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Abstract—This paper considers scenarios wherein a group of
malicious vehicles on a highway perform a cooperative attack
with the motive of creating undesirable wave effects among other
vehicles on the highway. The two species of vehicles - malicious
vehicles and normal vehicles, and their associated interaction
effects, are modeled using Partial Differential Equations (PDEs).
The malicious vehicles, which may be arbitrarily distributed on
the highway, perform a sequence of velocity changes with the
objective of making the density/velocity profile on the highway,
track a reference profile. This reference profile (chosen by the
malicious vehicles) has the property that once generated, it
spontaneously evolves into a shock wave that propagates along
the highway. Analytical expressions governing the velocity inputs
of the malicious vehicles with which they can generate such waves
are determined, for perfect as well as imperfect information
scenarios. Simulation results are presented to validate the theory.

I. I NTRODUCTION

Rapid advancement of technology is transforming our cities
into what are now referred to as “Smart-Cities”, which are
urban centers that integrate cyber-physical technologiesand
infrastructure, such as public transportation, energy, gas and
water distribution, to enhance the quality of life of citizens.
While ensuring better efficiency and convenience, the in-
creased connectivity also expands the potential attack surface
for malicious actors [1]. There are many scenarios wherein
malicious cyber-attacks can occur. Examples include attacks
on the smart grid [2],[3], gas transmission and distribution net-
works [4], large-scale process engineering plants [5], [6], water
networks, UAVs, and automobiles [7]-[9]. As autonomous
vehicles become prevalent in the connected transport infras-
tructure, it is possible that an attacker may try to hack the
driving software of some of the vehicles, and thereby introduce
undesirable effects on other vehicles on the highway [8]-[11].

This paper discusses one such scenario, wherein a group
of malicious vehicles on a highway perform a cooperative
attack with the motive of creating undesirable abrupt wave
effects on other vehicles on the highway. More specifically,
the malicious vehicles can perform a series of (subtle) velocity
changes that will cause the density and velocity profiles of the
non-malicious (normal) vehicles to attain certain pre-specified
reference spatial distributions. These reference spatialveloc-
ity/density profiles can be so chosen by the malicious vehicles,
that once formed, they subsequently evolve into undesirable
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effects such as shock waves, traffic jams, stop-and-go-traffic,
etc. Shock waves are particularly undesirable because theycan
lead to multi-vehicle pile-up crashes.

This paper models and analyzes such attacks in a Partial
Differential Equation (PDE) framework. The use of PDE
models for studying traffic flows has a fairly long history.
The earliest such model was the Lighthill-Whitham-Richards
(LWR) model [12]. The LWR model is basically a first
order hyperbolic PDE based on a gas dynamic-like continuity
equation, which represents the conservation of cars on a
highway. Subsequently, second order hyperbolic models have
been developed, for example, the Payne-Whitham (PW) model
[13], in which the two dependent variables are density and
average velocity of the vehicles. Prigogine and Herman [14]
developed traffic flow equations based on the Boltzmann equa-
tion. These equations were further refined by Paveri-Fontana
[15]. Based on Paveri-Fontana’s equations, a second order
hyperbolic traffic model was defined in [16]. A distinguishing
feature of the model in [16] is that it aptly captures the
anisotropic behavior of traffic, that is, drivers largely react
to the behavior of cars driving ahead of them, as opposed to
those driving behind them. Gas dynamic-based two species
traffic models with the two species being cars and trucks have
also been defined [16], [17]. There have also been papers on
analysis of stability in traffic flows [22], [23], and control
methods for PDE traffic models [24].

In this paper, we use the model in [16], and within the
framework of this model, assume two species of vehicles -
namely, malicious and non-malicious (normal) vehicles. The
malicious vehicles may be arbitrarily interspersed among the
non-malicious vehicles, as schematically shown in Fig 1.
Within this PDE framework, a controller is designed, by
adopting which the malicious vehicles can create arbitrary
velocity/density wave profiles on the highway, and these waves
percolate through the non-malicious vehicles. We show how
the controller can be extended to represent cyber-attacks on
a larger class of second order traffic PDE models, and also
in scenarios where the attacker has imperfect information of
the traffic parameters. A preliminary version of this paper [25]

Fig. 1. Malicious M−vehicles arbitrarily dispersed among normal
N−vehiclesN on a highway

focused purely on perfect information scenarios.



This paper is organized as follows. Section II discusses the
single-species PDE traffic model [16], and then demonstrates
how this model can be extended to analyze a cyber-attack
scenario. Section III describes the development of analytical
control expressions for two cases: one in which the malicious
vehicles generate velocity inputs to modify the spatial velocity
profile on the highway, and another in which their generated
velocity inputs modify the spatial density profile on the
highway. Section IV shows how these malicious waves can be
generated even when the attacker has imperfect information
of the traffic parameters. Section V contains a discussion on
the nature of the velocity/density profiles that the malicious
vehicles seek to create. Section VI presents simulation results,
while Section VII presents the conclusions.

