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Abstract 7 

The spring-mass-damper (SMD) model with a pair of internal biomechanical forces is the 8 

simplest model for a walking pedestrian to represent his/her mechanical properties, and thus can 9 

be used in human-structure-interaction analysis in the vertical direction. However, the values of 10 

SMD stiffness and damping, though very important, are typically taken as those measured from 11 

stationary people due to lack of a parameter identification methods for a walking pedestrian. This 12 

study adopts a step-by-step system identification approach known as particle filter to 13 

simultaneously identify the stiffness, damping coefficient, and coefficients of the SMD model’s 14 

biomechanical forces by ground reaction force (GRF) records. 15 

  After a brief introduction of the SMD model, the proposed identification approach is explained 16 

in detail, with a focus on the theory of particle filter and its integration with the SMD model. A 17 

numerical example is first provided to verify the feasibility of the proposed approach which is 18 
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then applied to several experimental GRF records. Identification results demonstrate that natural 1 

frequency and the damping ratio of a walking pedestrian are not constant but have a dependence 2 

of mean value and distribution on pacing frequency. The mean value first-order coefficient of the 3 

biomechanical force, which is expressed by the Fourier series function, also has a linear 4 

relationship with pacing frequency. Higher order coefficients do not show a clear relationship 5 

with pacing frequency but follow a logarithmic normal distribution. 6 

Keywords: Human-induced load, spring-mass-damper model, biomechanical load factor, 7 

parameter identification, particle filter 8 

1. Introduction 9 

Long-span civil engineering structures, such as cantilever stands, pedestrian bridges and floors, 10 

may experience vibrations when subjected to human-induced dynamic loads due to walking, 11 

jumping, etc. When the load’s dominant frequency is equal or close to the natural frequency of 12 

the structure, resonant or near-resonant vibrations will occur and can be perceptible to occupants. 13 

These vibrations can cause occupants to be distracted, dizzy or even terrified if excessive, leading 14 

to vibration serviceability problems [1,2], which need to be addressed at the design stage of a 15 

vibration-prone structure. An accurate and reliable load model is a prerequisite for predicting and 16 

controlling this vibration. Walking loads are the most common type of human-induced loads. 17 

Extensive research has been carried out to develop a mathematical model, either deterministic or 18 

stochastic, for walking loads based on experimental records of human walking loads. A small 19 
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sample includes [3-9] among many others. A comprehensive review of walking load models has 1 

been given in [10].  2 

  All the above models generally treat ‘a walking pedestrian’ as ‘a moving load’, implying it 3 

does not change the dynamic properties of the structure. However, researchers found that human 4 

beings do change the dynamic properties including the damping and natural frequency of the 5 

structure they occupy [11–14]. This phenomenon is explained by the fact that human beings have 6 

their own mass, damping and stiffness, which increases the number of degrees of freedom 7 

applicable to the structure through the coupled human-structure interaction (HSI). Clearly, any 8 

changes to the properties of the human-structure system are highly related to the properties of the 9 

human beings occupying the structure. To investigate this influence, the SMD model and bipedal 10 

model are utilized by researchers to model human beings as a mechanical system. Although the 11 

bipedal model is able to mirror or duplicate the leg-switching behavior in human walking, and 12 

thus can better reflect the strong interaction between the structure and pedestrian [15], it is more 13 

complicated and cannot be easily implemented for practical use, while an SMD model can be 14 

used for both static and walking people, which gives it the advantage of simplicity. 15 

From the HSI point of view, it is essential to know the model parameters, i.e., natural 16 

frequency (or stiffness) and damping ratio, when using the SMD model. Many researchers 17 

focused on human SMD parameters for sitting [16-18] and standing [19-21], giving results 18 

ranging from 5 Hz to 10.43 Hz and 0.2-0.5, for natural frequency and damping ratio, respectively. 19 
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For SMD parameters of walking pedestrian, Shahabpoor [22] adopted the SMD model for 1 

walking people from tests of the frequency response function (FRF) on a structure with and 2 

without occupants. The natural frequency was given to be 2.75–3 Hz and damping ratio is 0.275–3 

