ecosystem properties. To study this, metabolic 

flux and average temperature are analysed across ecosystems that vary in 

mean annual temperature along latitudinal or altitudinal gradients (Allen et al. 

2005; Michaletz et al. 2014; Demars et al. 2016). Here, ‘across-ecosystem’ 

analyses substitute space for time in an attempt to understand how warming 

will impact ecosystem metabolism. Both within- and across-ecosystem studies 

have identified temperature sensitivities remarkably similar to those at the 

species level (Yvon-Durocher et al. 2012; Demars et al. 2016). Such findings 
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have inevitably led to the conclusion that biochemical constraints on enzymatic 

rates control metabolism across different spatial, temporal and organisational 

scales (Demars et al. 2016). Unfortunately, such simplicity is rarely observed in 

the natural world. This conclusion is likely an example of the many-to-one 

principle, where the same pattern emerges at different scales from different 

causal mechanisms.  

 

The direct effect of temperature on enzymes may dictate ecosystem rates in 

the short term, but even over seasonal temperature changes (even more so 

over longer timescales) indirect effects of temperature are likely to influence the 

ecosystem response to warming. For example, if selection acts to decrease the 

metabolic normalisation constant, thermal adaptation and acclimation within 

and among species (Enquist et al. 2007) that alter species composition 

(Romero-Olivares et al. 2017) and community structure (Yvon-Durocher et al. 

2011) may dampen the observed temperature response of ecosystem 

metabolism. In addition, changes in nutrient availability (Behrenfeld et al. 2006) 

that drives variation in standing biomass (Welter et al. 2015; Williamson et al. 

2016) through time (seasonal variation within ecosystems) and space (across 

ecosystems with different nutrient concentrations) will also alter the observed 

response of ecosystem-level metabolism to warming. However, whether 

changes in nutrient availability enhance or constrain the observed ecosystem 

temperature response will be dependent on whether nutrients positively or 

negatively covary with warming. Consequently, although the same 

temperature-dependence may be observed across different timescales and 

organisational levels, the mechanisms that give rise to the observed 
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temperature-dependence are likely to be different. I build on these ideas 

throughout this thesis, and I link organism to ecosystem metabolism in 

Chapters 3 and 4. 

 

Experimental systems 

The experimental component of this thesis reflects its scaling theoretical 

framework in that it spans many temporal, spatial and organisational scales. I 

use laboratory microcosms to examine how phytoplankton adapt to stressful 

temperatures. Microcosms are often criticised for the limited applicability to the 

natural world, but they allow me to implement temperature regimes and 

measure responses that are yet to occur in nature. Additionally, I can 

investigate what the temperature-dependence of photosynthesis and 

respiration is at the organisational level and timescales closest to the proposed 

mechanisms given by MTE (i.e. the short-term effects of temperature on 

enzyme kinetics of individuals). Testing the assumptions of MTE at the 

appropriate scale is essential for improving and developing the theory and its 

applications (Price et al. 2012). 

 

However, I need to scale up my experimental microcosms to understand how 

the effects of thermal adaptation of individual metabolism might impact 

ecosystem responses. Thus, I take advantage of a long-term mesocosm 

experiment where a set of experimental ponds have undergone 4 ºC warming 

for >10 years. These mesocosms provide an invaluable resource to investigate 

how community size structure influences community metabolism and test for 

the relative importance of long-term vs short-term warming in determining 
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community structure and functioning. Mesocosms represent reality much better 

than experimental microcosms, but both approaches represent only relatively 

short timescales (relative to the extent of climate warming) and the response of 

populations and communities to temperature change can vary through time in 

microcosm (Schlüter et al. 2016) and mesocosm experiments (Yvon-Durocher 

et al. 2017). 

 

To combat this, scientists use latitudinal or altitudinal gradients, where a natural 

thermal cline exists, to study the response of species and ecosystems to long-

term temperature differences (Enquist et al. 2003; De Frenne et al. 2013; 

Michaletz et al. 2014; Zhou et al. 2016). These approaches are often 

confounded by co-variables such as differences in nutrient and light availability 

(Fukami & Wardle 2005; Bradshaw & Holzapfel 2010) that make it hard to 

isolate the sole effect of temperature. Natural geothermal stream systems allow 

me to circumvent this issue  as streams and their associated biota have been 

exposed to differential warming for multiple generations, thereby reflecting 

long-term evolutionary and ecological responses to warming (O’Gorman et al. 

2012, 2014). This gives a great opportunity to study both the short- and long-

term responses of warming in a completely natural setting, at population and 

ecosystem scales (O’Gorman et al. 2014). 

 

Throughout the rest of this thesis, I develop the ideas and theory outlined here 

and test quantitative predictions with an appropriate experimental approach to 

investigate the scaling of metabolism across different spatial, temporal and 

organisational levels. Specifically, my objectives are to: 
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Chapter 2: I investigated whether a model phytoplankton species, Chlorella 

vulgaris, can adapt to stressful warming. I expected the metabolic traits 

underlying the thermal response curves of photosynthesis and respiration to 

adapt to maximise the carbon-use efficiency at stressful growth temperatures. 

After ~ 100 generations Chlorella vulgaris adapted to increase their 

growth rates by decreasing rates of respiration more than photosynthesis 

and increasing their CUE. This work highlights the ability of phytoplankton to 

rapidly adapt to warming and identifies a potential ubiquitous mechanism of 

metabolic adaptation. 

 

Chapter 3: In this chapter I aimed to understand how community-flux is linked 

to community structure and individual physiology. I use measurements of 

phytoplankton community metabolism to test predictions from a metabolic 

scaling framework. I find that rates of community-level metabolism are well 

predicted from individual physiology and community structure and 

abundance, suggesting that body size and temperature are the primary drivers 

of metabolism at multiple levels of organisation.  

 

Chapter 4: Using the theoretical framework outlined in the introduction, I 

examined how the indirect effects of temperature on ecosystem-level 

metabolism can dampen the effects of temperature on GPP across catchment 

of geothermally heated streams. Rates of population-level photosynthesis 

decreased at higher stream temperatures such that after accounting for 

differences in biomass, rates of biomass-specific ecosystem-level GPP 

were invariant across a 20 ºC gradient in temperature. The combined 
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effects of thermal adaptation and temperature-dependent changes in biomass 

can completely override the direct effects of temperature on metabolic rates. 
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Chapter 2: Rapid evolution of metabolic traits explains 

thermal adaptation in phytoplankton. 

 

ABSTRACT 

Understanding the mechanisms that determine how phytoplankton adapt to 

warming will substantially improve the realism of models describing ecological 

and biogeochemical effects of climate change. Here, I quantify the evolution of 

elevated thermal tolerance in the phytoplankton, Chlorella vulgaris. Initially, 

population growth was limited at higher temperatures because respiration was 

more sensitive to temperature than photosynthesis meaning less carbon was 

available for growth. Tolerance to high temperature evolved after ≈100 

generations via greater down-regulation of respiration relative to 

photosynthesis. By down-regulating respiration, phytoplankton overcame the 

metabolic constraint imposed by the greater temperature sensitivity of 

respiration and more efficiently allocated fixed carbon to growth. Rapid 

evolution of carbon-use efficiency provides a potentially general mechanism for 

thermal adaptation in phytoplankton and implies that evolutionary responses in 

phytoplankton will modify biogeochemical cycles and hence food web structure 

and function under warming. Models of climate futures that ignore adaptation 

would usefully be revisited. 
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INTRODUCTION  

Phytoplankton play a key role in biogeochemical cycles (Field 1998) and fuel 

aquatic food webs (Falkowski et al. 2008). Novel phytoplankton communities, 

and the functions they mediate, will emerge as the climate changes through a 

combination of turnover in species composition (Yvon-Durocher et al. 2011), 

and shifts in the distribution of traits (e.g. body size, metabolic rates, 

stoichiometry) via phenotypic plasticity (Schaum et al. 2013; Magozzi & Calosi 

2014) and rapid evolution (Lohbeck et al. 2012; Schaum & Collins 2014; 

Schlüter et al. 2014; Geerts et al. 2015). The amount of plasticity and 

evolutionary potential in key traits, relative to their interspecific variability 

(Thomas et al. 2012), will largely determine the extent to which phytoplankton 

communities are buffered from species turnover in a warmer world (Pörtner & 

Farrell 2008; Angilletta 2009; Montoya & Raffaelli 2010).  

 

Because of their rapid generation times and high population densities, 

phytoplankton have substantial capacity for rapid evolutionary responses to 

climate change (Collins 2011). There is growing evidence for evolutionary 

responses of phytoplankton in vitro to global change drivers, such as elevated 

CO2 (Collins & Bell 2004; Lohbeck et al. 2012; Schaum & Collins 2014; Schlüter 

et al. 2014), but only a single study has explored responses to warming 

(Schlüter et al. 2014). Studies applying experimental evolution to phytoplankton 

have focused mainly on identifying the capacity for adaptation and have not 

investigated the underlying mechanisms that facilitate evolutionary responses. 

Understanding the capacity for, and mechanisms through which phytoplankton 

might evolve to cope with novel environments is central to predicting whether 
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aquatic ecosystems will accelerate or mitigate global warming through changes 

in their capacity to sequester carbon. Such quantitative and mechanistic 

understanding will support the development of more realistic models of the 

ecological and biogeochemical effects of climate futures. 

 

Thermal tolerance – the range of temperatures at which an organism can grow 

– is expected to be critical for determining species’ responses to global warming 

( Pörtner & Farrell 2008; Kearney et al. 2009). Evolution has driven substantial 

variation in thermal tolerance among species of phytoplankton adapted to 

different environments (Thomas et al. 2012). Experiments on bacteria (Bennett 

& Lenski 2007), evolving and coevolving viruses (Zhang & Buckling 2011) and 

zooplankton (Geerts et al. 2015) have demonstrated capacity for rapid 

evolution of elevated thermal tolerance. However, the extent, tempo and 

mechanisms through which elevated thermal tolerance can evolve in 

phytoplankton are currently unclear. 

 

Metabolism sets the pace of life (Brown et al. 2004) and is a key process that 

can be used to gain a more mechanistic understanding of evolutionary 

responses to changes in temperature. Metabolism dictates a host of life-history 

traits and attributes that determine fitness, including population growth rate 

(Savage et al. 2004), abundance, mortality and interspecific interactions (Dell 

et al. 2011). During acute exposure to a range of temperatures, metabolic rates, 

!("), typically increase exponentially up to an optimum, followed by a rapid 

decline (Figure 2.1a). These unimodal thermal response curves can be 
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described using a modification of the Sharpe-Schoolfield equation for high 

temperature inactivation (Schoolfield et al. 1981): 

ln ! " = 3 @
G</

− @
G<

+ ln ! "& − ln 1 + *+B
,

-.B
0 ,
-.                         (2.1)                                                   

where !("), is the metabolic rate per unit biomass (μmol O2 μg C
-1 

h
-1

), 4 is 

Boltzmann’s constant (8.62×10
-5

 eV K
-1

), 3 is an activation energy (in eV) for 

the metabolic process, " is temperature in Kelvin (K), 3C characterises 

temperature-induced inactivation of enzyme kinetics above "C and	!("&)  is the 

rate of metabolism normalised to a reference temperature, "&  = 25 ºC; where 

no low or high temperature inactivation is experienced (from here on I cal	!("&)l 

the ‘specific rate of metabolism’). Because, !("&) is both mass and temperature 

normalised it enables comparison of metabolic rates across populations which 

may vary in total biomass and/or ambient temperature. Equation 2.1 yields a 

maximum metabolic rate at an optimum temperature: 

"DEF =
+B<B

+BAG<BST
>B
> 0@

                                                                                     (2.2) 

the parameters !("&), 3, 3C, and "DEF, represent traits that together characterise 

the metabolic thermal response (see Figure 2.1a). 
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Figure 2.1. Effects of temperature on phytoplankton metabolism.  
(a) Metabolic rates, !("), increase as an exponential function of temperature to 
an “optimum” temperature ("DEF), then decline rapidly. (b) Growth responses for 
a cold-adapted (blue, point & line) and warm-adapted (red, point & line) 
phytoplankton. Evolution of elevated thermal tolerance entails increases in "DEF 
and growth rates at elevated temperatures. (c) Thermal responses for 
photosynthesis (green, P) and respiration (black, R) for a cold-adapted 
phytoplankton. The relative difference between P and R along the temperature 
gradient represents the carbon use efficiency (CUE = 1-R/P). Because R is 
more sensitive to temperature than P, CUE declines (blue to red point) with 
increasing temperature, limiting growth at high temperatures. As phytoplankton 
adapt to warmer temperature (d), selection should drive down specific rates of 
respiration, U("&), more than those of photosynthesis, V("&), increasing CUE 
and ensuring they are not limiting for growth. 
 

In phytoplankton, growth rate (a component of fitness) is dependent on two 

metabolic fluxes: photosynthesis and respiration (Raven & Geider 1988). I 

hypothesise that selection will operate on the metabolic traits of these two 
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fluxes as species adapt to new thermal environments. Past work suggests that 

respiration (activation energy for respiration: 3W  ~ 0.65eV) is often more 

sensitive to temperature than photosynthesis (3X  ~ 0.32eV) (Allen et al. 2005; 

López-Urrutia et al. 2006; Anderson-Teixeira et al. 2011; Yvon-Durocher et al. 

2012). As temperatures rise, rates of respiration rise relatively more than those 

of photosynthesis. Consequently, the ratio of respiration (R; i.e., the gross 

remineralisation of organic carbon (C)) to gross photosynthesis (P; i.e., the 

gross fixation of inorganic C), R/P, increases as a function of temperature, 

which means the fraction of C available for growth after satisfying the catabolic 

demands of the cell, termed carbon-use efficiency (CUE = 1-R/P), declines as 

temperatures rise in the short term (Gifford 2003; Allison et al. 2010) (Figure 

2.1c). This poses a major physiological challenge for photoautotrophic growth 

at high temperatures (Allison 2014). I hypothesise that adaptation to warmer 

temperatures (Figure 2.1b) should arise via evolutionary adjustments to 

metabolic traits that serve to increase CUE (Figure 2.1d) and partially offset 

intrinsic declines in CUE driven by the differences in the temperature sensitivity 

of R and P. When the activation energy for R is greater than P (3W 	> 	3X), 

specific rates of respiration, U("&), should decline more than those of 

photosynthesis, V("&), resulting in increases in the specific carbon-use 

efficiency [JY3("&) 	= 	1 − U("&)/V("&)] as phytoplankton adapt to higher 

temperatures (Figure 2.1d). JY3("&) reflects the carbon-use efficiency 

normalised to the reference temperature "&  = 25 ºC and controls for the intrinsic 

temperature responses of R and P. Here, I test these hypotheses by combining 

experimental evolution (Buckling et al. 2009; Reusch & Boyd 2013) with 
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measurements of fundamental physiology to investigate mechanisms of 

thermal adaptation in the model freshwater alga, Chlorella vulgaris.  

 

METHODS 

Culture conditions 

Chlorella vulgaris is a globally distributed alga and has been found across North 

& South America, Asia, Europe and Australasia (Algaebase 2015). The 

particular strain (A60 strain, Sciento) used here was isolated from a pond in 

northern England 15 years ago and has since been maintained in laboratory 

culture at 20 ºC. Three replicate populations of the A60 strain of C. vulgaris 

were established at 5 different temperatures and were grown under nutrient 

and light saturated conditions in Infors-HT shaking incubators (160 r.p.m) on a 

12:12 light:dark cycle and with a light intensity of 175 µmol
-1 

m
-2

 s
-1

. Cultures 

were grown in 200 mL of Bold’s Basal Medium, supplemented with NaHCO3 

(0.0095 M). These conditions represent typical benign conditions for this strain. 

Note that I initiated the experimental treatments with populations that 

presumably contained pre-existing genotypic variation, rather than single 

clones, to maximise the response to selection and better reflect evolutionary 

responses expected from natural populations (Reusch & Boyd 2013).  

 

Selection temperatures included the long-term ancestral growth temperature of 

the strain, 20 ºC, and 4 warming scenarios, 23, 27, 30 and 33 ºC. Initial 

experiments indicated that 33 ºC was beyond the optimal growth temperature 

(30 ºC) and was therefore selected as the maximum experimental temperature 

to investigate the evolution of elevated thermal tolerance (see Figure 2.2a). 
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Exponential growth was maintained in semi-continuous batch culture; during 

the mid-log growth phase (identified from pilot growth experiments), 1 x 10
3
 

cells were transferred into new media to prevent resource limitation. Physiology 

and growth curve measurements were made twice on each of the three 

biological replicates at each selection temperature after 10 and 100 

generations. The absolute time taken to reach 100 generations varied from 45 

to 77 days depending on selection temperature (see Figure 2.2b-f). 

 

Growth rates 

Population biomass (µg C mL
-1

) was measured at each transfer using a particle 

counter, which uses electrical sensing flow impedance determination to count 

and size cells (CellFacts
TM

). Measurements of cell volume (µm
3
) were 

transformed into units of carbon (µg C cell
-1

) following Montagnes & Berges 

(1994). Specific growth rate, µ (d-1
), was calculated as: 

µ = ST \,/\]
^<

                   (2.3) 

where _@ is the final biomass (µg C), _` represents the initial biomass and a"  

is the time interval (days). The number of generations per transfer (b) is 

equivalent to the number of doubles and was calculated as follows: 

b = 	 ^<
ST 6 /c

                                                                                                    (2.4)  

where a" is the time interval of the transfer (days), ln 2 /µ is the doubling time 

(days) and µ is the specific growth rate (d
-1

). I used linear mixed-effects 

modelling to quantify trajectories in specific growth rate at the different selection 

temperatures that allowed me to control for the hierarchical structure of the data 

(e.g. variance at the replicate level nested within selection temperatures), 

heteroscedasticity and temporal autocorrelation (Pinheiro & Bates 2006). For 
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the analysis, µ was the dependent variable, time (days) and selection 

temperature were fixed effects, while slopes and intercepts were treated as 

random effects at the level of replicates nested within selection temperature 

(Table 2.1). I controlled for heteroscedasticity by modelling changes in variance 

with selection temperature, and temporal autocorrelation using an 

autoregressive moving average function at the level of the random effect. 

Significance of the parameters was assessed using likelihood ratio tests, 

comparing models with common slopes and intercepts to models with different 

slopes and intercepts for each selection temperature (Table 2.1). Multiple 

comparison tests using Tukey’s least significant difference were used to 

determine pairwise parameter differences between selection temperatures and 

significant differences from 0 (Appendix Table 1). Model selection was carried 

out on models fitted using maximum likelihood, while multiple comparison tests 

were carried out on the most parsimonious model fitted using restricted 

maximum likelihood. 

 

Exponential population growth rates (e (d
-1

)) were calculated from logistic 

growth curves, measured after 10 and 100 generations at each selection 

temperature (Figure 2.2a & Appendix Figure 2). Samples were taken twice daily 

to estimate biomass, and once the stationary phase had been reached, I fitted 

the logistic growth equation to the biomass data using non-linear least squares 

regression: 

_ f = 	 g
@Ah=?ij

 ;  k = 	g0	\]
\]

                (2.5) 
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where _ f 	 is the number of individuals at time, f, l is the carrying capacity, 

N0 is the number of individuals at the start of the sampling period and e is the 

rate of exponential growth. 

 

Characterising the metabolic thermal response 

Responses of photosynthesis and respiration to acute temperature variation 

were determined across a broad range of temperatures (10 ºC – 49 ºC) to 

characterise the metabolic thermal response of Chlorella vulgaris (Figure 2.1). 

10 mL aliquots of the populations were concentrated through centrifugation and 

acclimatised to the assay temperature for 15 minutes in the dark before 

measuring metabolic rates. Photosynthesis and respiration were measured 

through oxygen evolution in the light, and oxygen consumption in the dark, on 

a Clark-type oxygen electrode (Hansatech Chlorolab2). Photosynthesis was 

measured at increasing light intensities in intervals of 30 µmol
-1 

m
-2

 s
-1

 up to 

300 µmol
-1 

m
-2

 s
-1

, and then in intervals of 100 µmol
-1 

m
-2

 s
-1

 up to 1000 µmol
-1 

m
-2

 s
-1

. This yielded a photosynthesis irradiance curve (PI) at each assay 

temperature. PI curves were fitted to the photoinhibition model (Platt et al. 1990) 

using non-linear least squares regression (Appendix Figure 3): 

V m = 	Vn(1 − *
?op
qr . *

?tp
qr )                 (2.6) 

where V(m) is the rate of photosynthesis at light intensity, m, Vn is a scaling 

coefficient that sets the relative rate of P, 2 controls the rate at which P 

increases up to a maximal rate, and u determines the extent to which P declines 

after the optimal light intensity due to photoinhibition. The photosynthetic 

maximum, VKLM, was then calculated from Eq. 2.6. 
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VKLM = 	
Xr

(ovto )( t
ovt)

?t
	o

                  (2.7) 

Rates of respiration were measured in the dark. Gross photosynthesis (P) was 

then estimated as V	 = 	VKLM 	+ 	U. By using VKLM, I controlled for any potential 

light-temperature interactions in the characterisation of the thermal response 

for P. Rates of P and R at each acute temperature were normalised by dividing 

by the biomass measured in each aliquot. 

 

Acute responses of biomass normalised P and R to temperature were fitted to 

a modified Sharpe-Schoolfield equation for high temperature inactivation (see 

Eq. 2.1) using non-linear least squares regression. Fits were determined using 

the ‘nlsLM’ function in the ‘minpack.lm’ (Elzhov et al. 2009) package in R 

statistical software (v3.2.0) (R Core Team 2014), which uses the Levenberg-

Marquardt optimisation algorithm. Model selection using the Akaike Information 

Criterion (AIC) was carried out to identify the parameter set which best 

characterised the data. This entailed running 1000 different random 

combinations of starting parameters drawn from a uniform distribution and 

retaining the parameter set that returned the lowest AIC score. The goodness 

of fit of the selected models were examined both graphically and through 

computation of a pseudo-R
2
 value, recognising the caveats associated with 

calculating R
2
 for non-linear models (Spiess & Neumeyer 2010). I tested for the 

effects of ‘selection temperature’ on the metabolic traits (parameters of Eq. 2.1 

for P and R) using the Boltzmann-Arrhenius function: 

ln ! " = 3 @
G</

− @
G<

+ ln !("& )                               (2.8)                                          

where !(") is the metabolic trait at the selection temperature, ", !("&) is the 
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rate at temperature "&, where "& = 25 ºC, and 3 is the activation energy that 

determines how quickly the trait varies as a function of ". I used Eq. 2.8 in an 

Analysis of Covariance to test for the effects of ‘selection temperature’, 

‘exposure’ (e.g. long-term vs. short-term warming), and ‘metabolic flux’ (either 

P or R) on the parameter estimates (Table 2.2). 