II. PDE TRAFFIC MODEL

A. Single Species Model

In this paper, we use a second order macroscopic model pro-
posed in [16]. The development of the model was inspired by
earlier gas-kinetic-based models [14], [15]. The macroscopic
model has two independent variablesx andt, wherex ∈ [0, L]
represents a spatial variable andt ∈ [0,∞) represents time.
The equations for the macroscopic model are:

∂ρ

∂t
+

∂(ρV )

∂x
= 0 (1)

∂(ρV )

∂t
+

∂(ρV 2 + ρθ)

∂x
= ρ

V eq − V

τ
(2)

where,ρ(t, x) : R+×R → R represents the average density of
vehicles (in vehicles/km/lane), andρ(t, x) ∈ [0, ρmax] where
ρmax is the maximum possible density.V (t, x) : R+×R → R

is the average velocity of the vehicles,θ(t, x) : R+ ×R → R

is the velocity variance in the region[x−dx/2, x+dx/2]. The
velocity variance is a function of density and average velocity,
θ = A(ρ)V 2, whereA(ρ) = A0 +∆A[tanh(ρ−ρc

∆ρ ) + 1], and
A0, ∆A, ρc are positive scalars [16].V eq(t, x) : R+×R → R

represents the average equilibrium velocity and is given by:

V eq(t, x) = V 0 − P (ρa)B(δv)ρaτθ (3)

where V 0 is the average desired velocity,τ is the average
relaxation time, andρa is the average density computed at
the “interaction point”. The interaction pointxa is a reference

Fig. 2. Concept ofinteraction pointandaverage car.

point, as shown in Fig 2, ahead of the “average car” located
at x at an instant of time. It is assumed that the average car at
x speeds up or slows down depending on the behavior of the
average car atxa. The interaction point is typically defined by
xa = x+γ(l+V T ), wherel = 1/ρmax is the average vehicle
length,T is the average time headway andγ ∈ [1, 3] represents

an anticipation factor [16]. In (3), the factorP (ρa) accounts
for the probability of overtaking, as well as the existence of a
finite interaction-free space, and is defined as:

P (ρa) =
V 0ρaT

2

2τA(ρmax)(1− (ρa/ρmax))2
(4)

As evident from (4), asρa approchesρmax (that is, the number
of vehicles increases),P (ρa) becomes progressively larger
and this in turn makesV eq(t, x) in (3) smaller, that is, the
equilibrium velocity decreases with increasing density. The
B(δv) term, defined as [16]:

B(δv) = δv
e−δ2v/2

√
2π

+ (1 + δ2v)

∫ δv

−∞

dy
e−y2/2

√
2π

, (5)

takes into account the anisotropic effects of the traffic flow,
that is, the driver of a car responds more to the traffic ahead,
than the traffic behind. In (5), the termδv = (V −Va)/

√
θ + θa

is a dimensionless velocity difference between the averagecar
at x and that at its interaction pointxa. TermsVa and θa
denote the average velocity and velocity variance computedat
the interaction pointxa. In (3), V eq thus represents a balance
between the desire of the average car atx to drive at it’s
preferred speedV 0 and the slowing down effect it experiences
due to its interaction with the average car atxa.

While we primarily utilize the above model [16], the meth-
ods developed in this paper are applicable to a broader class
of second order traffic PDE models, comprising (1) and (6).
While (1) is a standard equation used for any traffic model,
(2) represents a special case of a large class of PDE models
(including for example, [13], [18], [19], [20], [21] among
many others) with the following general structure:

∂(ρV )

∂t
+

∂(ρV 2)

∂x
+

∂P
∂x

= ρ
V eq − V

τ
(6)

whereP represents the traffic pressure. For the model pro-
posed in [16], the traffic pressure is inferred based on empirical
data asP = ρθ = ρA(ρ)V 2, as given in (2).

B. Two-Species Model

The model in (1)-(2) is extended to a two-species model
with subscriptsM andN , as schematically shown in Fig 1.
The dynamics of the proposed two-species model are:

∂ρN
∂t

+
∂ (ρNVN )

∂x
= 0 (7)

∂ (ρNVN )

∂t
+

∂
(

ρNV 2
N + ρNθN

)

∂x
= ρN

V eq
N − VN

τ
(8)

∂ρM
∂t

+
∂ (ρMVM )

∂x
= 0 (9)

∂ (ρMVM )

∂t
+

∂
(

ρMV 2
M + ρMθM

)

∂x
= ρM

V eq
M − VM

τ
(10)

In (7)-(10), the average equilibrium velocities of the malicious
and normal vehicles,V eq

M andV eq
N are defined as follows:

V eq
M =V 0

M−P (ρaM , ρaN )τ(BMNρNθN +BMMρMθM )(11)

V eq
N =V 0

N−P (ρaM , ρaN )τ(BNMρMθM +BNNρNθN )(12)

In (11)-(12), in generalBij := B(δv,ij), where

δv,ij = (Vi − Va,j)/
√

θi + θa,j , i = M,N ; j = M,N



represents the dimensionless velocity difference betweenthe
vehicle at locationx and the vehicle at interaction pointxa as
shown in figure 2. In (11), the equilibrium velocityV eq

M of the
malicious vehicles is given by the balance between the desire
of the “average” malicious vehicle atx to drive at it’s preferred
velocity V 0

M , and the slowing down effects it experiences due
to the average malicious vehicle atxa, and the average normal
vehicle atxa. A corresponding statement can be made for the
equilibrium velocityV eq

N of the normal vehicles. The effects
of interaction between the two species are thus manifested in
the V eq

M and V eq
N terms. The PDEs (8) and (10) essentially

govern the spatio-temporal evolution of the velocitiesVN and
VM , to these equilibrium velocitiesV eq

M andV eq
N , respectively.