0.3. Nimmen [23] performed tests on a footbridge with people standing on the bridge but in a 4 

posture pretending to be walking. The natural frequency of 3.34 Hz and a damping ratio of 0.26 5 

were found. Zhang [24] included the biomechanical forces within the legs to provide input force 6 

for the human-structure coupling system, and laboratory experiments were undertaken using 7 

force plates and a 3D motion capture system. Natural frequency and biomechanical load factors 8 

(BLFs) were found to be related with the walking frequency based on the assumption of a 9 

constant damping ratio of 0.3. Note that most SMD model parameters mentioned above are for 10 

people in a static status [16-21]. For limited research on effect of walking people on buildings 11 

[22-24], some parameters or conditions, i.e., constant damping ratio or walking-like gesture, need 12 

to be assumed, which may not be realistic. Moreover, the biomechanical forces are often ignored 13 

when identifying the SMD parameters. Therefore, this paper introduces a new method to obtain 14 

SMD parameters, together with coefficients for biomechanical forces. 15 

Estimating human model parameters is an output-only inverse dynamic problem, since the 16 

inputs are unknown. In recent years, many methods have been proposed to identify input and 17 

structural parameters simultaneously from structural responses [25–27]. One popular method is 18 

the Kalman filter (KF) method [28], which includes the extended Kalman filter (EKF) and the 19 



5 

 

unscented Kalman filter (UKF). A development of KF method is the particle filter method [29], 1 

where the Gaussian assumption in the traditional Kalman filter is relaxed so that more accurate 2 

results can be obtained [30–31]. In this paper, the particle filter method is adopted to identify 3 

human model parameters and the unknown biomechanical force input from the ground reaction 4 

force obtained experimentally. 5 

2. Spring-mass-damper Model of walking Pedestrian 6 

The SMD model is the simplest model for a pedestrian. It concentrates all the pedestrian mass at 7 

the body center-of-mass (COM), resulting in a single-degree-of-freedom system including mass, 8 

spring and damper, as shown in Fig. 1. A force couple of equal and opposite biomechanical forces 9 

generated by the movement of human muscles is assumed to exist inside the human body to 10 

provide excitation force for human model [24]. The SMD model equation of motion for 11 

pedestrians is written as 12 

bioh h hM u C u K u F                                (1) 13 

in which Mh, Ch, Kh is static human whole body mass, damping and stiffness respectively; Fbio is 14 

the biomechanical force assumed inside the human body which excites the dynamic system, and 15 

u is the displacement response of the body’s COM. Following the terminology in biomechanics, 16 

the contact force imposed on the ground by the pedestrian is called GRF. Note from Fig.1 that 17 

GRF is the summation of spring force, damping force, biomechanical force and the person’s body 18 

weight. Therefore, once the GRF is measured from an experiment, the response of the SMD 19 
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system is the movement of the pedestrian COM, which is  1 

GRF h
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                                 (2) 2 
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Fig. 1. SMD model of a pedestrian with a pair of biomechanical forces 5 

Observation of normal walking people indicates that gait is a periodic/near-periodic movement of 6 

each foot from one position of support to the next position of support in the direction of 7 

progression, and the COM moves in a similar periodic pattern. In this connection, it is reasonable 8 

to assume the biomechanical force in Eq.1 is periodic and can be expressed in a Fourier series as 9 

follows 10 

 bio 0

1

cos(2 ) sin(2 )
n

i p i p

i

F a a f t b f t 
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                      (3) 11 

where a0, ai, bi are Fourier series coefficients, fp is the pacing frequency of the pedestrian, and n is 12 

the order of the Fourier series model of the biomechanical force, which acts as the input of the 13 

human system. The BLF is defined as the ratio between the amplitude of Fourier series and the 14 

human weight, which can be expressed as 15 
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2 2BLFi i i ha b M g                             (4) 1 