 

In plant physiology, the carbon-use efficiency (CUE) represents the fraction of 

fixed carbon that is available for allocation to growth (Gifford 2003), and can be 

estimated from rates of gross photosynthesis (P) and respiration (R) as: CUE 

= 1-R/P. CUE and specific carbon-use efficiency [JY3("&)] were estimated for 

each replicate after 10 and 100 generations from rates of R and P measured at 

their selection temperature and from the specific rates of R, U("&), and P, V("&), 

respectively. Because the cultures experienced a 12:12 hour light-dark cycle, 

integrated over 24 hours, populations will be photosynthesising for 12h but 

respiring for 24h. In estimating CUE, rates of R and P were integrated over 24 

and 12 hours respectively, to account for the diel population-level carbon 

budget. I then analysed the estimates of CUE and JY3("&) using linear 

regression centred to a normalised temperature (" - "&) in an Analysis of 

Variance so that the intercept of the linear model represented the CUE at "&, 

where "& = 25 ºC. ‘Selection temperature’ and ‘exposure’ (e.g. long-term vs. 

short-term warming) were included as potentially interacting factors.  

 

RESULTS 

The rate of exponential population growth (e) increased with selection 

temperature and after 10 generations, peaked at 30 ºC. Growth at 33 ºC was 
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lower than predicted from the exponential relationship between temperature 

and population growth (Figure 2.2a). However, following 100 generations of 

selection at 33 ºC, growth increased 1.4 fold (Tukey post-hoc test comparing 

long- and short-term growth rates at 33 ºC, t = -6.9, d.f. = 18, P < 0.001) to the 

level predicted from the initial (10 generation data) relationship between 

temperature and growth rate (Figure 2.2a). Trajectories of specific growth rate 

(µ) suggest that fitness did not change over the course of the selection 

experiment in the ancestral lineages (20 ºC) and those at 23 ºC. However, 

between 27 and 33 ºC, fitness increased over the course of 100 generations 

(Figure 2.2b-f). The most marked response to selection (e.g. the steepest 

fitness trajectory) was at 33 ºC (Figure 2.2f; Table 2.1 & Appendix Table 1).

  

Consistent with previous work (López-Urrutia et al. 2006; Yvon-Durocher et al. 

2012), R was more sensitive to temperature than P in all lineages (Figure 2.3a-

b; Appendix Figure 1 & Table 2.2) and consequently, CUE decreased with 

increasing selection temperature in the lineages that had experienced 10 and 

100 generations at each selection temperature (ANCOVA F1,26 = 70.27; P < 

0.001; Figure 2.4a). Indeed, the low CUE at 33 ºC was initially (after 10 

generations) limiting for growth (Figure 2.2a), explaining why lineages at 33 ºC 

showed the strongest response to selection (Figure 2.2f).  

 

I hypothesised that evolution of elevated thermal tolerance should arise via 

increases in CUE, particularly at the temperature that was initially the most 

stressful (33 ºC), by selection driving down U("&) more than V("&) with 

increasing temperature (Figure 2.1d). In line with my hypothesis, CUE 
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increased significantly between lineages exposed to 10 and 100 generations at 

each temperature regime (ANCOVA comparing intercepts between levels of 

‘exposure’; F1,26 = 9.73; P = 0.004; Figure 2.4a). Furthermore, in the 100 

generation lineages U("&) and V("&) declined exponentially with increasing 

selection temperature (Figure 2.4b-c), with the activation energy for U("&) = -

0.88 eV (95% CI: -1.48 to -0.46 eV), double that of V("&) = -0.47 eV (95% CI: -

0.82 to -0.17 eV). Consequently, the specific carbon-use efficiency [JY3("&) = 

1-	U("&) /	V("&)] increased linearly with increasing selection temperature 

(ANCOVA F1,13 = 12.87; P = 0.003; Figure 2.4d).  

 

I found no evidence for shifts in most of the other metabolic traits  – e.g. 3, "DEF, 

"C   – in response to temperature, after 10 or 100 generations (Table 2.2; 

Appendix Figure 1). Beside the documented declines in U("&) and V("&), the 

deactivation energy, 3C, which dictates the rate at which metabolism declines 

past the optimum, increased with selection temperature for both P and R (Table 

2.2; Appendix Figure 1). Thermal optima for P and R were always higher than 

the selection temperatures for all lineages (Appendix Table 2). Thus, increases 

in 3C, resulting in more rapid declines in metabolic rates after the optimum, 

would not impact growth or fitness. Decreases in specific rates of metabolism, 

U("&)  and V("&), and increases in the deactivation energy, 3C, do however 

suggest that metabolic thermal responses became more specialised in the 

lineages evolved to higher temperatures, where the strength of selection was 

greatest. 
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Figure 2.2. Growth rate trajectories for Chlorella vulgaris at different selection 
temperatures. 
(a) Exponential rates of population growth (e) at the five different selection 
temperatures after 10 generations (black circles) and 100 generations (red 
circles). The broken black line shows the temperature dependence of growth 
rate for the all lineages up to 30 ºC after 10 generations and the broken red line 
predicts the expected growth rate at 33ºC from these data fitted to the 
Boltzmann-Arrhenius model (see Methods). (b – f) Trajectories of specific 
growth rate (µ) for populations at 20 ºC (the ancestral temperature), 23 ºC, 27 
ºC, 30 ºC and 33 ºC respectively. Broken lines in (b-f) show growth trends 
based on the fixed effects of a linear mixed effect model (see Methods). 
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Table 2.1. Results of the linear mixed effects model analysis for trajectories of 
specific growth rate.  
Random effects on the slope and intercept were determined at the level of 
replicates nested within selection temperatures. The results of the model 
selection procedure on the fixed effect terms are given and the most 
parsimonious model is highlighted in bold. Analyses reveal that growth rates 
changed significantly through time and that growth trajectories were 
significantly different between selection temperatures. 
Model d.f. AIC Log 

Lik 
L-

ratio 
p 

random effects structure      

   random = ~1 | id      

   corr. structure = varPower() & corARMA(q = 1) 

 

     

fixed effects structure      

   1. growth rate ~ 1 + time * selection temp 14 -140 84   

   2. growth rate ~ 1 + time + selection temp  10 -123 71.3 25.4 < 0.001 

   3. growth rate ~ 1 + time 6 -53 32.9 77.0 < 0.001 
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Figure 2.3. Acute effects of temperature on gross photosynthesis and 
respiration.  
Acute thermal response curves for gross photosynthesis (P; a, b) and 
respiration (R; c, d) were measured for populations following short-term (10 
generations, a, c) and long-term warming (100 generations; b, d) at 20 ºC 
(blue), through to 33 ºC (red). In (a – d), fitted lines are based on mean 
parameters at each growth temperature across replicates (n = 3) derived from 
non-linear least squares regression using the modified Sharpe-Schoolfield 
model (see Eq. 2.1). (e & f) Activation energies and thermal optima are pooled 
across all replicates and selection temperatures from both short- and long-term 
responses; tops and bottoms of box-whisker plots represent the 75th and 25th 
percentiles and black horizontal lines the medians. 
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Figure 2.4. Effects of selection temperature on carbon-use efficiency and 
specific rates of metabolism.  
(a) Carbon use efficiency (CUE) declined with increasing selection temperature 
after 10 (black bars) and 100 generations (red bars). However, CUE increased 
over the course of 100 generations (relative to the values after 10 generations), 
with the most marked increase at the temperature that was initially stressful (33 
ºC). (b-c) Specific rates of gross photosynthesis, V("&)	and respiration, U("&)	for 
cultures after 10 (black) and 100 (red) generations. Neither of these metabolic 
traits varied with selection temperature after 10 generations, but both declined 
exponentially following 100 generations. (d) Specific carbon-use efficiency, 
JY3 "& ,	increased with increasing selection temperature over the course of 
100 (red bars) but not after 10 generations (black bars). Fitted lines in (a, d) 
represent fits to a temperature-centred linear regression and in (b, c) represent 
fits to the Boltzmann-Arrhenius equation (Eq. 2.8; see Methods). 
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Table 2.2. Results of an Analysis of Covariance for each metabolic trait.  
Parameters included in the most parsimonious model are highlighted in bold. 
 

Parameter Effect d.f. F value P value 
b(Tc) selection temperature 

metabolic flux 
exposure 

1,52 

1,52 

1,52 

13.7 

274.58 

40.9 

< 0.001 
< 0.001 
< 0.001 

 selection temperature*metabolic flux 1,52 0.198 0.65 

 selection temperature*exposure 
metabolic flux*exposure 

selection temperature*metabolic flux*exposure 

1,52 

1,52 

1,52 

6.93 

2.38 

1.36 

< 0.05 
0.13 

0.25 

Ea selection temperature 

metabolic flux 
exposure 

1,52 

1,52 

1,52 

2.44 

56.8 

7.29 

0.11 

< 0.001 
< 0.01 

 selection temperature*metabolic flux 1,52 0.0004 0.98 

 selection temperature*exposure 

metabolic flux*exposure 
selection temperature*metabolic flux*exposure 

1,52 

1,52 

1,52 

0.024 

4.8 

0.91 

0.88 

< 0.05 
0.34 

Eh selection temperature 
metabolic flux 
exposure 

1,52 

1,52 

1,52 

4.71 

17.5 

1.78 

< 0.05 
< 0.001 

0.19 

 selection temperature*metabolic flux 1,52 0.42 0.52 

 selection temperature*exposure 

metabolic flux*exposure 

selection temperature*metabolic flux*exposure 

1,52 

1,52 

1,52 

0.09 

0.39 

0.002 

0.76 

0.53 

0.96 

Th selection temperature 

metabolic flux 
exposure 

1,52 

1,52 

1,52 

0.15 

36.4 

4.73 

0.34 

< 0.001 
< 0.05 

 selection temperature*metabolic flux 1,52 0.335 0.57 

 selection temperature*exposure 

metabolic flux*exposure 

selection temperature*metabolic flux*exposure 

1,52 

1,52 

1,52 

0.211 

1.38 

0.23 

0.65 

0.25 

0.64 

Topt selection temperature 

metabolic flux 
exposure 

1,52 

1,52 

1,52 

2.23 

28.8 

2.75 

0.133 

< 0.001 
0.10 

 selection temperature*metabolic flux 1,52 0.04 0.85 

 selection temperature*exposure 

metabolic flux*exposure 
selection temperature*metabolic flux*exposure 

1,52 

1,52 

1,52 

0.02 

5.81 

0.0001 

0.88 

< 0.05 
0.99 
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DISCUSSION  

I hypothesised that the higher temperature dependence of respiration (R) 

relative to photosynthesis (P) would constrain growth at elevated temperatures 

in the model phytoplankton, C. vulgaris, because of reductions in carbon-use 

efficiency (CUE). I therefore expected elevated thermal tolerance to evolve 

through down-regulation of R relative to P, enabling more efficient allocation of 

fixed carbon to growth. Results from the evolution experiment were consistent 

with these hypotheses.  

 

Acclimation - i.e. the change in physiological phenotype from a single genotype 

(West-Eberhard 2003) - typically occurs over 1 to 10 generations in 

phytoplankton (Staehr & Birkeland 2006). In my experiment, growth rates 

increased exponentially between 20 and 30 ºC after 10 generations, though at 

33 ºC, the capacity for physiological acclimation to facilitate further increases in 

growth was insufficient. In line with my expectations, CUE declined with 

increasing selection temperature, and at 33 ºC growth was presumably limited 

by low CUE.   

 

Evolutionary responses in phytoplankton, either via selection on pre-existing 

genotype variation (Lohbeck et al. 2012) or de novo mutations, are frequently 

observed within 100 generations (Schaum & Collins 2014; Schlüter et al. 2014), 

and in this experiment, after 100 generations, growth at 33 ºC had increased to 

levels predicted from the exponential relationship between temperature and 

growth. Consistent with my hypothesis, elevated thermal tolerance evolved via 

increases in CUE mediated by greater down-regulation of specific rates of 
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respiration, U("&)  relative to those of photosynthesis, 	V("&). These findings 

provide direct evidence that selection on metabolic traits provides a 

mechanistic explanation for the evolution of elevated thermal tolerance in a 

model phytoplankton.  

 

Down-regulation of U("&) under warming is well documented in vascular plants 

(Loveys et al. 2003; Atkin et al. 2015), and adjustments to U("&), V("&) and CUE 

occur within a single generation through acclimation. For plants that experience 

substantial variation in the environment over the course of a single generation, 

the capacity for physiological acclimation is likely to be key for maintaining 

fitness across a broad range of conditions. Phytoplankton have much shorter 

generation times (hours to days) and therefore the opportunity for evolutionary 

responses to changes in the environment, either through sorting on pre-existing 

genotype variation, or de novo mutation and selection (Lohbeck et al. 2012), is 

much greater in absolute time. Whether mediated by acclimation or 

evolutionary change, the net effect of down-regulating specific rates of 

respiration to facilitate growth at elevated temperatures, appears to be 

conserved across both vascular plants (Loveys et al. 2003; Atkin et al. 2015) 

and the green alga studied here. Developing a detailed understanding of the 

molecular and biochemical mechanisms that underpin the responses of 

metabolic traits to temperature should be a priority for further research. 

 

A recent comparative analysis coupled to an eco-evolutionary species 

distribution model, demonstrated that geographic variation in thermal niches of 

phytoplankton closely matched the temperature regime of their natal 
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environment and suggests that thermal tolerance is a key trait shaping the 

response of phytoplankton communities to warming (Thomas et al. 2012). The 

rate at which thermal tolerance evolves to track changes in temperature in the 

Thomas et al. (2012) model is a key parameter for determining whether a 

species can persist in a given location under warming. However, due to the lack 

of data on rates of thermal adaptation for phytoplankton, this parameter could 

not be empirically constrained in the investigation by Thomas et al. (2012). My 

experiment demonstrates that for a model species of green algae, 100 

generations (45 days) was sufficient to evolve elevated rates of population 

growth (1.4 fold increase) at a temperature that initially constrained growth and 

therefore provides an empirical basis for parameterising thermal trait evolution 

in eco-evolutionary models of phytoplankton dynamics. This work also reveals 

the metabolic mechanisms that underpin the evolution of elevated thermal 

tolerance and provides a basis for refining models by linking evolution and 

physiology to better predict the responses of phytoplankton communities to 

climate change. 

 

While these experiments focused on a single species and strain, I consider that 

the rapid evolution of carbon-use efficiency will provide a mechanistic 

explanation for thermal adaptation in other phytoplankton. This is because the 

greater sensitivity of respiration to temperature, relative to photosynthesis is 

well established in a wide range of autotrophs (Allen et al. 2005; López-Urrutia 

et al. 2006; Staehr & Birkeland 2006; Anderson-Teixeira et al. 2011; Yvon-

Durocher et al. 2012) and because phytoplankton have been shown to evolve 

rapidly in response to changes in their environment (Collins & Bell 2004; 
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Lohbeck et al. 2012; Schaum & Collins 2014; Schlüter et al. 2014). Absolute 

rates of evolution will depend on generation times and genotypic variation 

within populations, and will intrinsically vary among species as well as being 

dependent on past interactions with the environment. The rates of adaptation 

found here may not be consistent with those in the natural environment 

because experimental conditions in the laboratory are vastly simplified relative 

to the complex selection environment faced in nature. My results might, for 

example, overestimate rates of evolution because cultures were maintained in 

exponential growth. Phytoplankton in the natural environment likely spend a 

proportion of their life cycle at carrying capacity and/or under nutrient limitation, 

and thus have longer generation times than those achieved under laboratory 

conditions. On the other hand, my results could be conservative if the more 

heterogeneous environments experienced by natural populations result in high 

standing genetic variation. Indeed, a recent review of studies of genetic 

variation in natural populations using genetic markers demonstrated high 

standing gene and clonal diversity in diatoms, coccolithophores, dinoflagellates 

and a raphidopyte (Collins et al. 2013). Finally, rates of thermal adaptation in 

nature might be amplified or retarded relative to those observed in the 

laboratory, depending on how co-evolutionary interactions with other species 

affect evolutionary responses to changes in the abiotic environment (Lawrence 

et al. 2012). 

 

Models used to assess biogeochemical and ecological futures under climate 

change tend to resolve phytoplankton into either taxonomic, functional or trait-

based groups (Anderson 2005; Schneider et al. 2008; Vancoppenolle et al. 
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2013). More experiments are clearly needed to define the range of adaptive 

responses to warming among different groups of phytoplankton. 

Notwithstanding, these findings suggest that warm adapted phytoplankton 

could evolve elevated carbon fixation, which might offset some of the predicted 

declines in carbon sequestration under warming in aquatic ecosystems (Allen 

et al. 2005; López-Urrutia et al. 2006; Yvon-Durocher et al. 2010, 2012). I 

propose that the effects of thermal adaptation could be generalised within 

models based on these results, at least to test the sensitivity of model 

predictions to the rates of adaptation I have quantified and to challenge 

alternate model outputs (e.g. based on no adaptation vs. adaptation or to 

different rates of adaptation) with data (Stow et al. 2009). This will provide 

important insights into how the effects of thermal adaptation are expected to 

modify biogeochemical cycles, and hence predictions of elemental fluxes and 

the structure and functioning food webs, under warming. 

 

CONCLUSION 

I demonstrate the ability of an aquatic alga, Chlorella vulgaris, to adapt to novel 

thermal environments. After 10 generations at higher temperatures, growth was 

limited as respiration is more sensitive to temperature than photosynthesis. 

However, rapid evolution (increased thermal tolerance occurred after just ~45 

days growth) is driven by a down-regulation of respiration rates relative to 

photosynthesis that results in an increase in the carbon-use efficiency that 

allowed a higher proportion of fixed carbon to be allocated to growth. Rapid-

evolution of carbon-use efficiency could be a general mechanism of thermal 
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adaptation in phytoplankton and suggests that evolutionary responses could 

modify long-term temperature response of metabolism. 
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Chapter 3: Abundance, temperature and body-size 

predict community-level metabolic rates in 

phytoplankton communities. 

 

ABSTRACT 

Quantifying variation in primary production is critical to predicting the impacts 

of environmental change on the aquatic carbon cycle. Here, I used a metabolic 

scaling framework to investigate how body size and temperature influence 

phytoplankton community metabolism. I used phytoplankton sampled from an 

outdoor mescosom experiment in which communities had been either 

experimentally warmed (+ 4 ºC) for a decade or left at ambient temperature. 

Warmed and ambient phytoplankton communities differed substantially in their 

taxonomic composition and size structure, where communities from the 

warmed mescosms were dominated by larger phytoplankton. Community 

metabolism (photosynthesis and respiration) across all treatments could be 

robustly predicted using a model that accounted for the size- and temperature-

dependence of individual metabolism, and the distribution of abundance, body 

size and biomass. These findings demonstrate that the key metabolic fluxes 

that determine the carbon balance of planktonic ecosystems can be predicted 

using metabolic scaling theory, with only knowledge of the individual size 

distribution and the ambient temperature.  
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INTRODUCTION 

At the global scale, phytoplankton are responsible for around half of the carbon 

fixed by the biosphere, despite accounting for <1% of global autotrophic 

biomass (Falkowski 1994; Field 1998). Most of this carbon, fixed through 

photosynthesis, is quickly remineralised by respiration (Falkowski et al. 2000) 

and the difference between community respiration and gross primary 

production represents the amount of carbon available for sequestration to the 

deep ocean and to fuel aquatic food webs (Falkowski et al. 2008). Despite its 

importance to the global carbon cycle and ocean ecosystems, there is 

disagreement as to whether community respiration generally exceeds gross 

primary production in large areas of the ocean (del Giorgio et al. 1997; Duarte 

et al. 2013; Williams et al. 2013). If true, this would mean that large areas of the 

oligotrophic ocean are heterotrophic and release more CO2 to the atmosphere 

through respiration than they fix via photosynthesis (Duarte et al. 2013).  

 

The disagreement and uncertainty in the spatiotemporal coverage of 

heterotrophy in the ocean is partly caused by the different approaches for 

estimating planktonic metabolism and their associated limitations and 

uncertainties (del Giorgio & Duarte 2002; Robinson & Williams 2005; Serret et 

al. 2015). Traditional bottle-incubation measurements, where the metabolism 

of small samples of sea water (~125 mL) are measured in vitro for short periods 

of time (hours to days) (Robinson & Williams 2005; Serret et al. 2015), 

represent the metabolism of a single community at a specific time and place. In 

contrast, in situ methods measure ocean metabolism at much broader and 

coarser scales, by monitoring concentrations of gases that control or indicate 
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phytoplankton metabolism (such as O2 and N2) in large bodies of water (many 

km
2
) over long periods of time (weeks to months) (Hansell et al. 2004; Williams 

et al. 2013). These methods necessarily incorporate the effect of multiple 

abiotic drivers (e.g. temperature, light) and integrate the metabolism of multiple 

communities that occur and change through time and space in the water mass 

(Serret et al. 2015). New approaches to estimate phytoplankton metabolism 

that can link across the spatial and temporal scales at which the current 

methods measure metabolism are needed to improve our understanding of the 

carbon cycle in aquatic ecosystems.  

 

Here I approach this problem by linking aspects of community structure (e.g. 

size distribution and abundance) and individual physiology (i.e. gross 

photosynthesis and respiration) to the community metabolic flux. Previous work 

has shown that scaling up individual metabolism to the community-level can 

successfully predict ecosystem-level properties (López-Urrutia et al. 2006; 

Mcgill et al. 2006; Edwards et al. 2013a; Schramski et al. 2015). Metabolic 

scaling theory links organism to ecosystem metabolism using the fundamental 

relationships between temperature, body size and metabolic rate (Enquist et al. 

2003; Brown et al. 2004). Metabolic theory has proven especially useful in 

helping to explain and predict the impact of warming on population, community 

and ecosystem-level phenomena (Enquist et al. 2003; Savage et al. 2004; 

Connor et al. 2009; Pawar et al. 2012). In phytoplankton, warming will alter the 

carbon cycling of communities directly through increases in metabolic rates 

(López-Urrutia et al. 2006; Padfield et al. 2016; Schaum et al. 2017). At the 

community-level, gross primary production (GPP) tends to be less sensitive to 
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changes in temperature than community respiration (CR). Consequently, it is 

expected that climate warming will shift the metabolic balance of phytoplankton 

communities towards heterotrophy (López-Urrutia et al. 2006; Regaudie-de-

Gioux & Duarte 2012).  