The variableP (ρM , ρN ) is defined as follows:

P (ρM , ρN ) =
T 2
(

ρMV 0
M + ρNV 0

N

)

2τA(ρmax)
(

1− ρM+ρN

ρmax

)2 (13)

Therefore, the average equilibrium velocity of normal vehi-
cles in (12) can be written as follows:

V eq
N = V 0

N

(

1− T 2ρaN (BNMρMθM +BNNρNθN )

2A(ρmax)
(

1− ρaM+ρaN

ρmax

)2

)

− V 0
M

(

T 2ρaM (BNMρMθM +BNNρNθN )

2A(ρmax)
(

1− ρaM+ρaN

ρmax

)2

)

(14)

We see thatV eq
N is affine inV 0

M , and can be rewritten as:

V eq
N = αNV 0

M + βN (15)

The termV 0
M thus influences the average equilibrium velocity

of the normal vehicles, and may be viewed as a control input
for the two-species model in (7)-(10).

III. R EFERENCETRACKING CONTROL

The objective is to vary (in space and time) the average
velocity of the malicious vehicles in (9)-(10), which then can
induce undesirable waves in the spatial velocity and density
profiles of the normal vehicles in (7)-(8). In other words, by
performing these velocity modulations, the malicious vehicles
force changes in the velocity and density profiles of the
normal vehicles, till they are modified to track certain pre-
specified, reference profiles. A discussion on examples of the
kind of reference profiles,V r

N (t, x) andρrN (t, x), the malicious
vehicles may choose, is provided in Section V.

A. Velocity Profile Manipulation

A Lyapunov-based control law is designed, using which, the
malicious vehicles can generate a malicious velocity profile on
the highway. Towards this end, consider a Lyapunov functional
ZV as follows:

ZV (t) ≡
1

2

∫ L

0

(VN (t, x)− V r
N (t, x))

2
dx (16)

whereV r
N represents the smooth bounded reference velocity

profile that the malicious vehicles seek to create among the
normal vehicles, andL represents the length of the highway

under consideration. Based on the theory of Lyapunov func-
tions [26] and consideringV 0

M to be the control input for the
malicious vehicles, ifV 0

M is chosen such that∂ZV

∂t is negative
definite, then it is guaranteed that the velocity of the normal
vehicles will asymptotically trackV r

N . Substituting∂ρN

∂t from
(7) in (8), and using (14), we arrive at:

∂VN

∂t
= −VN

ρN

∂ (ρNVN )

∂x
− 1

ρN

∂
(

ρNV 2
N + ρNθN

)

∂x

+
V eq
N − VN

τ
≡ FVN

+
αN

τ
V 0
M (17)

where,αN can be inferred from (14)-(15), andFVN
is:

FVN
= −VN

ρN

∂ (ρNVN )

∂x
− 1

ρN

∂
(

ρNV 2
N + ρNθN

)

∂x

− VN

τ
+

βN

τ
(18)

To attain the objective thatVN tracksV r
N , we take the time

derivative of the Lyapunov function (16), substitute (17) in
this time derivative, and finally obtain the following equation:

∂ZV

∂t
=

∫ L

0

ev

(

FVN
+

αN

τ
V 0
M − ∂V r

N (t, x)

∂t

)

dx (19)

where,ev(t, x) ≡ (VN (t, x)− V r
N (t, x)). If we defineV 0

M as

V 0
M =

τ

αN

(

− FVN
+

∂V r
N (t, x)

∂t
−Kvev(t, x)

)

(20)

then, the time derivative of the Lyapunov function is:

∂ZV

∂t
= −

∫ L

0

Kvev(t, x)
2dx (21)

With Kv > 0 in (21), we have that∂ZV

∂t < 0, which in
turn means that the average velocity of the normal vehicles
will globally exponentially track the reference velocity profile.
SinceV 0

M in (20) is a function ofαN , and (14)-(15) shows
thatαN depends onρM , therefore as long asρM 6= 0 ∀x, αN

remains non-zero, thereby ensuring thatV 0
M remains bounded.

The smaller the magnitude ofKv in (21), the more gradual
the decay ofZV , and consequently, the more subtle the veloc-
ity changes required by the malicious vehicles to meet their
objective. By proper choice ofKv and time-varying reference
V r
N (t, x), it can be ensured that the generated velocity profile

for the malicious vehicles is always physically feasible.

B. Density Profile Manipulation by the Malicious Vehicles

In this section a control law is designed, using which the
malicious vehicles can cause the density profile of the normal
vehicles to track a pre-defined referenceρrN (t, x). Define a
Lyapunov functionZρ as follows:

Zρ(t) ≡
1

2

∫ L

0

(ρN (t, x)− ρrN (t, x))
2
dx (22)

We seek to determineV 0
M (t, x) such that the time derivative of

Zρ is negative definite, as this will guarantee that the density
of the normal vehiclesρN (t, x) tracks ρrN (t, x). The time
derivative of (22) along the system trajectories (7)-(10) is:

∂Zρ

∂t
=

∫ L

0

eρ(t, x)

(

∂ρN (t, x)

∂t
− ∂ρrN (t, x)

∂t

)

dx (23)



where, eρ(t, x) ≡ (ρN (t, x)− ρrN (t, x)). Now if we define
V 0
M (t, x) in a way such that∂ρN (t,x)

∂t is as follows:

∂ρN (t, x)

∂t
=

∂ρrN (t, x)

∂t
−Kρeρ(t, x) (24)

then, with a choice ofKρ > 0, the Lyapunov function (22)
becomes a decreasing function of time, as desired. Substituting
(24) in (7), and integrating with respect tox, we arrive at:

ρN (t, x)VN (t, x) =

∫ x

0

(

−∂ρrN (t, x)

∂t
+Kρeρ(t, x)

)

dx+C

(25)
where C is a constant of integration. TakingC =
ρN (t, 0)VN (t, 0), and substituting the above equation in (8):

ρN
V eq
N − VN

τ
=

∂Q

∂t
+

∂
(

ρNV 2
N + ρNθN

)

∂x
(26)

where,Q(t, x) in the above equation is given by:

Q=

∫ x

0

(

−∂ρrN (t, x)

∂t
+Kρeρ

)

dx+ ρN (t, 0)VN (t, 0) (27)

SubstitutingV eq
N from (14)-(15) into (26), the requisiteV 0

M is:

V 0
M (t, x) =

(

τ

ρNαN

)

[∂
(

ρNV 2
N + ρNθN

)

∂x

− ρNβN

τ
+

ρNVN

τ
+

∂Q

∂t

]

(28)

This V 0
M (t, x) ensures that∂Zρ

∂t is negative definite, which in
turn, ensures thatρN (t, x) asymptotically tracksρrN (t, x).

