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Abstract 

 

The risks posed by rapidly evolving RNA viruses to human and animal health are well 

recognized. Epidemics in managed and wildlife populations can lead to considerable 

economic and biodiversity losses. Yet, we lack understanding of the ecological and 

evolutionary factors that promote disease emergence. Host-switching viruses may be a 

particular threat to species important for human welfare, such as pollinating bees. Both 

honeybees and wild bumblebees have faced sharp declines in the last decades, with high 

winter mortality seen in honeybees. Infectious and emerging diseases are considered one of 

the key drivers of declines, acting in synergy with habitat loss and pesticide use. Here I focus 

on multihost viruses that pose a risk to wild bumblebees. I first identify the risk factors 

driving viral spillover and emergence from managed honeybees to wild bumblebees, by 

synthesising current data and literature. Biological factors (i.e. the nature of RNA viruses and 

ecology of social bees) play a clear role in increasing the risk of disease emergence, but 

anthropogenic factors (trade and transportation of commercial honeybees and bumblebees) 

creates the greatest risk of viral spillover to wild bees. Basic knowledge of the pathogenic 

effect of many common pollinator viruses on hosts other than A. mellifera is currently 

lacking, yet vital for understanding the wider impacts of infection at a population level. Here, 

I provide evidence that a common bumblebee virus, Slow bee paralysis virus (SBPV), 

reduces the longevity of Bombus terrestris under conditions of nutrition stress. The invasion 

of Varroa destructor as an ectoparasitic viral vector in European honeybees has dramatically 

altered viral dynamics in honeybees. I test how this specialist honeybee vector affects multi-

host pathogens that can infect and be transmitted by both honeybees and wild bumblebees. I 

sampled across three host species (A. mellifera, B. terrestris and B. pascuorum) from Varroa-

free and Varroa-present locations. Using a combination of molecular and phylogenetic 

techniques I find that this specialist honeybee vector increases the prevalence of four multi-

host viruses (deformed wing virus (type A and B), SBPV and black queen cell virus) in 

sympatric wild bumblebees. Furthermore, wild bumblebees are currently experiencing a 

DWV epidemic driven by the presence of virus-vectoring Varroa in A. mellifera. Overall this 

thesis demonstrates that wild bumblebees are at high risk of viral disease emergence. My 

research adds to the ever-expanding body of evidence indicating that stronger disease 

controls on commercial bee operations are crucial to protect our wild bumblebees.  
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Chapter 1 : General Introduction 

 

Pathogens are an ever-present threat to their hosts’ fitness and survival; infections can cause 

reductions in host longevity and fecundity, changes in behavioural and population dynamics, 

and even extinction (Anderson and May 1981; Boots and Sasaki 2002; Ebert and Herre 

1996). Equally, a pathogen’s fitness and survival depends entirely on its transmission to new 

hosts. Constant adaptation by host and pathogen to maintain their fitness can lead to long-

term co-evolving interactions (Anderson and May 1982; Lambrechts et al. 2006). Evidence 

suggests that a trade-off between pathogen virulence (defined here as a reduction in host 

fitness by the pathogen (Anderson and May 1982)) and transmission leads to an optimum 

level of virulence in single host-pathogen systems (Bull 1994; Dwyer et al. 1990; Lipsitch 

and Moxon 1997). However, the majority of pathogens can infect and be transmitted by 

multiple hosts (Cleaveland et al. 2001; Pedersen et al. 2005), which complicates the dynamics 

of host-pathogen interactions. In a multi-host-pathogen system hosts may differ in their 

ecology, susceptibility and transmission potential of a pathogen, leading to unpredictable 

consequences for the evolution of virulence and pathogen epidemiology (Woolhouse et al. 

2001). Although the complex population biology of multi host pathogens is not well 

understood, it is clear they create high potential for disease emergence and frustrate efforts 

for disease control. Indeed, novel and re-emerging diseases are continually arising (Jones et 

al. 2008) and present a significant threat to the health of human, animal and plant 

communities alike, with far-reaching impacts on our food security, biodiversity and the 

global economy (Cardinale et al. 2012; Jones et al. 2008; Morens et al. 2004). 