 

However, temperature also influences many aspects of community structure 

that in turn can influence phytoplankton community metabolism such as 

standing biomass (Chust et al. 2014; Yvon-Durocher et al. 2015), community 

composition (Markensten et al. 2010; Thomas et al. 2012), local adaptation 

(Berry & Bjorkman 1980), community size structure (Daufresne et al. 2009; 

Moran et al. 2010; Yvon-Durocher et al. 2011) and biodiversity (Hillebrand et 

al. 2011; Lewandowska et al. 2011, 2014; Yvon-Durocher et al. 2015). To 

successfully predict the impact of warming on phytoplankton metabolism, these 

indirect effects of warming need to be considered alongside the direct effect of 

temperature on metabolic rates. 

 

Previous studies linking aspects of community structure to functioning in 

phytoplankton have generally focused on a subset of these direct and indirect 

relationships in isolation. For example, the relationship between body size, 

metabolic rate and abundance (Huete-Ortega et al. 2014; García et al. 2015; 

Huete-ortega et al. 2017), body size and temperature (Moran et al. 2010; 

López-Urrutia & Morán 2015), and metabolic rate, temperature and biodiversity 

(Lewandowska et al. 2011; Yvon-Durocher et al. 2015). How community-level 

metabolism emerges from the combined effects of temperature and body size 

on individual physiology and community structure remains largely unexplored 
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(but see López-Urrutia et al., 2006). Here, I investigate how GPP and CR in 

phytoplankton communities are influenced by the effect of temperature and 

body size on individual metabolic rate and community structure. I do this by 

testing the predictions of a model derived from metabolic scaling theory against 

empirical data from a warming experiment with phytoplankton communities. 

 

THEORY 

Metabolism sets the pace of the life (Brown et al. 2004) and is a key process 

that can link patterns and mechanisms across levels of organisation by 

quantifying the relationships between metabolic rate, body size and 

temperature (Enquist et al. 2003; Brown et al. 2004). The central equation from 

metabolic scaling theory (MST) predicts individual metabolic rate (i.e. 

photosynthesis or respiration), !N, at temperature, " (in Kelvin): 

!N " = 	!N "& (N
L*+(

,
-./

0 ,
-.)                (3.1) 

where !N "&  is an individual-level normalisation constant, at "& (in K), and 4 is 

Boltzmann’s constant (8.62 x 10
-5

 eV K
-1

). (N
L is the mass-dependence of 

metabolic rate characterised by an exponent, 2, which is thought to reflect 

mass-dependent changes in the density of metabolic organelles (Allen et al. 

2005). The exponent, 2, was originally thought to be ¾ across all organisms 

(West et al. 2002), but recent empirical studies have found the size-scaling 

exponent to be steeper and close to isometric (2 = 1) in phytoplankton 

(Marañón 2008; Huete-ortega et al. 2017) and super-linear in bacteria (2 > 1) 

(DeLong et al. 2010; García et al. 2015). 3 (eV) is the activation energy that 

describes the temperature-dependence of the metabolic process. Previous 

work indicates that the activation energy of gross photosynthesis is weaker than 
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that of respiration	across both terrestrial and aquatic autotrophs (Allen et al. 

2005; Anderson-Teixeira et al. 2011; Padfield et al. 2016; Schaum et al. 2017).  

 

The effect of body size and temperature on individual metabolic rate in Eq. 3.1 

can be combined and summed across all individuals within a given community, 

w, to give an estimate of community metabolic rate xy at temperature " (Enquist 

et al. 2003; Yvon-Durocher & Allen 2012): 

xy " = xy "& *
+( ,

-./
0 ,
-.)                (3.2) 

where xy "  is the rate of metabolism of community w, at temperature ", in 

Kelvin (K), zFDF is the total number of individual organisms, {, that comprise all 

the organisms in w. xy "& 	is the community-level normalisation (=

!N "&
Ij|j
N}@ (N

L) at "& (= 18 ºC [291.15 K]), and accounts for changes in 

abundance, size structure and individual metabolic normalisation constant 

between communities. In Eq. 3.2, 3 represents the temperature-dependence 

of community metabolism which is assumed to be similar to the average 

temperature-dependence of individual metabolism (Allen et al. 2005; Demars 

et al. 2016). 

 

Total biomass,	~FDF = 	 (N
Ij|j
N}@ , is commonly used to normalise metabolic rates 

between communities. However, if the size-scaling of metabolism is not 

isometric (2	 ≠ 1) then biomass and metabolism will not be directly proportional 

(Allen & Gillooly 2009).  By multiplying total biomass by a biomass-weighted 

average of the relationship between body size and metabolic rate (N
L0@ (= 

!N "& 	(N
)Ij|j

N}@ /	 (N
Ij|j
N}@ ), mass-corrected biomass, ~FDF((N

L0@), can 
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account for the size-scaling of metabolic rate with changes in body size. Mass-

corrected biomass is predicted to be proportional to the total metabolic capacity 

(i.e. gross primary production or community respiration) of the biomass pool of 

a community.  Thus, by rearranging Eq. 3.2 to control for the direct effect of 

temperature, ", on metabolism, mass-corrected biomass can be used to 

compare metabolism estimates among communities that differ in size structure, 

standing biomass and temperature (Barneche et al. 2014).   

xy(")*
+( ,

-./
0 ,
-.) = ~FDF((N

L0@)               (3.3) 

Here, ~FDF((N
L0@) is an estimate of the metabolic flux of the community. This 

incorporates any effect of temperature on the metabolic normalisation constant, 

which is necessary as terrestrial and aquatic autotrophs are able to upregulate 

their metabolic normalisation constants	! "&  at low temperature and down-

regulate them at high temperature to compensate for the constraints of 

thermodynamics on enzyme kinetics (Atkin et al. 2015; Padfield et al. 2016; 

Reich et al. 2016; Scafaro et al. 2016). After controlling for the direct effect of 

temperature, ", Eq. 3.3 predicts that gross primary production and community 

respiration should be directly proportional (the slope of the log-log relationship 

should be 1) to the mass-corrected biomass of the community. However, this 

key prediction of metabolic scaling theory has never been adequately tested 

due to the challenge of simultaneously measuring community metabolism and 

the complete size distribution (but see Yvon-Durocher and Allen, 2012). 

  

The framework described in Eq 3.2 predicts community flux from the effect of 

temperature and body size on individual metabolic rates. However, it also 

emphasises that variation in total abundance, zFDF, between communities could 
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significantly alter community flux. Changes in total community abundance are 

expected to be intrinsically linked to the influence of body size and temperature 

on metabolic rate (White et al. 2007). The relationship between body size and 

abundance is often modelled by a power-law. Damuth’s rule describes the 

phenomenon where the relationship between average body size of a species 

and abundance is the inverse of the relationship between body size and 

metabolic rate (Damuth 1987). These ideas of energetic equivalence can be 

applied to whole communities; the cross-community scaling relationship 

describes how variation in size-structure between communities results in 

simultaneous inverse changes in total community abundance. Under constant 

resource conditions, Eq. 3.2 predicts a trade-off between shifts in community 

size structure, temperature and total community abundance (Enquist et al. 

2003). Under zero-sum dynamics, metabolic theory predicts that any change in 

the average rate of gross photosynthesis of a community, driven by changes in 

size structure or temperature, will result in a proportional decrease in the total 

number of individuals within that community, (Enquist et al. 1998; White et al. 

2004; Ernest et al. 2009). The trade-off between the number of individuals and 

the total metabolic rate of those individuals predicts that when there is no 

change in the resource supply between communities, community rates should 

remain similar regardless of changes in the size structure.  

 

METHODS 

Overview of long-term mesocosm experiments 

Twenty freshwater mesocosms, each holding 1 m
3
, were set up in 2005 to 

mimic shallow lake ecosystems. They are situated at the Freshwater Biological 
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Association’s river laboratory (2º 10’ W, 50º 13’ N) in East Stoke, Dorset, UK. 

Of the twenty, ten mesocosms have been warmed by 4 ºC above ambient 

temperature for more than 10 years. The mesocosms were seeded in 

December 2005 with organic substrates and a suite of organisms from 

surrounding natural freshwater habitats and subsequently left open to natural 

colonisation. These mesocosms have previously shown that warming can alter 

community structure and the metabolic balance of ecosystems (Dossena et al. 

2012; Yvon-Durocher et al. 2015). As this system retains some of the aspects 

of natural ecosystems while maintaining the control of an experiment, it 

provides a powerful tool to investigate how individual- and community-level 

properties influence ecosystem functioning and the impact of warming on these 

links. 

 

Experimental setup and maintenance 

I sampled all twenty mesocosms (~200 mL) and set them up in a reciprocal 

transplant experiment in April 2016. I inoculated microcosms with a starting 

density of 200 cells mL
-1

 in water collected from the mesocosms supplemented 

with Bold’s Basal Medium (BBM) and placed the microcosms in incubators 

(Infors-HT) at 16 ºC and 20 ºC (the temperatures of the mesocosms on the day 

of sample collection). Each mesocosm was passed through a 40 µm filter prior 

to inoculation to remove zooplankton from the microcosms. Phytoplankton 

communities were maintained on a 12:12 light:dark cycle with a daily light 

intensity of 175 µmol
-1

 m
-2

 s
-1

.  This resulted in 40 communities with 10 

replicates of each combination of short- and long-term warming (i.e. warmed 

mesocosm in warm incubator, ambient mesocosm in ambient incubator, 
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warmed mesocosm in ambient incubator and ambient mesocosm in warm 

incubator). Autotroph counts were tracked daily using flow cytometry (BD 

Accuri C6). After ~17 days of culture, most communities showed a slowing of 

biomass accrual due to density dependence and resource limitation. The 

communities were then maintained in resource replete conditions by 

replacement of 50% of the culture with new medium (mesocosm water 

supplemented with BBM).  

 

Measuring community flux 

After ~30 days of culture (enough time for acclimation responses to short-term 

warming to occur [1-10 generations in phytoplankton] (Staehr & Birkeland 

2006))  I measured metabolism at incubator temperature (16 ºC or 20 ºC) on 

communities below carrying capacity. Aliquots (30 mL) of each community were 

concentrated through centrifugation (~1500 rpm for 30 minutes at 4 ºC) and 

resuspended in 5 mL and acclimatised to the measurement temperature for 15 

minutes in the dark prior to measuring metabolic flux. Primary production and 

community respiration were measured through oxygen evolution in the light and 

oxygen consumption in the dark respectively on a Clark-type electrode 

(Hansatech Ltd, King’s Lynn UK Chlorolab2). Primary production was 

measured at increasing light intensities in minutely intervals of 50 µmol
-1 

m
-2

 s
-

1
 to 200 µmol

-1
 m

-2
 s

-1
 and then in intervals of 100 µmol

-1
 m

-2
 s

-1 
up to 1800 

µmol
-1

 m
-2

 s
-1 

that yielded a photosynthesis irradiance (PI) curve (Appendix 

Figure 5). Rates of respiration were measured for two minutes in the dark at 

the end of each PI curve to ensure respiration was not limited by available 

photosynthate during the measurement period. 
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Each individual PI curve was fit to a modification of the Eiler’s curve for 

photoinhibition that incorporates community respiration. This model allows 

allow for negative rates of net primary production at low light levels where 

community respiration is greater than gross primary production (Eilers & 

Peeters 1988): 

_VV m = 	 \XXÄÅÇÉ

(\XXÄÅÇ/)É|ÑjÖ)	ÉÖA		 @0
ÖÜqqÄÅÇ
op|Ñj

	 ÉA	ÜqqÄÅÇ
o

− JU            (3.4) 

where _VV m , is the rate of net primary production at irradiance, m, _VVKLM is 

the maximal rate of net primary production at optimal light, mDEF, 2 controls the 

gradient of the initial slope and JU is community respiration, the rate of oxygen 

consumption in the dark. Gross primary production (GPP) at light saturation 

was then found by adding community respiration onto maximal net primary 

production (áVV = 	_VVKLM + JU).   

 

The community size distribution was measured by flow cytometry on the 

sample from the respirometer immediately after metabolic rate measurements. 

Cell size was calculated by converting values of forward scatter from the flow 

cytometer into values of diameter (à; µm) (Schaum et al. 2017). The biovolume 

of each cell was then calculated by assuming each particle was spherical 

(biovolume =	 â
7
	ä	(ã

6
)7) and converted into units carbon (µg cell

-1
) using a 

conversion factor of 0.109 x 10
-6

 (Montagnes & Berges 1994). I also measured 

the community size distribution prior to centrifugation using similar methods. 

Here, I also quantified heterotrophic bacterial abundance using a SYBR gold 

stain (1:10000 dilution of initial stock). Bacteria represented <5% of total carbon 
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biomass in all but one of the microcosms (Appendix Figure 6) and are therefore 

unlikely to have a significant impact on measurements of community 

metabolism. Thus, all analyses use only the size distribution of the autotrophic 

communities. 

 

Quantifying community diversity 

Alongside measurements of community flux, I took samples to quantify 

microbial community composition and diversity by sequencing the V4 hyper-

variable region of the 16S rDNA gene. On the sampling day, 50 mL of each 

microcosm was centrifuged in falcon tubes at 3000 rpm for 45 minutes at 4 ºC. 

The supernatant was then removed and the pellet transferred to 1.5 mL 

Ependorf tubes and centrifuged again for 30 minutes at 10000 rpm. The 

supernatant was then removed and the samples were frozen at -80 ºC prior to 

DNA extraction. DNA was extracted from samples using a Qiagen DNeasy 

Plant Mini Kit (Qiagen, Düsseldorf, Germany) following the manufacturer’s 

instructions. Genomic DNA was purified and concentrated using Agencourt 

AMPure XP beads (Beckman Coulter, California, USA) at a ratio of 1:1.4. The 

products of this clean up were eluted into ~25 µL 10mM TRIS. Subsequent 

PCR amplification and sequencing of the 16S V4 region was undertaken by the 

Centre for Genomic Research (Liverpool, UK) following the Illumina MiSeq 16S 

Ribosomal RNA Gene Amplicons workflow. 

 

Sequence data was analysed in R (v 3.3.2) (Team 2014) using the packages 

‘dada2’ and ‘phyloseq’ (Callahan et al. 2015, 2016). Reads were truncated at 

250 bp. I then followed the full stack workflow to estimate error rates, infer and 
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the merge sequences, construct a sequence table, remove chimeric sequences 

and assign taxonomy (Callahan et al. 2016). Sequence inference was done by 

pooling all the samples to improve the detection of rare variants that are seen 

just once or twice in an individual sample, but many times across all samples.  

I combined multiple rRNA databases to create my own database from which I 

assigned taxonomy. PhytoREF (Decelle et al. 2015), provides a reference 

database for the plastidial 16S rRNA gene for photosynthetic eukaryotes. 

Consequently, in a single amplicon sequencing run of the 16S v4 region I 

quantified both bacterial and eukaryotic autotroph diversity. I combined the 

PhytoREF database with the Ribosomal Database Project (Cole et al. 2014) 

that contains ribosomal RNA sequences of prokaryotes and 2700 16S rDNA 

cyanobacterial references (Decelle et al. 2015). Using CD-HIT (Li & Godzik 

2006) I created a clustered database that aligned sequences with >97% 

similarity. I then preferentially assigned clustered sequences as originating from 

1) PhytoREF, 2) cyanobacteria or 3) the Ribosomal Database Project as 

previous work has shown erroneous assignments of chloroplast plastidial 

sequences as being of bacterial origin (Decelle et al. 2015). I used the R 

package ‘taxise’ (Chamberlain & Szöcs 2013)  to reconcile each species in the 

reference database with its higher taxonomy. Samples were filtered if under 

1000 total reads and standardised to the total number of operational taxonomic 

units (OTUs) through rarefaction to account for biases between coverage depth 

and number of OTUs present. I then filtered for autotrophic OTUs which 

resulted in samples from 36 of the 40 communities that could be used for 

downstream analysis. 
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Statistical analyses 

To compare the composition between phytoplankton communities, I examined 

the impact of short- and long-term warming on Unifrac distance. Differences in 

community composition between communities were explored using the rarefied 

samples of each community and unweighted Unifrac distances using the R 

packages ‘phyloseq’ (Callahan et al. 2016) and ‘vegan’  (Oksanen et al. 2007). 

Unifrac distances compare the phylogenetic distance between sets of taxa 

based on shared branch length. Permutational ANOVA tests were run using 

the “adonis” function from the ‘vegan’ package in R using short- and long-term 

warming as main effects and Unifrac distances as a response term with 999 

permutations. The distance metric used (i.e. weighted Unifrac or Bray-Curtis 

dissimilarity) did not alter the results so only the results of the Unifrac distance 

are presented. After visualising rarefaction curves for all samples, the 

sequencing depth was found to be insufficient to analyse differences in alpha 

diversity, but the sequencing is still adequate to test for differences in the 

dominant species between communities. 

 

I fit Eq. 3.4 to the measurements of oxygen flux using non-linear least squares 

regression using the R package ‘minpack.lm’ (Elzhov et al. 2009). Model 

selection was done on each individual fit using Akaike Information Criterion 

(AIC) which entailed running up to 1000 iterations of the fitting process with 

start parameters drawn from a uniform distribution and retaining the fit with the 

lowest AIC score. I then calculated GPP as described earlier that was used 

alongside measured CR as the fluxes in the metabolic scaling framework (Eq. 

3.2).  I analysed the effect of short- (ambient or warm incubator) and long-term 
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warming (ambient or warm mesocosm) on raw community flux using an 

Analysis of Covariance in a mixed effects model framework. A random effect 

was included to account for the hierarchical structure of the data (community 

microcosms nested within mesocosms). A separate model was ran for each 

flux and model selection was carried out by comparing nested models using 

likelihood ratio tests. 

 

The combined effects of community size structure and short-term warming on 

community metabolism were assessed using maximum likelihood. To do this, I 

fit the complete size distribution of each community to flux measurements. 

When the size distribution of a community is known, the approach taken here 

allows an estimation of the individual size-scaling exponent,	(N
L, instead of the 

size-scaling exponent of the average sized individual of the community or size 

class,	(N
L
. This approximation is prone to error unless all individuals are the 

same mass (Savage 2004; White et al. 2004, 2007) and becomes less accurate 

as the variation around average size, ~N, increases. I fit Equation 3.2 to the rate 

of GPP and CR and the size distribution of each community to simultaneously 

estimate a value for the activation energy and size-scaling exponent. Analyses 

were done in R using the package ‘bbmle’ (Bolker & Team 2010), with separate 

models for each flux (GPP and CR). The effect of long-term warming (ambient 

or warm mesocosm) was added as a potentially interacting factor on the 

metabolic normalisation constant, !("&), activation energy, 3, and individual 

size-scaling exponent, 2. Model selection was carried out by comparing nested 

models using likelihood ratio tests. 
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I then investigated how well the scaling framework predicts community flux. To 

do this, I used Eq. 3.3 and the parameter estimates (! "& , 3 and 2) from the 

maximum likelihood approach to calculate temperature-corrected flux and 

mass-corrected biomass for both GPP and CR. I used standardised major axis 

(SMA) regression to investigate the slope of the relationship between 

temperature-corrected flux and mass-corrected biomass	(Warton et al. 2006). 

SMA is useful here as I am testing for an expected slope (e.g. slope = 1) where 

it does not matter which variable is the response and which is the predictor. I 

then tested this relationship against the expected slope of 1 derived from the 

scaling framework. 

 

I used the pre-centrifuged size distribution of each community to investigate 

whether zero-sum dynamics resulted in a trade-off between total community 

abundance and average individual metabolic rate. Pre-centrifuged 

communities were used to account for potential differences in sinking rates 

within and across communities that may distort the total community abundance 

after centrifugation.  I calculated total community abundance, ln zFDF, and 

estimated the average individual metabolic rate, (N
L, from the values of the 

maximum likelihood approach for GPP by abundance correcting Eq. 3.1 ((N
L =

	åj|j(Kç
Å?,)=

>( ,
-./

? ,
-.)

Ij|j
). Thus, (N

L controls for the effect of temperature, changes in 

the metabolic normalisation constant and size structure on average metabolic 

rate.  I then tested the slope of the relationship between average individual 

metabolic rate and abundance using SMA regression against an expected 

slope of -1. 
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RESULTS 

Effect of warming on community composition and size structure 

For the communities from which I had samples (n = 36), I found that long-term 

warming significantly altered the autotrophic community composition of the 

phytoplankton communities (Figure 3.1a). Long-term warming was a significant 

predictor of community composition (i.e. the phylogenetic dissimilarity among 

communities, unweighted Unifrac, Figure 3.1a, PERMANOVA, F1,35 = 6.79, 

partial R
2
 = 0.16, P = 0.001), whereas short-term warming had no effect on 

community composition (PERMANOVA, F1,35 = 1.67, partial R
2
 = 0.04, P = 

0.078). The difference in community composition had a significant impact on 

size structure (Figure 3.1b). Communities from the ambient mesocosms had 

fewer large phytoplankton (average size = 3.6 x 10
-5

 µg C) compared to those 

from the warm mesocosms (average size = 1.06 x 10
-4

 µg C) with the average 

individual size being a magnitude bigger due to long-term warming.  
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Figure 3.1. Effects of long-term warming on community structure. 
(a) Principal Coordinate (PCoA) plot of communities based on Unifrac 
distances. The percentage of variation explained is shown on each axis 
(calculated from the relevant eigenvalues). Long-term warming alters 
community composition while short-term warming (triangles) had no impact. (b) 
Probability density function for the size distribution of ambient and warm 
mesocosms. Warm mesocosms are dominated by larger phytoplankton. In both 
panels, different colours are used to represent ambient (black) and warm (red) 
mesocosms. In (a) triangles represent the warm incubator and circles the 
ambient incubator, shaded areas over communities represent the t-distribution 
based on the differences in community composition calculated from a 
PERMANOVA (see Methods). In (b) the pronounced line represents the size 
distribution of the pooled communities while the faded lines show the size 
distribution of each individual community. 
 

Effect of short- and long-term warming on community metabolism 

There was no significant effect of short- or long-term warming on rates of gross 

primary production or community respiration (Figure 3.2, Appendix Table 3). 

This is surprising given the large differences in the size structure and 

community composition due to long-term warming and the well documented 

effects of short-term warming on community metabolic rates. 
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Figure 3.2. The effect of short- and long-term warming on (a) gross primary 
production and (b) community respiration.  
The maximum likelihood framework found that short-term warming increases 
GPP and CR in both ambient (black) and warm (red) mesocosms. Long-term 
warming resulted in large shifts in community composition, size structure and a 
decrease in the community normalisation of CR. However, there was no 
significant effect of either short- or long-term warming on either GPP or CR. 
Each point represents the flux of one community; tops and bottoms of box-
whisker plots represent the 75th and 25th percentiles and the white horizontal 
line represents the median. 
 

Temperature-dependence and size-scaling of community metabolism 

I fitted Eq 3.2 to the measurements of community metabolic rate (Figure 3.2). 

