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Abstract—This paper considers scenarios wherein a group of effects such as shock waves, traffic jams, stop-and-gfietraf
malicious vehicles on a highway perform a cooperative attack etc. Shock waves are particularly undesirable becausectrey
with the motive of creating undesirable wave effects among other lead to multi-vehicle pile-up crashes

vehicles on the highway. The two species of vehicles - malicious Thi del d | h attacks i Partial
vehicles and normal vehicles, and their associated interaction IS paper models and analyzeés such attacks in a Fartia

effects, are modeled using Partial Differential Equations (PDEs) Differential Equation (PDE) framework. The use of PDE
The malicious vehicles, which may be arbitrarily distributed on  models for studying traffic flows has a fairly long history.

the highway, perform a sequence of velocity changes with the The earliest such model was the Lighthill-Whitham-Richards
objective of making the density/velocity profile on the highway, (LWR) model [12]. The LWR model is basically a first

track a reference profile. This reference profile (chosen by the . o L
malicious vehicles) has the property that once generated, it order hyperbolic PDE based on a gas dynamic-like continuity

spontaneously evolves into a shock wave that propagates alongéduation, which represents the conservation of cars on a
the highway. Analytical expressions governing the velocity inputs highway. Subsequently, second order hyperbolic models hav

of the malicious vehicles with which they can generate such wavespheen developed, for example, the Payne-Whitham (PW) model
are determined, for perfect as well as imperfect information [13], in which the two dependent variables are density and
scenarios. Simulation results are presented to validate the theory ’ . . . .
average velocity of the vehicles. Prigogine and Herman [14]
developed traffic flow equations based on the Boltzmann equa-
I. INTRODUCTION tion. These equations were further refined by Paveri-Fentan

Rapid advancement of technology is transforming our citié$®]: Based on Paveri-Fontana’s equations, a second order
into what are now referred to as “Smart-Cities”, which arBYPerbolic traffic model was defined in [16]. A distinguisin
urban centers that integrate cyber-physical technologiess feature of the model in [16] is that it aptly captures the

infrastructure, such as public transportation, energg, ajad anisotropic pehavior of tr.affic, that is, drivers largelyace
water distribution, to enhance the quality of life of citige (O the behavior of cars driving ahead of them, as opposed to

While ensuring better efficiency and convenience, the ifl0S€ driving behind them. Gas dynamic-based two species
creased connectivity also expands the potential attadlcir traffic models Wlth the two species being cars and trucks have
for malicious actors [1]. There are many scenarios wheréis0 Peen defined [16], [17]. There have also been papers on
malicious cyber-attacks can occur. Examples include ketac@nalysis of stability in traffic flows [22], [23], and control
on the smart grid [2],[3], gas transmission and distributiet- Methods for PDE traffic models [24]. o

works [4], large-scale process engineering plants [5]vaker !N this paper, we use the model in [16], and within the
networks, UAVs, and automobiles [7][9]. As autonomouf@mework of this model, assume two species of vehicles -
vehicles become prevalent in the connected transportsinfr@@mely, malicious and non-malicious (normal) vehiclese Th
tructure, it is possible that an attacker may try to hack tHgalicious vehicles may be arbitrarily interspersed amadrey t
driving software of some of the vehicles, and thereby i non-malicious vehicles, as schematically shown in Fig 1.

undesirable effects on other vehicles on the highway [a]-[1 Within this PDE framework, a controller is designed, by
This paper discusses one such scenario, wherein a gr pting which the malicious vehicles can create arbitrary

of malicious vehicles on a highway perform a cooperatilocity/density wave profiles on the highway, and thesessav
attack with the motive of creating undesirable abrupt waRgrcolate through the non-malicious vehicles. We show how
effects on other vehicles on the highway. More specificalljf}€ controller can be extended to represent cyber-attagks o
the malicious vehicles can perform a series of (subtle)aiglo @ larger class of second order traffic PDE models, and also
changes that will cause the density and velocity profiledef tin Scenarios where the attacker has imperfect informatfon o
non-malicious (normal) vehicles to attain certain preeifiedl (e traffic parameters. A preliminary version of this paf2][
reference spatial distributions. These reference spatiaic-
ity/density profiles can be so chosen by the malicious vekicl
that once formed, they subsequently evolve into undesrat

Malicious vehicle (M - vehicle) Normal vehicle (N - vehicle)
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This paper is organized as follows. Section Il discusses tha anticipation factor [16]. In (3), the factd?(p,) accounts
single-species PDE traffic model [16], and then demongtrafer the probability of overtaking, as well as the existené@ o
how this model can be extended to analyze a cyber-attdakite interaction-free space, and is defined as:
scenario. Section Ill describes the development of arcallyti VO, T2