3. Theory of Identification 2 

3.1 General Solution 3 

In this study, the human parameters in the SMD model, which is assumed to represent the human 4 

body system, are to be identified together with BLFs simultaneously from the measured GRF. 5 

This section aims to prove the feasibility of estimating these values at the same time. From Eq. (1) 6 

and Eq. (3), the equation of motion of the human system under biomechanical forces is rewritten 7 

at each time instant in matrix form as 8 

  HΘ F                                   (5) 9 

where 10 
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0 1 2h h n nC K a a a a bΘ                    (7) 12 

 
T

1 2( ) ( ) ( )h h h pM u t M u t M u t   F .                  (8) 13 

Vector Θ includes the parameters to be identified. Mh is assumed as the known value of total 14 

human mass, and is thus not included in the vector to avoid multiple-solution problem in the 15 

inverse identification. It is also assumed that the human parameters Ch and Kh are constant during 16 

walking. The least-square solution of the equations exists and can be expressed as  17 
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T 1 T( )Θ H H H F                               (9) 1 

3.2 Particle Filter 2 

In the previous section, the procedure for simultaneously estimating human parameters and BLFs 3 

was expressed. However, when directly calculating the solution through Eq. 9, it is usually 4 

difficult to calculate numerically the inverse of the matrix HTH, especially when the matrix is 5 

ill-conditioned, which is, unfortunately, always the case. Therefore, a method known as the 6 

particle filter is adopted in this paper to identify human parameters and BLFs. This method is 7 

briefly reviewed herein. 8 

  In the particle filter method, the state of the system is estimated by introducing measured data 9 

step by step to the dynamic equation [29–31]. A state-space form of the system dynamic equation 10 

is needed for estimating the state, as expressed in 11 

1 ( ) ( )k k kf w k  x x                           (10) 12 

where xk is the state vector representing the state of the system at each time step k. fk represents 13 

the state transition function of the system, and w(k) is the system error with a known distribution. 14 

The observation vector yk is formed by measurements made at each time step and is related to the 15 

state vector through the following observation equation 16 

( ) ( )k k kh v k y x                               (11) 17 

where v(k) is the observation error with known distribution and independent with the system error 18 

w(k). hk is the transition function from system state vector to observation vector. The expression 19 
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of xk, yk, fk and hk for the human SMD parameter identification problem discussed in this paper 1 

are defined in next section. 2 

  The main process of particle filter method is to construct the posterior probability density 3 

function (PDF) of the state vector through Bayesian state estimation. Two steps known as predict 4 

and update are shown in Eq. 12 and Eq. 13, respectively. 5 

1: 1 1 1 1: 1 1( | ) ( | ) ( | )dk k k k k k kp p p     x y x x x y x                 (12) 6 
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
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                     (13) 7 

Eq. 12 and Eq. 13 show the procedure to obtain the posterior PDF of time step k. The posterior 8 

PDF of time step k-1, p(xk-1|y1:k-1) , with the measurement data up to time step k-1, is passed through 9 

the system equation to obtain the prior PDF of time step k expressed as p(xk|y1:k-1) . Measurement 10 

data at time step k is then introduced to calculate the posterior PDF of time step k, p(xk|y1:k), based 11 

on the Bayesian formula. 12 

  Equations 12 and 13 describe the iteration steps in this method. After a number of iteration steps, 13 

the system state will converge to the real value. If the transition function fk and hk are linear, and the 14 