C. Velocity/Density Manipulation for general PDE model

For the general form of the traffic PDE model defined by
(1) and (6), a controller can be derived along similar lines.
For density profile manipulation, defining Lyapunov function
to be the same as in (22), and considering differentPN for
different models, while assumingV eq

N can be written as an
affine function ofV 0

M (that is,V 0
M has the structure of (15)

but with a possibly differentαN andβN ), the desired density
profile can be achieved by choosingV 0

M as

V 0
M (t, x) =

(

τ

ρNαN

)

[∂
(

ρNV 2
N + PN

)

∂x

− ρNβN

τ
+

ρNVN

τ
+

∂Q

∂t

]

(29)

whereQ is defined as (27). Along similar lines, the expression
for V 0

M that will achieve the desired velocity profile in the
general traffic model can be obtained.

IV. I MPERFECTINFORMATION SCENARIOS

In this section, we consider imperfect information scenarios,
wherein the attacker does not have access to the values of
traffic parameters, such as the relaxation time constantτ , and
average time headwayT . These parameters are considered to
be uncertain and are assumed to beτ̂ and T̂ for analysis. We
analyze the possibilities of what can happen if the attacker
uses valueŝτ and T̂ , that are different from their respective
true valuesτ andT , in both - the velocity profile manipulation,
as well as density profile manipulation cases.

A. Velocity Profile Manipulation with Imperfect Information

When the attacker employs assumed valuesτ̂ and T̂ in
the V 0

M of (20), then the time derivative of (16) along the
trajectories of (7)-(10), assumes the form:

ŻV (t) = − τ̂T 2

τ T̂ 2
KvZV (t) + gV (30)

where the termgV is as follows:

gV =

(

1− τ̂T 2

τ T̂ 2

)
∫ L

0

(

F̄VN
(t, x)− ∂V r

N (t, x)

∂t

)

ev(t, x)dx

−
(

1− T 2

T̂ 2

)
∫ L

0

(−VN (t, x) + V 0
N

τ

)

ev(t, x)dx (31)

Since τ and T are positive scalars, it can be seen from
(30) that as long aŝτ and T̂ are positive,ZV remains
stable whengV = 0. However, a non-zerogV may influence
the asymptotic stability ofZV , that is, it may preventZV

from asymptotically decaying to zero. This can happen under
conditions that are determined as follows. It can be observed
from (16) and (31) that whenev(t, x) = 0, ∀x ∈ [0, L], (that
is, VN (t, x) = V r

N (t, x), ∀x ∈ [0, L]), then bothZV and gV
are zero. In (30),gV thus has the structure of a vanishing
perturbation, that is,ZV = 0 ⇒ gV = 0.

Define another Lyapunov functionV = 1
2Z

2
V . Then, V

satisfies the following conditions:

c1|ZV |2 ≤ V(ZV ) ≤ c2|ZV |2
∂V
∂ZV

(

− τ̂T 2

τ T̂ 2
KvZV

)

≤ −c3|ZV |2
∣

∣

∣

∣

∂V
∂ZV

∣

∣

∣

∣

≤ c4|ZV | (32)

In (32), c1 = c2 = 1
2 , c3 = T 2τ̂

T̂ 2τ
Kv, c4 = 1. SincegV is a

vanishing perturbation,ZV (t) is globally exponentially stable
if |gV | ≤ c3

c4
|ZV | [26]. Thus, as long as

|gV | ≤ Kv
T 2τ̂

T̂ 2τ
|ZV | (33)

is satisfied, the controller will guarantee that the reference
velocity profile is tracked. Note that the upper bound in (33)
is conservative. It is apparent from (33) that by increasingthe
value ofKv, the upper bound on|gV | with which exponential
stability of (30) is guaranteed, can be increased. However,too
large aKv can require larger velocity changes to be performed
by the malicious vehicles, which the attacker may not always
desire, since it would make the attack less stealthy.

When perfect information ofτ andT is not available, the
same can be determined by adding an adaptation law to the
existing control laws, thereby creating an adaptive cyber-attack
system. Towards this end, we ignore the effect ofT on the
BNN and BNM terms. This is justified because for those
portions of the highway where the traffic is smooth,V ≈ Va,
which makesBNN andBNM independent ofT . Define new
variablesh = T 2, w = τ/h, and error terms̃h and w̃, as
h̃ ≡ h−ĥ, andw̃ ≡ w−ŵ, whereĥ andŵ represent estimates
of h andw, respectively. Then,V eq

N in (14) can be written as:

V eq
N = V 0

N + hβTN + hαTNV 0
M (34)



where,βTN andαTN are both independent ofτ andT . Using
constantsγ1 > 0, γ2 > 0, we define a Lyapunov function as:

Z̄V (t) ≡
1

2

∫ L

0

(VN (t, x)− V r
N (t, x))

2
dx+

γ1
2τ

h̃2 +
γ2
2w

w̃2

(35)
The associated control law is updated to:

V 0
M =

τ̂

ĥαTN

(

− F̄VN
− −VN + V 0

N

τ̂
− ĥβTN

τ̂

+
∂V r

N (t, x)

∂t
−Kvev

)

(36)

whereF̄VN
= −VN

ρN

∂(ρNVN )
∂x − 1

ρN

∂(ρNV 2

N+ρNθN)
∂x

Then, by taking the time derivative of (35) and substituting
V 0
M from (36), we arrive at:

∂Z̄V

∂t
=−Kv

ŵ

w

∫ L

0

ev(t, x)
2dx+

(

w̃

w

)

×
[

∫ L

0

(

F̄VN
(t, x)− ∂V r

N (t, x)

∂t

)

evdx− γ2 ˙̂w

]

−
(

h̃

τ

)[

∫ L

0

(−VN (t, x) + V 0
N

ĥ

)

evdx+ γ1
˙̂
h

]

(37)

It can then be guaranteed that∂Z̄V

∂t < 0 if the terms in square
brackets that multiplyw̃w and h̃

τ are each made equal to zero.

This can be achieved by defining˙̂h and ˙̂w as follows:

˙̂
h =

−1

γ1

∫ L

0

(−VN (t, x) + V 0
N

ĥ

)

ev(t, x)dx (38)

˙̂w =
1

γ2

∫ L

0

(

F̄VN
(t, x)− ∂V r

N (t, x)

∂t

)

ev(t, x)dx (39)

Eqns (36), (38) and (39) thus represent adaptive laws which
an attacker may use in imperfect information scenarios, and
successfully achieve manipulation of the velocity profile.

B. Density Profile Manipulation with Imperfect Information

We now look at the effects of imperfect valuesτ̂ and T̂ on
an attempt of the attacker to manipulate the highway density
profile. Using these imperfect values in theV 0

M of (28), the
time derivative of (22) along the trajectories of (7)-(10) is:

Żρ(t) = − τ̂T 2

τ T̂ 2
KρZρ(t) + gρ (40)

where,gρ is as follows:

gρ =
w̃

w
f̃w +

h̃

h
f̃h (41)

and the expressions for̃fw and f̃h are lengthy (and therefore
omitted), but straightforward to derive.gρ has the structure of
a vanishing perturbation, that is,Zρ = 0 ⇒ gρ = 0. Doing an
analysis similar to that performed in the preceding subsection,
it can be shown that the attacker can still achieve exponential
tracking of the density profile as long asgρ satisfies:

|gρ| ≤ Kρ
ŵ

w
|Zρ| (42)

As before, the attacker can choose a larger value ofKρ to
ensure thatgρ satisfies (42), but the largerKρ may come
at the expense of the malicious vehicles having to perform
larger velocity changes, which the attacker may not desire.One
may then define a modified Lyapunov function̄Zρ(t) similar
to Z̄V (t) in (35), but with VN (t, x) and V r

N (t, x) replaced
by ρN (t, x) and ρrN (t, x), respectively. Correspondingly, the
control law is modified as follows:

V 0
M (t, x) =

(

τ̂

ĥρNαTN

)

[∂Q

∂t
+

∂
(

ρNV 2
N + ρNθN

)

∂x

− ρNV 0
N + ĥρNβTN

τ̂
+

ρNVN

τ̂

]

(43)

whereQ is as given in (27). Taking the time derivative of
Z̄ρ(t), and using(7), we arrive at:

∂Z̄ρ

∂t
= −Kρ

ŵ

w

∫ L

0

e2ρdx+
w̃

w
(f̃w−γ2 ˙̂w)− h̃

τ
(
f̃h

ĥ
+γ1

˙̂
h) (44)

Tracking error stability is guaranteed if∂Z̄ρ

∂t < 0 is achieved,

and the same can be obtained by defining˙̂
h and ˙̂w as follows:

˙̂
h =

−f̃h

ĥγ1
, ˙̂w =

f̃w
γ2

(45)

Eqns (43) and (45) thus represent adaptive laws which
an attacker may use in imperfect information scenarios, and
successfully achieve manipulation of the density profile.

C. Velocity/Density Manipulation for general PDE model

In this section, the objective is to manipulate the velocity
and density profiles of the normal vehicles, while using the
general form of traffic model (1) and (6), assuming the attacker
does not have access to the exact value ofτ . We note that the
general form of the PDE model does not include theT term.
AssumingV eq

N has the form of (15), that is,V eq
N is affine

in V 0
M and with a possibly differentαN and βN from that

given in (14), we proceed as follows. Define the error between
the estimate and actual values ofτ by τ̃ ≡ τ − τ̂ , where τ̂
represents the estimate ofτ . For velocity profile manipulation,
the Lyapunov function and the related control law are:

Z̄V (t) ≡ 1

2

∫ L

0

(VN (t, x)− V r
N (t, x))

2
dx+

γ

2τ
τ̃2 (46)

V 0
M =

τ̂

αN

(

− F̄VN
+

VN − βN

τ̂
−Kvev(t, x)

)

(47)

where, F̄VN
= −VN

ρN

∂(ρNVN )
∂x − 1

ρN

∂(ρNV 2

N+PN)
∂x − ∂V r

N (t,x)
∂t ,

and γ > 0 is a constant. Taking the derivative of(46) with
respect tot and substitutingV 0

M from (47), we arrive at:

∂Z̄V

∂t
= −K

τ̂

τ

∫ L

0

e2vdx+

(

τ̃

τ

)

[

∫ L

0

F̄VN
evdx− γ ˙̂τ

]

(48)

Stability of the controller is guaranteed by defining˙̂τ as:

˙̂τ =
1

γ

∫ L

0

F̄VN
(t, x)ev(t, x)dx (49)



Eqns (47) and (49) thus represent an adaptive cyber-attack
system for velocity profile manipulation. For density manipu-
lation, the modified Lyapunov function and control law are:

Z̄ρ(t) ≡
1

2

∫ L

0

(ρN (t, x)− ρrN (t, x))
2
dx+

γ

2τ
τ̃2(50)

V 0
M (t, x) =

(

τ̂

ρNαN

)

[∂
(

ρNV 2
N + PN

)

∂x

− ρNβN

τ̂
+

ρNVN

τ̂
+

∂Q

∂t

]

(51)

Taking the derivative of(50) with respect tot, and using (7),
(43), after some lengthy calculations, we eventually arrive at:

∂Z̄ρ

∂t
=−Kρ

τ̂

τ

∫ L

0

eρ(t, x)
2dx− γ

τ
τ̃ ˙̂τ +

∫ L

0

eρ(t, x)

(

∂

∂x

∫ t

0

[∂
(

ρNV 2
N + PN

)

∂x
+

∂ρrN
∂t

]

(

1− τ̂

τ

)

dt

)

dx

(52)

∂Z̄ρ

∂t
=−Kρ

τ̂

τ

∫ L

0

eρ(t, x)
2dx− γ

τ
τ̃ ˙̂τ +

(

1− τ̂

τ

)
∫ L

0

eρ(t, x)

(

∂

∂x

∫ t

0

∂
(

ρNV 2
N + PN

)

∂x
+

∂ρrN
∂t

dt

)

dx (53)

∂t

It can be guaranteed that the density profile of the normal 
vehicles will track the reference density profile, that is, ∂Z̄ρ < 0 
if τ̂  is determined from the following adaptation

law:

˙̂τ =
1

γ

∫ L

0

eρ(t, x)
∂

∂x

∫ t

0

∂
(

ρNV 2
N + PN

)

∂x
+

∂ρrN
∂t

dt

)

dx

(54)
Eqns (51) and (54) thus represent an adaptive cyber-attack
system for density profile manipulation.

V. CHOICE OF REFERENCE VELOCITY AND DENSITY

PROFILES

As mentioned earlier, the reference density and velocity
profiles chosen by the malicious vehicles are such that once
they have formed, they spontaneously evolve to form shock
waves on the highway. It is assumed that onceρrN (V r

N ) is
attained, the malicious vehicles exit the highway stretch under
consideration, and this exit occurs with a time constant that is
small enough so that the exit can be considered instantaneous
when compared to the time scale of the macroscopic model.
Thus once theρrN (V r

N ) reference profile is attained, the two-
species model reverts to a single-species model, which now
contains only normal vehicles. We can therefore employ a
single-species analysis to determine theρrN (V r

N ) that the
malicious vehicles choose, with the intent of generating a
shock wave in the subsequent (single species) traffic. This
analysis involves the use of characteristic velocities [18].

We consider the reference density profile qualitatively de-
picted in Fig 3, and quantified by the parametersρmin, ρmax,
xρmin, xρmax. By appropriate selection of values of these
parameters, a unique shock of the desired magnitude, speed

and location (at which it first forms) can be obtained. This is
done using the method of characteristics. Characteristic curves

Fig. 3. Ansatz for reference density profile

are specific curves on thex− t plane, along which the PDEs
are transformed into ordinary differential equations (ODEs).
The single species PDE model is rewritten as follows:

∂U

∂t
+B(U)

∂U

∂x
= H(U) (55)

where,U = [u1, u2]
′, with u1 ≡ ρN , u2 ≡ ρNVN , and:

B(U) =

[

0 1

−(u2

u1

)2(1 +A(u1)) +
u2

2

u1

A′(u1) 2u2

u1

(1 +A(u1))

]

(56)
where′ denotes derivative with respect tou1. The eigenvalues
of B(U) define the slopes of the characteristic curves and are:

λi(B) =
u2(A±

√
A2 +A+A′u1 + 1)

u1
, i = 1, 2 (57)

The system of two equations represented in (55) can be
combined into a single second order equation as follows.

−∂2u1

∂t2
+

(

u2
2

u2
1

(A′u1 −A− 1)

)

∂2u1

∂x2
− 2u2f(u1)

∂2u1

∂t∂x

− 4u2

u2
1

(A′u1 −A− 1)
∂2u1

∂x∂t
+ 2f(u1)

(

∂2u1

∂t∂x

)2

+

(

u2
2

u3
1

(A′′u2
1 − 2A′u1 + 2A+ 2)

)(

∂u1

∂x

)2

=
1

τ

∂(u1V
eq)

∂x
+

1

τ

∂u1

∂t
(58)

where,f(u1) = (1 + A(u1))/u1. To determine the relative
effects of the different parameters, we write (58) in a non-
dimensional form. Towards this end, we definet̃ = t/T̄ ,
x̃ = x/L, Ṽ eq = V eq/V oand ũ1 = u1/um, whereum is the
maximum value ofu1. Here, T̄ represents the characteristic
time. By choosingT̄ = L/V o, (58) assumes the form:

− V o

L

∂2ũ1

∂t̃2
+

(

u2
2(A

′u1 −A− 1)

u2
1V

oL

)

∂2ũ1

∂x̃2
− 2u2f(u1)