. . . A Pa
control expressions for two cases: one in which the maliciou P(pa) = 5 . 5 (4)
vehicles generate velocity inputs to modify the spatiabeiy ) TA(Pmac)( (p“/pma‘”).)
profile on the highway, and another in which their generatdtp evident from (4), ap, approches,... (thatis, the number
velocity inputs modify the spatial density profile on th@f vehicles increases)P(p,) becomes progressively larger
highway. Section IV shows how these malicious waves can BBd this in turn maked “i(z, ) in (3) smaller, that is, the
generated even when the attacker has imperfect informatfplilibrium velocity decreases with increasing densitihe T
of the traffic parameters. Section V contains a discussion &{%») term, defined as [16]:

the nature of the velocity/density profiles that the malisio e—02/2 ) S g—v?/2
. : i i B(d,) = 0p——+ (144, d G
vehicles seek to create. Section VI presents simulatianitees (60) Ton ( ) - (5)

while Section VII presents the conclusions. ] ) ) ]
takes into account the anisotropic effects of the traffic flow

Il. PDE TRAEFIC MODEL that is, the driver of a car responds more to the traffic ahead,
_ _ than the traffic behind. In (5), the terdp = (V—V,)/v/0 + 0,
A. Single Species Model is a dimensionless velocity difference between the avetage

In this paper, we use a second order macroscopic model p&®- and that at its interaction point,. TermsV, and 6,
posed in [16]. The development of the model was inspired li¢note the average velocity and velocity variance compated
earlier gas-kinetic-based models [14], [15]. The macrpgco the interaction point:,. In (3), V¢ thus represents a balance
model has two independent variableandt, wherex € [0, L] between the desire of the average carzato drive at it's
represents a spatial variable ahdt [0,00) represents time. preferred speeti® and the slowing down effect it experiences

The equations for the macroscopic model are: due to its interaction with the average carzgt
p  0(pV) While we primarily utilize the above model [16], the meth-
= =0 (1) ods developed in thi licable to a broader cl
ot O ods developed in this paper are applicable to a broader class
(V)  d(pV? + pb) Ves v of §econd_order traffic PDE models, comprising (1)_ and (6).
o T I = P (2) while (1) is a standard equation used for any traffic model,

) represents a special case of a large class of PDE models
including for example, [13], [18], [19], [20], [21] among
many others) with the following general structure:

where,p(t, ) : R4 xR — R represents the average density o
vehicles (in vehicles/km/lane), andt, z) € [0, pyas] Where
Pmaz 1S the maximum possible densifiy(¢,z) : Ry xR — R
is the average velocity of the vehicleXt, ) : R, x R — R I(pV) n A(pV?) n oP pVeq -V ©)

is the velocity variance in the regidn—dz /2, z+dx/2)]. The ot Ox Ox T

velocity variance is a function of density and average vigijpc Where P represents the traffic pressure. For the model pro-
0 = A(p)V?2, where A(p) = Ay + AA[tanh(%) + 1], and posed in [16], the traffic pressure is inferred based on eoapbir
Ay, AA, p,. are positive scalars [16)/¢/(t,z) : R, xR — R data asP = pfl = pA(p)V?, as given in (2).

represents the average equilibrium velocity and is given by

Vel(t,x) = VO — P(pa)B(6y)patt )

B. Two-Species Model

The model in (1)-(2) is extended to a two-species model
where VY is the average desired velocity, is the average with subscripts)M and N, as schematically shown in Fig 1.
relaxation time, andg, is the average density computed arhe dynamics of the proposed two-species model are:
the “interaction point”. The interaction point, is a reference dpn (o V)
+

= 0 7
ot Or (7)
9 (pNVn) n 9 (pn VR + pnON) . Vil = Vn ®)
ot ox T
Opn O (pm V)
= 0 9
ot | oz ©)
Interaction point Average car at ‘X’ 0 (pM V]V[) 0 (pMVJ\24 + pMeM) - V]\Zq — VM,
+ = pm (10)
ot ox T
Fig. 2. Concept ofnteraction pointandaverage car In (7)-(10), the average equilibrium velocities of the ro@lus

) o and normal vehiclesys/ andV? are defined as follows:
point, as shown in Fig 2, ahead of the “average car” located

atz at an instant of time. It is assumed that the average car atVar =VarL(parr, pan)T(BrnpnOn + Barnrparfar(11)
2 speeds up or slows down depending on the behavior of the Vﬁq:VEﬁP(pH,M,paN)T(BNMpMaM + BynpnOn)(12)
average car at,. The interaction point is typically defined by i . o N

Zq = x+~y(+VT), wherel = 1/p,,q. IS the average vehicle In (11)-(12), in generab;; := B(d, ), where
length,T is the average time headway and [1, 3] represents  §,;; = (V; = V4 ;)//0i + 64 ,i=M,N; j=M,N



represents the dimensionless velocity difference betwken under consideration. Based on the theory of Lyapunov func-
vehicle at location: and the vehicle at interaction poinf, as tions [26] and consideringy; to be the control input for the
shown in figure 2. In (11), the equilibrium velocity/ of the malicious vehicles, if’y; is chosen such thfﬁgTV is negative
malicious vehicles is given by the balance between the @lesilefinite, then it is guaranteed that the velocity of the ndrma
of the "average” malicious vehicle atto drive at it's preferred vehicles will asymptotically track/’y;. SubstitutingagéV from
velocity VY, and the slowing down effects it experiences du@) in (8), and using (14), we arrive at:

to the average malicious vehicle:at, and the average normal

2
vehicle atz,. A corresponding statement can be made for the OV = —ﬁa (P Vi) — ia (pNVN - pNQN)
equilibrium velocity V¢ of the normal vehicles. The effects ! qu Oz PN Oz
of interaction between the two species are thus manifested i + Vv =Wy =Fy, + OLVVJ& (17)
the V;/ and V! terms. The PDEs (8) and (10) essentially T T

govern the spatio-temporal evolution of the velocitiés and where,ay can be inferred from (14)-(15), anély,, is:
Vs, to these equilibrium velocitieB,/ andVy?, respectively. 2