In line with our predictions, short-term warming had a direct effect on 

community metabolic rates, with the temperature-dependence of gross primary 

production (3éXX = 0.74 eV; 95% CI = 0.20 – 1.29 eV) weaker than that of 

community respiration (3èW= 1.42 eV; 95% CI = 0.85 – 1.98 eV). The maximum 

likelihood approach also estimated the size-scaling exponent of gross primary 

production (2éXX= 0.87; 95% CI = 0.58 – 1.17) and community respiration (2èW= 

1.14; 95% CI = 0.74 – 1.41) which are not significantly different (they have 

overlapping 95% confidence intervals) from previously found ¾, or isometric 
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scaling (2 = 1) that has been found in phytoplankton. As in previous studies, 

long-term warming significantly decreased the normalisation constant of 

community respiration, ln JU("&), in warm mesocosms (likelihood ratio test on 

nested models ê@6= 4.66, p = 0.03). Long-term warming had no impact on the 

temperature-dependence and size-scaling of GPP or CR or the metabolic 

normalisation constant of GPP (Table 3.1 & Appendix Table 4). 

Table 3.1. Results of the maximum likelihood model fitting. 
This entailed estimating the parameters below simultaneously by fitting Eq. 3.2 
to gross primary production, community respiration and the community size 
distribution. 

parameter units estimate 
95% confidence 

interval 

3éXX eV 0.741 0.196 - 1.286 

3èW eV 1.417 0.853 - 1.982 

2éXX - 0.887 0.567 - 1.174 

2èW - 1.101 0.743 - 1.412 

ln áVV("&) µmol O2 L
-1

 hr
-1

 -3.426 -6.335 - -0.989 

ln JU("&) (ambient mesocosm) µmol O2 L
-1

 hr
-1

 -2.717 -5.943 - -0.150 

ln JU("&) (warm mesocosm) µmol O2 L
-1

 hr
-1

 -3.110 -6.126 -  -0.650 

 

 Mass-corrected biomass predicts GPP and CR  

After estimating the temperature-dependence and size-scaling of metabolic 

rate for GPP and CR, there is a need to determine how well the scaling 

framework actually predicts community-level flux. To this end, I used Eq. 3.3 

and calculated the mass-corrected community biomass, ~FDF((N
L0@), and the 

temperature-corrected community rate, xy(")*
+( ,

-./
0 ,
-.), of GPP and CR for 

each community using the parameter estimates from the best fit maximum 

likelihood model (Table 3.1). I then fitted the data to an SMA to test how well 

my metabolic scaling approach predicts observed community flux. After 

accounting for the effect of short-term warming and mass on metabolic rate, 
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temperature-corrected flux should increase proportionally (1:1) with mass-

corrected biomass on a log-log scale (Figure 3.3; dashed lines). For GPP, the 

SMA regression had an intercept of 0.12 (95% CI = -0.88 – 1.12), a slope of 

0.95 (95% CI = 0.79 – 1.15) and an R
2
 of 0.68 (Figure 3.3a). For CR, the SMA 

regression had an intercept of 0.50 (95% CI = -0.27 – 1.26), a slope of 0.87 

(95% CI = 0.70 – 1.07) and an R
2
 of 0.59 (Figure 3.3b). The relationships 

between predicted and observed flux for both GPP and CR had values of the 

slopes and intercepts that were not significantly different from the expected 

values (slope = 1; intercept = 0). This indicates that our modelling framework 

can predict community flux purely from data on the size distribution and 

temperature (Figure 3.3). Fitting the same model to all the data using OLS 

regression returned similar results. 

 

Figure 3.3. Relationship between (a) temperature-corrected community gross 
primary production and mass-corrected community biomass, and (b) 
temperature-corrected community respiration and mass-corrected community 
biomass.  
Community flux can be predicted from changes in community abundance, body 
size and short-term temperature. Fluxes were temperature normalised using 
the empirically derived values of 3éXX= 0.74 eV in (a) and  3èW = 1.42 eV in (b). 
Mass-corrected biomass was calculated using the values of 2 and !("&) from 
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the maximum likelihood approach (Table 1). The warm mesocosm communities 
are denoted by red points and the ambient mesocosms by black points. The 
fitted lines represent the predictions of standardised major axis regression 
investigating whether the slope between observed and expected metabolism is 
significantly different from the predicted slope of 1. The dashed line represents 
a 1:1 line as predicted from metabolic scaling theory. 
 

Energetic equivalence across communities 

Across communities, under zero-sum dynamics, metabolic scaling theory 

predicts that any increase in average individual metabolic rate should trade-off 

with a decrease in total abundance. I calculated average individual metabolic 

rate of each community using the parameter values for GPP from the maximum 

likelihood approach (Table 3.1) and looked at the relationship between total 

community abundance and average individual metabolic rate using SMA 

regression. Total community abundance decreased with increases in average 

individual metabolic rate (slope = -0.95, 95%CI = -1.17 - -0.76; intercept = 16.6, 

95% CI = 16.46 – 16.80; R
2
 = 0.46; Figure 3.4). This slope is not significantly 

different from the predicted value -1 (test comparing slope to -1, r = -0.08, d.f. 

= 38, P = 0.61) and indicates that these communities adhere to zero-sum 

dynamics. 
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Figure 3.4. Relationship between average individual gross photosynthesis and 
total community abundance.  
Average individual gross photosynthesis was calculated from the values of the 
maximum likelihood approach for gross primary productivity (see methods). 
Consistent with zero sum dynamics, increases in average individual gross 
photosynthesis resulted in a compensatory decrease in total community 
abundance. The exponent, fitted using standardised major axis regression on 
log-transformed data, is -0.92, which is not significantly different from the 
predicted value of -1. Warm mesocosms (red) have higher average individual 
metabolic rates than ambient mesocosm communities (black) due to being 
dominated by larger individuals. Each point represents a community and the 
fitted line is the predicted fit of the SMA regression. 
 

DISCUSSION 

Measurements of ocean metabolism in situ and in vitro have led to contrasting 

conclusions as to whether the oligotrophic ocean is net autotrophic or 

heterotrophic (Duarte et al. 2013; Williams et al. 2013). These differences are 
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partly driven by the different mechanisms that influence metabolism at the 

vastly different scales at which the measurements are taken. In the hope of 

better understanding the carbon cycling of ocean communities, previous work 

has linked individual physiology and community size structure to predict 

phytoplankton community metabolism in the ocean (López-Urrutia et al. 2006). 

Here, I extend this work by coupling measurements of phytoplankton 

community metabolism with a model that links phytoplankton community rates 

of GPP and CR with the effects of body size and temperature on individual 

physiology and the community size distribution. In contrast to previous work, I 

examine the effect of both short- and long-term warming on community 

metabolism. Long-term warming resulted in marked shifts in community 

composition which shifted communities towards larger phytoplankton species 

and resulted in a downregulation in the rates of community respiration. Despite 

this, rates of both GPP and CR were well predicted from the size-distribution of 

communities and the effects of body size and temperature on individual 

metabolic rate. However, our results show that warming may influence the 

metabolic rates of phytoplankton communities in ways that are more complex 

than the short-term response to warming alone.  

 

As well as predicting community flux purely from the size-structure of 

phytoplankton communities, the metabolic scaling framework presented here 

allows me to evaluate how fundamental constraints on individual metabolism 

influence community-level properties. For example, temperature increased 

rates of metabolism per-unit-biomass and I found that short-term warming 

strongly influenced community flux (Table 3.1). As in a previous study that 
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measured GPP and CR in situ in these mesocosms, I found no effect of long-

term warming on the temperature-dependence of metabolism (Yvon-Durocher 

& Allen 2012). In addition, similar to predictions from metabolic theory, gross 

primary production was less sensitive to temperature change than community 

respiration (Table 3.1), with values of the activation energy of GPP and CR at 

the community-level similar to those recently found at the population-level (i.e. 

gross photosynthesis and respiration) for single species of phytoplankton 

(Padfield et al. 2016; Schaum et al. 2017). These findings are consistent with 

ideas from metabolic theory that the effect of temperature on metabolism is 

controlled by fundamental constraints on enzyme activity and is a key driver of 

community-level flux.  

 

Previous studies have used the short-term temperature sensitivities of GPP and 

CR to predict the impact of long-term warming on phytoplankton communities. 

Specifically, as respiration will increase more than photosynthesis in the short-

term, the metabolic balance of phytoplankton communities may shift towards 

heterotrophy (López-Urrutia et al. 2006). This would significantly alter the 

amount of carbon dioxide that would be captured by the ocean and would 

potentially exacerbate climate warming. However, using short-term responses 

to temperature to predict the impacts of long-term warming (as is expected of 

climate warming) on community metabolism is not straightforward. In the long-

term, warming is known to affect phytoplankton composition, size structure 

(Yvon-Durocher et al. 2011; Dossena et al. 2012) and standing biomass (Yvon-

Durocher et al. 2015) which can all influence metabolic rates.  
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In this study, long-term warming had profound effects on some of these 

community-level properties, significantly altering community composition and 

shifting the size distribution towards larger phytoplankton (Figure 3.1). This shift 

in size structure is thought to be a result of enhanced top-down regulation of 

adjacent trophic levels by increasing temperature-dependent consumption 

rates (Connor et al. 2009; O’Connor et al. 2011; Yvon-Durocher et al. 2015) 

and is in contrast to previous studies that find that phytoplankton generally get 

smaller due to warming (Daufresne et al. 2009; Moran et al. 2010). Somewhat 

surprisingly, differences in the size structure were maintained throughout the 

~30 days of culture in the laboratory, even though the zooplankton were absent 

for the entire growth period. The absence of an effect of short-term warming on 

community composition or size structure is likely due to the absence of key 

community processes in the microcosms. These processes, such as dispersal 

and immigration, ultimately control species turnover and local diversity in 

natural environments (Leibold et al. 2004). Changes in the size structure are 

therefore likely to be primarily driven by size differences between the dominant 

species in each community, in contrast to body size plasticity within species. 

This is at odds with the temperature-size rule (Atkinson 1994) and previous 

studies on phytoplankton that have shown that species reduce their body size 

in response to warming (Peter & Sommer 2012; Schaum et al. 2017). 

 

The effect of long-term warming on the size structure and community 

composition can alter community metabolism. Recent work has shown that 

rapid evolution to warming can shift the metabolic normalisation constant of 

gross photosynthesis and respiration to maximise the energetic efficiency of 



	 93	

individuals at increasing temperatures (Padfield et al. 2016). This allows a 

larger proportion of gross photosynthesis to be allocated to growth and biomass 

production (Padfield et al. 2016). In line with this hypothesis, long-term warming 

had no effect on the metabolic normalisation constant of GPP, áVV("&) (Figure 

3.2a), but the metabolic normalisation constant of community respiration was 

lower in the warm mesocosms (Figure 3.2b). Instead of rapid evolution within 

species, this decrease was driven by shifts in the community composition after 

long-term warming. In these semi-natural communities, wider regional-species 

pools and immigration and extinction processes control local biodiversity. Thus, 

the downregulation of JU "&  likely reflects temperature-driven selection on the 

metabolic normalisation constant among taxa that has resulted in communities 

being locally adapted to their respective temperature. Our findings suggest that 

warm-adapted communities will have elevated carbon fixation at higher 

temperatures compared to cold-adapted communities due to the 

downregulation of JU "& . This will reduce the predicted shift towards 

heterotrophy expected from the metabolic response to short-term warming 

alone (Figure 3.2). These results add to recent work that highlights the 

importance of the indirect effects of temperature on metabolic rates when 

predicting the response of the biosphere to warming (Michaletz et al. 2014; 

Yvon-Durocher et al. 2015; Padfield et al. 2016). 

 

As well as changes in the metabolic normalisation constant, shifts in the size 

structure of communities may alter the metabolic balance of communities 

through changes in mass-corrected biomass. The metabolic scaling framework 

presented here estimates the size-scaling exponent of metabolic rate, 2 directly 
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from the complete size distribution of each community (Yvon-Durocher & Allen 

2012). In line with previous work and predictions from metabolic theory, size-

scaling exponents for both GPP and CR had 95% confidence intervals that 

overlapped both ¾ and isometric scaling and were not significantly different 

from each other (DeLong et al. 2010; Huete-ortega et al. 2017). There was no 

impact of long-term warming on the size-scaling of GPP and CR. Taken 

together, these results suggest that changes in the size structure of 

communities are unlikely to alter the metabolic balance of communities as 

gross photosynthesis and respiration scale similarly with changes in body size 

and are unaffected by warming. 

 

Although our metabolic scaling theory found a significant effect of short-term 

warming and size structure on metabolic rates, community flux did not change 

as a result of short- or long-term warming. This is due to a trade-off between 

community properties. Increases in temperature and shifts in size structure 

between communities should be compensated for by changes in total 

community abundance. Under the same resource conditions, zero sum 

dynamics predict a trade-off between total abundance and average individual 

metabolic rate, meaning that communities with different size structures and at 

different temperatures can have similar metabolic rates (White et al. 2004; 

Ernest et al. 2008, 2009). In line with this prediction, across all the communities, 

microcosms with higher average individual metabolic rates had proportional 

lower total community abundance (Figure 3.4). This trade-off meant that shifts 

in the size structure and short-term warming that increased average individual 

metabolic rates were compensated for by changes in total abundance, resulting 
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in no overall change in community flux (Figure 3.2). This cross-community 

scaling is caused by an ultimate energetic constraint that sets an upper limit on 

community resource-use and metabolism. Thus, changes in nutrient 

concentrations with climate change may be a key predictor of the metabolism 

of phytoplankton communities, regardless of community size-structure 

(Behrenfeld et al. 2006). 

 

Despite the large differences in size structure and community composition, 

rates of GPP and CR were significantly correlated with community size 

structure (Figure 3.3). This is because fluxes are ultimately driven by the 

abundance, temperature and body size distribution of the organisms that 

comprise each community. The success of the framework, in spite of large 

differences in other community properties, is encouraging, especially given that 

the parameters for the size-scaling and temperature-dependence of GPP and 

CR are similar to previous work and the values expected from metabolic theory. 

However, more work is needed if the framework is to be applicable to natural 

phytoplankton communities, including further testing to assess the generality of 

the parameter values reported here. For example, I have shown that long-term 

warming can decrease the metabolic normalisation constant of respiration, but 

this study cannot determine the timescales over which communities, and the 

functions they mediate, can change due to warming. Understanding whether 

changes that offset the direct impacts of warming on community rates can track 

the rate of climate warming will be essential for predicting future responses of 

phytoplankton to warming.  
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Predicting how temperature influences metabolism in the natural environment 

is further complicated by multiple abiotic drivers that often covary with 

temperature. These abiotic drivers often also influence metabolic rate and 

interactions between temperature, light and nutrient supply (Edwards et al. 

2016; Thomas et al. 2017) are known to dampen the temperature sensitivity of 

phytoplankton growth rates. This may partially explain why the values for the 

activation energies of GPP and CR in this study are nearly double those 

previously reported in the natural setting (López-Urrutia et al. 2006; Yvon-

Durocher et al. 2010; Regaudie-de-Gioux & Duarte 2012). Notwithstanding, this 

framework could help provide estimates of phytoplankton metabolism in the 

aquatic realm. As opposed to other methods, the application of the model is 

limited only by the number of samples of phytoplankton community size-

structure across time and space. Such information on the size structure is 

becoming increasingly available due to the emergence of automated counting 

methods, such as flow cytometry, that makes characterising the size 

distribution of aquatic microbial communities easier and less resource-

intensive.   

 

Overall, this method, derived from metabolic scaling theory, can help estimate 

phytoplankton metabolism, which is critical to improve knowledge of ocean 

productivity and our ability to predict the feedbacks between the aquatic carbon 

cycle and climate change. The uncertainty surrounding the metabolic balance 

of large areas of the ocean currently limits the ability to parameterise ocean 

climate models and identify temporal and spatial variations in these 

parameterisations (del Giorgio & Duarte 2002; Kwiatkowski et al. 2017). I have 
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shown that applying metabolic theory and linking individual and community-

level properties could drive progress in this fundamental area of research.  

 

CONCLUSION 

Phytoplankton fix ~50% of the carbon globally, but the extent to which this is 

remineralised by respiration is still uncertain. This chapter uses metabolic 

scaling theory to show that phytoplankton community metabolism can be 

predicted from the fundamental constraints of temperature and body size on 

individual metabolic rate and community size-structure. I propose that 

estimates of phytoplankton in the natural environment can be predicted from 

samples of phytoplankton size-structure alone. Short-term warming increased 

metabolic rates and long-term warming resulted in large shifts in the community 

composition. However, trade-offs between short- and long-term warming, that 

increased average individual metabolic rate, and total community abundance 

meant that community flux did not systematically change across communities. 

Long-term warming resulted in a downregulation of the respiratory community 

normalisation constant as a result of shifts in community composition. These 

results suggest that warming may influence the metabolic balance of 

phytoplankton communities in ways that are more complex than the short-term 

response to warming alone.  
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Chapter 4: Metabolic compensation constrains the 

temperature-dependence of gross primary production 

 

ABSTRACT 

Gross primary production (GPP) is the largest flux in the carbon cycle, yet its 

response to global warming is highly uncertain. The temperature sensitivity of 

GPP is directly linked to photosynthetic physiology, but the response of GPP to 

warming over longer timescales could also be shaped by ecological and 

evolutionary processes that drive variation in community structure and 

functional trait distributions. Here, I show that selection on photosynthetic traits 

within and across taxa dampen the effects of temperature on GPP across a 

catchment of geothermally heated streams.  Autotrophs from cold streams had 

higher photosynthetic rates and after accounting for differences in biomass 

among sites, ecosystem-level, biomass-specific GPP was independent of 

temperature despite a 20 ºC thermal gradient. Our results suggest that 

temperature-compensation of photosynthetic rates constrains the long-term 

temperature-dependence of GPP, and highlights the importance of considering 

physiological, ecological and evolutionary mechanisms when predicting how 

ecosystem-level processes respond to warming. 
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INTRODUCTION 

The carbon cycle is fundamentally metabolic (Falkowski et al. 2000). At the 

ecosystem level, gross primary production (GPP) represents the total amount 

of CO2 fixed by photosynthesis into organic carbon and is the largest flux in the 

global carbon cycle (Beer et al. 2010), transferring CO2 from the atmosphere to 

the biosphere, fuelling food webs and biological production (Field 1998). 

Understanding the mechanisms that shape how temperature influences rates 

of GPP across spatial, temporal and organisational scales is therefore an 

essential prerequisite to forecasting feedbacks between global warming and 

the carbon cycle.   

 

Temperature can dictate rates of GPP over short timescales through its effects 

on photosynthetic physiology (Medlyn et al. 2002; Allen et al. 2005; Galmes et 

al. 2015). However, it is clear that over longer timescales (e.g. decades of 

gradual warming) ecological and evolutionary processes that mediate 

temperature-induced changes in biomass, community composition and local 

adaptation of metabolic traits could feedback to influence the emergent effects 

of warming on ecosystem properties (Allen et al. 2005; Enquist et al. 2007; 

Michaletz et al. 2014; Cross et al. 2015). Indeed a recent analysis demonstrated 

that most of the variation in terrestrial primary production along a latitudinal 

temperature gradient could be explained by changes in biomass, and after 

controlling for variation in biomass, rates were independent of temperature 

(Michaletz et al. 2014). Such temperature-invariance in biomass-specific rates 

of primary production is counterintuitive considering the well-known exponential 

effects of temperature on the biochemistry of metabolism (Gillooly et al. 2001). 
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Furthermore, it implies that selection on photosynthetic traits that compensate 

for the effects of temperature on physiological rates could play a fundamental 

role in mediating the effects of temperature on rates of primary production in 

the long-term (Kerkhoff et al. 2005; Enquist et al. 2007).  

 

Here I investigate how rates of ecosystem-level gross primary production are 

influenced by the direct effects of temperature on the kinetics of photosynthesis, 

and indirect effects of temperature-driven selection on photosynthetic traits, 

and changes in community biomass. I do so by extending the general model 

for ecosystem metabolism from metabolic theory (Enquist et al. 2003, 2007; 

Allen et al. 2005; Kerkhoff et al. 2005; Michaletz et al. 2014) to account for 

changes in key traits that influence the thermal response of individual 

metabolism, as well as potential temperature effects on ecosystem biomass 

pools. I then test the model’s predictions against empirical data collected from 

a catchment of naturally warmed Icelandic geothermal streams spanning a 

gradient of 20 ºC. 

 

THEORY 

The metabolic theory of ecology (MTE) provides a powerful framework for 

understanding how temperature affects GPP by linking the photosynthetic rates 

of an ecosystem’s constituent individuals with the size and biomass structure 

of the community (Enquist et al. 2003, 2007; Allen et al. 2005; Kerkhoff et al. 

2005; Yvon-Durocher & Allen 2012; Michaletz et al. 2014).  
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The temperature-dependence of whole organism metabolic rate 

Organism-level metabolism, ! " , responds predictably to temperature, 

increasing exponentially up to an optimum, followed by a more pronounced 

exponential decline (Figure 4.1). These thermal response curves can be 

quantified using a modification of the Sharpe-Schoolfield equation for high 

temperature inactivation (Schoolfield et al. 1981a):  

! " = ;(</)Ko=
>( ,
-./

? ,
-.)

@A=
>B(

,
-.B

? ,
-.)

                                                    (4.1) 

where ! "  is the rate of metabolism at temperature ", in Kelvin (K), 4 is 

Boltzmann’s constant (8.62 × 10
-5

 eV K
-1

), 3 is the activation energy (in eV), 3C 

characterises temperature-induced inactivation of enzyme kinetics above "C, 

which is the temperature at which half the enzymes are inactivated. In this 

expression, ! "& 	is the rate of metabolism normalised to a reference 

temperature (e.g. 10 ºC), where no low or high temperature inactivation occurs 

and () is the mass dependence of metabolic rate characterised by an 

exponent 2, that ranges between ¾ and 1 across multicellular and unicellular 

autotrophs (Gillooly et al. 2001; DeLong et al. 2010). Equation 4.1 yields a 

maximum metabolic rate, !("DEF), at an optimum temperature, "DEF.  

"DEF =
+B<B

+BAG<BHI
>B
> 0@

                           (4.2) 

The parameters in equations 4.1 & 4.2, which govern the height and shape of 

the thermal response curve can be considered “metabolic traits” (Padfield et al. 

