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ABSTRACT  13 

Animal societies are often structurally complex. How individuals are positioned 14 

within the wider social network (i.e. their indirect social connections) has been 15 

shown to be repeatable, heritable, and related to key life history variables. Yet, 16 

there remains a general lack of understanding surrounding how complex 17 

network positions arise, whether they indicate active multifaceted social 18 

decisions by individuals, and how natural selection could act on this variation. 19 

We use simulations to assess how variation in simple social association rules 20 

between individuals can determine their positions within emerging social 21 

networks. Our results show that metrics of individuals’ indirect connections can 22 

be more strongly related to underlying simple social differences than metrics of 23 

their dyadic connections. External influences causing network noise (typical of 24 

animal social networks) generally inflated these differences. The findings 25 

demonstrate that relationships between complex network positions and other 26 

behaviours or fitness components do not provide sufficient evidence for the 27 

presence, or importance, of complex social behaviours, even if direct network 28 

metrics provide less explanatory power than indirect ones. Interestingly 29 

however, a plausible and straightforward heritable basis for complex network 30 

positions can arise from simple social differences, which in turn creates potential 31 

for selection to act on indirect connections. 32 

 33 

  34 
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INTRODUCTION 35 

 36 

Societies across the animal kingdom, ranging from humans to insects, are often 37 

characterized by complex organisation [1, 2]. It is the social behaviour of 38 

individuals within the population that gives rise to the intricate structure of 39 

social systems [3-5]. Indeed, within such systems, individuals differ in the 40 

manners in which they interact with others and in the strength and extent of 41 

social relationships [6-9]. Much of the study of animal social behaviour aims to 42 

understand these differences between individuals, including the selective 43 

pressures that have shaped and maintained them, their implications for our 44 

understanding of divergent social strategies, and their physiological and genetic 45 

underpinnings [5, 10, 11].  46 

 47 

One of the major complexities in the study of individual variation in social 48 

behaviour results from the fact that the social environment almost always 49 

consists of a polyadic network of non-independent social ties [12, 13]. Animals 50 

are connected to the individuals with whom they associate with directly (direct 51 

connections), but are also tied indirectly to the partners of their social partners 52 

(indirect connections) [8, 13-15]. Social network analysis has become a popular 53 

tool for animal social behaviour research [14, 16] as it allows researchers to look 54 

beyond how individuals differ at the level of direct, dyadic, associations and to 55 

explore how animals are positioned in the wider social environment [13]. The 56 

many different measures of individuals’ general social centrality or integration 57 

within a social network allows their indirect connections and network positions 58 

to be quantified in various ways. For example, commonly considered metrics 59 

include: ‘eigenvector centrality’, which sums their associates’ associations; 60 

‘betweenness’, which calculates how many of the shortest social paths between 61 

others in the network pass through them; and ‘closeness’ which measures their 62 

social distance to every other individual [13]. 63 

 64 

Currently, many questions remain surrounding the importance of indirect 65 

network connections to our understanding of animal social behaviour [13, 48]. 66 

Indirect connections are, by definition, an emergent feature of associations 67 

between pairs of individuals. Yet the extent of information regarding polyadic 68 

connections that individuals possess, and whether they can use this to influence 69 

their social environment, is largely unknown. Whether the relationships between 70 

indirect network positions and wider traits (e.g. fitness) are evidence of the 71 

importance of indirect connections, or whether simpler, and perhaps more 72 

parsimonious, explanations underpin such findings also needs to be established. 73 

Further, how complex network positions, which intrinsically depend upon the 74 

direct social associations among pairs of others, can be repeatable, heritable or 75 

the target of selection at the individual-level remains uncertain. 76 

 77 

Despite the lack of clarity surrounding these fundamental issues regarding 78 

indirect connections, recent findings have shown that an individual’s tendency to 79 

be indirectly connected to others can be consistent [9, 17, 18], even following 80 

disturbance [19-21], heritable [9, 22, 23], and strongly related to other variables 81 

of interest, including the likelihood of contracting disease [24-27], obtaining new 82 

information [28, 29], or of leading group movements [30]. Indirect connections 83 
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have even been associated with proxies of fitness, with studies reporting positive 84 

associations between indirect network metrics and an individual’s future social 85 

status [31-33], survival [34] and reproductive output [9, 33, 35-37]. Within this 86 

body of research, a growing number of studies have found effects of indirect 87 

connections even after controlling for dyadic associations, and an even greater 88 

relative importance of these complex metrics than direct dyadic ones (reviewed 89 