. . . Vn 0 V 10 Vi +pn0
The variableP(pys, pn) is defined as follows: Fy, = _Vn0lwVy) 1 (Pv Vi + pnOv)

PN ox PN ox
T? (pp VY + pN VY VN . Bn
Flo o= . +Ni ;@9 - Tty (18)
2 max 1 — BEr . . . .
7 A(Pmac) ( Pmaz ) To attain the objective thaty tracksVy;, we take the time

Therefore, the average equilibrium velocity of normal vehiderivative of the Lyapunov function (16), substitute (17) i

cles in (12) can be written as follows: this time derivative, and finally obtain the following egjoat
2 7 L r
Ve = VY (1 _ Tpan (Bympmtu + BNNPJ\279N)> 0Zv. _ / ey (FVN + Ny ‘9VN(t’x)> dz  (19)
2A(p ) (1 _ pu}\l“l’paN) ot 0 T ot
max p'rnu.:t .
where,e, (t,z) = (Vy(t,x) — Vi (t,x)). If we defineV?, as
Vo T?pant (Bnavpribae + BynpnOy) 14 evlt,2) = (Vv (¢ 2) = Vit 2) M
- Vi o (14) o _ T (g L VR 20
2A(pmaw) (1 - W) VM - a — vy + T - ’ue’u(tvx) ( )

We see thal/y? is affine inV);, and can be rewritten as:  then, the time derivative of the Lyapunov function is:

. L
VNq = aNV]ef + BN (15) a@% o 7/ Kbev(tax)2dx (21)
0

The termV, thus influences the average equilibrium velocity

of the normal vehicles, and may be viewed as a control inpith K, > 0 in (21), we have that?’Z~ < 0, which in

for the two-species model in (7)-(10). turn means that the average velocity of the normal vehicles
will globally exponentially track the reference velocityofile.
Since VY, in (20) is a function ofay, and (14)-(15) shows
L . ] thatay depends om,,, therefore as long gsy; # 0 Vz, ay

The objective is to vary (in space and time) the averaggains non-zero, thereby ensuring thdf remains bounded.

yelocity of the. malicious ve_hicles in (9?—(10), w_hich theanc _ The smaller the magnitude df, in (21), the more gradual
induce undesirable waves in the spatial velocity and densihe gecay ofz,, and consequently, the more subtle the veloc-
profiles of the normal vehicles in (7)-(8). In other words, by changes required by the malicious vehicles to meet their
performing these_z velocity mo_dulatlons, the_maI|C|o_us ks objective. By proper choice ok, and time-varying reference
force changes in the velocity and density profiles of the.; ) it can be ensured that the generated velocity profile

! . . . N
normal vehicles, till they are modified to track certain prery; ihe malicious vehicles is always physically feasible.
specified, reference profiles. A discussion on examplesef th

kind of reference profiled/{ (¢, ) andp’y (¢, z), the malicious B. Density Profile Manipulation by the Malicious Vehicles

I1l. REFERENCETRACKING CONTROL

vehicles may choose, is provided in Section V. In this section a control law is designed, using which the
malicious vehicles can cause the density profile of the nbrma
A. Velocity Profile Manipulation vehicles to track a pre-defined refereneg (¢, «). Define a

A Lyapunov-based control law is designed, using which, tﬂ.é/apunov functionZ,, as follows:

malicious vehicles can generate a malicious velocity @ afi B L ; 5
the highway. Towards this end, consider a Lyapunov funetion Zy(t) = 5/0 (pn(t,x) — piy(t, )" dz (22)

Zy as follows: . . _—
v We seek to determingy; (¢, z) such that the time derivative of

1t 2 Z, is negative definite, as this will guarantee that the density
Zy(t) == t,x) — Vit d 16 P ’
v(®) 2/0 (Vv(t,2) = Viy(t,2))" da (16) of the normal vehiclesoy (t,z) tracks p’(¢,x). The time

where V; represents the smooth bounded reference velocfl§rivative of (22) along the system trajectories (7)-(¥0) |

profile that the malicious vehicles seek to create among the 97, L pn(t,x)  Opi(t, )
normal vehicles, and. represents the length of the highway 5 Z/O p(t, @) ( % o >d33 (23)




where, e,(t,z) = (pn(t,z) — piy(t,z)). Now if we define A. Velocity Profile Manipulation with Imperfect Informatio