 

A disease is said to be emerging when a pathogen spreads rapidly following a jump to a novel 

host (e.g. SARs, HIV, Myxoma virus), or when an established disease causes a new epidemic 

within the same hosts (Woolhouse et al. 2001). Re-emergence could occur because of 

pathogen evolution (e.g. tuberculosis, a disease previously believed to be in decline, has re-

emerged as a current threat due to evolved multidrug-resistant variants of the bacteria 

Mycobacterium tuberculosis (Shah et al. 2007)), and/or changes in host-pathogen ecology 

such as the arrival of a novel vector or new transmission route (e.g. while HIV-1 is mainly 

transmitted via heterosexual sex, the practice of infected drug-users sharing needles 

substantially contributes to the rapid spread of HIV-1 outside of sub-Saharan Africa (Simon 

et al. 2006)). While arguably some of the worst epidemics have occurred due to host jumps 
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from animal reservoirs (both wild and domestic) to humans (Jones et al. 2008; Woolhouse et 

al. 2005), susceptible wildlife communities are also at risk of pathogen spillover from 

intensively managed domestic populations (Daszak et al. 2000). For example, the extinction 

of wild dogs in the Serengeti in 1991 coincided with an epidemic of canine distemper in 

sympatric domestic dogs (Macdonald 1992) and the recently eradicated Rinderpest virus of 

Eurasian cattle devastated African ruminants populations in the late 1800s (Sinclair and 

Norton-Griffiths 1995).  

 

Not all host jumps result in epidemics, as the ecological, evolutionary and anthropogenic 

factors that determine whether a pathogen can establish in a new host are complex. One well 

documented risk factor is the nature of the pathogen: RNA viruses have been identified as 

high risk pathogens because of their high mutation rate (10
3
 - 10

5
 substitutions per site per 

year (Holmes 2008)) and poor error-correction ability, which facilitates adaption to new hosts 

(Taylor et al. 2001; Woolhouse and Gowtage-Sequeria 2005). Furthermore, pathogens that 

are transmitted indirectly (i.e. novel hosts become infected by contact with infectious stages 

of the pathogen contaminating the environment) are more likely to cause an epidemic 

compared to directly transmitted (i.e. by vertical, sexual transmission, or contact though close 

proximity) pathogens (Woolhouse et al. 2001). Vector-borne diseases are more likely to be 

zoonotic (Woolhouse et al. 2001), and high risk, with 75% of emerging and re-emerging 

diseases known to be zoonotic (Taylor et al. 2001). Broadly, changes in host-pathogen 

ecology can increase the opportunities for pathogens to access susceptible or novel hosts 

(Woolhouse et al. 2005). Such ecological changes are often the result of human interference 

(Daszak et al. 2000) i.e. urbanisation and agricultural intensification (e.g. a shift in land-use 

in Midwestern USA is suggested to have increased the incidence of Lyme disease), the 

globalisation of trade and travel (e.g. the spread of West Nile virus to North America by 

importation of infected vectors (Kilpatrick 2011)) or technology use (e.g. methods of food 

production caused the epidemic of bovine spongiform encephalopathy (BSE) in cattle that 

lead to  the incidence of variant Creutzfeldt–Jakob disease (vCJD) in humans (Anderson et al. 

1996). Changes in host diversity where key hosts for transmission are lost or gained can 

impact disease transmission and emergence. For example, in the USA the white-footed 

mouse is the most competent vector of Borrelia burgdorferi, the causative agent of Lyme 

disease; increased diversity of mammalian hosts increases the number of less competent hosts 

for the tick vector to feed on, thus high diversity reduces disease incidence (LoGiudice et al. 

2003)). This has strong implications on the anthropogenic loss of diversity and increased risk 
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of disease emergence. Further, climate change has been tentatively associated with the range-

shift of ticks and mosquitoes, important vectors of diseases such as Lyme disease and malaria 

(Rogers and Randolph 2006). Ecological changes can also lead to increased disease 

transmission by the introduction of a novel vector or transmission route (e.g. the invasive 

Varroa mite increases the transmission of Deformed wing virus (DWV) in western honey 

bees (Martin et al. 2012), or by increasing host susceptibility to pathogens (e.g. pesticide 

exposure in honey bees resulted in increased levels of the microporidian parasite Nosema 

apis and N. ceranae (Pettis et al. 2012)) and increased levels of DWV (Di Prisco et al. 2013). 

 

The risk factors behind disease emergence are highly complex and still not well understood. 

The existence of multiple RNA viruses transmitted within and between the closely interacting 

pollinator community made up of social and solitary insects provides an accessible and 

fascinating population to study the impact of host behaviours and ecology on interspecific 

transmission and disease emergence. My focus throughout this thesis is on the epidemiology 

of RNA viruses in multi-host pollinator communities. 

 

We rely on managed honeybees and bumblebees for the commercial pollination of crops; for 

example, honeybees are used to pollinate the intensive agriculture of Californian almond 

blossom, and commercial bumblebees are imported to the UK to pollinate sweet peppers, 

tomatoes and other soft fruits (Velthuis and van Doorn 2006). In addition, wild pollinators 

play an often underestimated role in the pollination of crops and wild plants (Garibaldi et al. 