in Brent (2015) [13] and more recent studies thereafter [36, 37]), leading to 90 

various conclusions regarding the importance of indirect connections within 91 

societies.  92 

 93 

Extended interpretations surrounding complex network positions have 94 

suggested that the consequences of indirect connections stem from individuals 95 

actively undertaking complex social manoeuvers and making decisions based on 96 

their understanding of the wider network structure and relationships between 97 

third parties [36, 37]. These suggestions certainly fit well with evidence 98 

suggesting that some species have the ability to obtain social information in an 99 

indirect manner. For example, cichlids may infer the relative dominance status of 100 

pairs of males using information on the pairs’ relative status with other fish [38]; 101 

primates and corvids appear to eavesdrop on the relationships between pairs of 102 

third parties [39, 40], and to shape their behaviour around others’ social bonds 103 

[41-44]. Further, it has recently been reported that the human brain may be 104 

capable of spontaneously encoding the indirect network positions of others [45-105 

47]. These results, combined with the fitness correlates of indirect metrics 106 

described above, may even suggest that selection is acting directly to shape not 107 

just the dyadic, but also the polyadic social world. 108 

 109 

Identifying how simple differences between individuals generate differences in 110 

their complex indirect network positions not only helps avoid misleading 111 

conclusions about social structure, but is also important for understanding how 112 

both simple social behaviours and complex social network structure can evolve. 113 

In this study, we use a simulation approach to assess how direct social network 114 

metrics (quantified using social associations at a dyadic-level) and indirect 115 

network metrics (intended for quantifying higher-level structure) emerge from 116 

simple differences in individuals’ association patterns. By creating different 117 

social scenarios, we determine how basic sources of individual variation in terms 118 

of social associations can actually be more strongly predictive of indirect 119 

network metrics than direct network metrics. Further, we examine how external 120 

processes that shape the network itself (or how we measure it), can affect the 121 

relationship between simple social differences and variation in social network 122 

metrics. We highlight the importance of understanding the relationships 123 

between simple association patterns and network positions for drawing 124 

conclusions in relation to the causes of variation, and how such relationships 125 

allow the repeatability, heritability, and the selection of complex social positions 126 

to result from relatively simple mechanisms.  127 

 128 

 129 

METHODS 130 

 131 

General framework 132 
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In research on empirical social networks, the data are based upon the social 133 

association patterns observed within the inferred social network. Therefore, 134 

underlying social differences between individuals are deduced from their 135 

positions within the social network (‘social network metrics’). These measures of 136 

individuals’ social network positions are then often used in analyses relating to 137 

various other traits/processes, from which conclusions are drawn about the 138 

causes and consequences of individuals’ social behaviour [1, 14] 139 

 140 

For example, if a metric measuring the sum of individuals’ indirect social 141 

associations (i.e. their associates’ social associations – ‘eigenvector centrality’) 142 

held a stronger relationship to their fitness than a metric measuring the sum of 143 

their direct social associations (i.e. how often they associate with others - 144 

‘weighted degree’ or ‘strength’), it might be concluded that individuals’ 145 

propensity to indirectly associate with others (e.g. by associating with others 146 

who themselves have lots of associations) is more important to fitness than 147 

simply their propensity to associate with others [36, 37]. Therefore, drawing 148 

conclusions related to underlying differences in social behaviour often relies on 149 

the assumption that the network metric used as a proxy of the underlying social 150 

differences is accurate, and more related to this social behaviour than the other 151 

network metrics it is been compared to. However, within the field of animal 152 

social networks, it has been notoriously difficult to assess how social network 153 

metrics actually effectively relate to underlying social differences, and the 154 

consequences of this. Therefore, we use a computational approach that allows us 155 

to vary individuals’ underlying social association patterns, simulate the arising 156 

social network, and subsequently assess how the initially specified variation can 157 

be recovered using social network metrics. In particular, we aim to determine 158 

how direct social network metrics and indirect social network metrics (see 159 

below) are generated from simple social differences between individuals.  160 

 161 

We separately considered three simple scenarios, each with its own specified 162 

process underlying social differences between individuals (see above, and see 163 

