Title: The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya.

D. B. Jones, 1* S. Harrison, 1 K. Anderson, 2 H. L. Selley, 1 J. L. Wood, 1 and R. A. Betts 3,4

¹College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK.

²Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK.

³College of Life and Environmental Sciences, University of Exeter, Streatham Campus, Exeter, EX4 4QE, UK.

⁴Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, UK

S. Harrison: Email: Stephan.Harrison@exeter.ac.uk K. Anderson: Email: Karen.Anderson@exeter.ac.uk

R. A. Betts: Email: R.A.Betts@exeter.ac.uk

Corresponding Author (*): Email: dj281@exeter.ac.uk

Appendix A

(a) Additional DDAs/I-DLs = total DDAs/I-DLs - subsample DDAs/I-DLs

Calculate subsample DDAs/I-DLs mean area

Additional area = additional DDAs/I-DLs * subsample DDAs/I-DLs mean area

Upscaled area = total additional area + total subsample area

(b) Subsample proportion (%) of intact (I-DL) or relict (DDA) landforms

Additional I-DLs = total DDAs/I-DLs * subsample proportion (%) of I-DLs

Calculate subsample I-DL mean water volume equivalent (WVEQ)

Additional WVEQ = additional DDAs/I-DLs * subsample DDAs/I-DLs mean WVEQ

Upscaled WVEQ = additional WVEQ + subsample DDAs/I-DLs mean WVEQ

Fig. A.1. Flow diagram detailing the process for: (a) upscaling of DDA/I-DL surface area; and (b) upscaling of DDA/I-DL water volume equivalent. Both are derived from the digitised subsample.