2013). As well as their pollination services, they form part of global biodiversity and should 

be conserved in their own right. However, regional yet dramatic declines have been seen in 

bee populations in recent years (Potts et al. 2010; Willams and Osborne 2009) with multiple 

interacting pressures believed to be responsible, including habitat loss and fragmentation, 

pesticide use, climate change and emerging pathogens (Goulson et al. 2015; Vanbergen et al. 

2013).  

 

The apiculture industry has experienced two major setbacks in recent years, both linked to 

emerging diseases. Firstly, the spread of the virus-vectoring Varroa mite, that jumped from 

its host A. ceranae (the Asian honeybee) to A. mellifera in the middle of the last century, and 

rapidly spread worldwide, providing a new route of virus transmission for an otherwise 

asymptomatic virus, DWV (Genersch 2010; Sumpter and Martin 2004). By feeding on 

developing honeybee pupae the mites can transmit viruses intra-specifically by injection 
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directly into the hemolymph, rather than faecal-oral transmission that would naturally occur 

within a colony (Chen et al. 2006b). This has caused dramatic increases in DWV prevalence 

and viral load (Martin et al. 2012; Mondet et al. 2014) and a dramatic decrease in viral strain 

diversity to a single master variant (Martin et al. 2012). Secondly, ‘colony collapse disorder’ 

hit the United States, in which the loss of a high proportion of hives made headlines (Oldroyd 

2007); the cause of these losses remains unclear, although picorna-like RNA viruses, 

specifically Israeli acute paralysis virus, were implicated (Anderson and East 2008; Cox-

Foster 2007).  

 

In bumblebees there have been documented declines in the UK and Europe, mostly of rare 

and specialised species, and mainly associated with the loss of suitable habitat for nesting and 

foraging, climate change, pesticides and pathogens (Goulson et al. 2015; Willams and 

Osborne 2009). A recent study found that declining species were not randomly distributed 

across the Bombus phylogeny; certain subgenus’ of Bombus (Thoracobombus) were more 

susceptible to declines, and species with a small geographic range were particularly 

vulnerable (Arbetman et al. 2017). Interestingly, Arbetman et al. (2017) also found that 

species that are not associated with three common pathogens (Crithidia bombi, Nosema spp. 

or Locustacarus buchneri) were more prone to decline, tentatively suggesting a reduced 

tolerance to infection in declining species. In North America, declines in bumblebee 

abundance are suggested to be due to the introduction of novel pathogens from non-native 

commercial bumblebees (Cameron et al. 2011; Colla and Packer 2008). Commercial 

bumblebees have been shown to harbour high levels of parasites (Graystock et al. 2013b) and 

spillover to wild bumblebees has been suggested to occur: gut parasites (C. bombi and 

Nosema bombi), which can be spread via flower sharing (Durrer and Schmid-Hempel 1994; 

Graystock et al. 2015) were found at higher prevalence surrounding commercial bumblebee-

pollinated greenhouses (Colla et al. 2006; Murray et al. 2013). While there is no direct 

evidence of declines in wild pollinators directly linked to viral pathogen spillover, reduced 

population size makes species particularly vulnerable to epidemics (Dobson 2004).  

 

Emerging diseases thus have the potential to be a major threat to pollinating insects. 

Honeybees are host to numerous RNA viruses, many of which are members of the 

Picornaviruses; 14 of which have been sequenced and made publically available (table 1:1). 

Many of these are now known to infect a broad host range of pollinator hosts (Manley et al. 

2015). The same viral variants are found circulating between host species, suggesting the free 
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occurrence of interspecific transmission (Fürst et al. 2014; Singh et al. 2010). Managed 

honeybees have been implicated as the reservoir host for DWV (Fürst et al. 2014; Wilfert et 

al. 2016), with DWV identified as an emerging pathogen in bumblebees (Fürst et al. 2014). 

Wilfert et al. (2016) identified the movement of A. mellifera around the world as the source 

of the globally emerging DWV epidemic, likely driven by the concurrent spread of the 

Varroa mite. The negative effects of Varroa on apiculture have been clear. However, the 

capability of Varroa to alter the epidemiology of a multihost pathogen is likely to impact on 

wild pollinators.  

 

Table 1-1: Some RNA viruses that infect honeybees and have been sequenced to date, with 

Genbank numbers. 