Supplementary Methods for details). For each of these three scenarios, we carried 164 

out simulations where social associations occurred at random apart from the 165 

specified scenario to generate the arising social networks. Within the 166 

simulations, each individual was randomly assigned a trait value from a standard 167 

uniform distribution on which their social differences were conditioned (see 168 

Supplementary Methods for details). Each simulation consisted of 1000 169 

individuals with, on average, 100 associations assigned to each individual (but 170 

see supplementary information for variations of this).  171 

 172 

First, we considered individuals’ general sociability’ (‘GS’) as the number of 173 

individuals that a focal individual generally associates with (which is also 174 

analogous to gregariousness or average group size). In this simulation scenario, 175 

we assigned individuals to ‘grouping events’ based on their trait value, whereby 176 

those with high GS had a higher probability of occurring in larger grouping 177 

events than those with a low GS. Grouping events ranged in size from 1-10 178 

individuals (but see supplementary information for variations). All individuals 179 

within a grouping event were classed as holding an association to one another. 180 

This is similar to the commonly-used ‘gambit of the group’ approach whereby 181 
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spatio-temporally clustered individuals are considered associated [49, 50]. This 182 

process was carried out until, on average, each individual had engaged in 100 183 

associations (see supplementary methods).  184 

 185 

In a second scenario, individuals were set to vary in their ‘reassociation 186 

tendency’ (‘RT’), which was defined as their propensity to reassociate with 187 

individuals they had associated with before. Each association was assigned one-188 

by-one by selecting an individual within a random step-wise process (see 189 

supplementary methods). The probability that the association was then directed 190 

towards either a random previous associate of the selected individual, or to a 191 

random new associate of the selected individual, was directly proportional to the 192 

selected individual’s trait value. Therefore, those with lower RT had a lower 193 

social stability and were more likely to associate with others they hadn’t 194 

associated with previously.  195 

 196 

Finally, we varied individuals’ ‘within-group association’ (‘WGA’) i.e. their 197 

likelihood of associating with their own group members over non-group 198 

members. The ‘groups’ defined here could be analogous to any predetermined 199 

social groups, such as cliques, animals who share the same home-range, or even 200 

a shared phenotype. Individuals were randomly assigned to equally sized 201 

‘groups’ at the beginning of each simulation (100 separate groups of 10 202 

individuals in the primary analysis, but see supplementary information for 203 

variations). Associations were then assigned between dyads on the basis of both 204 

of the individual’s trait values and whether or not they were in the same preset 205 

‘group’ (see supplementary methods). In this way, higher WGA values increased 206 

an individual’s propensity to direct more of their associations towards those 207 

categorized as being in the same ‘group’ as themselves, whilst lower WGA 208 

increased the likelihood of engaging in associations with different individuals. 209 

 210 

Variation in social network positions 211 

Upon generating the social networks under the three scenarios, we then 212 

examined how the initially specified social differences (i.e. trait values) related to 213 

variation in social network metrics (or ‘social network positions’). Therefore, for 214 

each of the scenarios, we first calculated the relationship between the trait value 215 

and the relevant simple metric usually used for measuring such differences 216 

directly (see below). Then we calculated the relationship between the trait value 217 

and a relevant complex metric that incorporates information on indirect 218 

connections [13, 37]. Such metrics are usually used to infer more complex 219 

processes than single-dimension variation in dyadic social associations. 220 

However, by incorporating information on the wider social structure as well as 221 

the individual’s own associations, this may provide a better description of simple 222 

social behaviours in emerging networks (see Network error and noise and 223 

Discussion: Individual variation and network structure for further details).  224 

 225 

Specifically, when simulating General Sociability (GS) variation, we used 226 

‘weighted degree’ as the simple direct metric. This measure represents the sum 227 

of an individual’s dyadic associations to others and is thus often used with the 228 

intention that it is a direct measure of the general sociability of an individual. We 229 

used ‘eigenvector centrality’ as the indirect metric, which is derived from the 230 
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sum of each individual’s associates’ associations (i.e. their ‘second-order 231 

associations’). This complex metric is usually used with the intention to describe 232 

individuals’ propensity to form connections with highly connected individuals. 233 

However, eigenvector centrality may relate to initial GS due to incorporating 234 

information on individuals’ associates’ associations when assortment by degree 235 

can arise due to passive processes [51, 52]. 236 

 237 

In the Reassociation Tendency (RT) variation simulations we used ‘average edge 238 

weight’ (or ‘mean non-zero edge weight’) as the intuitive direct metric, which is 239 

an individual’s mean dyadic association strength to each of their associates. 240 