2016) and have long been known to reflect adaptation to the prevailing thermal 

environment (Berry & Bjorkman 1980; Huey & Kingsolver 1989). Equation 4.1 

can be simplified to the Arrhenius equation,  

! " = !("&)()*+(
,
-./

0 ,
-.)                            (4.3) 
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which captures only the rising part of the thermal response curve, if the 

temperatures organisms experience in the environment are below	"DEF (Savage 

et al. 2004; Dell et al. 2011; Sunday et al. 2012). I use this simpler, more 

tractable model of the temperature-dependence in the following theory, which 

attempts to explore the mechanisms driving the emergent temperature 

sensitivity of ecosystem-level gross primary production. At the organism-level, 

the size and temperature-dependence of gross photosynthesis can be 

characterised as: 

bë " = bë "& ()*+íÑ
,
-./

0 ,
-.                         (4.4) 

where bë "  is the rate of gross photosynthesis at temperature ", bë "&  is the 

rate of gross photosynthesis normalised to a reference temperature and 3ìE is 

the activation energy of gross photosynthesis. Net photosynthesis,	zë, which is 

the amount of photosynthate available for allocation to biomass production after 

accounting for autotroph respiration, is given by, 

zë " = bë "& ()*+íÑ
,
-./

0 ,
-. − e("&)()*+i

,
-./

0 ,
-. = zë "& ()*+îÑ

,
-./

0 ,
-.  

(4.5) 

where zë "  is the rate of net photosynthesis at temperature ", e("&) is the rate 

of autotrophic respiration normalised to a reference temperature, "&, and 

3IE	and 3ï are the activation energies of net photosynthesis and autotrophic 

respiration. The form of equation 4.5 implies that the temperature sensitivity of 

zë will not strictly follow a simple Boltzmann-Arrhenius relation. Nevertheless, 

I can approximate the temperature sensitivity of net photosynthesis using an 

apparent activation energy, 3IE, with a reasonable degree of accuracy (see 

supplementary methods for a derivation of 3IE and Appendix Figure 13). 
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Scaling metabolism from organisms to ecosystems 

Using Equation 4.4 and principles from MTE, the rate of gross primary 

productivity per-unit-area of an ecosystem, k, can be approximated by the sum 

of the photosynthetic rates of its constituent organisms (Figure 4.1c): 

áVVn " = áVV("&)*
+ñqq(

,
-./

0 ,
-.)                                    (4.6) 

where áVVn "  is the rate of gross primary production in ecosystem ó, at 

temperature ", áVV "& = @
h

bëN "&
ò
N}@ (N

), is the ecosystem-level metabolic 

normalisation constant, where ô is the total number of individual organisms, {, 

which comprise all autotrophs in ó. In equation 4.6, the apparent long-term 

temperature-dependence of ecosystem-level gross primary production, 3éX, is 

assumed to be equal to that of the average temperature-dependence for 

individual-level gross photosynthesis, 3ìE, provided that the ecosystem-level 

normalisation constant, áVV "& , is independent of temperature (Figure 4.1d). 

However, if bëN "&  or total autotrophic biomass, ~n =
@
h

(N
ò
N}@ , exhibit 

temperature-dependence, for example via acclimation or adaptation acting on 

bëN "&  or covariance between resource availability, temperature and ~n, then 

the scaling of the activation energy from individuals to ecosystems will no longer 

hold (e.g. 3éXX ≠ 3ìE). Thus, ecological processes that influence ~n and 

evolutionary dynamics which can shape variation in bëN "& 	have the potential 

to play an integral, but as yet underappreciated role in mediating the response 

of ecosystem metabolism to temperature if they modify the metabolic capacity 

of ecosystem biomass pools (Kerkhoff et al. 2005; Davidson & Janssens 2006; 

Enquist et al. 2007; Michaletz et al. 2014).  
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Incorporating indirect effects of temperature on ecosystem metabolism 

Previous work on aquatic and terrestrial autotrophs has shown that autotrophs 

can adjust their respiratory and photosynthetic normalisation constants; up-

regulating rates at low temperatures and down-regulating at high temperature 

to compensate for the constraints of thermodynamics on enzyme kinetics (Atkin 

et al. 2015; Padfield et al. 2016; Reich et al. 2016; Scafaro et al. 2016). Such 

changes may be manifest in several ways. First, over relatively short time 

scales (e.g. within the generation time of an individual) acclimation of cellular 

physiology (a form of phenotypic plasticity) can result in adjustments to 

photosynthetic and respiratory capacity that partially compensate for the effects 

of changes in temperature (Atkin & Tjoelker 2003; Yamori et al. 2014). Second, 

over multiple generations, adaptive evolution driven by natural selection on 

traits that influence metabolism can also result in temperature-compensation of 

photosynthetic and respiratory capacity. Such evolutionary shifts in metabolic 

traits have been shown to occur both via rapid micro-evolutionary responses, 

resulting in warm- or cold-adapted genotypes of the same species (Padfield et 

al. 2016; Schaum et al. 2017) as well as macro-evolutionary divergence in 

metabolic traits among different species (Addo-Bediako et al. 2002; Deutsch et 

al. 2008; Sunday et al. 2012). Finally, when scaling up to an ecosystem, the 

distribution of metabolic traits across the constituent individuals will emerge 

from temperature-driven selection on trait variation arising both within and 

among species. When temperature imposes a strong selective force, and 

variation in temperatures are maintained over time scales that span multiple 

generations (e.g. over spatial thermal gradients or due to global warming), I 
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expect temperature-driven changes in bëN "&  along thermal gradients to reflect 

selection on trait variation within and among taxa that has arisen via adaptive 

evolution. In the absence of an explicit first principles derivation, we can 

approximate the effects of temperature-driven selection on bëN "&  as 

 bëN "& ≈ *+Å(
,
-./

0 ,
-.)                      (4.7) 

where 3Lcharacterises the change in bëN "&  with temperature owing to 

temperature-driven selection. Substituting the temperature-dependence for 

bëN "&  into Equation 4.6 and simplifying, yields the following expression for the 

temperature-dependence of gross primary production, 

áVVn " = áVV("&)*
+ÅA+íÑ(

,
-./

0 ,
-.)                                                        (4.8) 

Under the “hotter-is-better” model of thermal adaptation (Figure 4.1a), where a 

single activation energy governs the temperature-dependence of metabolism 

within and across species (Gillooly et al. 2001; Savage et al. 2004; Angilletta et 

al. 2010) and 	3L = 0, the ecosystem-level temperature-dependence would 

equal that of individual-level metabolism (i.e. 3éXX = 	3ìE; Figure 4.1d) – this is 

the typical assumption made in metabolic theory (Brown et al. 2004; Demars et 

al. 2016). However, when 	3L ≠ 0, 3éXX = 	3L + 	3ìE, and the ecosystem-level 

temperature-dependence will deviate from the average organism-level 

temperature dependence owing to the effects of temperature-driven selection 

on bëN "& . If selection results in complete compensation (i.e. 	3L = −	3ìE; 

Figure 1b), and ~n does not covary with temperature, then ecosystem-level 

gross primary production will be independent of temperature (i.e. 3éXX = 0; 

Figure 4.1d (2)). Following the same reasoning, any temperature-dependence 

in ~n	will also result in deviations from the average individual-level activation 
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energy. For example, recent experimental work has shown that covariance 

between temperature and rates of nutrient cycling can cause ~n to increase 

with temperature (Welter et al. 2015; Williamson et al. 2016), ~n ≈ 	*
+õ(

,
-./

0 ,
-.), 

where 3; characterises the temperature-dependence of total autotrophic 

biomass. When	3; > 0, substituting in the temperature-dependence for ~n into 

Equation 4.8 leads to an increase in the ecosystem-level temperature-

dependence regardless of the mode of thermal adaptation (3éXX = 	3ìE +	3; +

	3L;	Figure 4.1d (1)). This model emphasises how different ecological and 

evolutionary mechanisms that drive temperature-dependent variation in 

organism-level metabolic traits and/or ecosystem biomass pools can influence 

the emergent long-term temperature sensitivity ecosystem metabolism (Figure 

4.1c:d). 

 

Using metabolic scaling theory (see Eqn’s. 4.1 to 4.8), I can investigate 

alternative hypotheses on the effects of temperature-driven selection and 

covariance between biomass and temperature on the long-term temperature-

dependence of gross primary production (GPP). I define the long-term 

temperature-dependence of GPP as that derived across ecosystems that differ 

in average temperature. To determine the GPP for any given ecosystem, I 

created an arbitrary number of taxa (in this case n = 30), and assigned them 

each a mass, (, activation energy, 3, and individual normalisation constant, 

!("&), each drawn from normal distributions that were constrained to return 

positive values (bë("&): mean = 10, s.d. = 0.5; 3: mean = 0.65 eV, s.d. = 0.2; 

( = 100 g, s.d. = 100). I then created abundance and biomass distributions 

consistent with the energetic equivalence rule (Damuth 1987; White et al. 2007) 
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in which the relationship between abundance and average body size of a taxa 

_ ∝ (, is the inverse of the relationship between average body size and 

metabolic rate. In this simulation, the size-scaling exponent of body size and 

metabolic rate is assumed to be 0.75, so the abundance of each taxa within the 

ecosystem is proportional to _ ∝ (0`.ûü. Total biomass of each taxa was then 

calculated as the product of _ and ( which becomes invariant across taxa 

within each ecosystem. GPP is then the sum of the gross photosynthetic rates 

of all organisms comprising the biomass pool at a given temperature (Figure 

4.1c). 

 

To explore a range of hypotheses for the indirect effects of temperature-driven 

selection on the photosynthetic normalisation, 3L, and biomass-temperature 

covariance, 3;, on the long-term temperature-dependence of GPP, 3éXX, I 

simulated 30 ecosystems each consisting of 30 taxa along a gradient in 

temperature (10 to 50 ºC). In scenario 1, the photosynthetic normalisation, 

bë "& , and biomass are independent of temperature (3;	&	3L = 0 eV). Under 

these circumstances the long-term temperature-dependence of GPP will be 

equal to the average temperature-dependence of organism-level gross 

photosynthesis (3éXX = 	3ìE; Figure 4.1d (1)). In scenario 2, we simulate the 

effects of complete temperature-compensation of organism-level gross 

photosynthesis, by making the temperature-dependence of bë "&  equal, but 

of opposite sign to that of 3ìE (3L = 	−3ìE), with biomass independent of 

temperature (3; = 0 eV).  Under this scenario, long-term GPP is independent 

of temperature (Figure 4.1d (2)). In scenario (3), we allow biomass to positively 

covary with temperature (3; = 3ìE), whilst making bë "&  temperature-invariant 
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(3L = 0 eV). In this case, the long-term temperature-dependence of GPP is 

amplified with respect to that of organism-level gross photosynthesis (3éXX >

	3ìE; Figure 4.1d (1)).  
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Figure 4.1. Scaling metabolism from organisms to ecosystems.  
(a)In a “hotter-is-better” scenario, there is no temperature-driven selection on 
the photosynthetic normalisation,	bë("&). Thermal adaptation shifts optimum 
performance up and down an “across-taxa” thermal response curve, where the 
temperature-dependence within and across taxa is the same. (b) Under 
complete temperature-compensation, temperature-driven selection on bë("&) 
is the inverse of the temperature-dependence of organism-level gross 
photosynthesis, 3ìE, resulting in an equalisation of performance across 
average temperatures (filled circles in b). (c) The long-term temperature-
dependence of GPP,	3éXX, across ecosystems varying in average temperature 
is an emergent property influenced by the thermal response of each organism 
in the ecosystem and the total biomass. (d) Metabolic theory assumes that 	3éXX 
is equal to	3ìE (1). However, if temperature-driven selection results in 
systematic trait variation in the photosynthetic normalisation (3L = 	−3ìE(2)), 
or biomass is positively temperature-dependent (3; > 0; (3)), 	3éXX may deviate 
from 	3ìE. In (a:d) blue represents cold temperatures and red represents hot 
temperatures. 
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These simulations demonstrate how indirect effects of temperature-driven 

selection on the photosynthetic normalisation and covariance between biomass 

and temperature can have as large an effect on the emergent temperature-

dependence of ecosystem metabolism as the direct effects of temperature on 

the kinetics of photosynthesis. 

 

I now use measurements of the temperature-dependence of organism- and 

ecosystem-level photosynthesis from a catchment of naturally warmed 

geothermal streams to test the expectations of the model and investigate how 

ecological and evolutionary processes shape the long-term temperature 

sensitivity of GPP. Critically, this system allows me to measure photosynthetic 

responses to temperature at both organism and ecosystem scales from sites 

that are in close proximity, yet differ substantially in their thermal history (i.e. 20 

ºC in situ temperature gradient among sites).  

 

METHODS 

Study site 

The study was conducted in a geothermally active valley close to Hveragerði 

village, 45 km east of Reykjavík, Iceland (64.018350, -21.183433). The area 

contains a large number of mainly groundwater-fed streams that are subjected 

to differential natural geothermal warming from the bedrock (O’Gorman et al. 

2014). Twelve streams have been mapped in the valley with average 

temperatures ranging from 7 – 27 ºC (Appendix Figure 7 & Appendix Table 6). 

We measured a number of physical (width, depth, velocity) and chemical (pH, 

conductivity, nitrate, nitrite, soluble reactive phosphate, ammonium) variables 
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across the catchment (Appendix Table 7) and none of these variables were 

significantly correlated with temperature (Appendix Table 8). The study was 

carried out during May and June in 2015 and 2016. 

 

Inorganic nutrients 

Water samples for measuring dissolved inorganic nutrient concentrations (NO2
-

, NO3
-
, NH4

+
 and PO4

3+
; µmol L

-1
) were collected from each stream in 2016. 

Samples were filtered (Whatmann GF/F) and stored frozen at -20 ºC for 

subsequent analysis using a segmented flow auto-analyser (Appendix Table 7) 

(Kirkwood 1996). 

 

Measuring the organism-level metabolic thermal response 

I sampled 13 of the most abundant macroscopic cyanobacteria, filamentous 

eukaryotic algae, and bryophyte taxa from 8 streams spanning the catchment’s 

full thermal gradient to characterise their metabolic thermal responses using an 

O2 electrode system. Multiple taxa were sampled from four streams where more 

than one taxon was at high density (Appendix Table 9). Because I sampled 

macroscopic algae – e.g. crops of filamentous algae or bryophyte fronds – 

measurements of metabolic rate are assumed to be at the level of the focal 

organism. I acknowledge that commensal microbes (e.g. protists and bacteria) 

are likely to be associated with these samples, but I assume that these 

organisms contribute a tiny fraction of the total biomass relative to the focal 

organism. Given the sensitivity of the O2 electrode, these commensal 

organisms likely make a negligible contribution to the measurements of 

metabolism.   Rocks dominated by a focal alga were brought back to the 
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laboratory and maintained in water from their natal stream over the course of 

the metabolic measurements. Metabolic rates were measured via changes O2 

concentration in a Clark-type oxygen electrode (Hansatech Ltd, King's Lynn UK 

Chlorolab2). For each incubation, a fresh sample of the focal organism was 

suspended in stream water from the natal stream filtered at 0.7 µm and placed 

in a gas tight cuvette (2 mL) associated with the O2 electrode. The cuvette was 

surrounded by a water-jacket, connected to a recirculating water bath, which 

maintained a constant temperature. A magnetic stirrer within the cuvette 

ensured homogeneity of O2 concentration throughout the chamber. For each 

focal organism, measurements first entailed characterising a photosynthesis-

irradiance (PI) curve from 0 – 2000 µmol m
-2

 s
-1

 at the average temperature of 

the stream from which it was sampled. Net photosynthesis (zë) was measured 

as O2 evolution. Light intensities were maintained for one minute and were 

increased in intervals of 50 µmol
-1

 m
-2

 s
-1

 up to 300 µmol
-1

 m
-2

 s
-1

, and then in 

intervals of 100 µmol
-1

 m
-2

 s
-1

 up to 1000 µmol
-1

 m
-2

 s
-1

, followed by 200 µmol 

steps up to 2000 µmol
-1

 m
-2

 s 
-1

. Rates of respiration (e) were always measured 

as O2 consumption in the dark immediately after the light response. This yielded 

a photosynthesis-irradiance curve from which the optimal light intensity for net 

photosynthesis was estimated using a modification of Eilers’ photoinhibition 

model (Eilers & Peeters 1988) fitted via non-linear least squares regression 

(Appendix Figure 8): 

zë m = 	 IEÄÅÇÉ

(IEÄÅÇ/)É|ÑjÖ)	ÉÖA		 @0
ÖîÑÄÅÇ
op|Ñj

	 ÉA	îÑÄÅÇ
o

− e                                          (4.9) 

where zë m , is the rate of net photosynthesis at irradiance, m, zëKLM is the 

photosynthetic maximum that occurs at optimal light, mDEF, 2 controls the 
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gradient of the initial slope and e is respiration. The optimum light intensity (mDEF, 

µmol
-1

 m
-2

 s
-1

) for each taxon was then used for measuring net photosynthesis 

at all other assay temperatures in the acute thermal gradient experiments. This 

makes the assumption that mDEF does not vary with instantaneous temperature 

(Schaum et al. 2017). Instantaneous rates of net photosynthesis (at mDEF) and 

respiration were then taken at temperatures ranging from 5 to 50 ºC. Rates of 

gross photosynthesis were calculated by summing rates of net photosynthesis 

and respiration. 

 

Rates of photosynthesis and respiration were normalised to biomass by 

expressing each rate measurement per unit of chlorophyll a. Chlorophyll a 

extraction was achieved for each incubation by grinding the sample with 

methanol until all tissue had been broken down, centrifugation and measuring 

chlorophyll a extinction coefficients on a spectrophotometer. Total chlorophyll 

a (µg) was then calculated by measuring absorbance at 750 nm, 665 nm and 

632 nm. 

Chl	a = 13.26(k••ü −	kûü`) − 2.68(k••ü −	kûü`) 	×	1007                        (4.10) 

Acute temperature responses of chlorophyll-normalised gross and net 

photosynthesis and respiration were fitted to the modified Sharpe-Schoolfield 

equation for high temperature inactivation (Equation 4.1). Best fits for each 

thermal response curve were determined using non-linear least squares 

regression using the ‘nlsLM’ function in the ‘minpack.lm’ (Elzhov et al. 2009) 

package in R statistical software (R Core Team 2014; v3.2.2), following the 

methods outlined in Chapter 1.  
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I tested for temperature-driven selection on metabolic traits by assessing 

whether the parameters in eqns. 4.1 and 4.2 as well as the rate of gross 

photosynthesis at the average temperature of the natal stream of the focal 

organism, bë "n , varied systematically with temperature across the catchment. 

I fitted the metabolic traits to a modified Boltzmann-Arrhenius function within a 

linear mixed effects modelling framework:  

ln ®(") = ln ® "& + 3L
@
G</

−	 @
G<

+	©F            (4.11) 

where ® is the metabolic trait at stream temperature, ", ®("&) is the value of the 

trait at the mean temperature across all streams, "&, and 3L is the activation 

energy that determines how much ® changes as a function of " due to 

temperature-driven selection and ©F is a random effect on the intercept 

accounting for multiple measurements of the same metabolic trait of each focal 

organism (i.e. one value each for gross and net photosynthesis and 

respiration). I fitted Eq. 4.11 to each metabolic trait with stream temperature, 

flux (3 level factor with ‘gross’ and ‘net photosynthesis’ and ‘respiration’) and 

their interaction as fixed effects (Appendix Table 9). Significance of the 

parameters were determined using likelihood ratio tests. Model selection was 

carried out on models fitted using maximum likelihood and the most 

parsimonious model was refitted using restricted maximum likelihood for 

parameter estimation. 

 

Measuring in situ rates of ecosystem-level gross primary production 

Ecosystem metabolism was calculated from measurements of dissolved 

oxygen over time in each stream using the single station method (Odum 1956). 

Sensors were deployed in all streams and at multiple sites within a stream 
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where temperature gradients existed within streams due to differential 

geothermal warming. Dissolved oxygen concentration and temperature were 

monitored at 1-minute intervals using miniDOT optical dissolved oxygen 

loggers (PME Inc) (Appendix Figure 9 & Appendix Figure 10). Light sensors 

(Licor LI-193 spherical quantum sensor) were deployed simultaneously at two 

sites in the centre of the catchment. Physical variables of each stream, 

including the depth (m), width (m), velocity (m s
-1

, measured using Hatch 

FH950), were measured along horizontal transects at approximately 10 m 

intervals up to the source of the stream. Values for depth, width and velocity 

were averaged across the reach (Appendix Table 7). 

 

The change in O2 concentration at a single station between two subsequent 

measurements (∆DO) can be approximated as: 

	△ ´¨ = ≠Ö j0	 ≠Ö j?,	
△F

                                                                                   (4.12) 

with [O2]t the concentration of oxygen (mg L
-1

)
 
at time t and can be modelled 

using a framework based on Odum’s O2 change technique (Odum 1956):  

△ ´¨ = áVV − 3U	 ± á                                                                              (4.13) 

where △ ´¨ is the composite of volumetric gross primary productivity, áVV (g 

m
-3

 min
-1

), minus volumetric ecosystem respiration, 3U (g m
-3

 min
-1

) and á is 

the net exchange of oxygen with the atmosphere (g O2 m
-3

). The net exchange 

of oxygen with the atmosphere (á) is the product of the O2 gas transfer velocity, 

l (m min
-1

), and the O2 concentration gradient between the water body and the 

atmosphere (temperature and atmosphere corrected DO concentration at 

100% saturation minus [O2]t) over the measurement interval. 
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The gas transfer velocity, l, was calculated using the surface-renewal model 

and corrected for the stream temperature: 

l = 50.8	∞`.•û	×	´0`.±ü	×	1.024(<06`)                                                         (4.14) 

where V is velocity (cm s
-1

), D is the mean stream depth (cm) adjusted for 

stream temperature, T (Bott 1996). This equation returns l in cm hr
-1

 which 

was subsequently converted into m min
-1

. Estimated rates of reaeration, 

derived using the surface renewal model from measurements of velocity and 

depth, correspond well to reaeration rates measured experimentally using 

propane additions in an adjacent Icelandic catchment with comparable physico-

chemical characteristics (Appendix Figure 13; Demars et al. 2011). 

 

Measurements of dissolved oxygen concentration, light and temperature were 

averaged over 15 minute intervals for each 24-hour period. The net metabolic 

flux for a given measurement interval is equal to △ ´¨ − á. During the night 

(where light < 5 µmol m
-2

 s
-1

), GPP is zero, so the net metabolic flux is equal to 

ER. During the day, ER was determined by interpolating average ER over the 

defined night period. GPP for each daytime interval was the difference between 

net metabolism flux and interpolated ER. Daily volumetric rates of GPP (g O2 

m
-3 

day
-1

) were calculated as the sum of the 15-minute rates over each 24-hour 

period. Volumetric rates were converted to areal units (g O2 m
-2

 day
-1

) by 

multiplying by the mean water depth of the stream reach. At the end of the two 

years of sampling, I had 39 daily estimates of GPP across the 15 sites 

(Appendix Table 11). 
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In 2016, I also measured autotrophic biomass density (g Chl a m
-2

) across the 

catchment by taking measurements of chlorophyll a. Autotrophic biomass was 

estimated by removing all organic material from a 30 cm
2
 template on 3 

randomly chosen rocks from each stream. Biofilm and plant material was 

removed from within the sample area using forceps and a stiff bristled brush, 

rinsed with distilled water and the slurry decanted into a Falcon tube. 