Full virus name Genbank 

Reference 

 

Black queen cell virus NC-0003784  

Slow bee paralysis virus (Harpenden strain) GU93876  

Slow bee paralysis virus (Rothamsted strain) EU035616  

Deformed wing virus A NC-004830  

Deformed wing virus B NC-006494  

Deformed wing virus C ENA: CEND01000001*  

Sacbrood virus AF092924  

Acute bee paralysis virus NC-002548 

Kashmir bee virus NC-004807 

Israeli acute paralysis virus KY243933 

Chronic bee paralysis virus NC-010711  

Lake Sinai virus 1 HQ871931  

Lake Sinai virus 2 HQ888865  

Aphid lethal paralysis virus KJ817182  

* This sequence is available at http://www.ebi.ac.uk/ena/data/view/CEND01000001 

 

Within multi-host systems, host species vary in their contribution to disease transmission 

because of differences in their abundance, ecology and behaviours, as well as in their 

susceptibility to pathogens and subsequent transmission potential (Haydon et al. 2002; 

Streicker et al. 2013). Consideration of the epidemiology of pathogens across multiple host 

species is important to identify the key hosts and mechanisms driving disease emergence, and 

for disease control. Controlling hosts that dominate transmission can be an important way to 

control disease (for example, vaccination of abundant and highly infectious domestic dogs to 

control rabies in rural Africa, (Karre et al. 2009)). However, the key host is not always that 

obvious; for example, a key host driving the West Nile virus epidemic in New York was 

http://www.ebi.ac.uk/ena/data/view/CEND01000001
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identified as the relatively rare but highly competent host, the American robin, due to 

preferential feeding behaviour of a mosquito vector (Kilpatrick et al. 2006). Yet, the 

conditions that determine if a pathogen can establish in a new host are not well understood 

(Jones et al. 2008; Parrish et al. 2008; Woolhouse et al. 2005). The multi-pathogen, multi-

host pollinator community provides a useful system to better understand ecological, 

evolutionary and anthropogenic drivers of disease emergence. In chapter two, published in 

the Journal of Applied Ecology in 2015, I identify the risk of spillover and emergence of viral 

disease from managed honeybees to wild pollinators by reviewing the extensive and disparate 

literature and analysing all available data on RNA viruses in pollinators. I examine and 

identify risk factors at three stages necessary for a disease to emerge: first, the opportunity for 

a viral pathogen to access a novel host, followed by the ability to establish infection, and 

transmission between individuals of the novel host population. The greatest risk of pathogen 

spillover comes from commercial honeybees and bumblebee operations, combined with the 

inherent ecology of pollinators with their overlapping ranges and shared niches, which 

promotes interspecific transmission.  

 

While there is growing data on the presence and prevalence of multiple RNA viruses in 

bumblebee hosts, there is a scarcity of data on the pathogenicity of these viruses, which is 

essential to recognise the wider implications of viral infection to individuals and populations. 

In chapter three, published in Oecologia in 2017, I measure mortality rates and sub-lethal 

effects of one RNA virus, Slow bee paralysis virus (SBPV), on one of its natural bumblebee 

hosts, B. terrestris. Based on prevalence and phylogenetic data (McMahon et al. 2015 and 

chapter 5 of this thesis), SBPV appears to be a bumblebee virus. However, previous infection 

studies have only been carried out in honeybees. SBPV is believed to exist asymptomatically 

in A. mellifera except in association with the Varroa mite (Carreck et al. 2010; Santillán-

Galicia et al. 2014) or by injection in the laboratory, where it was found to cause paralysis in 

the anterior legs ten days after injection (Bailey and Woods 1974).  I isolated virus from wild 

bumblebees to emulate a natural infection in the laboratory and dosed the worker bees orally. 

I found condition-dependent virulence, with longevity only reduced when the bumblebees 

were nutritionally stressed.  

 

The Varroa mite has had a dramatic effect on DWV transmission in honeybees, increasing 

prevalence and titre, and reducing diversity to a single strain during the invasion of remote 

honeybee populations in Hawaii (Martin et al. 2012). While, Varroa only parasitizes 
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honeybees, DWV is a multi-host virus known to replicate in bumblebees and to dramatically 

reduce longevity (Fürst et al. 2014); thus I hypothesised that Varroa-DWV infection of 

honeybees would indirectly affect wild sympatric bumblebees. In chapter four I test this 

hypothesis with an extensive field study - collecting three species of bee (A. mellifera, B. 

terrestris and B. pascuorum) across 12 locations - and comparing DWV prevalence, viral 

load and sequence diversity between Varroa-present and Varroa-free locations. I present 

novel evidence that Varroa presence drives DWV prevalence and titre in bumblebee hosts; as 

well as in honeybees as expected. DWV is a complex of three known variants (DWV-A, -B 

and –C): Importantly, I differentiate between DWV variants: while DWV-A is responsible 

for the current global epidemic (Wilfert et al. 2016), I find DWV-B to be the dominant 

variant, particularly common in bumblebee hosts compared to DWV-A, which in my samples 

is extremely rare. Using phylogenetic analysis I identify DWV-B as an emerging viral variant 

that has expanded exponentially within the last decade. This is of concern given a recent 

infection experiment, which showed that DWV-B was more virulent than DWV-A in 

honeybees (McMahon et al. 2016). I found extremely little genetic variation, with no 

population structuring across host species, or in relation to Varroa presence. The invasion of 

Varroa has been shown to decrease genetic variation of DWV to a single strain over a short 

time scale, suggested to be due to rapid selection on the virus by the vector (Martin et al. 