Gaussian distribution assumption applies to both the prior and posterior PDF, only the mean value 15 

and covariance of the state need to be estimated at each step. This method is known as the Kalman 16 

filter. However, when the parameter identification problem is considered, the transition function fk 17 

is always nonlinear against unknown parameters. Therefore, the assumption of the Kalman filter 18 

cannot be applied here. Alternatives to the Kalman filter include the extended Kalman filter (EKF), 19 
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the unscented Kalman filter (UKF) and the particle filter (PF), each of which has its own 1 

assumptions. In this study, the particle filter method is adopted, since it needs the least assumptions, 2 

although it is computationally expensive. 3 

  In the particle filter method, the prior and posterior PDF of the state is represented by a large 4 

number of particles. When the number of particles becomes large enough, they can equivalently 5 

represent the exact PDF in a Monte Carlo way. The Gaussian assumption in EKF and UKF 6 

becomes unnecessary because the particles can represent any form of PDF. At each time step k, 7 

each particle is passed through the system equation to form a prior PDF. The likelihood of each 8 

particle is normalized through Eq. 14, in a process called resampling, where qi is the normalized 9 

likelihood for the ith particle, and N is the number of particles. A new series of particles is generated 10 

based on the normalized likelihood and the iteration process continues to the next step until the 11 

system state converges to its real value. 12 

1

( | ( )) ( | ( ))
N

i k k k k

i

q p i p i


 y x y x                     (14) 13 

This particle filtering technique is used for identifying human SMD model parameters and BLFs. 14 

Instructions for applying this method are given in Section 3.3. 15 

3.3 Application of Particle Filter on SMD Model Identification 16 

When simultaneous identification of human SMD model parameters and BLFs occur, the state 17 

vector should include system response terms and unknown parameters. The state vector is shown 18 

as. 19 
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0 1 1 2 2( , , , , , , , , , , , )h h n nu u C K a a b a b a bX               (15) 1 

T( , ,0, 0)u uX                             (16) 2 

The equation of motion shown in Eq. 1 should be written in state-space form, as follows. 3 

 w X AX                               (17) 4 
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(18) 7 

In matrix A, the unknown parameters Ch and Kh are included, so the state equation shown in Eq. 17 8 

is nonlinear, although the linear pedestrian SMD model is adopted. Using the Euler discretization 9 

method, Eq. 17 is discretized for numerical computation. The discretized state-space equation of 10 

motion is written as. 11 

1 ( )k d k w k  X A X                           (19) 12 

and 13 

dd t Α I A                               (20) 14 

where I is the unit matrix. 15 

  The observation vector yk includes displacement, velocity, and acceleration response of the 16 
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pedestrian system 1 

 
T

, ,k k k ku u uy                             (21) 2 

and is related to the state vector at each time step by 3 
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(23) 7 

The particle filter method is applied to the identification problem based on Eqs. 15–23, following 8 

the procedure explained in Section 3.2. 9 

4. Numerical Example 10 

To test the feasibility of the proposed method before applying to experimental data, a numerical 11 

simulation is conducted. The human body is represented by a SMD model, with mass set to as 75 12 

kg, natural frequency 2.5 Hz and damping ratio 0.4. The damping coefficient c and stiffness k are 13 

942 N·s/m and 18506 N/m, respectively. The input P, i.e., the biomechanical force, is assumed to 14 

follow Eq. 24 where 15 

300sin(3 ) 400sin(4 ) 200sin(7 ) 100sin(8 )P t t t t                  (24) 16 

  This input is then expressed using Eq. 3, where n is chosen to be 10. It should be noted here that 17 
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although a Fourier model with n = 4 is usually considered to be enough for modelling human single 1 

footfall steps [32], n is set to be 10 to increase modelling accuracy for the purpose of identification. 2 

The state vector is generated following Eq. 15. The displacement, velocity and acceleration 3 

response of the simulated single-degree-of-freedom system is calculated to form the observation 4 

vector at each time step. The method proposed in Section 3 was applied to identify SMD model 5 

parameters and the Fourier series simultaneously. With the time interval Δt set to be 0.001 s, 6 

Figures 2 and 3 show the converging process of the damping coefficient c and stiffness k at each 7 

time step. Figure 4 shows the system input calculated from the identified Fourier series at each time 8 

step. As the time steps increase, the parameters and the input converge to the correct value with a 9 

small error, which is mainly because the selected input load model is only an approximation of the 10 

real input with some modelling error.  11 

 12 

Fig. 2. Converging process of damping coefficient c 13 
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 1 