Thus, this may be viewed as a direct measure of reassociation tendency (or social 241 

stability), with those possessing the strongest bonds (i.e. high average edge 242 

weights) having the highest reassociation tendency. As a relevant, but more 243 

complicated metric, we used ‘betweenness centrality’, calculated as the number 244 

of shortest paths between all individuals in the network that pass through the 245 

focal individual. This is commonly used to infer the extent to which individuals 246 

act as a ‘bridge’ within the network, and therefore those that may be particularly 247 

important to information and disease spread [14]. In this case, betweenness may 248 

be expected to correlate with RT as differences in stability of associations could 249 

give rise to variation in the amount of mixing individuals engage in within the 250 

resultant network.  251 

 252 

Finally, when simulating variation in Within-Group Association (‘WGA’), we 253 

calculated individuals’ ‘EI index’ that is used as a direct measure of within-group 254 

associations in relation to out-group associations (ranging from -1 to +1, where -255 

1 = all associations directed to non-group members and +1 = all associations held 256 

are with group members, and 0 = equal number of associations with group and 257 

non-group members). As the indirect complex metric, we used ‘closeness’, which 258 

assesses the path length of the focal individual to every other individual within 259 

the network. As segregation arises when distinct classes/groups exist, those 260 

which are most likely to focus their associations towards their own class/group 261 

may be expected to be relatively distant from the majority of others within the 262 

wider network, whilst those with more equal mixing will experience higher 263 

general ‘closeness’ within the network. 264 

 265 

Network noise 266 

Together with consistent social differences between individuals, the structure of 267 

empirically derived social networks are likely to be subject to noise, such as due 268 

to external processes or imperfect observation and inference due to the wide 269 

variety of sampling intensities and accuracies across studies [53, 54]. It is 270 

therefore important to gain insight into how such noise may influence the 271 

strength of, and our quantification of, the relationship that specified sources of 272 

individual variation holds with direct dyadic network metrics and complex 273 

indirect metrics. 274 

 275 

We examined four types of noise processes separately: (i) Link removal is the 276 

deletion of social associations between dyads (Figure 1a) and (ii) node removal 277 

is the deletion of individuals and their social associations to others (Figure 1b). 278 

Either of these deletion processes may arise from incomplete observation or 279 
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limited sampling of a population. Therefore, carrying out these removal 280 

processes at different intensities on generated networks mimic the effect of 281 

different levels of sampling intensities of individuals or associations between 282 

individuals. Alternatively, the deletion processes could also be viewed as similar 283 

to external factors that put limitations on which individuals can interact or are 284 

consistently present in the system. (iii) Link rewiring refers to reassignment of 285 

social associations between random triads, whereby the value of the social 286 

association between individual ‘A’ and individual ‘B’ would be swapped with the 287 

social association between individual ‘A’ and individual ‘C’, thus the strengths of 288 

the social associations between dyads are randomised (even if was previously 289 

zero) (Figure 1c). (iv) Node rewiring is randomising the identity (and all 290 

associated information) of a subset of individuals (Figure 1d). Either of these 291 

rewiring processes may arise from imperfect inference of associations or 292 

individual identification (which again may be related to sampling intensities), or 293 

external influences and other factors determining which interactions actually 294 

take place. We generated each noise processes (i.e. removal and rewiring of links 295 

or nodes) ranging from 10% to 90% of links or nodes selected for removal or 296 

rewiring. This was carried out in intervals of 10% on final versions of the 297 

simulated networks arising from each scenario. We carried out 1000 simulations 298 

of each noise process (n=4) for networks generated from each scenario 299 

described above (n=3) at each different level (0% to 90%) resulting in 120 300 

different types of simulated network (360 including supplementary information 301 

variations) and a total of 1,200,000 networks (3,600,000 including 302 

supplementary information). In each case, we examined the relationship between 303 

the initially specified simple trait values of individuals and their relevant direct 304 

and indirect metrics calculated from the simulated network.  305 

 306 

RESULTS  307 

 308 

As expected, the simulations gave rise to fully connected networks of different 309 

structures (Figure 2). The differences in structures were maintained when 310 

various types of noise/error (Figure 1) were inputted even at relatively high 311 

levels (Figure S1).  312 

 313 

The ranked correlation of the simple initial trait with the direct metrics and with 314 

the indirect metrics provides an intuitive measure of which type of metric is 315 

most related to the social differences between individuals. First, when 316 

considering simulation scenario (1) individuals’ general sociability (‘GS’) 317 

correlated more with their complex indirect social network position 318 

(eigenvector centrality) than the simple direct measure (weighted degree), even 319 

before any simulated noise (i.e. the start point in Figure 3a). With increasing 320 

levels of link removal (randomly deleting associations), the strength of the 321 

relationship between the initially specified social differences and both direct and 322 