Vi (t,x) in a way such thaf2:%) is as follows: When the attacker employs assumed valteand 7" in
dpn(t,z)  Opi(t,x the V), of (20), then the time derivative of (16) along the
pNa(t ) sza(t ) _ Kpep(t,z) (24)  trajectories of (7)-(10), assumes the form:
then, with a choice off{, > 0, the Lyapunov function (22) . _ ;TZ
becomes a decreasing function of time, as desired. Sutirsgitu Zv(t) = T2 KoZy (t) +gv (30)

(24) in (7), and integrating with respect g we arrive at: where the termyy is as follows:

pn(t,2)VN(t, z) = /O” <_8p}\[8(tt,x) +erp(t,x)> dr+0C gv = (1 — %TZ) /L (FVN (t,x) — W) ey(t, x)dz

(25) 717 ot
where C' is a constant of integration. Taking® = (1= 22 L vnt,z) + VY (t,2)d (31)
pn(t,0)Vn(t,0), and substituting the above equation in (8): 72 ) /o T Coll, T)CT
V=V  0Q a(pNvﬁ +pN0N) Since 7 and 7' are positive scalars, it can be seen from
PN = ~ o ox (26) (30) that as long as and 17" are positive, Zy, remains

stable wheryy,, = 0. However, a non-zerg, may influence

- the asymptotic stability ofZy, that is, it may preventZy

Q:/"L <_3P?v(t795) Ko ) dz + pn(1,0)V(t,0) (27) from asymptotically decaying to zero. This can happen under
0 ot rer ’ ' conditions that are determined as follows. It can be obskerve

SubstitutingVe? from (14)-(15) into (26), the requisitg?, is: 1om (16) and (31) that when, (#, ) = 0,V € [0, L], (that
is, Vn(t,z) = Vi (t,z),Vz € [0, L]), then bothZy and gy

where,Q(t, z) in the above equation is given by:

VO (tz) = T {3(/)1\/‘/}% +PN9N) are zero. In (30)gy thus has the structure of a vanishing
MA™ — \pnvaw ox perturbation, that isZy = 0 = gy = 0.
pNBN  pNVN o 0Q 28) Define another Lyapunov functior = 1Z%. Then, V
T - E} satisfies the following conditions:
This VY, (t, =) ensures thafZ is negative definite, which in alZv? <V(Zy) < |2y
turn, ensures th t, z) asymptotically trackg’y (¢, x). 272
gtn (t, ) asymp y trackly (t, ) W (TN < ezl
0Zy e
C. Velocity/Density Manipulation for general PDE model )Y _ p (32)
For the general form of the traffic PDE model defined by 0Zv| ~ el Zv]

(1) and (6), a controller can be derived along similar lines. 1 T2 . .
For density profile manipulation, defining Lyapunov funatio N (32) ¢1 = ¢2 = 3, ¢ = 757Ky, ¢4 = 1. Sincegy is a
to be the same as in (22), and considering differBqt for yamshmg(.perturbatlonzv(t) is globally exponentially stable
different models, while assuming? can be written as an If [9v| < &1Zv| [26]. Thus, as long as

affine function of V), (that is, V; has the structure of (15) 2

) ) ) ) - T-7
but with a possibly differentvy and 3y), the desired density lgv| < K TT|ZV| (33)
profile can be achieved by choosih, as . o ) T
) is satisfied, the controller will guarantee that the refeeen
VOt z) = T [5 (pnVR +Pn) velocity profile is tracked. Note that the upper bound in (33)

MR PNON ox is conservative. It is apparent from (33) that by increashey

poNBN  pNVN  0Q 29 value of K, the upper bound ofyy | with which exponential

T T . E} (29) stability of (30) is guaranteed, can be increased. Howéwer,

whereQ is defined as (27). Along similar lines, the expressioﬁwge aK, can requirg larger V¢Iocity changes to be performed
for V¢, that will achieve the desired velocity profile in thePy the malicious vehicles, which the attacker may not always
general traffic model can be obtained. desire, since it would make the attack less stealthy.

When perfect information of and 7' is not available, the

IV. | MPERFECTINEORMATION SCENARIOS same can be determined by adding an adaptation law to the
. . o . . . existing control laws, thereby creating an adaptive cydieek
In this section, we consider imperfect information scevgri system. Towards this end, we ignore the effect7obn the

whe_reln the attacker does not have access to the vaIuesBc]>VN and By, terms. This is justified because for those
traffic parameters, such as the relaxation time constaahd ortions of the highway where the traffic is smoothx V
a

average time headwdy. These parameters are cons_idered hich makesBy y and By independent of’. Define new
be uncertain and are .assumed totband 7' for an_aIyS|s. We \ariablesh — T2, w — 7/h, and error termgs and @, as
analyze the possibilities of what can happen if the attacker_ , ;- q- _ -\ hereh and represent estimates
uses values: and T, that are d'ﬁeref“ from their respective ¢ , andw, respectively. Thenl/y? in (14) can be written as:
true values and7’, in both - the velocity profile manipulation,

as well as density profile manipulation cases. VN = VN + hBry + harn Vi (34)



where,Sry andary are both independent efand7’. Using As before, the attacker can choose a larger valud<pfto

constantsy; > 0, 2 > 0, we define a Lyapunov function as:ensure thatg, satisfies (42), but the largek, may come
1L at the expense of the malicious vehicles having to perform