Fig. 3. Converging process of stiffness k 2 

 3 

Fig. 4. Converging process of system input F 4 

5. Identification of SMD Parameters experimental using Measured GRFs 5 

5.1 Experimental identification of pedestrian GRF 6 

An experiment was conducted to estimate the parameters of the SMD model and the biomechanical 7 

force using the method stated above. The test participant was equipped with an insole sensor 8 

system (Novel Pedar System, Germany), which was used to measure the continuous GRF of the 9 

participant and to transmit signals to a nearby data acquisition PC wirelessly through the Bluetooth 10 

technique. The validity and accuracy of this insole sensor system are well acknowledged [33-35]. 11 
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 1 

Fig. 5. Experiments of GRF using the insole pressure measurement system 2 

  Participants were asked to walk along a 40m×1.5m rigid track prompted by a metronome. In a 3 

total of 11 cases, pacing frequencies adopted were eight fixed frequencies, i.e., 1.5, 1.65, 1.75, 1.8, 4 

1.95, 2, 2.1 and 2.25 Hz, and three pacing frequencies chosen by participants at their own 5 

preferences of slow, normal and fast. Each pacing frequency case was repeated two or three times 6 

to ensure repeatability. Fifty-six people participated in this experiment and 1528 records of ground 7 

reaction forces were obtained. Selection of participants and the test protocol satisfied the 8 

requirements given by Tongji Metical Ethics Committee. Table 1 summarizes participant 9 

information. 10 

Table. 1. Ages, weight and height information for participants 11 

Sex Number 
Age (yrs) Weight(kg) Height(cm) 

Mean SD Range Mean SD Range Mean SD Range 

Male 39 24.0 2.52 
19.8-28.9 

68.3 15.00 
49.8-95.1 

174.6 47.58 
156-197 

Female 17 23.7 6.37 60.3 4.98 162.6 21.28 

Note: SD refers to standard deviation 12 

  One typical GRF record of 1.75 Hz pacing frequency is shown in Fig. 6. The force recorded by 13 
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left and right sensors are added together to form the total GRF and then used to calculate COM 1 

response. The time history of GRF has the feature of near-periodic while differences in each step 2 

can be observed, which resembles those measured by other researchers [32].  3 

 4 

Fig. 6. Typical experimental record (pacing frequency = 1.75 Hz) 5 

5.2 Data processing and parameter identification procedure 6 

The acceleration response of the COM was calculated from GRF records through Eq. 2 and filtered 7 

with a high-pass cut-off frequency of 0.15 Hz. Displacement and velocity responses were obtained 8 

through integration by trapezoidal rule, and were then used to form the observation vector for Eq. 9 

21. Because the Fourier coefficients of biomechanical force could be different between each step, 10 

the calculated COM acceleration time histories were divided into pieces of single footfall steps, i.e., 11 

peak to peak in the time history curve. The velocity and displacement responses were also divided 12 

accordingly. A similar technique was once used by Ding et al. [36] to identify earthquake input 13 

assuming that the earthquake parameters in a short duration remained constant. For parameter 14 

identification using each piece of single footfall steps, particles representing the initial state 15 
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distribution of human damping, stiffness and response terms, remained the same as those recorded 1 

in the last step of the previous piece, while the particles for the Fourier series terms were 2 

regenerated at the beginning of each piece.  3 

  Following the above process, the particles were passed through prediction and update Eqs. 19 4 

and 22. For the SMD parameter Ch and Kh, the standard deviation of system error w(k) was set to be 5 