indirect social network metrics decreased (particularly for >50% noise) but 323 

eigenvector centrality always remained the stronger predictor of GS.  324 

 325 

A similar pattern was also found for the second simulation scenario, as 326 

individuals’ reassociation tendency (‘RT’) was more strongly related to their 327 

betweenness centrality (the indirect metric) than their average bond strength 328 
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(direct metric). In this scenario, this difference was exaggerated with increasing 329 

link removal, as the correlation between re-association tendency and average 330 

bond strength declined more than its correlation with the indirect network 331 

metric of betweenness (Figure 3b).  332 

 333 

Finally, the direct measure of in-group out-group ties (the EI index) was a 334 

slightly better predictor of variation in individuals’ within-group association 335 

(‘WGA’) before any noise was introduced. But, increasing the proportion of 336 

nodes removed rapidly resulted in the indirect metric (closeness) being more 337 

strongly correlated to WGA than the direct metric. This was due to the EI index 338 

suffering a greater reduction in prediction ability with increased error (Figure 339 

3c). For all three scenarios, removing nodes appeared to differ slightly from 340 

removing links in how it affected overall network structure (Figure S1). 341 

However, the extent to which indirect metrics were more strongly related than 342 

direct metrics to the underlying social differences under increased node removal 343 

generally mimicked that of increased link removal (as described above) over all 344 

three scenarios (Figure 3d-f). 345 

 346 

We also considered how rewiring aspects of the network (links and nodes), 347 

rather than removing them, influenced the relationship between the specified 348 

social differences and the direct and indirect metrics across the three different 349 

scenarios (Figure 4). Increased link rewiring reduced the difference between the 350 

indirect metric and the direct metric, as eigenvector centrality and weighted 351 

degree were similarly correlated to GS when >50% of links were rewired (Figure 352 

4a). Under the RT and WGA scenarios however, link rewiring increased the 353 

difference between the direct (average edge weight and EI-index respectively) 354 

and the indirect metrics’ (betweenness and closeness respectively) correlations 355 

to the initial social differences (RT and WGA respectively) (Figure 4b-c). This 356 

resulted in the indirect metrics being even more strongly related to the initial 357 

social differences than the direct metrics. In both cases, although the correlation 358 

remained highest for the indirect metrics across all levels of rewiring, the raw 359 

differences (but not proportional differences) in predictive ability decreased as 360 

>60% of links were randomized (Figure 4b-c). 361 

 362 

Rewiring nodes (i.e. randomly swapping individuals’ positions) caused a similar 363 

linear decrease in the correlations between social differences in the GS and RT 364 

scenarios and both direct and indirect metrics (Figure 4d-e). Although the raw 365 

difference in the correlations decreased slightly (Figure 4d-e), it should be noted 366 

that the proportional difference between these correlations remained the same 367 

with increasing node rewiring, thus the initial slight advantage of the indirect 368 

metrics was maintained. Although the correlation between WGA and the indirect 369 

metric (closeness) again decreased linearly, the direct metric (EI-index) suffered 370 

a larger decrease in predictive power under increased node rewiring (Figure 4f). 371 

Intuitively, the decreasing relationship between WGA and the EI-index under 372 

node rewiring is driven by assigning individuals to positions unrelated to their 373 

actual group.  374 

 375 

Overall, indirect metrics generally provided a much more robust representation 376 

of the specified source of individual variation – even within these rather simple 377 

Page 8 of 22

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



scenarios (Figure 3;4). However, to further verify the conclusions from these 378 

simulations, we carried out supplementary analyses considering networks of 379 

different sizes and variations (see Supplementary Methods). We found that all the 380 

same patterns as described above were replicated when considering smaller 381 

networks (Figure S2-3), larger networks (Figure S4-5) as well as when altering 382 

the core aspects of the scenario specifications (Figure S6-7) i.e. varying co-383 

occurrence sizes in scenario 1 (GS), stability level in scenario 2 (RT) and number 384 

of pre-set groups for scenario 3 (WGA). Thus, the results found within the 385 

primary setting were generalizable to the different circumstances and variations 386 

of the analysis.  387 

 388 

DISCUSSION 389 

 390 

We use simulations to show that individual variation based on simple, dyadic-391 

based, social rules can be more strongly related to indirect metrics of social 392 

network position than direct measures. We show that this difference can be 393 

further exaggerated under random noise that frequently characterises social 394 

network data in animal populations. These findings echo previous research 395 

showing that complex collective and group-level patterns can be explained by 396 

simple rules [30, 55, 56]. In this case, our results show how simple social 397 

differences can explain the causes of variation in complex network metrics. The 398 

results have direct implications for: (i) interpreting social network positions, (ii) 399 

understanding how selection may act on social systems through simple means, 400 

and (iii) considering how individual variation gives rise to overall network 401 

structure. 402 

 403 

Interpreting social network positions 404 

Our findings contribute to the debate regarding the complexity of individual-405 

level behaviour needed to generate complex patterns within a system [13, 55, 57, 406 