L

∂2ũ1

∂t̃∂x̃

− 4u2um(A′u1 −A− 1)

u2
1L

∂2ũ1

∂x̃∂t̃
+

2umV of(u1)

L3

(

∂2ũ1

∂t̃∂x̃

)2

+

(

u2
2um

u3
1V

oL
(A′′u2

1 − 2A′u1 + 2A+ 2)

)(

∂ũ1

∂x̃

)2

=
1

τ

(

∂(ũ1Ṽ
eq)

∂x̃
+

∂ũ1

∂t̃

)

(59)



Multiplying both sides of (59) byτ , the equation assumes the
following structure:

τ(LHS)−
(

∂(ũ1Ṽ
eq)

∂x̃
+

∂ũ1

∂t̃

)

= 0 (60)

whereLHS represents the left hand side of (59). Note that the
coefficients of all the derivative terms in (59) are dimension-
less, and thus provide a convenient way of determining the
relative influence of the different parameters. It is evident that
the coefficient of the second order time derivative is−V o

L τ ,
and for typical parameter valuesV 0 = 110 kmph, L = 10 km,
and τ = 15 sec, we obtain τ

∣

∣−V o

L

∣

∣ = 0.046, which is
significantly smaller than unity. Using singular perturbation
analysis, we can therefore surmise that the dynamics of (60)
comprises of two time scales: a fast time scale during which
the termLHS decays to zero, followed by a slower time
scale during which time the dynamics of (58) can be well-
approximated by the equation:

∂(u1V
eq)

∂x
+

∂u1

∂t
= 0 (61)

The above equation has a characteristic speed given byλ =
V eq+u1

∂V eq

∂u1

. Sinceu1 = ρ, we can see that the characteristic
speed is a function ofρ. Thus, for an equilibrium velocityV eq

as follows [16]:

V eq(ρ) =

(

−1 +
√

1 + 4V 0τρA(ρ)P (ρ)
)

2τρA(ρ)P (ρ)
(62)

we can substitute (62) in (61), and then obtain a typical plotof
the characteristic velocityλ as a function ofρ in Fig 4. Fig 4
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Fig. 4. Characteristic Velocity as a function of density

shows that there is a range ofρ for which λ > 0, and a range
of ρ for whichλ < 0. This trend is similar to that demonstrated
by other equilibrium velocity profiles in the literature, and can
be used to determine whether an initial condition develops into
a shock or otherwise. For example, as seen from Fig 4, for
ρ < 37.5, we haveλ > 0, while for ρ > 37.5, we have
λ < 0. Now consider a scenario wherein at a given timet1,
ρmax(t1, xρmax

) > 37.5, andρmin(t1, xρmin
) < 37.5. Then,

that portion of the density profile withρ < 37.5 will travel
forward (sinceλ > 0) along the highway, while that portion
of the density profile withρ > 37.5 will travel backward
(sinceλ < 0). This will cause the density profile to become

progressively steeper, eventually leading to a shock, which
originates betweenxρmin

and xρmax
. The exact location at

which the shock first forms is readily determined as follows.
At any given timet, the locations of the travelling wavefronts
corresponding toρmax andρmin are given by:

xρmax
(t) = λ(ρmax)× (t− t1) + xρmax

(t1) (63)

xρmin
(t) = λ(ρmin)× (t− t1) + xρmin

(t1) (64)

where t1 represents the time at which the desired reference
profile ρrN (V r

N ) has been achieved by the cyber-attack system.
The shock starts at a timet2 > t1, when xρmax

(t2) =
xρmin

(t2) is satisfied for some timet2. Therefore we can
find t2 by equating (63) and (64), following which, the shock
formation locationxρmax

(t2) can be determined.
The other significant factor in choosingρmin andρmax is

the velocity with which the shock travels, after it is formed. To
calculate the shock speed, the generalized Rankine-Hugoniot
shock condition is used, according to which, for a system
represented in conservative form:

F (U)

∂t
+

∂G(U)

∂x
= 0 (65)

the shock, once formed, must necessarily satisfy the equation:

λ̃[F (U)] = [G(U)] (66)

where,[X] denotes the magnitude of the discontinuous jump
in the quantityX, andλ̃ is the velocity of propagation of the
shock. Using (61) in (66), we arrive at:

λ̃ =
ρmaxV

eq(ρmax)− ρminV
eq(ρmin)

ρmax − ρmin
(67)

Using (67), a typical 3D-plot of the shock velocity as a
function of ρmin and shock magnitude∆ρ, where ∆ρ ≡
ρmax − ρmin is given in Fig 5. From this figure, it is evident
that the shock velocity is a function of the shock magnitude
∆ρ, and for aroundρmin > 30, the shock moves backward
irrespective of its magnitude. A malicious attacker can make
use of Figs 4 and 5 to determine the reference density/velocity
profiles, as demonstrated in the next section.
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VI. N UMERICAL RESULTS

A highway stretch of lengthL = 10 Km is considered,
where the malicious vehicles intend to manipulate the shapes
of the density/velocity profiles of the non-malicious vehi-
cles. Two simulations are presented: their objectives being
to manipulate the density profile assuming perfect informa-
tion, and the velocity profile assuming imperfect information,
respectively. The parameters used in these simulations for
the model (7)-(10) are:τ = 15 sec, V 0

N = 110 kmph,
T = 1 sec, γ = 1, ρmax = 160 vehicles

km−lane , A0 = 0.008, ∆A =
2.5A0. The boundary conditions areρN (t, 0) = ρN (0, 0),
VN (t, 0) = VN (0, 0), ρM (t, 0) = ρM (0, 0). The simulations
are performed in MATLAB by using the Lax Method [27] for
discretization of the PDEs.