2012). I did not find the expected higher diversity of DWV strains in Varroa-free locations, 

but suggest this is because Varroa has been present in my population for over 20 years, and 

Varroa-free sites would have experienced spillover of the same strains via transportation of 

infected honeybees. While the same strains are present across all sites, the direct presence of 

Varroa is necessary to increase prevalence and titre, suggesting that Varroa drives infection 

in pollinators by amplifying the virus in honeybees dramatically increasing their cross-

species transmission potential. 

 

While DWV is in the limelight because of dramatic overwintering mortality in honeybee 

populations, a complex community of numerous multi-host viral pathogens exists in 

pollinator species. The viruses vary in their life histories but little is known about their 

epidemiology in wild bumblebees.  Using the same field collections as above, in chapter 5, I 

use next generation sequencing (single molecule sequencing) to identify the viral 

composition within two host species (A. mellifera and B. terrestris) across four locations, 

without PCR bias towards known and common viruses. I find that viral composition and 

diversity is clearly structured by location, not by host species or by Varroa-presence. Further, 
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I focus on two very different viruses: black queen cell virus (BQCV), which is prevalent in 

honeybees but not associated with transmission by Varroa (note, there have been no infection 

studies of BQCV on bumblebees to my knowledge); and SBPV, which is prevalent in 

bumblebees, associated with Varroa transmission (Carreck et al. 2010; Santillán-Galicia et al. 

2014) and known to cause pathogenic effects in B. terrestris (chapter three of this thesis). I 

test the effect of host species, location and Varroa presence on the prevalence and titre of 

BQCV and SBPV, and find unexpectedly, that Varroa drives the prevalence of both viruses. 

Interestingly, titre is not influenced by Varroa, suggesting an absent or passive association 

with transmission by Varroa. I use phylogenetic analysis and population genetics to 

determine population structure and test for epidemic growth. In contrast to DWV, both 

viruses are highly structured by location and show no signs of exponential growth, suggesting 

stable populations. Here again we find no structure by host species, with the same strains 

circulating in sympatric bee populations.  

 

In chapter 6, I discuss the general findings and applied implications of this work. Overall I 

find that wild bumblebees are at high risk of pathogenic emerging viral diseases from 

managed honeybees, specifically in association with the Varroa mite. There are clear 

implications for better control of Varroa, and restrictions on bee keeping to protect wild 

bumblebees. I highlight fundamental research questions that are essential for mitigation of 

disease control, and also interesting evolutionary and ecological questions that can be 

answered using this system. 
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Chapter 2 : Emerging viral disease risk to pollinating insects: ecological, evolutionary 

and anthropogenic factors 
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Supplementary tables 

Table S1. The global presence and estimated prevalence of the eight most common viruses of 

Apis mellifera, plus conditions that trigger pathogenicity and where they’ve been implicated 

in recent serious colony losses. Virus abbreviations: DWV - Deformed wing virus, SBV - 

Sacbrood virus, BQCV - Black queen cell virus, KBV - Kashmir bee virus, ABPV - acute bee 

paralysis virus, IAPV - Israeli acute paralysis virus, SBPV - Slow bee paralysis virus, CBPV 

- Chronic bee paralysis virus. Prevalence was estimated using data collected from the 

following surveys: (Berényi et al. 2006; Carreck et al. 2010; Chen et al. 2006a; Gauthier et al. 

2007; Genersch et al. 2010; Nielson et al. 2008; Runckel et al. 2011; Singh et al. 2010; 

Tentcheva et al. 2004; Ward et al. 2007; Welch et al. 2009) (High prevalence +++, medium 

prevalence ++ and low prevalence +).  

*An expanded survey could not confirm this result (vanEngelsdorp et al. 2009) 

Virus Global presence % prevalence 

estimate 

Pathogenicity 

association 

Colony losses 

DWV Every continent except 

Oceania 

>80% (+++) Varroa (Bowen-

Walker et al. 1999) 

Germany (Genersch et 

al. 2010); UK (Carreck 

et al. 2010) 

SBV Every continent 10-90% (++) Seasonal, brood density  

BQCV Every continent >80% (+++) Nosema (Bailey 1982)  

KBV N. America, Oceania and 

Europe 

<20% (++) Varroa (Chen et al. 