Zy(t) = 7/ (Vn(t,z) = Vi (t,z))* de + T2 4 7252 Jarger velocity changes, which the attacker may not deSine.
2 Jo 27 2“’(35) may then define a modified Lyapunov functiéf(¢) similar
to Zy(t) in (35), but with Viy(¢,z) and Vi (t,z) replaced

The associated control law is updated to:
P by pw(t,z) and ply(t, z), respectively. Correspondingly, the

0 7 = VN + VY hBrw control law is modified as follows:
Vir = ; - Fy, — = -z
arN 7 0Q 9 (pNVE + pnON
IV (t, ) Var (¢, ) Z(A)[at ( % )
T - Kvev (36) }ZPNOZTN L €T
_ vVt honBry pNVN} (43)
where Fy,, = — Y 2exVn) L 8(”NVN+”N9N) 7
N PN
Then, by taking the time derivative of (35) and substitutingshere @ is as given in (27). Taking the time derivative of
vy from (36), we arrive at: Z,(t), and using(7), we arrive at:
_ “ L - 0Zp o 12) L 2 ILD rs S ]Nl fh
%?_—Ky/”%@@%w+Cﬂ B = Koy [, e o) Z(Grend) @9
t w Jo w
/L (F t.2) V(L x)) q . Tracking error stability is guaranteed% < 0 is achieved,
X , T €,dT — YW . LA .
0 N ot 2 and the same can be obtained by definingndw as follows:

(37) A O (45)

L, 0 .
/ (W) eoda + 1 h
0

_(*
-
It can then be guaranteed tt‘% < 0 if the terms in square  Eqns (43) and (45) thus represent adaptive laws which

brackets that mumpwﬁ and h are each made equal to zero@" attacker may use in imperfect information scenarios, and
successfully achieve manipulation of the density profile.

This can be achieved by deflnlrigandw as follows:

-1 [* (—VN(t,x) +Vy

h :
Y1 h

) ey(t, z)dx (38) C. Velocity/Density Manipulation for general PDE model

. A OVt ) In this section, the objective is to manipulate the velocity
W= — <FVN (t,z) — N’) ey(t,z)dz (39) and density profiles of the normal vehicles, while using the
72 ot general form of traffic model (1) and (6), assuming the attack
Eqns (36), (38) and (39) thus represent adaptive laws whidbes not have access to the exact value.diVe note that the
an attacker may use in imperfect information scenarios, agéneral form of the PDE model does not include Théerm.
successfully achieve manipulation of the velocity profile. Assuming V! has the form of (15), that isVy? is affine
in VM and with a possibly differentvy, and g5 from that
B. Density Profile Manipulation with Imperfect Information 9iven in (14), we proceed as follows. Deflne the error between
the estimate and actual values otby 7 = 7 — 7, where7

We now look at the effects of wnperfect valuéisandT ON renresents the estimate of For velocity proflle manipulation,
an attempt of the attacker to manipulate the highway densm}e) Lyapunov function and the related control law are:

profile. Using these imperfect values in th&, of (28), the

time derivative of (22) along the trajectories of (7)-(18) i _ 1 [L . -2
TT2 Zy(t) = 5/0 (Vn(t,x) fVN(t,x)) dz+ o (46)
Z,(t) = ——=K,Z,(t) + g, (40) R ) Ve —
i |/ —— ( By NPy Kvev(t,x)) 47)
where, g, is as follows: aN T
_ Qf N Ef' (1) where, FVN _ VN 3(PNVN) _ 1 é)(pf\’vl\er’Pf\’) aVN(t fl’)
Io = lw T pn andy > 0 is a Constant Takmg the derlvat|ve ()46) with

~ ~ 0
and the expressions fgf, and f, are lengthy (and therefore "@SPECt t¢ and substituting/y; from (47), we arrive at:

omitted), but straightforward to derivg, has the structure of 07

a vanishing perturbation, that i&, = 0 = g, = 0. Doing an 8713‘/ =—-K- / 2dm+< )
analysis similar to that performed in the preceding sulisect

it can be shown that the attacker can still achieve expoalen
tracking of the density profile as long gs satisfies:

/ Fyyepdr — 771 (48)

tétability of the controller is guaranteed by definiAgas:

. . 1 L _
19,] < Kp%|zp| (42) =3 /U Fyy (8 x)ey(t, x)dz (49)



Eqns (47) and (49) thus represent an adaptive cyber-attarid location (at which it first forms) can be obtained. This is
system for velocity profile manipulation. For density manipudone using the method of characteristics. Characteristic curves
lation, the modified Lyapunov function and control law are:

- 1 L . ) Y PN
0 T
7 0 V2 +P max
Vﬁ;(t,x)< T >{ (on V& +Pn) p I
PNON ox
V 0
T T ot
Taking the derivative of50) with respect taf, and using (7),
(43), after some lengthy calculations, we eventually arrive at: x . x
Pmin Pmax
8Zp T L 2 Y.z L
WZfo’; /0 ep(t, z)°dr — ;TT + /0 ep(t, ) Fig. 3. Ansatz for reference density profile