A. Density Profile Manipulation with Perfect Information

Assume that the attacker intends to create a shock of
magnitude∆ρ = 25 vehicles

km−lane , and desires that the shock
first forms at x = L/2 and then propagates backward on
the highway. Following the arguments presented in Section V,
from Fig 4, ρmin < 37.5 andρmax > 37.5 are chosen. Then
from Fig 5, by taking the plane corresponding to∆ρ = 25,
it can be observed that the shock velocity is negative if
ρmin > 25. Hence aρmin is selected such that it satisfies
25 < ρmin < 37.5. Fig 6(a) shows the initial and reference
spatial density profiles of the normal vehicles, with the latter
profile chosen based on the above objectives. We point out that
while the controller drives the density profile from its initial
condition to the continuous reference profile of Fig 6(a), the
strong solution of the PDEs is valid since the shock has not
yet been formed. After this reference profile is attained, the
traffic then spontaneously evolves into a shock, and after this
shock forms, the weak solution of the PDEs is applicable.

Using the control law (28), this reference density profile is
attained, as shown in Fig 7. Fig 8 shows the velocity changes
performed by the malicious vehicles in order to achieve this
objective. After the desired density profile is attained, itis
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assumed that the malicious vehicles exit the highway at around
t1 = 8 minutes. When this occurs, the space taken by the
malicious vehicles is empty, thereby causing a decrease in the
density of vehicles. This leads to an increase in the equilibrium
velocity of the normal vehicles. This can be seen in Fig 12,
wherein after the malicious vehicles have exited, the velocity
of the normal vehiclesVN increases for the next36 sec. For
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t > t1, even with the malicious vehicles no longer present, the
intrinsic characteristics of the traffic cause this density gradient
(as also the ensuing velocity gradient) to become progressively
steeper and steeper, leading to a shock, which then propagates
backwards along the highway. This is seen in Figs 11 and 12.
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B. Velocity Profile Manipulation with Imperfect Information

In this subsection, we show the effectiveness of the adaptive
cyber-attack system derived in (36), (38), and (39) for imper-
fect information scenarios, wherein the attacker does not have
access to exact values ofT andτ . As before, the objective is to
manipulate the velocity profile of the non-malicious vehicles
in such a way that the profile automatically evolves into a
shock wave that propagates along the highway. The initial and
reference velocity profiles are shown in Fig 6(b). The initial
values ofT̂ and τ̂ are 0.8 sec and 13 sec, respectively. The
adaptation weights forh andw areγ1 = 1016 andγ2 = 103,
respectively, and the reasons for these values are as follows. It
can be seen from Fig 17 thatτ̂ and T̂ have some oscillations
before they reach their steady-state (and true) values of15 sec
and1 sec, respectively. These oscillations cause the derivatives
˙̂τ and ˙̂

T to alternate between positive and negative values.

Sinceγ1 and γ2 influence ˙̂τ and ˙̂
T (see (38) and (39)), it is

important to choose them appropriately in order to ensure that
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Fig. 13. Density of normal vehicles with adaptive cyber-attack system
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Fig. 16. Velocity of normal vehicles with adaptive cyber-attack system
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the estimateŝτ and T̂ remain positive at all times. As seen
in Figs 13-16, the goal is attained, but with more oscillations
in velocity and density. These oscillations occur because of
the oscillations in̂τ , andT̂ shown in Fig 17, which affect the
decay rate of the Lyapunov fuction̄ZV in (35). Finally, Fig
18 shows the effect of varyingKρ andKv on the maximum
velocity of the malicious vehicles, required to achieve the
density/velocity profile manipulation. As is evident, reducing
Kρ andKv can make the attack more stealthy.

Remark: This study can lay a foundation for devising
potential countermeasures to such attacks. The types of density
and velocity wave profiles that could exist in traffic for the time
interval before the shock is actually formed, are demonstrated.
By monitoring the traffic for the onset of such density and
velocity waves, warnings that such an attack is in progress
can be triggered. Subsequently, personnel in the control room
can initiate several countermeasures, such as modulating the
traffic lights, giving advisories to the (normal) vehicles to
adjust their speeds, and so on. Also, the analysis in this
paper demonstrates one potential countermeasure which is to
increase the relaxation time constantτ . When τ is large, a
singular perturbation approximation is no longer valid for(60),
and this physically means that the characteristic velocitywill
become different from that shown in Fig 4, thereby thwarting
the intention of the attackers. Detailed development of such
countermeasures is an avenue for future work.

VII. C ONCLUSIONS

As autonomous vehicles become prevalent on highways, it
is possible that an attacker may try to hack the driving software
of some of the vehicles with malicious intent. The behaviour
of an automated highway traffic system under the influence
of such malicious agents, is analyzed using a two-species
macroscopic model, with the two species being the malicious
and the normal vehicles. The malicious vehicles are arbitrarily
distributed among the normal vehicles, and seek to disrupt

the traffic flow using subtle velocity changes that introduce
undesirable wave effects in the traffic. Analytical controllaw
expressions of the velocity changes of the malicious vehicles
that generate a defined velocity/density profile on the highway,
are determined for perfect and imperfect information scenar-
ios. The specific case of the malicious vehicles generating
a reference velocity/density profile that subsequently evolves
into a shock, is demonstrated. This PDE-based analysis reveals
the lack of resilience to the presence of malicious agents on
automated highways, and calls for further research to develop
suitable countermeasures.
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