2004) 

 

ABPV Every continent except 

Oceania 

High, variable (++) Varroa (Genersch et al. 

2010) 

Germany (Genersch et 

al. 2010) 

IAPV N. America, Oceania and 

Europe 

<25% in Europe, high 

elsewhere (++) 

Varroa (Di Prisco et al. 

2011) 

USA (Cox-Foster 

2007)*  

SBPV Europe and Oceania <2% (+) Varroa (Carreck et al. 

2010) 

UK (Carreck et al. 

2010) 

CBPV Every continent except S. 

America 

<10% (+) Colony Density 

(Ribière et al. 2010) 
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Table S2. A list of the viruses isolated from Apis mellifera that have been sequenced to date 

(all positive single-stranded RNA genotype), their families, and references. 

Note: several viruses are so closely related that it is yet to be determined if they are actually 

members of same species e.g. DWV/VDV-1/KV; ABPV/KBV/IAPV; and LSV-1/LSV-2.  

 
 

Virus 

 

Abbr. 

 

Family 

 

References 

 
Deformed Wing Virus 

 
DWV 

 
Iflaviridae 

 
de Miranda and Genersch (2010) 

Kakugo Virus KV Iflaviridae Fujiyuki et al. (2004) 

Varroa Destructor Virus-1 VDV-1 Iflaviridae Ongus et al. (2004) 

Sacbrood Virus 
 

SBV Iflaviridae Bailey and Fernando (1972), Ghosh et al. (1999)  

Slow Bee Paralysis Virus SBPV Iflaviridae Bailey and Woods (1974), de Miranda et al. (2010b)  

Acute Bee Paralysis Virus ABPV Dicistroviridae Bailey et al. (1963), de Miranda et al. (2010a) 

Israeli Acute Paralysis Virus IAPV Dicistroviridae Maori et al. (2007) 

Kashmir Bee Virus KBV Dicistroviridae Bailey and Woods (1977), de Miranda et al. (2004) 

Aphid Lethal Paralysis virus  ALPV Dicistroviridae Runckel et al. (2011) 

Big Sioux River virus BSRV Dicistroviridae Runckel et al. (2011)  

Black Queen Cell Virus BQCV Dicistroviridae Bailey and Woods (1977), Leat et al. (2000) 

Chronic Bee Paralysis Virus CBPV Unassigned, related to Nodaviridae 
and Tombusviridae 

Bailey et al. (1963), Olivier et al. (2008), Ribière et al. 
(2010) 

Lake Sinai Virus 1 & 2 LSV Unassigned, related to  Nodaviridae 

and Tombusviridae 

Runckel et al. (2011) 

Tobacco Ring Spot Virus TRSV Comoviridae Li et al. (2014) 
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Table S3. Routes of transmission for the eight most common RNA viruses of Apis mellifera 

with references. Virus abbreviations: DWV - Deformed wing virus, BQCV - Black queen cell 

virus, ABPV - Acute bee paralysis virus, SBPV - Slow bee paralysis virus, KBV - Kashmir 

bee virus, CBPV - Chronic bee paralysis virus, SBV - Sacbrood virus, IAPV - Israeli acute 

paralysis virus. Key: evidence suggestive,  solid evidence (note: evidence was considered 

‘solid’ if a transmission route was directly tested and proven to occur without the possibility 

of alternative transmission routes occurring simultaneously; evidence was considered 

‘suggestive’ if transmission was shown indirectly (i.e. virus presence in pollen does not prove 

faecal-oral transmission occurs), was not the main focus of the study, or alternative routes of 

transmission were not ruled out). 

 Indirect  transmission               Direct transmission 

 Viruses Food Faecal Vector  

(V.destructor) 

 

 

Contact Sexual Transovarial 

DWV  
1,15

  
10

  
3,11,12,14

  
 

 
7,16,19

  
10,17,19

 

BQCV  
1,15

  
10

 
 

 
  

 
10

 

ABPV  
1
 

 
 

11,18
   

5
 

  
SBPV 

  
 

14, 20
  

   
KBV  

1,2
  

4
  

2,9,11
  

  
 

10,2
 

CBPV  
1
  

6
 

 
  

8
 

 
 

10
 

SBV  
1,2,15

 
 

 
11

  
  

 
10,2

 

IAPV 
  

 
13

  
   

1. Chen et al. (2006b) 6. Ribière et al. (2007) 11. Tentcheva et al. 

(2004) 

16. Yue et al. (2006) 

2. Shen et al. (2005) 7. Yañez et al. (2012a) 

 

12. Yue and Genersch 

(2005)  

17. Yue et al. (2007) 

 

3. Bowen-Walker et al. 

(1999) 