Chlorophyll was then extracted and quantified using the protocol detailed 

above. The total autotrophic biomass, ~n, of each stream reach was estimated 

by multiplying average autotrophic biomass density by the total reach area, 

which was estimated from the mean width and the upstream distance the 

oxygen sensor integrated over (Chapra & Di Toro 1991; Demars et al. 2015), 

à = 7≥	×	ã=EFC
g

                                                                                              (4.15) 

where three times the velocity of the stream (V, m min
-1

), multiplied by stream 

depth (m) and divided by the gas transfer velocity (l; m min
-1

) gives the 

approximation of the distance upstream integrated by the single station method 

(d; m) (Grace & Imberger 2006).  Biomass-corrected rates of GPP per stream 

(g O2 g Chl a-1
 day

-1
) were calculated by dividing areal rates of GPP by the total 

autotrophic biomass, ~n, in the upstream reach. 

 

I used linear mixed-effects modelling to investigate the overall temperature-

dependence of GPP across the catchment, allowing me to control for the 

hierarchical structure of the data (e.g. variance of days nested within years 

nested within streams). I characterised the temperature dependence of GPP 

with a linearised version of the Boltzmann-Arrhenius function in a linear mixed 

effects model: 
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ln áVVn " = 3éXX
@
G</

− @
G<

+ ( ln áVV "& + ©X
n/¥/ã	)                              (4.16) 

where áVVn "  is the rate of gross primary production in stream s on year y on 

day d at temperature T (Kelvin), 3éXX is the activation energy (eV) which 

characterises the exponential temperature sensitivity of photosynthetic rates, 

ln áVV "& 	 	is the average rate of áVV across streams and days normalised 

to "& = 283 K (10 ºC) and ©X
n/¥/ã

 is a nested random effect that characterises 

deviations from ln áVV "& 	 	at the level of d within y within s. Significance of 

the parameters and model selection was carried out as described above for the 

analysis of the population-level metabolic traits (Table 4.1).  

 

I tested for the effect of total autotrophic biomass and temperature on in situ 

GPP across the catchment using the data from 2016 (where I also quantified 

autotroph biomass) by undertaking a multiple regression by expanding eq. 16 

to include the effect the biomass on GPP: 

 ln áVVn " = 3éX
@
G</

− @
G<

+ βln~n + ( ln áVV "& + ©X
n/ã)                    (4.17) 

where β characterises the power-law scaling of áVVn " 	with ~n and the 

random effects specification changed to account for deviation from 

ln áV "& 	between days nested within streams. Model selection was as 

described above (Table 4.1). 

 

RESULTS 

Temperature-driven selection on metabolic traits 

Organism-level gross photosynthesis and respiration followed unimodal 

responses to acute temperature variation and were well fit by equation 4.1 
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(Figure 4.2a-b). I predicted exponential declines in the metabolic normalisation 

constants, moving from cold to warm environments, owing to the effects of 

temperature-driven selection. Consistent with this hypothesis, the log-

transformed rates of gross photosynthesis, (ln bë "& ) and respiration	(ln e "& ) 

normalised to a reference temperature, "& = 10 ºC, declined linearly with 

increasing stream temperature with the same activation energy (3L =	-0.64 eV; 

95% CI: -1.22 to -0.05 eV; Figure 4.2c). Since zë "& = 	bë("&) − e "& , the 

normalisation for net photosynthesis also declined with increasing temperature 

with an 3L =	-0.64 eV.  

 

Because the dominant autotroph taxa varied across the streams (Appendix 

Table 10), the decline in the photosynthetic trait, bë("&), with increasing stream 

temperature is likely influenced by selection operating on trait variation both 

within and among taxa. To explore the effects of temperature-driven selection 

within taxa, I analysed data from only the most common taxon, cyanobacteria 

from the genus Nostoc spp., which were distributed across 5 streams spanning 

a gradient of 10.2 ºC. bë("&), zë "&  and e("&) also decreased with increasing 

stream temperature in Nostoc with the thermal sensitivity not significantly 

different from that of all the autotroph taxa together (Appendix Figure 12). An 

important consequence of the decrease in bë("&) with increasing stream 

temperature was that rates of gross photosynthesis at the average temperature 

of each stream, bë("n), were independent of temperature across the 

catchment’s thermal gradient (Figure 4.2d), suggesting that temperature-driven 

selection on photosynthetic traits led to complete temperature-compensation of 

organism-level metabolism. 
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Both the optimum temperature, "DEF, and "C, which is the temperature at which 

half the enzymes are inactivated, were positively correlated with average 

stream temperature (Appendix Table 10) providing further evidence that each 

taxon was locally adapted to its natal thermal regime. I found no evidence for 

systematic variation in the activation or inactivation energies (3	or 3C) across 

the thermal gradient suggesting these traits are unlikely to be under strong 

selection (Appendix Table 10). Previous work has shown that photosynthesis 

has a lower activation energy than respiration (Allen et al. 2005; López-Urrutia 

et al. 2006; Padfield et al. 2016). In contrast, I found that the average activation 

energies of gross photosynthesis and respiration were not significantly different 

and could be characterised by a common activation energy	(3 = 0.87 eV; 95% 

CI = 0.77 to 0.97 eV). Similarly, 3C, which characterises inactivation of kinetics 

past the optimum was not significantly different between fluxes and could be 

characterised by a common value for respiration and photosynthesis (3C = 4.91 

eV; 95% CI: 3.95 – 5.97 eV). 
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Figure 4.2. Temperature-driven shifts in metabolic traits.  
(a,b) Acute thermal response curves for gross photosynthesis and respiration 
were measured for each isolated autotroph from streams spanning average 
temperatures from 7 ºC (blue) to 27 ºC (red). Fitted lines are based on the best-
fit parameters from non-linear least squares regression using the modified 
Sharpe-Schoolfield model (see Methods). (c) Metabolic rates normalised to 10 
ºC, !("&), decrease exponentially with increasing stream temperature for gross 
photosynthesis (green), net photosynthesis (blue) and respiration (red) (d) 
Rates of gross photosynthesis at the average stream temperature showed no 
temperature dependence. Fitted lines in (c) and (d) and coloured bands in (d) 
represent the best fit and the uncertainty of the fixed effects of the best linear 
mixed effect model.  
 

Ecosystem level gross primary productivity 

Based on the observation that the activation energies of gross photosynthesis 

(3ìE) and the parameter describing the temperature-driven changes in bë("&), 

(3L), were similar, but of opposite sign, the model for the scaling of metabolism 

from organisms to ecosystems (Eq. 4.8) predicts that rates of in situ gross 
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primary production (GPP) should be independent of temperature across the 

catchment (e.g. 3éXX = 3ìE + 3L ≈ 0), provided that biomass does not covary 

with temperature. Rates of GPP increased with temperature and the long-term 

temperature sensitivity of GPP yielded an activation energy of 3éXX= 0.57 eV 

(95% CI: 0.10 – 1.04 eV; Figure 4.3a).  

 

To investigate potential covariance between temperature and biomass, ~n, and 

its impact on the temperature-dependence of GPP, in 2016 I also quantified 

total autotrophic biomass, ~n. Autotroph biomass density increased 

systematically with temperature across the catchment with a temperature 

sensitivity of 3; = 0.68 eV (95% CI: 0.24 – 1.12 eV; Figure 4.3b). The similarity 

between 3éXX	and 3;	 – they have 95% confidence intervals that overlap – 

indicates that covariance between autotrophic biomass and temperature could 

be the main driver of the temperature-dependence of GPP across the 

catchment. 

 

I quantified the effects of both temperature and ~n on GPP using multiple 

regression in a mixed effects modelling framework for data collected in 2016 

(see Methods). The best fitting model included only ln	(~n) as a predictor 

(Table 4.1; Figure 4.3c) and after controlling for variation in ln	(~n), rates of 

biomass-specific GPP were independent of temperature across the catchment 

(Table 4.1; Figure 4.3d). These findings are consistent with predictions from our 

model and provide evidence that systematic variation in the photosynthetic 

normalisation constant owing to temperature-driven selection results in 
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complete compensation of biomass-specific metabolic rates at organism and 

ecosystem scales. 

 
 

 

Figure 4.3. The effects of temperature and autotrophic biomass on gross 
primary productivity.  
Gross primary productivity (a) and autotrophic biomass density (b) increase 
with temperature across the catchment. (c) A multiple regression shows that 
variation in in situ GPP is driven primarily by changes in autotroph biomass. (d) 
After accounting for biomass, rates of biomass-corrected GPP are invariant 
with respect to temperature across the catchment. Fitted lines in (a, c, d) 
represent the best fit and the uncertainty of the fixed effects of the best linear 
mixed effect model (Table 1). In (b) the lines represent the fitted line and 
associated confidence interval of a linear regression.  
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Table 4.1. Results of the linear mixed effects model analysis for gross primary 
productivity (GPP) for all years and 2016 only. 
The results of the model selection procedure on the fixed effect terms are given 
and the most parsimonious models are highlighted in bold. Analyses reveal that 
in situ GPP increased significantly with stream temperature. The analyses for 
2016 show that the observed temperature response was driven by covariance 
between biomass and temperature rather than the direct effects of temperature 
on rates of photosynthesis per se. 

 
 

DISCUSSION 

Understanding how ecosystem-level properties like gross primary production 

(GPP) will respond to global warming is of central importance to predicting the 

response of the carbon cycle and contributing biogeochemical and food web 

processes to climate change. It is however a major challenge that requires an 

integration of physiological, ecological and evolutionary processes that together 

shape the emergent response of ecosystem metabolism to long-term changes 

in temperature. I have addressed this key problem by extending the general 

model of ecosystem metabolism from metabolic theory (Enquist et al. 2003, 

Model d.f. AICc log Lik L-ratio P 

 
All years : 
 

random effects structure 

    random = 1 | stream/year/day 

 

     

fixed effects structure 

1. ln GPP ~ 1 + stream temperature  
 

2. ln GPP ~ 1  

 
6 
 

5 

 
82.9 

 
85.8 

 
-34.0 

 
-36.9 

 
 
 

5.80 

 
 
 

0.016 
2016 only : 
 

random effects structure 

    random = 1 | stream/day 

 

     

fixed effects structure 

1. ln GPP ~ 1 + stream temperature +  

ln biomass 

2. ln GPP ~ 1 + ln biomass 
3. ln GPP ~ 1  

 

6 

 

5 
4 

 

48.8 

 

45.3 
45.8 

 

-14.9 

 

-15.3 
-17.4 

 

 

 

0.87 

4.25 

 

 

 

0.35 

0.04 
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2007; Allen et al. 2005; Kerkhoff et al. 2005) and testing its predictions at 

organism and ecosystem scales in a catchment of naturally warmed 

geothermal streams. The model and analyses presented here demonstrate that 

temperature-driven selection on metabolic traits and shifts in ecosystem 

biomass can be as important as the direct effects of temperature on metabolism 

in shaping the temperature-dependence of GPP.  

 

The model predicted that when the temperature-dependence of the metabolic 

normalisation constant across taxa inhabiting environments with different 

thermal histories is the inverse of organism-level metabolism, the two 

temperature sensitivities cancel, rendering biomass-specific metabolic rates 

independent of temperature. Measurements of the thermal response curves for 

photosynthesis and respiration from the autotrophs isolated across the 20 ºC in 

situ gradient provided strong support for this prediction with rates of gross 

photosynthesis independent of temperature across the catchment’s thermal 

gradient. In addition, activation energies characterising the temperature-

dependence of organism-level gross photosynthesis and the photosynthetic 

normalisation, bë("&), were similar, but of opposite sign.  

 

The exponential decline in bë "&  along the in situ thermal gradient primarily 

reflected turnover in the composition of the dominant autotroph taxa across the 

streams resulting from temperature-driven selection on trait variation among 

taxa (e.g. species sorting). This result is in line with work demonstrating 

declines in the metabolic normalisation constant across vascular plant species 

along broad-scale latitudinal gradients in terrestrial ecosystems (Atkin et al. 
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2015). However, I also found a comparable negative temperature-dependence 

of bë("&) within the most common and widely distributed genus, Nostoc spp., 

indicating that temperature-driven selection within taxa was also an important 

determinant of variation in this key trait among sites in our study. This finding is 

consistent with work demonstrating down-regulation of the metabolic 

normalisation constant in a unicellular alga via rapid (e.g. over 100 generations 

or 45 days) evolutionary adaptation to an experimental thermal gradient in the 

laboratory (Padfield et al. 2016). Collectively, this work highlights that changes 

in the metabolic normalisation constant result from temperature-driven 

selection both within and across taxa and can give rise to complete temperature 

compensation of metabolic capacity over broad thermal gradients (Figure 4.1b).   

 

Our work shows that temperature-driven selection, in driving complete 

temperature compensation of organism-level metabolism, had important 

implications for understanding the temperature dependence of ecosystem-level 

GPP across the catchment. GPP increased with temperature across the 

catchment (Figure 4.3a), but it did so because biomass also positively covaried 

with temperature (Figure 4.3b), likely driven by a shift in algal community 

composition, with warmer streams being dominated by cyanobacteria capable 

of fixing nitrogen, alleviating the constraints imposed by the limiting 

concentrations of inorganic nitrogen observed in these streams (Appendix 

Table 7) (Welter et al. 2015; Williamson et al. 2016). After accounting for 

biomass, biomass-specific GPP was independent of temperature (Figure 4.3c), 

consistent with the effects of temperature-compensation of organism-level 

metabolism. These findings confirm the predictions of our model and previous 
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suggestions (Kerkhoff et al. 2005; Enquist et al. 2007) that local adaptation and 

species sorting can yield the paradoxical phenomenon that rates of biomass-

specific ecosystem metabolism are independent of temperature over thermal 

gradients that have been maintained over long timescales. 

 

A great deal of empirical and theoretical work is still required to develop a 

complete, general theory that predicts how ecosystem properties emerge from 

evolutionary and community processes. Our work adds to recent efforts to this 

end (Enquist et al. 2007; Yvon-Durocher & Allen 2012; Smith & Dukes 2013; 

Daines et al. 2014; Schramski et al. 2015; Smith et al. 2016) by showing how 

the temperature-dependence of ecosystem biomass and the organism-level 

photosynthetic normalisation alter the emergent temperature sensitivity of 

ecosystem-level GPP. One important gap in the theory presented here is a 

mechanistic model for the temperature-dependence of the metabolic 

normalisation constant owing to temperature-driven selection. Our 

representation in Equation 4.7 is merely a statistical description of an empirical 

phenomenon. The metabolic cold adaptation hypothesis seeks to explain the 

observation that species from cold environments often have higher mass-

specific metabolic rates compared to counterparts from warmer regions as an 

evolutionary adaptation to compensate for lower biochemical reaction rates 

(Addo-Bediako et al. 2002). However, a quantitative, first principles derivation 

of this pattern remains elusive. Recent work on autotrophs has proposed that 

down-regulation of respiration rates as organisms adapt to warmer 

environments is driven by selection to maintain the carbon-use efficiency above 

a threshold when rates of respiration are more sensitive to temperature than 
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those of photosynthesis (Padfield et al. 2016). Yet, as I have shown here, the 

assumption that the activation energy of respiration is always larger than that 

of photosynthesis does not always hold.  

 

A better understanding of the mechanisms that give rise to the emergence of 

ecosystem properties is central to improving predictions of how global warming 

will alter the feedbacks between the biosphere on the carbon cycle (Levin 1998; 

Ziehn et al. 2011; Booth et al. 2012). Incorporating ecological changes in 

community biomass and evolutionary shifts in metabolic traits into earth system 

and ecosystem models should be considered as a priority (Smith & Dukes 

2013; Daines et al. 2014; Smith et al. 2016), especially in light of these findings 

that the indirect effects of temperature can be of similar magnitude to the direct 

effects of temperature on physiological rates.  

 

I capitalised on a ‘natural experiment’ using a geothermally heated stream 

catchment to show that temperature-driven selection on photosynthetic traits 

results in an equivalence in biomass normalised GPP over a 20 ºC in situ 

temperature gradient. My results suggest that temperature-driven selection on 

metabolic traits within and among taxa plays a key role in determining how 

metabolic rates scale from populations to ecosystems and questions the 

assumption that the effects of temperature on enzyme kinetics can be applied 

directly to assess the long-term effects of temperature on ecosystem 

metabolism (Demars et al. 2016). They also shed light on the way in which the 

interplay between ecological and evolutionary processes could influence the 
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response of the carbon cycle, and hence constituent food web and 

biogeochemical processes, to future environmental change.  

 

CONCLUSION 

I set out a theory that predicts how the indirect effects of temperature may 

influence the temperature-dependence of gross primary production. This 

metabolic scaling theory is then tested empirically in a set of geothermal 

streams that differ in thermal history. The temperature-dependence of gross 

primary production is similar to that of the average population-level activation 

energy. However, this is a result of covariance between biomass and 

temperature, that increases rates of GPP at higher stream temperatures, and 

selection on photosynthetic traits within and across taxa that dampens the 

effects of temperature on GPP. This chapter highlights the importance of 

considering physiological, ecological and evolutionary processes when 

predicting how ecosystem respond to warming. 
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Chapter 5: Discussion	

 
Each chapter of this thesis contained its own detailed discussion; the purpose 

of this chapter is to highlight the main findings and discuss unifying themes and 

wider implications. 

 

Synopsis of each chapter: 

Chapter 2: 

• The model phytoplankton, Chlorella vulgaris, rapidly adapted to warming 

after ~ 45 days (~ 100 generations). 

• The temperature-dependence of gross photosynthesis (3ìE~ 0.62 eV) 

was substantially lower than that of respiration (3ï~ 1.26 eV), meaning 

that as growth temperatures increased, the carbon-use efficiency (CUE) 

decreased, and this was limiting at 33 ºC. 

• Rapid evolution of the metabolic normalisation constant, !("&), meant 

that rates of respiration decreased at higher temperatures, relative to 

rates of gross photosynthesis. Thus, increased growth rate at 33 ºC was 

facilitated by increased CUE after 100 generations of growth. 

• Maximising CUE could be a potential universal metabolic adaptation to 

warming. 

 

Chapter 3: 

• Gross primary production and community respiration could be predicted 

simply from the size- and temperature-dependence of individual 

physiology and the size-structure of phytoplankton communities. 
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• The temperature-dependence of community gross primary production 

(3éXX~ 0.74 eV) was lower than that of community respiration (3èW~ 1.42 

eV). 

• The metabolic normalisation constant of respiration decreased due to 

long-term warming.  

• Trade-offs between increases in average metabolic rate and total 

community abundance meant that short- and long-term warming did not 

alter total community metabolism. 

 

 	
Chapter 4: 

• Rates of population-level gross photosynthesis at a common 

temperature decreased as stream temperature increased. This 

decrease was similar in magnitude, but of opposite sign, to the activation 

energy of population-level photosynthesis such that gross 

photosynthesis was independent of stream temperature. 

• At the ecosystem-level, rates of gross primary productivity increased 

with stream temperature, but this was driven by increases in autotrophic 

biomass with temperature. After correcting for differences in biomass 

across streams, gross primary productivity per-unit-biomass was 

independent of stream temperature due to temperature-driven changes 

in the photosynthetic normalisation constant. 

• Indirect effects of temperature are capable of influencing emergent 

ecosystem-level metabolism as much as the direct effect of temperature 

on metabolic rate. 
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General remarks 

“Ecosystems are prototypical examples of complex adaptive systems, in which 

patterns at higher levels emerge from localised interactions and selection 

processes acting at lower levels” 

                 Simon 

Levin, 1992 

Understanding how ecological patterns and mechanisms link across 

organisational and spatiotemporal scales is a key question in ecology. Most 

ecological disciplines study a set of specific research questions in isolation, 

arbitrarily setting the scales at which they view ecological phenomena. 

However, almost all ecological phenomena are inextricably linked. It is the 

organisms within an ecosystem that define its structure and dictate its 

functioning. And it is the selection processes on those organisms that define 

their function and ability to persist in any given ecosystem. The necessity to link 

across ecological scales is of increased importance as a result of recent and 

projected climate warming. Warming will have profound effects on all levels of 

biological organisation. Species level responses have been described for many 

different taxa and include reductions in body size (Gardner et al. 2011), shifts 

in distribution (Parmesan 2006) and changes in physiology and phenology 

(Walther et al. 2002). However, attempts to predict changes of entire 

communities has proven difficult due to alterations in species interactions that 

can cause complex and non-linear responses at the community-level 

(Tylianakis et al. 2008; Montoya & Raffaelli 2010; Walther 2010). We need a 

far more complete understanding of the relationships between community 
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structure and ecosystem function if we are going to successfully predict the 

response of the biosphere to warming.  

 

The metabolic theory of ecology (MTE) views metabolism as a key trait that 

controls ecological phenomena of organisms (e.g. growth rate (Savage et al. 

2004), abundance, mortality and interspecific interactions (Dell et al. 2013)), 

communities (e.g. body size-abundance scaling (White et al. 2007; Yvon-

Durocher et al. 2010)) and ecosystems (e.g gross primary production and 

community respiration). Extensions of MTE have successfully predicted 

ecosystem properties from the constraints of body size and temperature on 

individual physiology and community structure (Enquist et al. 2003; Schramski 

et al. 2015). Such approaches rely on the collection biological data 

simultaneously over multiple levels of organisation, but this remains an 

immense challenge. 

 

Throughout this thesis, I investigated the consequences of warming on 

metabolism from organisms to ecosystems. This has provided novel insights 

into the impact of warming at these levels in isolation, but critically has allowed 

me to improve links between patterns observed at different scales. I first 

investigated the metabolic mechanisms which facilitate thermal adaptation to 

warming in a species of aquatic phytoplankton. Evolutionary shifts in metabolic 

traits resulted in increased thermal tolerance after just 45 days of growth at a 

sub-optimal temperature. Previous work had concentrated on the ability of 

phytoplankton adapt to environmental change (Lohbeck et al. 2012; Schaum & 
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Collins 2014; Schlüter et al. 2014), rather than the mechanism through which it 

occurred.  