58]. For example, we show that simple differences in the number of associates 407 

with which individuals occur can ultimately govern whether they associate with 408 

highly central individuals or with peripheral individuals (i.e. variation in 409 

eigenvector centrality). Importantly, the initial source of variation holds a 410 

stronger relationship to a complex network metric than it does to a measure that 411 

directly considers associations with others (weighted degree). Individuals need 412 

not, therefore, actively shape this complex network position - for instance by 413 

preferentially engaging in associations with high centrality individuals – for a 414 

correlation between eigenvector centrality and individual-level traits to arise. In 415 

the same sense, any trait of interest with a stronger relationship to a complex 416 

measure need not necessarily be linked to an individuals’ innate propensity to 417 

engage in complex social behaviour, but rather could be generated by a simpler 418 

mechanism.  419 

 420 

Along with the clear implications for interpreting results within animal systems, 421 

our findings have some relevance for understanding human behaviour. For 422 

instance, recent studies monitoring brain activity suggested that humans are 423 

able to spontaneously identify the complex (indirect) network positions of 424 

others [46, 47, 59]. However, if unmeasured simple behaviours or traits hold 425 

relatively strong relationships to indirect metrics, humans may simply use these 426 
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traits as a general cue of indirect social connections. Indeed, modeling and 427 

empirical research has demonstrated that individuals can infer the complex 428 

network position of others in terms of their propensity to spread information 429 

using simple dyadic-level cues with no knowledge of overall structure [29, 60]. 430 

Thus, even if humans within networks have little knowledge of its structure [61, 431 

62], the relationship between simple traits and complex metrics may produce 432 

patterns which imply the opposite. Nevertheless, across all systems, even if 433 

indirect social metrics do not provide evidence of complex social mechanics at 434 

the individual level, we also point out that the demonstrated resilience to noise 435 

(Figure 3;4; S2-S7) may mean that they do offer a robust indication of social 436 

differences between individuals (whether or not this is complex). 437 

 438 

Although previous research reporting relationships between indirect metrics 439 

and other processes does not necessarily imply complex behavioural processes, 440 

equally, we do not suggest that such phenomena can be ruled out. Future work 441 

using novel approaches to clearly assess whether, and how, certain animals 442 

(including humans) infer the network positions of others and shape their 443 

indirect associations would be of great interest. For such conclusions to be 444 

drawn, methodological approaches which allow the separation of simple dyadic 445 

level behaviour and complex social behaviour from observed social network data 446 

would be valuable. For instance, future work trying to separate the effects of 447 

indirect network positions over and above simple behaviours on other variables 448 

(such as fitness) will likely require appropriate null models that are conditioned 449 

on the simple behaviours themselves, rather than on the network i.e. 450 

permutations of the raw behavioural data [53, 63] or simulation models 451 

parameterized on the system itself. Simply controlling for other network 452 

properties (i.e. direct metrics) will not adequately rule out the influence of 453 

simple social differences on arising indirect metrics. Further, novel experiments 454 

that manipulate simple behaviours and examine the resultant consequences for 455 

social networks [20, 64], and the consequences of this for social processes [65], 456 

would be particularly useful in elucidating the relationship between simple 457 

behaviours and arising network metrics, and their causal relationships with 458 

other variables. 459 

 460 

In light of our findings, we advise that studies demonstrating a relationship 461 

between an aspect of interest (e.g. a particular trait, process, or measure) and 462 

indirect social network metrics do not necessarily indicate that indirect, or 463 

complex, social behavioural differences are present or hold any particular 464 

importance (even if direct metrics provide less explanation). This is particularly 465 

relevant to animal social networks, when the factors driving underlying 466 

behavioural differences usually are unknown and social network metrics are 467 

instead used as a proxy for those factors [14].  468 

 469 

Selection on social network positions 470 

Our findings also have implications for understanding how selection may act on 471 

social network positions of individuals. Although previous research has reported 472 

links between individual fitness and complex social network positions [9, 31-37], 473 