9 /t [5 (pnVi + Pn) n 30?\7} 1 7"Yar)qe @&e specific curves on the—t plane, along which the PDEs
ox J ox ot T are transformed into ordinary differential equations (ODES).
(52) The single species PDE model is rewritten as follows:

ou oUu
07 s oL . A\ (L a*’B(U)%:H(U) (55)
J:_Kp—/ e,(t,x)’dx — 77 + <1 - ) / ep(t, ) )
ot T Jo T 7)Jo where,U = [uy,us]’, With u1 = py, us = pxVa, and:
t ] V2 P T

¥ Jo * t —(2)2(1+ A(wm)) + 2 A (w)  232(1+ A(u))
It can be guaranteedhat the density profile of the normal / - - (56)
vehicleswill trackthe referencedensityprofile, thatis 0z, _ where’ denotes derivative with respect#q. The eigenvalues
if 7 is determinedrom the following adaptatién ’ of B(U) define the slopes of the characteristic curves and are:

ot ug(A+ VA2 + A+ Alug +1)

law: Ai(B) = o . i=1,2 (57)

1 L 0 t&(pNVZ% +PN) 0ply The system of two equations represented in (55) can be
= ;/0 ep(t, ) 37;/0 o + 5 4t 47 combined into a single second order equation as follows.

(54) 82161 u% 8211,1 82’LL1
Eqns (51) and (54) thus represent an adaptive cyber-attackyz (u%(AI“l —A- 1)) 02 2“2f(u1)3t3x
system for density profile manipulation.

2 2 2
. Yy DI Lo f ) (a “1)
V. CHOICE OF REFERENCE VELOCITY AND DENSITY “12 Ox0t ata;”
|  PROFILES | | n (ug(A”uf—2A’u1+2A+2)) (‘91&)
As mentioned earlier, the reference density and velocity uy Ox
profiles chosen by the malicious vehicles are such that once _ 10(wVer) 10w (58)
they have formed, they spontaneously evolve to form shock T Ox T Ot

waves on the highway. It is assumed that opge (V) is  where, f(u;) = (1 + A(u;))/u;. To determine the relative
attained, the malicious vehicles exit the highway stretch undeffects of the different parameters, we write (58) in a non-
consideration, and this exit occurs with a time constant thatdgmensional form. Towards this end, we defihe= t/T,
small enough so that the exit can be considered instantanegus /., Ve — Ved/Veand iy = uy /.y, Whereu,, is the
when compared to the time scale of the macroscopic modglaximum value ofu;. Here, T represents the characteristic
Thus once they, (V) reference profile is attained, the twotime. By choosingl’ = L/V°, (58) assumes the form:
species model reverts to a single-species model, which now Ve 9%, (u%(A’ul A4 1)) 0%y 2usf(ur) 0%y

contains only normal vehicles. We can therefore employ a —

single-species analysis to determine thig (V) that the L ot utVer ox? L otoz
malicious vehicles choose, with the intent of generating a 4usu,,(A'uy — A —1) 0%ty 2u,VOf(ur) [ 0% ?
shock wave in the subsequent (single species) traffic. This u?L 970t L3 (a{agj«)
analysis involves the use of characteristic velocities [18]. w2u By \ 2

We consider the reference density profile qualitatively de+ ( 32VZ’HL (A"u? —2A"u; +2A + 2)) <8~)
picted in Fig 3, and quantified by the parameters.,., pmaz, ! ~ *
Tpmins Tpmas- BY appropriate selection of values of these 1 (5(”31‘/6‘7) + 31?1) (59)
parameters, a unique shock of the desired magnitude, speedr oz ot



Multiplying both sides of (59) by, the equation assumes theprogressively steeper, eventually leading to a shock, hwhic

following structure: originates betweer, . andz, . . The exact location at
_ 5 ~ which the shock first forms is readily determined as follows.
7(LHS) — 8(u1Y ‘) + 67“} -0 (60) At any given timet, the locations of the travelling wavefronts
ox ot corresponding t®,,,q. and p,,;,, are given by:

whereL H S represents the left hand side of (59). Note that the o
coefficients of all the derivative terms in (59) are dimensio Tomas (1) = Mpmaa) X (t=11) + Tp,. (1) (63)
less, and thus provide a convenient way of determining the ~ Zomin(t) = AlPmin) X (t =t1) + 20, (1)~ (64)
relative influence of the different parameters. It is evidbat
the coefficient of the second order time derivative—i%“f,
and for typical parameter valu&® = 110 kmph, L = 10 km,
and 7 = 15 sec, we obtainT|—Y>| = 0.046, which is
significantly smaller than unity. Using singular pertuibat *rmin X . .
analysis, we can therefore surmise that the dynamics of (46)d t2 by equating (63) and (64), following which, the shock
comprises of two time scales: a fast time scale during whid@mation locationz,, . (f2) can be determined. _

the term LHS decays to zero, followed by a slower time The other significant factor in choosing,;, and pa. is

scale during which time the dynamics of (58) can be We":he VelOCity with which the shock travels, after it is formdo
approximated by the equation: calculate the shock speed, the generalized Rankine-Hoigoni

shock condition is used, according to which, for a system
O(uV*) | Ouy _ 0 (61) represented in conservative form:
Ox ot
The above equation has a characteristic speed giveh By w + 9G(U) -0 (65)
Vea +u1%. Sinceu; = p, we can see that the characteristic ot Oz
speed is a function gf. Thus, for an equilibrium velocity <¢
as follows [16]:

wheret; represents the time at which the desired reference
profile ply (VX)) has been achieved by the cyber-attack system.
The shock starts at a timg, > t;, whenz, , (t2) =