8. Bailey et al. (1983) 13. Di Prisco et al. (2011) 18. Genersch et al. (2010) 

4. Hung (2000) 

 

9. Chen et al. (2004) 

 

14. Carreck et al. (2010) 19. de Miranda and Fries 

(2008) 

5. Bailey et al. (1963) 10. Chen et al. (2006a) 15. Singh et al. (2010) 20. Santillán-Galicia et al. 

(2014) 
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Table S4. Virus host range for the eight most common RNA viruses of Apis mellifera (virus abbreviations: DWV - Deformed wing virus, BQCV 

- Black queen cell virus, ABPV - Acute bee paralysis virus, SBPV - Slow bee paralysis virus, SBV - Sacbrood virus, KBV – Kashmir bee virus, 

IAPV - Israeli acute paralysis virus, CBPV - Chronic bee paralysis virus). 

Virus Host Location Sample n ~ % n infected Replication Symptomatic Ref. 

DWV Bombus terrestris Europe commercial  no data 10% Not tested Y* Genersch et al. (2006) 

 UK, mainly southwest 57 30% Not tested  N Evison et al. (2012) 

 

 

Scotland, UK 

UK 

Unpublished data 

170 

Unpublished data 

9 

Not tested 

Y  

N 

N 

McMahon pers. comm. 

Fürst et al. (2014) 

Bombus pascuorum Germany 1 wild nest No data Not tested N Genersch et al. (2006) 

 UK, mainly southwest 

UK 

36 

60 

14% 

4 

Not tested 

N 

N 

N 

Evison et al. (2012) 

Fürst et al. (2014) 

Bombus lucorum 

 

Bombus lapidarius 

Scotland, UK 

UK 

UK 

Unpublished data 

60 

175 

Unpublished data 

18 

16 

Not tested 

Y  

Y  

N 

N 

N 

McMahon pers. comm. 

Fürst et al. (2014) 

Fürst et al. (2014) 

Bombus huntii Utah, USA 30 no data Y (gut only) N Li et al. (2011) 

Bombus impatiens Pennsylvania, USA  5 100% Not tested N Singh et al. (2010) 

 Pennsylvania, USA 13 62% Y N Levitt et al. (2013) 

Bombus vagans Pennsylvania, USA 2 50% Y N Levitt et al. (2013) 

Bombus tenarius 

Bombus horturum 

Bombus monticola 

Pennsylvania, USA 

UK 

UK 

2 

20 

10 

100% 

0 

11 

Not tested 

n/a 

Y  

N 

n/a 

N 

Singh et al. (2010) 

Fürst et al. (2014) 

Fürst et al. (2014) 

Osmia bicornis Belgium 3 pooled samples (10 

per sample) 

n/a Not tested N Ravoet et al. (2014) 

Vespula vulgaris UK, mainly southwest 45 29% Not tested N Evison et al. (2012) 

 Pennsylvania, USA 12 92% Not tested N Singh et al. (2010) 

Vespula spp. Pennsylvania, USA 7 57% Y N Levitt et al. (2013) 

Apis cerana China (19 provinces) 570 33, 51 and 92% in 3 provinces Not tested n/a Li et al. (2011) 

Apis florae Xishuang province, China 134 15.6% Not tested n/a Zhang et al. (2012) 

Apis dorsata Xishuang province, China 190 11.6% Not tested n/a Zhang et al. (2012) 

Blatella germanica Pennsylvania, USA 8 100% Y N Levitt et al. (2013) 

Aethina tumida Pennsylvania, USA 21 72% Not tested N Levitt et al. (2013) 

Forficula auricularia Pennsylvania, USA 10 100% Y N Levitt et al. (2013) 

Galleria mellonella Pennsylvania, USA 21 71% N N Levitt et al. (2013) 
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Araneae (order) Pennsylvania, USA 10 80% Not tested N Levitt et al. (2013) 

Varroa destructor UK apiaries (Devon) 462 (3 hives) No data Not tested n/a Bowen-Walker et al. (1999) 

  France apiaries (nationwide) 22,000 (22 apiaries) 100% Not tested n/a Tentcheva et al. (2004) 

  France (360 apiaries) 36,000 (36 apiaries) No data Not tested n/a Gauthier et al. (2007) 

  Germany 40 per hive (5 hives) 45-100% per hive Y (only mites 

from symptomatic 

bees) 

n/a Yue and Genersch (2005) 

BQCV B. huntii Utah, USA 30 No data Y (gut only) N Peng et al. (2011) 

 B. terrestris Scotland, UK Unpublished data Unpublished data Not tested N McMahon  pers. comm. 

 B. pascuorum Scotland, UK Unpublished data Unpublished data Not tested N McMahon  pers. comm. 

 B. lucorum Scotland, UK Unpublished data Unpublished data Not tested N McMahon  pers. comm. 

 Bombus hortorum Scotland, UK Unpublished data Unpublished data Not tested N McMahon  pers. comm. 