5 N·s/m and 100 N/m, respectively, which is around 1% of the nominal values. This aims to prevent 6 

Ch and Kh from getting frozen (i.e., converging to a wrong value before reaching the correct value) 7 

in the particle filtering process. For the response terms in the state vector, the standard deviation of 8 

w(k) was empirically set at 0.5% of the RMS value of each state quantity to compensate for the 9 

incompleteness coming from the dynamic model and the discretization during calculation [37]. 10 

Although the influence of w(k) on the estimation process was not theoretically investigated, the 11 

robustness of estimation results was found against slight changes of w(k) values. The observation 12 

error term v(k) for measured acceleration, velocity and displacement was taken as 10% of the RMS 13 

values of the respective state quantities to account for the influence of sensor noise. 14 

5.3 Identification Results of an Individual 15 

  Fig. 7 and 8 show the identification convergence curve of damping and stiffness for a participant 16 

walking at 1.75 Hz. The range of initial uniform distribution is set from 400-1000 N·s/m and 17 

12000-20000 N/m for damping coefficient and stiffness, respectively. It should be noted that the 18 

estimated values are not limited within this range. It is found that the estimation result is robust 19 



18 

 

against the initial range of distribution. At each time step, the estimated value is calculated as the 1 

mean value of all particles. The damping coefficient and stiffness converge to a fixed value after 2 

around two seconds, which is 200 iteration steps of 0.01 s time interval. The converged value for 3 

damping and stiffness are 434 N·s/m and 8940 N/m, respectively. With the human participant mass 4 

of 58 kg, these values give the human damping ratio value as 0.29 and natural frequency as 5 

1.94 Hz. 6 

 7 

Fig. 7. Estimating result for damping coefficient Ch 8 

 9 

Fig. 8. Estimating result for stiffness Kh 10 

  Having damping and stiffness identified with known body mass and COM response including 11 

COM displacement, velocity and acceleration, the biomechanical force time history can be directly 12 

calculated from Eq. 1. The result is shown in Fig. 9 where it is observed that the biomechanical 13 
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force is a near-periodic process. In frequency domain (Fig. 10) the Fourier amplitudes indicate the 1 

BLF with values of the first three orders BLF1 = 0.212, BLF2 = 0.042, and BLF3 = 0.049. 2 

 3 

Fig. 9. Time history of biomechanical forces 4 

 5 

Fig. 10. Fourier amplitudes of biomechanical forces 6 

  Figures 11a and 11b show the variation of natural frequency and damping ratio with pacing 7 

frequency, respectively, for all test cases of the same participant. An increasing trend for natural 8 

frequency and a decreasing trend for damping ratio can be observed.  9 

   10 



20 

 

 1 

(a) Natural Frequency                   (b) Damping ratio  2 

Fig. 11 Variation of SMD parameters with pacing frequency (one pedestrian) 3 

5.4 Statistical Analysis 4 

All 1528 records of the continuous walking load were processed by the above proposed method to 5 

identify the SMD parameters. The results of natural frequency, damping ratio and BLF1 are shown 6 

in Figures 12(a)–(c) against the pacing frequency. A linear relation was fitted for mean values of 7 

natural frequency, damping ratio, and BLF1. As the pacing frequency becomes larger, natural 8 

frequency and first-order BLF increases accordingly, while the damping ratio tends to decrease. 9 

The fitting equation is also given in Fig. 12. 10 

  11 

(a) Natural frequency                      (b) Damping ratio 12 
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 1 

 (c) First-order BLF 2 

Fig. 12. Linear fitting for mean values of SMD parameters with pacing frequency 3 

  The model error terms ε, for natural frequency, damping ratio and BLF1, were all found 4 

following a normal distribution with the mean value and standard deviation value summarized in 5 

Fig. 13(a)–(c), together with the PDF from the experiment data. 6 

  7 

(a) Natural frequency                      (b) Damping ratio 8 

 9 

(c) First-order BLF 10 
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Fig. 13. Normal distribution fitting for model error terms 1 