the mechanisms driving such relationships, as well as the heritable basis of such 474 

complex differences, remains less intuitive. Indeed, how complex indirect 475 
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network positions, which essentially rely upon the connections between third 476 

parties, could be heritable (or even repeatable) appears puzzling – particularly 477 

when it is to a greater extent than direct network measures [9]. The strong 478 

causal relationship between simple underlying social differences and indirect 479 

connections within arising networks demonstrated here allows the heritability 480 

of these complex traits through much simpler mechanisms. For example, if 481 

disease spread caused those with highest betweenness to suffer fitness costs, 482 

then a strong link between a simple trait which could intuitively have a heritable 483 

basis (e.g. tendency to reassociate) and betweenness could allow selection to act 484 

on individuals with the highest betweenness to an even greater extent than on 485 

simpler association metrics. These phenomena would then result in higher 486 

apparent heritability of the complex metrics than simple dyadic network metrics 487 

[9]. Secondly, the relationship between simple behaviours and indirect metrics 488 

could also allow selection to act on complex network positions indirectly (i.e. as a 489 

by-product of selection on a simple correlated trait). Again, this could be to an 490 

even greater extent than the indirect selection on more simple association 491 

metrics. For example, our simulations suggest if variation in individuals’ 492 

propensity to occur in larger groups was linked to fitness (whereby the most 493 

sociable individuals have higher fitness), this would concurrently cause strong 494 

indirect selection on eigenvector centrality, and this would be stronger than the 495 

selection on individuals’ number of associates.  496 

 497 

Thus, the relationship between individual social differences and indirect metrics 498 

creates the potential for selection to act even more strongly on complex network 499 

positions than simple network metrics, through allowing the heritability of 500 

complex positions subject directly to selection (as in the first example) or by 501 

indirectly selecting for complex positions through their association with simple 502 

underlying traits (as in the second example). Both explanations offer convincing 503 

and plausible explanations for how selection can sculpt the entire network 504 

structure more so than would be expected under selection on simple dyadic 505 

network positions. Further work using selection and quantitative genetic models 506 

to intricately assess this, along with examining how changes in overall network 507 

architecture across generations that result, may interact with this, would be of 508 

great interest to understanding how wider social structure evolves.  509 

 510 

Individual variation and network structure 511 

The complexity of actual animal societies [53] is likely to be much greater than 512 

considered within the simulations within this work. Within our study, we only 513 

consider social systems arising from simple social differences, and each are only 514 

subjected to one type of random noise process. Natural networks are likely to be 515 

shaped by various processes simultaneously, and contain combinations of noise 516 

processes dependent on sampling protocol and intensity, and such error may 517 

even be non-random [53, 66]. Our findings suggest that increased levels and 518 

types of external network-shaping processes may cause simple social differences 519 

to be relatively more strongly related to indirect network positions compared to 520 

more direct measures. Thus, the simulations employed here represent a 521 

conservative test of how indirect metrics may be strongly correlated to simple 522 

underlying variation, even in the absence of complex social behaviour. However, 523 

we caution that we do not suggest that indirect metrics will always universally 524 
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be better measures of underlying social variation that direct metrics. Rather, we 525 

aim to emphasize that consideration should be given to the potential factors 526 

shaping network structure, and that appropriate metrics should be chosen and 527 

conclusions should be drawn carefully.  528 

 529 

Mathematical, simulation-based, or empirical data that address precisely how 530 

social differences give rise to variation in complex indirect network positions 531 

would now also be of interest. For instance, positive assortativity is a common 532 

feature of many social networks [51], particularly when networks are created 533 

using the gambit-of-the-group approach [49, 50, 52]. Our simulations show that 534 

simple differences in general sociability (or group size preference), cause this 535 

positive assortativity (scenario 1 – assortativity generally ranging from r=0.15-536 

0.40 depending on noise/error type) which results in individuals having 537 

associates with similar numbers of associates as themselves. Therefore, as 538 

eigenvector centrality also includes information about an individual’s associates’ 539 

associates, this then provides an even more robust measure of an individual’s 540 

underlying behaviour than simply considering their own associations i.e. 541 

considering an individual’s wider position within the network enables more 542 

accurate estimation of their dyadic-level behaviour than just considering their 543 

dyadic associations due to the complex patterns that arise even within simple 544 

scenarios. In the same sense, differences in the stability of individuals’ social ties 545 

(i.e. their reassociation tendency) causes those engaging in higher levels of 546 

mixing to act as bridges within the network and experience higher betweenness. 547 