 

Then in Chapter 3 and Chapter 4, I use metabolic scaling theory (MST) to 

explore how individual physiology and community structure influence 

ecosystem metabolism. In Chapter 3, I demonstrate how phytoplankton 

community metabolism can be predicted from the size structure and the size- 

and temperature-dependence of individual physiology. This represents one of 

the first empirical validations of MST, and may be useful for the wider scientific 

community as it allows phytoplankton community metabolism to be estimated 

from the complete size distribution alone. Previous work looking at the size-

scaling of phytoplankton metabolism has measured rates of size-fractionated 

communities (García et al. 2015; Huete-ortega et al. 2017). I demonstrated that 

only a single metabolic rate measurement is needed to estimate the size- and 

temperature-dependence of community metabolism.  

 

Finally, in Chapter 4, I explored the links between population- and ecosystem-

level metabolism and emphasised the importance of both direct and indirect 

effects of temperature on ecosystem metabolism. This study measured 

metabolism at both the population- and ecosystem-level in a set of geothermal 

streams and extends metabolic scaling theory to incorporate the indirect effects 

of temperature on ecosystem metabolism. In doing so, I show how 

temperature-driven selection on population-level photosynthesis constrains the 

temperature response of ecosystem-level gross primary production. I now 
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expand on some of these research highlights and identify pathways and 

considerations for future research. 

 

The importance of the indirect effect of temperature on metabolic rates 

The metabolic theory of ecology (MTE) provided a theoretical framework to link 

cellular and ecosystem processes and gave a set of explicit, quantitative 

predictions for each experiment. Although the seminal paper on MTE is now 

more than a decade old, controversies about the theoretical foundations and 

empirical validity of MTE remain. Validating the assumptions, performance and 

applicability of MTE will help improve and revise its models and further our 

understanding of complex ecological phenomena (Price et al. 2012). 

 

One of the weaknesses of MTE has been its previous inability to incorporate 

and account for the indirect effects of temperature on metabolism. Previous 

work on MTE reported similar temperature sensitivities of metabolism 

(photosynthesis and respiration) across spatial, temporal and organisational 

scales (Yvon-Durocher et al. 2012). This led some to the assumption that a 

single mechanism, the thermodynamic constraints of temperature on enzyme 

kinetics, controls metabolic rates from organisms to ecosystems (Gillooly et al. 

2001; Allen et al. 2005; Demars et al. 2016). Furthermore, recent work implied 

a direct mapping of the temperature-dependence at the enzymatic level to the 

temperature-dependence of gross primary production (Demars et al. 2016). In 

contrast, numerous studies have shown that changes in the metabolic 

normalisation constant, !("&), after long-term warming can dampen the 

response of metabolism in the long-term (Bradford et al. 2008; Scafaro et al. 
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2016), and over broad spatial scales, biomass corrected rates of ecosystem 

net primary productivity are invariant across a latitudinal gradient in 

temperature (Michaletz et al. 2014). Aspects community structure (e.g. 

community composition, size structure and biodiversity) that are known to 

influence metabolic rates are also likely to change due to warming 

(Lewandowska et al. 2014; Yvon-Durocher et al. 2015). However, direct 

evidence of the indirect effects of temperature on metabolism, using a 

metabolic theory framework, remains scarce.  

 

The work presented here highlights the importance of indirect effects of 

temperature on the metabolic rates of individuals, communities and 

ecosystems. At the population-level, the respiratory normalisation constant 

decreased relative to photosynthesis after long-term warming. This decrease 

had a temperature-dependence similar magnitude, but of opposite sign, to that 

of the activation energy. This is in direct conflict with MTE, which predicts that 

the downregulation of the metabolic normalisation constant has little impact on 

metabolic rates, relative to the direct effect of temperature on enzyme kinetics 

(Gillooly et al. 2001). If true, the temperature response of metabolism should 

be the same across and within populations (Fig. 1.2). I tested this by calculating 

the rate of gross photosynthesis and respiration at growth temperature for 

cultures after 100 generations (long-term warming). I then fitted a regression 

between rate at growth temperature and standardised temperature, 
@
G</

− @
G<

, to 

both metabolic fluxes and compared them to the average temperature-

dependence of gross photosynthesis (0.62 eV)  and respiration (1.26 eV)  from 

the thermal response curves (short-term warming). Thermal adaptation 
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decreased the long-term temperature-dependence compared to the average 

within-population activation energy for both gross photosynthesis and 

respiration (Figure 5.1). The temperature-dependence of gross photosynthesis 

across-populations was 0.37 eV (95% credible intervals = 0.11 – 0.64 eV) and 

that of respiration was 0.85 eV (95% credible intervals 0.49 -1.21 eV).  

 

Figure 5.1. The long-term temperature-dependence of metabolism of Chlorella 
vulgaris after 100 generations.  
The long-term (across population) temperature-dependence of (a) gross 
photosynthesis and (b) respiration of Chlorella vulgaris is shallower than the 
average within-population activation energy (black dashed line) after long-term 
warming (100 generations; red points and line). This is a result of thermal 
adaptation reducing the metabolic normalisation of both photosynthesis and 
respiration at higher growth temperatures. The fitted lines are the result of a 
bayesian linear regression and the dashed lines are the predicted relationships 
based on the population-level activation energy of gross photosynthesis and 
respiration respectively.  
 

A similar metabolic response occurred in phytoplankton communities, where 

the respiratory normalisation constant decreased after long-term warming. In 
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composition between ambient and warm mesocosms. I also observed trade-

offs in community properties as a result of an ultimate resource constraint that 

limited the ability for community metabolism to increase under warming. In 

Chapter 4, temperature-driven selection on population-level photosynthesis 

and changes in biomass across the thermal gradient alter the temperature-

dependence of gross primary production. Although the observed temperature-

dependence of ecosystem-level GPP was similar to that of population-level 

gross photosynthesis, the mechanisms which controlled this temperature 

response were very different.  

 

These findings highlight how the indirect effects of temperature can have large 

impacts on the metabolic response of organisms and ecosystems. MTE, like all 

theory, is not meant to encompass all ecological phenomena, but we need to 

acknowledge these limitations when attempting to apply causal mechanisms to 

ecological phenomena measured at vastly different scales. We need to be 

increasingly aware of the indirect effects of temperature on metabolic rate, 

especially as they can be as important as the direct effect of temperature on 

enzyme activity. Predictions that extrapolate from the direct effects of warming 

on metabolic rate alone may usefully be revisited. 

 

Reconciling the temperature-dependence of metabolism across scales 

As MTE assumes the temperature-dependence of metabolic rate is governed 

by instantaneous changes in enzyme activity, it is somewhat surprising that 

very little work using MTE has measured metabolism over very short timescales 

across temperatures within species of autotrophs. The closest I achieved to 
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these scales was population-level metabolism over minutely intervals.  At these 

scales, phytoplankton photosynthesis was often less sensitive to temperature 

than respiration, but at values that were often close to double those previously 

reported. For example, in Chapter 2, the population-level activation energies 

for gross photosynthesis and respiration were 0.62 eV and 1.26 eV 

respectively, with similar values for the temperature-dependence of both 

metabolic fluxes at the community-level in Chapter 3 (3éXX = 0.74 eV and 3èW= 

1.42 eV). There is a need to reconcile these differences in temperature-

dependence to understand the applicability of these rapid rate measurements 

to responses in the natural environment.  

 

Previous work on the temperature-dependence of phytoplankton metabolism 

has generally analysed long-term responses to warming, analysing data across 

species (López-Urrutia et al. 2006) or over seasonal and annual temperature 

variation (Yvon-Durocher & Allen 2012). At these longer timescales, the direct 

effect of temperature on metabolic rates can be confounded with other 

mechanisms that influence metabolism such as local adaptation. For example, 

the activation energy for across-population gross photosynthesis of Chlorella 

vulgaris after 100 generations was 0.37 eV, similar to the values previously 

found at longer timescales (Allen et al. 2005; López-Urrutia et al. 2006). 

 

Throughout this thesis, instantaneous rates of respiration and photosynthesis 

were always measured at nutrient and light-saturating conditions to isolate the 

effect of temperature on metabolism across scales. However, phytoplankton 

growth and metabolism are also strongly influenced by nutrients and light 



	 141	

availability. Below light saturating conditions, photosynthesis is often less 

sensitive to temperature due to limited photon absorption at low irradiance 

(Raven & Geider 1988; Davison et al. 1991; Nicklisch et al. 2008). A recent data 

compilation that examined the interaction between phytoplankton growth, 

temperature and light, found that light limitation constrained the temperature-

dependence of whole community phytoplankton growth (Edwards et al. 2016). 

Nutrient concentration also impacts phytoplankton growth and metabolism, 

decreasing the temperature-dependence of metabolism and  increasing the 

sensitivity of phytoplankton to warming through reductions in the optimum 

temperature of growth (Thomas et al. 2017).  

 

The increased importance of indirect effects of warming on metabolism through 

time and the presence of interacting abiotic drivers in the natural environment 

likely explains the higher values of the activation energy for photosynthesis and 

respiration reported here. More studies are needed to determine whether these 

changes in the temperature response of growth and metabolism, due to 

changes in light availability and nutrient limitation, occur in a predictable 

manner, especially given that climate change is likely to increase nutrient 

limitation in the upper ocean (Behrenfeld et al. 2006, 2015). Exploring variation 

in the temperature-dependence of both photosynthesis and respiration will be 

critical to understand how the acute temperature sensitivity (characterising the 

rate at which individual metabolic rates change) relates to the long-term 

ecosystem-level temperature response (the scale at which we need global 

estimates of productivity). 
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Downregulation of metabolic rates: A universal response to warming? 

Across all levels organisation, I found temperature-driven shifts in the 

metabolic-normalisation constant. These downregulations were due to rapid 

evolution within a single species of phytoplankton and selection on trait 

variation across species in phytoplankton and biofilm communities. As similar 

responses also occur in bacteria (Bradford et al. 2008), terrestrial autotrophs 

(Atkin et al. 2015; Scafaro et al. 2016) and  ectotherms (Addo-Bediako et al. 

2002), downregulation of metabolic rates may be a general evolutionary and 

ecological response to warming.  

 

This downregulation of metabolic rates is thought to allow organisms to 

maintain a “healthy” carbon-use efficiency (CUE). This ensures that a maximal 

proportion of organic carbon is available for biomass production and growth. 

However, a “healthy” CUE can be maintained through alternate shifts in 

metabolic traits. A recent study found that another aquatic alga, 

Chlamydomonas reinhardtii, adapted to a 4 ºC temperature difference (Schaum 

et al. 2017) by maintaining a “healthy” CUE. However, this was achieved by 

upregulating rates of photosynthesis at higher temperatures with little change 

in respiration rates. Consequently, maintaining a “healthy” CUE may be the 

universal response to warming in phytoplankton, irrespective of how it is 

achieved. The mechanism through which a “healthy” CUE is maintained likely 

reflects a combination of the strength of selection on each metabolic trait and 

the capacity for each trait to change. Deepening our understanding of the 

biochemical and molecular mechanisms that control the response of metabolic 
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traits and their generality across phytoplankton and other autotrophs should be 

a priority for future research. 

 

Scaling individual responses to community properties 

In Chapter 3, metabolic scaling theory successfully linked individual physiology 

and size structure to community metabolism, then in Chapter 4 I incorporated 

the indirect effects of temperature into MST. These steps forward may improve 

predictions of the feedbacks between the aquatic carbon cycle and climate 

change. However, the data collected here on the physiology of phytoplankton 

and other aquatic autotrophs could be useful for other approaches to predicting 

community-level phenomena. Biological traits measured in the laboratory can 

be aggregated to predict community-level responses to climate change. The 

increased use of trait-based approaches in community ecology (Mcgill et al. 

2006), using fundamental traits to understand the distributions of species and 

emergent community-level properties, increases the applications of laboratory 

based data that measures responses of organisms to abiotic drivers (Litchman 

et al. 2007; Sinclair et al. 2016).  

 

Phytoplankton are particularly amenable to trait-based approaches as their 

fundamental niche is mainly defined by the key metabolic processes of growth, 

photosynthesis and respiration and acquisition of key resources (light and 

nutrients) (Litchman & Klausmeier 2008). Trait-based approaches have 

successfully demonstrated how phytoplankton community composition and 

abundance change with changes in light availability (Edwards et al. 2013b) and 

nutrients (Edwards et al. 2013a). In addition, parameters taken from laboratory 
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cultures have been used to predict primary production in lake ecosystems 

(Zwart et al. 2015). Further examples include biogeographical studies that 

incorporated experimental data on the thermal response curves of growth to 

demonstrate global patterns of thermal adaptation and to predict potential 

future distributions of phytoplankton under warming (Thomas et al. 2012, 2015). 

To enhance these approaches, there needs to be increased communication 

across ecological disciplines to identify globally important phytoplankton 

species to use in experimental evolution approaches and to define key traits to 

measure. 

 

All of these methods currently use fixed values of the functional traits for each 

species and therefore ignore thermal adaptation and trait variation within 

species. Previous work has shown that phytoplankton can adapt to modest 

changes in temperature and irradiance in the ocean (Irwin et al. 2015). This 

work furthers this by showing how metabolic traits can adapt to increase 

thermal tolerance after just 45 days, albeit under laboratory conditions. As well 

as metabolic traits varying through time, local adaptation may result in trait 

differences due to current spatial variation in temperature. For example, local 

adaptation to different oceanic pH levels results in increased variation of key 

traits within species that decreases the sensitivity of oceanic species to future 

ocean acidification (Calosi et al. 2017). As thermal variation is likely to increase 

with climate warming, local adaptation to current temperature variation may 

play an important role in determining the ability of phytoplankton species to 

cope in future environments. Understanding the extent to which key traits vary 
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in time and space, within and across phytoplankton species, is paramount to 

improve predictions on how communities will respond to climate change. 

 

Thermal adaptation and the global carbon cycle 

A variety of ocean biogeochemistry models of varying levels of complexity have 

been developed in an attempt to predict the impact of climate change on ocean 

productivity. These are now integral to earth system models (ESMs) that 

assimilate the interactions between atmosphere, ocean, land and the biosphere 

and model the movement of carbon amongst these different pools. Different 

greenhouse gas emission scenarios can then be used to simulate the future 

climate and feedbacks between different pools. However, the uncertainty 

related to the estimates of the biosphere component of ESMs has hindered 

meaningful climate change policy. The current uncertainty associated with 

future changes in ocean productivity is larger across different ESM models 

within the same gas emission scenario than it is across different scenarios 

(Kwiatkowski et al. 2017). Constraining estimates of ocean productivity and 

reducing this uncertainty is essential for improving the ability for these ESMs to 

advise future climate change policy.  

 

Linking information from fine spatial scales and individual responses to broad 

spatial scales could be one way of improving predictions. Ecosystem models 

are often designed to simulate processes well at small scales and concentrate 

on modelling short-term responses to temperature change, whereas long-term 

changes to temperature and mechanisms driving carbon exchange responses 

over broad spatial scales are rarely represented (Smith & Dukes 2013). In 



	 146	

terrestrial autotrophs, temperature acclimation parameterisations have been 

developed for both photosynthesis and respiration by allowing parameters to 

shift with mean air temperature over the previous 30 days (Kattge & Knorr 2007; 

Atkin et al. 2008). Incorporating these into earth system models can improve 

predictions of carbon uptake in terrestrial ecosystems (Smith et al. 2016), 

although the magnitude of improvement depends on the process, region and 

time period evaluated.  

 

This work shows that similar responses that constrain the effect of short-term 

warming on metabolic rates also occur in phytoplankton. The effects of thermal 

adaptation on rates of photosynthesis and respiration could be incorporated 

into ecosystem models in the aquatic world (especially as the patterns I observe 

are conserved at the population and community level), at the very least to 

observe the sensitivity of the predictions of biogeochemical cycles to 

evolutionary and ecological responses of metabolic traits. However, the rates 

of adaptation observed here occurred in nutrient replete conditions in a vastly 

simplified selection environment in the laboratory. Rates of evolution to 

temperature in the natural environment may be limited by nutrient limitation that 

increases phytoplankton generation times. Consequently, understanding 

whether evolutionary and ecological changes that offset the direct impacts of 

warming on metabolic rates can track the rate of climate warming will be 

essential for predicting future responses of the aquatic carbon cycle.  
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Concluding remarks 

Examining patterns and developing concepts that help assimilate observations 

and mechanisms across scales is key to developing a predictive theory for 

ecology. This was one of the take home messages of Simon Levin’s influential 

paper 25 years ago, and remains a fundamental aim of ecology. Metabolic 

theory and the research, discussions and disagreements it has inspired, has 

resulted in significant progress in linking theory and observations across 

ecological scales. I have contributed to this endeavour by linking evolutionary, 

physiological and ecological processes to show how warming impacts 

metabolism across scales. By spanning multiple levels of organisation, my work 

contributes to the considerable progress that metabolic scaling theory has 

already made in understanding how community structure and individual 

physiology link to emergent ecosystem processes. However, developing a 

predictive theory of ecology remains an immense challenge. If we are to combat 

the multifarious nature of climate change, we need to widen the arbitrary scales 

at which we view our own research, to increasingly collaborate and link ideas 

and data across ecological disciplines. We are all ecologists, first and foremost.  
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Appendix 

 

Appendix Figure 1. Effects of selection temperature on metabolic traits. 
 In (a-d) circles show the metabolic traits of photosynthesis and triangles those 

of respiration after exposure to different selection temperatures for ~10 (black) 

and ~100 generations (red). In (c) fitted broken lines show the significant linear 

relationship between the deactivation energy and selection temperature for 

photosynthesis (green) and respiration (black) (see Appendix Table 2).  
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Appendix Figure 2. Effects of temperature on population dynamics. 
Sigmoid growth curves were measured for populations following short-term (10 

generations; a) and long-term warming (100 generations; b) at 20 ºC (blue), 

through to 33 ºC (red). Analyses reveal that at 33 ºC, growth rates (e) are higher 

after long-term warming. Fitted lines are based on mean parameters at each 

growth temperature of non-linear least squares regression using a sigmoid 

growth curve equation (n = 3) (see Eq. 2.5).  
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Appendix Figure 3. Photosynthesis irradiance curves used to characterise the 
acute temperature response of photosynthesis. 
Rates of gross photosynthesis (P) were measured at various light intensities 

across the full range of acute temperatures (10 – 49 °C), characterising the 

metabolic thermal niche of Chlorella vulgaris. Here data are presented for one 

replicate at the long-term ancestral temperature regime (20 ºC). Lines represent 

the best fit to the photoinhibition model using non-linear least squares 

regression (see Methods Eq. 2.6). 
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Appendix Figure 4. Effects of selection temperature on cell size. 
Equivalent spherical diameter was measured for each replicate after short-term 

(black circles) and long-term (red circles) exposure to each selection 

temperature. Mean cell diameter was estimated for each replicate population 

as the anti-log of the average log10 cell diameter.  Body size did not vary 

between selection temperatures or between long-term versus short-term 

warming. Error bars represent 1 standard deviation from the mean.  
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Appendix Table 1. Trajectory of exponential growth rate at the various selection 
temperatures. 
Parameters are estimated from a mixed effects model (see Chapter 2 Methods and 

Appendix Table 1) and treatment contrasts were made using Tukey’s least significant 

difference tests. Contrasts significant at the 0.05 level for the slope of the growth 

trajectory are 20 ºC vs 27 ºC, 20 ºC vs 30 ºC, 20 ºC vs 33 ºC, 23 ºC vs 27 ºC, 23 ºC 

vs 30 ºC, 23 ºC vs 33 ºC, 27 ºC vs 33 ºC and 30 ºC vs 33 ºC. Significant contrasts 

for the intercept at 0.05 significance are 20 ºC vs 27 ºC, 20 ºC vs 30 ºC, 20 ºC vs 33 

ºC, 23 ºC vs 27 ºC, 23 ºC vs 30 ºC and 23 ºC vs 33 ºC. 
Growth Temperature Slope (95% CI) Intercept (95% CI) 

20 ºC 0.000152 (-0.000260 – 0.000566) 0.87 (0.85 – 0.89) 

23 ºC 0.00122 (-0.000288 – 0.00274) 1.14 (1.08 – 1.19) 

27 ºC 0.00452 (0.00239 – 0.00665) 1.42 (1.34 – 1.49) 

30 ºC 0.00556 (0.00329 – 0.00783) 1.58 (1.49 – 1.66) 

33 ºC 0.0130 (0. 00929 – 0.0168) 1.48 (1.36 – 1.60) 
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Appendix Table 2. Parameter estimates for the metabolic traits governing the thermal 
response curves for Chlorella. 