  For higher order coefficients of biomechanical force, i.e. BLF2 and BLF3, no clear relation was 2 

found with pacing frequency. A logarithmic normal distribution was fitted to the second and third 3 

order of BLFs, as shown in Fig. 14(a)–(b). 4 

   5 

(a) Second-order BLF                      (b) Third-order BLF 6 

Fig. 14. Logarithmic normal distribution fitting for second and third order BLF 7 

5.5 Comparison With Results from Other Researches 8 

The estimated SMD parameters of this study are summarized and compared with results from 9 

other researchers in Table 2. For most of them, human natural frequency and damping ratio 10 

remains constant. Only one model [24] proposed the model parameter to be linearly related with 11 

pacing frequency, as found in this paper. The linear trend in [24] is compared in Fig. 12(a)–(b). 12 

The mean values of natural frequency for pacing frequency 1.5-2.5 Hz are 1.82-2.13 Hz, which 13 

are smaller than those reported for sitting and standing person. The identified damping ratios are 14 

0.56-0.34 for pacing frequency 1.5-2.5Hz, which are in the variation range of reported data.  15 

 16 
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 1 

Table. 2. Comparison with results from other researchers 2 

Source Posture Natural Frequency (Hz) Damping Ratio 

Wei 1998 [16] Sitting 5.0 0.45 

Falati 1999 [17] Sitting 10.43 0.45-0.55 

Sachse 2002 [18] Sitting 5.5–8.3 0.33–0.35 

Brownjohn 1999 [19] Standing 5.1 0.38 

Zheng 2001 [20] Standing 5.24 0.39 

Matusmoto 2003 [21] Standing 5.74 0.695 

Shahabpoor 2016 [22] Walking 2.75–3 0.275–0.30 

Van Nimmen 2015 [23] Walking 3.34 0.26 

Zhang 2015 [24] Walking 1.1043 fp 0.30 

This Study Walking 
0.3049fp + 1.3670 

(1.82–2.13 for fp = 1.5–2.5) 

− 0.2116fp + 0.8737 

(0.56–0.34 for fp = 1.5–2.5) 

     Note: fp refers to pacing frequency 3 

  The results of BLFs for walking pedestrians, to the best of the authors’ knowledge, are rarely 4 

reported. The only result found in literature is proposed in [24], in which the first-order of BLF 5 

has a linear relationship against pacing frequency, while the second and third BLF were fitted by 6 

a generalized extreme value distribution in accordance with the results found in this paper. The 7 

linear trend for first-order BLF from [24] is compared with the present result in Fig. 12(c). 8 

6. Conclusions 9 

When structures are excited by pedestrians, the HSI phenomenon occurs. Through this interaction, 10 

the human-structure system dynamic properties are changed by pedestrians occupying the 11 

structure. Although researchers have found that the change to structural parameters is related to 12 

human biomechanical properties, the human parameters have not been fully studied. In this paper, 13 

the pedestrian is modeled using a SMD model with a pair of biomechanical forces, where the 14 
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natural frequency and damping ratio of this model are investigated. Wireless force insoles were 1 

applied and equipped to test participants to obtain a continuous GRF induced by human walking. 2 

Based on the measured data, the parameters of an SMD model and a biomechanical force are 3 

simultaneously identified using a time-domain approach known as the particle filter method. 4 

Natural frequency, damping ratio and first-order BLF of the SMD model were found to have a 5 

close relation with walking frequency and a linear model was fit. For a higher order of BLF, a 6 

logarithmic normal distribution was used to fit the experimental data. 7 

The results obtained in this paper are compared with those from other researches. Close 8 

relationship is found between results using different methods, showing the validity of the findings 9 

in this paper. The results can serve as the basis for further investigation on parameter 10 

identification for pedestrians on an oscillating structure, where the human-structure interaction 11 

may occur. It is also proved that the system identification method is capable of dealing with 12 

human parameter identification problem, which is not much addressed before. Moreover, the 13 

experimental data of human walking load time histories can serve as the database for further 14 

research on human-induced load and vibration. 15 
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