Additionally, when distinct classes/groups exist (WGS scenario), segregation 548 

within the network arises and individuals who are most likely to focus their 549 

associations towards their own class/group will be removed from the other 550 

classes, whilst those with more equal mixing will experience higher ‘social 551 

closeness’ within the network. Gaining a broader and more general 552 

understanding of how social positions arise from generative sources of 553 

individual behavioural variation, and the correlation between these metrics, will 554 

further advance our knowledge of how overall network structure arises [67-69]. 555 

 556 

Conclusion 557 

We show that simple social differences can be more related to individuals’ 558 

indirect connections than to their direct connections within social networks. 559 

Therefore, while indirect network metrics need not illustrate the presence of 560 

complex social decisions, or their importance for apparent social or biological 561 

processes, the relationship that indirect social positions hold with simple 562 

underlying individual variation allows for their heritability and for selection to 563 

act on them (and therefore wider network structure) through this. We suggest 564 

that future research should now focus on assessing how natural selection acts on 565 

complex network positions, and on developing new analytical and experimental 566 

methods to assess whether certain species actively shape their indirect 567 

connections and how social structure develops from underlying individual 568 

variation. 569 
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Figure Legends 805 

 806 

Figure 1. Illustrative examples of the different kinds of network noise input. In 807 

this example, the initial network contains 15 individuals with 50 random 808 

associations between them (central network). The surrounding networks show 809 

(a) link removal, (b) node removal, (c) link rewiring and (d) node rewiring. Each 810 

of the noise/error processes is carried out at the 50% level. The size of nodes 811 

shows the sum of their associations, the thickness of the lines indicates the 812 

strength of each dyadic association, and nodes are positioned using a spring 813 

layout of the initial (central) network.  814 

 815 

Figure 2. Example networks from each of the three simple scenarios of individual 816 

variation in (a) general sociability, (b) reassociation tendency, and (c) within-817 

group association. All three panels show the networks using the baseline 818 

specifications (1000 individuals, an average of 100 associations per individual) 819 

before any noise/error. (a) Points show individuals and colour denotes their 820 

initial trait value (blue = low, red = high). Lines show social links between 821 

individuals, and line thickness shows strength of the social link (number of 822 

associations). Points are laid out in a circular format that minimizes overlap 823 

between links. See Figure S1 for example networks with noise. 824 

 825 

Figure 3. The relationship between simple social differences and direct (red 826 

lines) and indirect metrics (blue lines) in three simulation scenarios (rows) over 827 

different levels of missing links (a-c; left hand panels) and nodes (d-f; right hand 828 

panels). Each row shows the different social scenarios as denoted by y-axis 829 

whereby GS = ‘General Sociability’ (a & d; top row; scenario 1), ‘RT’ = 830 

‘Reassociation Tendency’ (b & e; mid row; scenario 2), and ‘WGA’ = ‘Within-831 

Group Association’. The value of the y-axis denotes the correlation between 832 

individuals’ initial traits and the direct/indirect metric of interest (scenario 1: 833 

direct = weighted degree, indirect = eigenvector centrality; scenario 2: direct = 834 

average edge weight, indirect = betweenness, scenario 3: direct = EI-index, 835 

indirect = closeness). 1000 simulations of each level of the considered 836 

proportion of nodes/links removed (x axis) were carried out: mid-lines report 837 

the mean r and shaded surrounding area denotes 1 standard deviation around 838 

this. 839 

 840 

Figure 4. The relationship between simple social differences and direct (red 841 

lines) and indirect metrics (blue lines) in three simulation scenarios (rows) over 842 

different levels of rewiring of links (a-c; left hand panels) and nodes (d-f; right 843 

hand panels). Each row shows the different social scenarios as denoted by y-axis 844 

whereby GS = ‘General Sociability’ (a & d; top row; scenario 1), ‘RT’ = 845 

‘Reassociation Tendency’ (b & e; mid row; scenario 2), and ‘WGA’ = ‘Within-846 

Group Association’. The value of the y-axis denotes the correlation between 847 

individuals’ initial traits and the direct/indirect metric of interest (scenario 1: 848 

direct = weighted degree, indirect = eigenvector centrality; scenario 2: direct = 849 

average edge weight, indirect = betweenness, scenario 3: direct = EI-index, 850 

indirect = closeness). 1000 simulations of each level of the considered 851 

proportion of nodes/links rewired (x axis) were carried out: mid-lines report the 852 

mean r and shaded surrounding area denotes 1 standard deviation around this. 853 
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