Selection 
Temperature  Replicate Exposure Flux b(Tc) (μmol O2 μg C

-1
 h

-1
 

@ 25ºC)  Ea (eV) Eh (eV) Th (ºC) Topt (ºC) R2 

20 1 short-term R 0.5 0.99 4.33 39.04 36.69 0.46 

20 2 short-term R 0.53 1.07 4.21 39.51 37.36 0.9 

20 3 short-term R 0.32 0.6 2.64 41.09 37.19 0.58 

23 1 short-term R 0.38 0.7 3.2 41.33 37.96 0.43 

23 2 short-term R 0.41 1.68 2.46 31 33.49 0.79 

23 3 short-term R 0.34 1.12 4.14 37.8 35.81 0.78 

27 1 short-term R 0.41 1.1 3.03 37.49 35.95 0.87 

27 2 short-term R 0.36 1.12 9.01 43.92 42.06 0.76 

27 3 short-term R 0.39 1.13 4.27 38.89 36.9 0.73 

30 1 short-term R 0.3 1.34 3.31 39.04 38.05 0.86 

30 2 short-term R 0.39 1.17 4.08 38.31 36.46 0.73 

30 3 short-term R 0.65 0.96 3.87 39.28 36.9 0.88 

33 1 short-term R 0.26 1.06 3.35 39.29 37.38 0.93 

33 2 short-term R 0.3 1.12 4.32 38.74 36.72 0.18 

33 3 short-term R 0.79 0.68 7.53 43.4 40.77 0.88 

20 1 short-term P 1.88 0.51 7.42 43.61 40.6 0.91 

20 2 short-term P 1.95 0.68 4.68 40.93 37.74 0.88 

20 3 short-term P 0.93 0.45 3.68 41.03 36.54 0.51 

23 1 short-term P 1.18 0.54 13.14 44.55 42.49 0.85 

23 2 short-term P 1.51 0.26 2.5 43.27 35.97 0.54 

23 3 short-term P 1.54 0.43 3 41.93 36.9 0.69 

27 1 short-term P 1.55 0.6 3.4 40.37 36.57 0.95 

27 2 short-term P 1.75 0.66 8.6 43.4 40.92 0.87 

27 3 short-term P 1.78 0.37 6.97 44.46 40.9 0.89 

30 1 short-term P 1.03 0.84 9.22 42.95 40.82 0.91 

30 2 short-term P 0.78 0.92 10.76 43.04 41.15 0.94 

30 3 short-term P 1.62 0.77 6.81 41.9 39.33 0.91 

33 1 short-term P 0.75 0.7 6.59 42.84 40.09 0.89 

33 2 short-term P 1.25 0.93 4.64 37.61 35.15 0.56 

33 3 short-term P 2.33 0.42 8.61 44.07 41.12 0.73 

20 1 long-term R 0.4 1.19 3.02 34.77 32.88 0.6 

20 2 long-term R 0.59 1.51 3.37 33.41 31.35 0.84 

20 3 long-term R 0.49 1.1 4.04 37.76 35.49 0.76 

23 1 long-term R 0.15 1.21 4.05 39.43 37.12 0.87 

23 2 long-term R 0.24 0.83 3.35 40.36 38.21 0.95 

23 3 long-term R 0.17 1.53 3 36.73 34.83 0.92 

27 1 long-term R 0.12 3.08 3.79 30.79 28.65 0.95 

27 2 long-term R 0.2 1.97 3.16 33.43 31.47 0.92 

27 3 long-term R 0.21 1.05 5.16 40.09 37.77 0.92 

30 1 long-term R 0.2 1.29 3.74 37.41 35.19 0.75 

30 2 long-term R 0.18 1.08 5.6 40.64 38.34 0.86 

30 3 long-term R 0.13 1.36 4.37 38.8 36.49 0.9 

33 1 long-term R 0.15 1.55 5.19 38.48 36.19 0.86 

33 2 long-term R 0.19 1.31 3.74 39.27 37.02 0.84 

33 3 long-term R 0.14 1.97 2.87 33.89 32.13 0.9 

20 1 long-term P 1.22 0.54 5.65 42.74 40.42 0.82 

20 2 long-term P 2.05 0.76 2.53 36.34 34.96 0.93 

20 3 long-term P 1.7 0.64 3.97 40.73 38.42 0.94 

23 1 long-term P 0.73 0.63 6.6 42.75 40.52 0.94 

23 2 long-term P 0.79 0.66 3.8 40.7 38.41 0.96 

23 3 long-term P 0.75 0.53 7.94 44.03 41.93 0.97 

27 1 long-term P 0.93 0.61 5.95 42.37 40.08 0.91 

27 2 long-term P 0.97 0.59 5.54 42.11 39.79 0.93 

27 3 long-term P 0.89 0.65 5.64 42.23 39.92 0.98 

30 1 long-term P 0.84 0.59 7.47 43.09 40.95 0.88 

30 2 long-term P 0.81 0.46 5.5 42.98 40.64 0.83 

30 3 long-term P 0.64 0.68 5.87 41.95 39.66 0.95 

33 1 long-term P 0.7 0.83 5.58 40.94 38.64 0.95 

33 2 long-term P 0.89 0.7 7.94 42.86 40.78 0.93 

33 3 long-term P 0.81 0.85 5.27 40.25 37.93 0.86 
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Appendix Figure 5. Photosynthesis irradiance curves of heated-ancestral (red) 
and ambient-ancestral (black) communities in the (a) ambient and (b) warmed 
incubators. 
Value for the photosynthetic maximum were used as the metabolic rate data to 

which Eq 3.2 was fitted. Faded points and lines represent the raw 

measurements and individual fits to each photosynthesis irradiance curve. The 

bold, thicker lines represent the fit of the average parameter values from all of 

the individual parameter values. 
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Appendix Figure 6. Proportion of heterotrophic bacteria of total biomass. 
The proportion of heterotrophic bacteria of total biomass is less than 3% in both 

heated-ancestral and ambient-ancestral communities in all but a single 

community. Consequently, all analyses only used the size distributions from the 

autotrophic communities. Each point represents one community; tops and 

bottoms of box-whisker plots represent the 75th and 25th percentiles and the 

white horizontal line represents the median. 
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Appendix Table 3. Results of mixed effects model analysis for the effects of 
short- and long-term warming on community metabolic rate.  
Analyse reveal that community metabolism is not significantly altered by either 

short- or long-term warming. 

 
flux model d.f. AIC Log Lik ê6 P 

gross primary 

production 

Random effects structure 

   ~ 1|mesocosm 

     

 Fixed effects structure      

 1. ~ 1 + short-term warming * long-

term warming 

6 84.59 -36.29   

 2. ~ 1 + short-term warming + long-

term warming 

5 82.61 -36.30 0.021 0.88 

 3. ~ 1 + long-term warming 4 80.95 -36.47 0.34 0.55 

 4. ~ 1 3 82.661 -38.33 3.71 0.054 

community 

respiration 

Random effects structure 

    ~ 1|mesocosm 

     

 Fixed effects structure      

 1. ~ 1 + short-term warming * long-

term warming 

6 71.35 -29.67   

 2. ~ 1 + short-term warming + long-

term warming 

5 69.35 -29.68 0.0071 0.93 

 3. ~ 1 + long-term warming 4 68.73 -30.37 1.38 0.24 

 4. ~ 1 3 69.71 -31.86 2.98 0.08 

 
  



	 158	

Appendix Table 4. Results of the maximum likelihood modelling for 
simultaneously estimating parameters in Eq. 3.2.  
Analyses reveal that the only effect of long-term warming is a reduction in the 

normalisation of community respiration. 

 
  

	

flux model d.f AIC Deviance !" P 
gross primary 
production 

1. long-term warming * #$%%  +  
long-term warming * &$%%  +  
long-term warming * '(((*+) 

6 52.93 40.93   

 

2. #$%%  +  
long-term warming * &$%%  +  
long-term warming * '(((*+) 

5 52.09 42.09 1.15 0.28 

 
3. #$%%  + &$%%  +  
long-term warming * '(((*+) 

4 49.24 41.24 0.85 0.36 

 4. -.// + 0.//+ .//(12) 3 47.24 41.24 0.001 0.97 
community 
respiration 

1. long-term warming * #34  +  
long-term warming * &34  +  
long-term warming * 56(*+) 

6 54.51 42.51   

 

2. #34  +  
long-term warming * &34  + 
long-term warming * 56(*+) 

5 52.52 42.52 0.004 0.95 

 
3. -78 + 078 +  
long-term warming * 78(12) 

4 51.64 43.64 1.12 0.29 

 4. #34  + &34  + 56(*+) 3 54.3 48.3 4.66 0.031 
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Appendix Table 5. Parameters used in the formulation of the metabolic scaling 
theory of metabolism from organisms to ecosystems. 
 

Notation Formulation Description Unit 

Organism-level:    

3ìE  Activation energy of gross photosynthesis eV 

3IE  Activation energy of net photosynthesis eV 

3ï  Activation energy of respiration eV 

3C  Deactivation energy eV 

bë("&)  

Temperature normalised rate of gross 

photosynthesis 

µmol O2 µg Chla
-

1
 h

-1
 

zë("&)  

Temperature normalised rate of net 

photosynthesis 

µmol O2 µg Chla
-

1
 h

-1
 

e("&)  Temperature normalised rate of respiration 

µmol O2 µg Chla
-

1
 h

-1
 

"DEF  Optimum temperature ºC 

"C  
 

Temperature where half of enzymes are 

inactivated ºC 

(L  Mass dependence of metabolic rate µg Chla
-1

 

    

Ecosystem-level:    

áVV("&) 1
k bëN "&

ò

N}@

(N
) 

Temperature normalised rate of gross primary 

productivity 

g O2 g Chla
-1

 

day
-1

 

  

3éXX 3ìE + 3L + 3; 

Activation energy of gross primary 

productivity eV 

~n 1
k (N

ò

N}@

 
Total biomass g Chla m

-2
 

   

3L  Activation energy of adaptation of bë("&) eV 

3;  

Activation energy for temperature 

dependence of biomass eV 
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Appendix Figure 7. Map of the geothermal stream system in a valley near 
Hveragerdi, SW Iceland (64.018350, -21.183433). 64 
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Appendix Table 6. Mean, minimum and maximum temperature values 
averaged across days and years (May 2015, May 2016) in the 15 sites.  
Values are based on a temperature estimates taken at 1 minute intervals. The 

sites are listed with increasing mean temperature. 

 

 
  Temperature (ºC) 

Site Mean Minimum Maximum 

S9 6.8 5.3 7.9 

S7 : high 7.1 6.7 7.9 

S4 7.3 5.1 8.9 

S1A 8 4.5 11.8 

S1B 8.2 7.1 9.7 

S6 11 7.3 14.1 

S7 : low 11.4 10.4 12.1 

S1 : low 12.1 9.7 16.3 

S5 : low 13.2 12.1 14.8 

S10 14.4 10.4 16.9 

S11A 14.4 12.4 16.6 

S1 : high 16.5 13.3 18.8 

S11B : high 17.2 14.7 19.6 

S11B : low 21.5 19.8 23.4 

S5 : high 26.9 24.8 28.6 
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Appendix Table 7. Key physical and chemical features of the 15 sites investigated 
 

Site width (m) depth (m) velocity 
(m s-1) 

integrated  
pH conductivity 

(µS m-1) 

nutrients (µmol L-1) 
upstream estimate 

(m) NO2 NO3 NH4 PO4 

S9 0.41 0.027 0.11 29 7.57 173.3 0.29 0.23 0.27 0.86 
S7 : high 0.4 0.053 0.3 237 7.43 359.1 0.22 0.44 0.28 0.7 
S4 0.46 0.06 0.36 191 7.27 204.6 0.2 0.08 0.22 0.14 
S1A 0.59 0.07 0.5 561 7.40 230.9 0.25 0.4 0.7 0.54 
S1B 0.42 0.058 0.14 131 7.50 462.4 0.28 0.25 0.18 0.17 
S6 0.19 0.029 0.12 302 7.43 289.6 0.22 0.4 0.21 1.02 
S7 : low 0.3 0.043 0.4 107 7.43 304.7 0.22 0.44 0.28 0.7 
S1 : low 1.1 0.13 0.81 917 7.36 305.2 0.26 0.26 0.48 0.35 
S5 : low 0.32 0.041 0.09 60 7.63 273.6 0.22 0.57 0.17 0.14 
S10 0.22 0.109 0.24 552 7.53 167.0 0.35 - 0.24 0.74 
S11A 0.71 0.078 0.77 405 7.17 235.7 0.24 0.29 0.19 0.55 
S1 : high 0.74 0.12 0.61 884 7.20 321.7 0.26 0.26 0.48 0.35 
S11B : high 0.31 0.042 0.33 222 7.33 407.9 0.25 0.25 0.27 1.25 
S11B : low 0.4 0.042 0.33 370 7.33 407.9 0.25 0.25 0.27 1.25 
S5 : high 0.17 0.037 0.06 109 7.63 319.2 0.22 0.57 0.17 0.27 
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Appendix Table 8. Pearson correlation coefficients between temperature and 
physical and chemical variables 

  

Variable r P value 
width -0.14 0.56 
depth 0.07 0.77 

velocity 0.04 0.87 
pH -0.03 0.91 

conductivity -0.02 0.92 
NO2 -0.001 0.47 
NO3 0.18 0.47 
NH4 -0.19 0.44 
PO4 0.07 0.77 
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Appendix Table 9. The photosynthetic traits governing the thermal response curves for the dominant biofilms of each site.   
  

Site Year Taxon 

Net photosynthesis Respiration Gross photosynthesis 

ln np(Tc) 
(µmol O2 
µg Chla-1 

h-1 @ 
10ºC) 

Enp 
(eV) 

Eh 
(eV) 

Th 
(ºC) 

Topt 
(ºC) 

ln r(Tc) 
(µmol 
O2 µg 

Chla-1 h-

1 @ 
10ºC) 

Er 
(eV) 

Eh 
(eV) 

Th 
(ºC) 

Topt 
(ºC) 

ln gp(Tc) 
(µmol O2 
µg Chla-1 

h-1 @ 
10ºC) 

Egp 
(eV) 

Eh 
(eV) 

Th 
(ºC) 

Topt 
(ºC) 

S4 2016 Cladophora 3.9 1.03 4.39 30.6 28.48 2.48 1.01 3.78 31.66 29.53 4.2 0.92 9.19 32.49 30.57 

S1A 2016 Cladophora 4.74 0.79 2.58 28.33 25.88 3.07 0.64 4.36 37.28 33.97 4.77 0.89 2.71 26.98 24.95 
S1A 2016 Nostoc 4.37 0.52 8.77 36.87 34.28 3.14 0.44 4.26 38.83 34.63 4.8 0.47 2.72 35.36 30.71 
S4 2015 Cladophora 3.55 0.87 1.78 21.67 21.52 1.71 0.45 17.21 43.78 41.97 3.61 0.53 2.18 30.18 26.1 

S7 : high 2016 Cladophora 4.35 0.73 7.04 31.77 29.33 3.85 0.8 2.94 31.06 28.42 4.48 0.93 3.51 28.24 25.99 

S7 : high 2016 Nostoc 2.67 0.98 3.57 34.32 32.1 1.27 0.93 1.77 34.12 34.59 3.33 0.62 9.05 38.83 36.43 

S7 : high 2015 Feathermos
s 1.32 0.77 4.99 34.19 31.44 1.26 0.55 2.13 42.8 38.64 1.99 0.66 8.81 35.6 33.28 

S11A 2016 Nostoc 2.67 1.91 5.29 28.47 27.62 1.13 0.71 5.85 45.74 42.79 2.95 1.57 4.37 28.46 27.43 

S10 2016 Nostoc 2.68 1.08 9.9 38.53 36.76 -0.66 1.64 3.15 34.74 34.94 3.42 0.85 7.12 38.39 36.06 

S1 : high 2016 Nostoc 3.77 1.03 8.87 39.61 37.69 1.33 1.09 3.23 41.01 39.26 4.36 0.85 3.66 37.86 35.15 

S11b : high 2015 Feathermos
s 1.82 1.12 2.64 24.53 23.64 1.1 0.48 1.64 49.7 45 2.08 1.14 2.5 25.19 24.64 

S5 : high 2015 Anabaena 2.58 0.54 5.9 42.5 39.19 0.68 0.66 2.04 39.71 36.65 2.73 0.55 5.69 42.37 39.02 

S5 : high 2016 Anabaena 2.66 0.85 4.02 37.4 34.71 0.45 1.58 2.35 29.63 32.12 2.79 0.77 5.63 39.89 37.14 
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Appendix Table 10. Results of a linear effects model analysis for each 
metabolic trait with fixed effects of stream temperature and metabolic flux.  
Significant models are highlighted in bold. 

 
  

Metabolic 
Trait 

Effect d.f. AIC Log Lik L-ratio P value 

b(Tc) ~ 1 + stream temperature * 
metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + metabolic flux 

8 
 

6 
 

5 

96.94 
 

94.89 
 

 98.28 

-40.47 
 

-41.43 
 

-44.14 

 
 

1.93 
 

5.41 

 
 

0.37 
 

0.02 
E ~ 1 + stream temperature * 

metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + stream temperature 
~ 1 

8 
 

6 
 

4 
3 

37.03 
 

36.36 
 

34.41 
32.92 

-10.51 
 

-12.18 
 

-13.21 
-13.46 

 
 

3.33 
 

2.05 
0.51 

 
 

0.189 
 

0.36 
0.48 

Eh ~ 1 + stream temperature * 
metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + metabolic flux 
~ 1 

8 
 

6 
 

5 
3 

72.92 
 

73.83 
 

72.07 
71.37 

-28.46 
 

-30.91 
 

-31.04 
-32.68 

 
 

4.91 
 

0.24 
3.30 

 
 

0.09 
 

0.62 
0.19 

Th ~ 1 + stream temperature * 
metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + metabolic flux 

8 
 

6 
 

5 

-192.08 
 

-192.92 
 

-190.32 

104.04 
 

102.46 
 

100.16 

 
 

3.15 
 

4.60 

 
 

0.206 
 

0.032 
Topt ~ 1 + stream temperature * 

metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + metabolic flux 

8 
 

6 
 

5 

-27.21 
 

-28.72 
 

-24.54 

21.61 
 

20.36 
 

17.27 

 
 

2.49 
 

6.18 

 
 

0.29 
 

0.013 
b(Ts) ~ 1 + stream temperature * 

metabolic flux 
~ 1 + stream temperature + 
metabolic flux 
~ 1 + metabolic flux 
~ 1 

8 
 

6 

48.64 
 

44.68 

-16.32 
 

-16.34 

 
 

0.05 

 
 

0.98 
     

5 
4 

42.99 
64.21 

-16.49 
-29.10 

0.31 
25.22 

0.58 
<0.0001 
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Appendix Table 11. The number of days of stream gross primary productivity 
measured from each site across years.  
Sites are ordered by increasing average stream temperature 

 
 Number of days of site GPP measurements 

Site 2015 2016 Total 
S9 0 1 1 
S7 : high 2 2 4 
S4 0 1 1 
S1A 2 1 3 
S1B 0 2 2 
S6 2 1 3 
S7 : low 0 1 1 
S1 : low 2 2 4 
S5 : low 0 1 1 
S10 2 1 3 
S11A 2 2 4 
S1 : high 2 1 3 
S11B : high 2 2 4 
S11B : low 2 0 2 
S5 : high 2 1 3 
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Appendix Figure 8. Photosynthesis irradiance curve used to determine optimal 
light for the acute temperature response of gross photosynthesis.  
Rates of net photosynthesis were measured at various light intensities at the 

average stream temperature of each biofilm. Here data are presented for Nostoc 

spp. in stream 7 (high) at 7.1 ºC. Lines represent the best fit to the modified Eiler’s 

model using non-linear least squares regression (see Chapter 4 methods). 
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Appendix Figure 9. Daily cycles in temperature from each stream across days 
and years. 
Each panel is a single day of temperature variation split by each unique stream 

and across years (2015 or 2016). The data is split into “night” (black points) and 

“day” (yellow points) by defining night as < 5µmol m-2 s-1 (see Chapter 4 

methods). 
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Appendix Figure 10. Daily cycles in light from across days and years.  
Each panel is a single day of light variation split by each unique stream and 

across years (2015 or 2016). The data is split into “night” (black points) and “day” 

(yellow points) by defining night as < 5µmol m-2 s-1 (see Chapter 4 methods). 
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Appendix Figure 11. Daily cycles in metabolic flux from each site across days and 
years. 
Each panel is a single day of metabolic rate after accounting for reaeration (ΔDO 

– K; see Methods) split by each unique stream and across years (2015 or 2016). 

The data is split into “night” (black points) and “day” (yellow points) by defining 

night as < 5µmol m-2 s-1 (see Chapter 4 methods). 
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Appendix Figure 12. Patterns of thermal adaptation in Nostoc spp. only.   
(a) (a,b) Acute thermal response curves for gross photosynthesis and respiration 

were measured for each isolated autotroph from streams spanning average 

temperatures from 7 ºC (blue) to 17 ºC (red) for stream biofilms dominated by 

Nostoc spp. (c) Optimum temperatures were consistently higher than the average 

stream temperature. (c) Metabolic rates normalised to 10 ºC, !(#$), decrease 

exponentially with increasing stream temperature for gross photosynthesis 

(green), net photosynthesis (blue) and respiration (red). (d) Rates of gross 

photosynthesis at the average stream temperature showed no temperature 

dependence. Grey points and lines highlight the other taxa to facilitate direct 

comparison to the relationship for Nostoc spp. 
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Appendix Methods 

Derivation of the activation energy of net photosynthesis.  

The rate of net photosynthesis, &'(#), at temperature, #, is equal to the difference 

between the rates of gross photosynthesis, ('(#), and respiration, )(#). Equation 

4.5 implies that the temperature sensitivity of net photosynthesis will not follow a 

simple Boltzmann-Arrhenius relationship. Instead, the apparent activation energy 

of net photosynthesis, *+,, can be approximated in the vicinity of #$ as (Yvon-

Durocher et al. 2014),  

*+, ≡ ./+(+, 0 )
. 1

23 0405
= 	 89:	;, 05 <	8=>(05)

;,(05)<	>(05)
               (A1) 

which is equal to an average of the activation energies of *;, and *>, weighted 

by their respective normalisations, (' #$  and ) #$ . Using this approximation, I 

can express the temperature dependence of &' as  

&' # = &' #$ ?@A8B:
1
235C

1
23                    (A2) 

where &' #$ = (' #$ − ) #$ . I quantified the accuracy of this approximation by 

comparing *+, derived using Eq. A1 to the apparent activation energy of net 

photosynthesis measured by fitting Eq. 4.1 to the net photosynthesis data (see 

Chapter 4 Methods). The derived and measured estimates of *+,were positively 

correlated with a slope that had confidence intervals which overlapped unity 

(slope = 1.22, 95% CI: 0.78 – 1.65)  and R2 = 0.75 (Fig. S7). 
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Appendix Figure 13. Comparison between measured and derived activation 
energies for net photosynthesis.  
Activation energies of net photosynthesis measured from fitting the rate data to 
the modified Sharpe-Schoolfield equation (Eq. 4.1) correlate well with the derived 
activation energy of net photosynthesis calculated using equation A1. The fitted 
line is the best fit of a linear model and the 1:1 line is shown for comparison.  
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Comparison of measured and modelled reaeration rates 

To assess the robustness of our modelled values of reaeration, I compared 

measurements of the reaeration rate made in nearby streams in Iceland with 

comparable physical characteristics using propane additions (from Demars et al. 

2011), to values estimated using the surface renewal model (eq. 4.14). In Demars 

et al. (2011), the reaeration rate was measured using a tracer study, where 

propane was bubbled continuously across the width of the stream at an upstream 

station. Water samples were taken at a downstream station and analysed by gas 

chromatography back in the laboratory. The change in propane concentration the 

over the reach and the travel time were used to estimate the reaaeration rate, E 

(min-1).  

 

I compared the measured values of reaeration, E (min-1), from Demars et al. 

(2011) to estimated values of E derived Eq. 14 (see Chapter 4) and 

measurements of velocity, depth and temperature for those streams. I found a 

strong correlation between modelled and measured values of E with 95% 

confidence intervals on the slope that included unity (slope = 1.13, 95% CI: 0.76 

– 1.50) and an R2 = 0.61 (Appendix Figure 14). In addition, I examined potential 

biases by plotting the residuals of the ln-ln plot of modelled vs. measured 

reaeration against stream temperature (Appendix Figure 15). This analysis 

demonstrates that the model residuals do not vary systematically with stream 

temperature. Consequently, I am confident that estimates of reaeration derived 

from the surface renewal model are robust for the streams included in this 

experiment. 
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Appendix Figure 14. Comparison of modelled and measured rates of reaeration.  
Rates of measured reaeration using a propane tracer study are positively 

correlated with those derived using the surface renewal model (Eq. 4.14) with a 

slope that was statistically indistinguishable from unity.  
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Appendix Figure 15. The relationship between the residuals of modelled vs 
measured reaeration and stream temperature.  
Although there is uncertainty in the modelling of reaeration, there is no systematic 

bias in the modelled residuals. 
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