(t2) is satisfied for some time,. Therefore we can

the shock, once formed, must necessarily satisfy the exuati

(~1+ VI+AVIrpA()P(p) ) AP (U)] = [G(U)] (66)
(62) . . . .
21pA(p)P(p) where,[X] denotes the magnitude of the discontinuous jump
we can substitute (62) in (61), and then obtain a typical plot in the quantityX’, and\ is the velocity of propagation of the
the characteristic velocity as a function of in Fig 4. Fig 4 Shock. Using (61) in (66), we arrive at:

Ve(p) =

Pmax Ved (pmaaz) — Pmin Vea (pmln)

(67)

150 A=
Pmaz — Pmin

)

% oo Using (67), a typical 3D-plot of the shock velocity as a

< function of p,,;,, and shock magnitudeé\p, where Ap =

.g Pmaz — Pmin 1S given in Fig 5. From this figure, it is evident

S o that the shock velocity is a function of the shock magnitude

z, Ap, and for aroundp,,;, > 30, the shock moves backward

$ 5o irrespective of its magnitude. A malicious attacker can enak
use of Figs 4 and 5 to determine the reference density/igloci

-100; = 0 0 profiles, as demonstrated in the next section.
p (Vehicle/Km/lane)

Fig. 4. Characteristic Velocity as a function of density

shows that there is a range pffor which A > 0, and a range 100
of p for which A < 0. This trend is similar to that demonstrated
by other equilibrium velocity profiles in the literature,daocan

be used to determine whether an initial condition develofs i

a shock or otherwise. For example, as seen from Fig 4, for
p < 37.5, we haveX > 0, while for p > 37.5, we have

A < 0. Now consider a scenario wherein at a given timge
Pmaz(t1,2p,,..) > 37.5, and ppin (t1, 2p,,,,.) < 37.5. Then, X
that portion of the density profile witlh < 37.5 will travel 2 o
forward (sinceX > 0) along the highway, while that portion

of the density profile withp > 37.5 will travel backward

(since A < 0). This will cause the density profile to becomeFig. 5. Shock Velocity

min



VI. NUMERICAL RESULTS

A highway stretch of length, = 10 Km is considered,

where the malicious vehicles intend to manipulate the shape
of the density/velocity profiles of the non-malicious vehi-
cles. Two simulations are presented: their objectives goein
to manipulate the density profile assuming perfect informa-

tion, and the velocity profile assuming imperfect inforroati

respectively. The parameters used in these simulations for
the model (7)-(10) arer = 15 sec, Vi = 110 kmph,
Ap =0.008, AA =
2.5A,. The boundary conditions arex(¢,0) = pn(0,0),

T =1sec, vy=1, pmazr = 16

Vn(t,0) = Vn(0,0), par(t,0) = par(0,0). The simulations

0 vehicles
km—lane’

are performed in MATLAB by using the Lax Method [27] forFi9- 7-

discretization of the PDEs.

A. Density Profile Manipulation with Perfect Information

Assume that the attacker intends to create a shock of
and desires that the shock
first forms atz = L/2 and then propagates backward on
the highway. Following the arguments presented in Section V

magnitude Ap = 25 Yehicles

km—lane

from Fig 4, pmin < 37.5 and p,,q. > 37.5 are chosen. Then

from Fig 5, by taking the plane corresponding Ap = 25,
it can be observed that the shock velocity is negative if
Pmin > 25. Hence ap,,;, is selected such that it satisfies
25 < pmin < 37.5. Fig 6(a) shows the initial and reference

spatial density profiles of the normal vehicles, with theelat
profile chosen based on the above objectives. We point out t
while the controller drives the density profile from its ialt

e

condition to the continuous reference profile of Fig 6(ag th
strong solution of the PDEs is valid since the shock has not
yet been formed. After this reference profile is attaine@, th
traffic then spontaneously evolves into a shock, and afier th

shock forms, the weak solution of the PDEs is applicable.

Using the control law (28), this reference density profile is
attained, as shown in Fig 7. Fig 8 shows the velocity changes
performed by the malicious vehicles in order to achieve this

objective. After the desired density profile is attainedisit
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Fig. 9.

assumed that the malicious vehicles exit the highway atrerou
t; = 8 minutes. When this occurs, the space taken by the
malicious vehicles is empty, thereby causing a decreadeein t

density of vehicles. This leads to an increase in the edqiuilib

velocity of the normal vehicles. This can be seen in Fig 12,

wherein after the malicious vehicles have exited, the wgloc _.
of the normal vehicled/y increases for the nex6 sec. For

Fig. 10.
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4 6 8

Distance (Km)
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t > t1, even with the malicious vehicles no longer present, the
intrinsic characteristics of the traffic cause this density gradient 80
(as also the ensuing velocity gradient) to become progressively
steeper and steeper, leading to a shock, which then propagates
backwards along the highway. This is seen in Figs 11 and 12.

70

Py (Vehicle/Km/lane)

65 i i
99 t=720's t=360 s
10

il i 4
Time (minute) 8 o0 2 Distance (Km)

Fig. 13. Density of normal vehicles with adaptive cyber-atagstem

Py (Vehicle/Km/lane)

VM (Km/hour)

Fig. 11. Density of normal vehicles after exit (at = 8 minutes) of the
malicious vehicles

10
Time (minute)

Distance (Km)

Fig. 14. Velocity of malicious vehicles with adaptive cybétaak system

Vy (Km/hour)

4 6
Distance (Km)

Py (Vehicle/Km/lane)

oo

Fig. 12. Velocity of normal vehicles after exit (&t = 8 minutes) of the 10

malicious vehicles

6
. . . . . . N Distance (Km)
B. Velocity Profile Manipulation with Imperfect Information g o

In this subsection, we show the effectiveness of the adaptive
cyber-attack system derived in (36), (38), and (39) for impeig. 15. Density of malicious vehicles with adaptive cybeaclt system
fect information scenarios, wherein the attacker does not have
access to exact values'6fandr. As before, the objective is to
manipulate the velocity profile of the non-malicious vehicles
in such a way that the profile automatically evolves into a
shock wave that propagates along the highway. The initial and
reference velocity profiles are shown in Fig 6(b). The initial
values of7" and 7 are 0.8 sec and 13 sec, respectively. The
adaptation weights fokh andw are~; = 10'® and~, = 103,
respectively, and the reasons for these values are as follows. It
can be seen from Fig 17 thatand 7’ have some oscillations
before they reach their steady-state (and true) valués séc "
and1 sec, respectively. These oscillations cause the derivatives o Distance (Km)
7 and 7' to alternate between positive and negative values.

_Since’Yl and -~ influence? and T _(See (38) and (39)), it is Fig. 16. Velocity of normal vehicles with adaptive cyber-ekiystem
important to choose them appropriately in order to ensure that

Vy (Km/hour)

10



P
T'(sec)
=

2 4 6 2 4 6
Time (min) Time (min)

Fig. 17. (a)7 and (b)7" in adaptive cyber-attack system

ios.

the traffic flow using subtle velocity changes that introduce
undesirable wave effects in the traffic. Analytical contiad
expressions of the velocity changes of the malicious vehicl
that generate a defined velocity/density profile on the haghw
are determined for perfect and imperfect information scena
The specific case of the malicious vehicles generating
a reference velocity/density profile that subsequentlyive#
into a shock, is demonstrated. This PDE-based analysialgeve
the lack of resilience to the presence of malicious agents on

automated highways, and calls for further research to dpvel

suitable countermeasures.
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(1]

the estimates and7 remain positive at all times. ~ As seen 2]
in Figs 13-16, the goal is attained, but with more oscillasio

in velocity and density. These oscillations occur becaufse ?3]
the oscillations in7, and7" shown in Fig 17, which affect the
decay rate of the Lyapunov fuctioffy in (35). Finally, Fig

18 shows the effect of varying, and K, on the maximum 4]
velocity of the malicious vehicles, required to achieve the
density/velocity profile manipulation. As is evident, rethg [5]
K, and K, can make the attack more stealthy.

Remark: This study can lay a foundation for devising[6
potential countermeasures to such attacks. The types sitgden
and velocity wave profiles that could exist in traffic for thrae
interval before the shock is actually formed, are demotesira [7]
By monitoring the traffic for the onset of such density and
velocity waves, warnings that such an attack is in progreds]
can be triggered. Subsequently, personnel in the contohro
can initiate several countermeasures, such as moduldtig fg]
traffic lights, giving advisories to the (normal) vehicles t
adjust their speeds, and so on. Also, the analysis in trﬂﬁ]
paper demonstrates one potential countermeasure which is t
increase the relaxation time constantWhen 7 is large, a [11]
singular perturbation approximation is no longer valid (80),
and this physically means that the characteristic velogity [12]
become different from that shown in Fig 4, thereby thwarting
the intention of the attackers. Detailed development ohsu&s]
countermeasures is an avenue for future work.

VII. CONCLUSIONS

(14]

As autonomous vehicles become prevalent on highwaysyi
is possible that an attacker may try to hack the driving sarféw
of some of the vehicles with malicious intent. The behaviodf®!
of an automated highway traffic system under the influence
of such malicious agents, is analyzed using a two-specie?
macroscopic model, with the two species being the maliciotjl%]
and the normal vehicles. The malicious vehicles are artlitra ;)
distributed among the normal vehicles, and seek to disrupt
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