 B impatiens Pennsylvania, USA 5 60% Not tested N Singh et al. (2010) 

  Pennsylvania, USA 13 61% Not tested N Levitt et al. (2013) 

 B. tenarius Pennsylvania, USA 2 50% Not tested N Singh et al. (2010) 

 B. vagans Pennsylvania, USA 1 100% Not tested N Singh et al. (2010) 

  Pennsylvania, USA 2 100% Not tested N Levitt et al. (2013) 

 Osmia cornuta Belgium 3 pooled samples (10 

per sample) 

n/a Not tested N Ravoet et al. (2014) 

 Andrena vaga Belgium 1 pooled sample (10 in 

pool) 

n/a Not tested N Ravoet et al. (2014) 

 Heriades truncorum Belgium 3 pooled samples (10 

per sample) 

n/a Not tested N Ravoet et al. (2014) 

 A. cerana China (19 provinces) 570 12% – 98% across 6 provinces Not tested N Li et al. (2012) 

 A. florae Xishuang province, China 134 52% Not tested N Zhang et al. (2012) 

 A. dorsata Xishuang province, China 190 21.6% Not tested N Zhang et al. (2012) 

 V. vulgaris UK, mainly southwest 45 2.2% Not tested N Evison et al. (2012) 

  Pennsylvania, USA 12 66.7% Not tested N Singh et al. (2010) 

 Vespula sp. Pennsylvania, USA 7 29% Not tested N Levitt et al. (2013) 

 Blatella germanica Pennsylvania, USA 8 50% Not tested N Levitt et al. (2013) 

 Aethina tumida Pennsylvania, USA 21 5% Not tested N Levitt et al. (2013) 

 Forficula auricularia Pennsylvania, USA 10 60% Not tested N Levitt et al. (2013) 

 Galleria mellonella Pennsylvania, USA 21 33% Not tested N Levitt et al. (2013) 

 Araneae (order) Pennsylvania, USA 10 10% Not tested N Levitt et al. (2013) 
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ABPV B. lucorum n/a experimental infections No data No data Not tested Y Bailey and Gibbs (1964) 

  Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B. ruderarius n/a experimental infections No data No data Not tested Y Bailey and Gibbs (1964) 

 B. terrestris n/a experimental infections No data No data Not tested Y Bailey and Gibbs (1964) 

  Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B. hortorum n/a experimental infections No data No data Not tested Y Bailey and Gibbs (1964) 

  Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B pascuorum n/a experimental infections 

Scotland, UK 

No data 

Unpublished data 

No data 

Unpublished data 

Not tested 

Unpublished data 

N 

N 

Bailey and Gibbs (1964)** 

Wilfert unpublished 

 V. destructor France (nationwide) 22,000 (22 apiaries) 36% Not tested n/a Tentcheva et al. (2004) 

  France (360 colonies) 36,000 low Not tested n/a Gauthier et al. (2007) 

SBPV B. terrestris Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B pascuorum Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B. lucorum Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 B. horturum. Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 Eristalis pertinax Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

 Episyrphus balteatus Scotland, UK Unpublished data Unpublished data Unpublished data N Wilfert unpublished 

SBV B. ternarius Pennsylvania, USA  2 50% Not tested N Singh et al. (2010) 

 B vagans Pennsylvania, USA 1 100%/ Not tested  N Singh et al. (2010) 

  Pennsylvania, USA 2 50% Not tested N Levitt et al. (2013) 

 B.  impatiens Pennsylvania, USA 13 23% Not tested N Levitt et al. (2013) 

 V. vulgaris Pennsylvania, USA 7 57% Not tested N Singh et al. (2010) 

  UK, mainly southwest 45 0.45% Not tested N Evison et al. (2012) 

 Vespula spp. Pennsylvania, USA 7 0.07% Not tested N Levitt et al. (2013) 

 Blatella germanica Pennsylvania, USA 8 75% Not tested  Levitt et al. (2013) 

 Aethina tumida Pennsylvania, USA 21 11% Not tested N Levitt et al. (2013) 

 Forficula auricularia Pennsylvania, USA 10 50% Not tested N Levitt et al. (2013) 

 Galleria mellonella Pennsylvania, USA 21 29% Not tested N Levitt et al. (2013) 

 Araneae (order) Pennsylvania, USA 10 10% Not tested N Levitt et al. (2013) 

 V. destructor Penn State, USA 111 (one hive) no data Not tested n/a Shen et al. (2005) 

  France (nationwide) 22,000 (22 apiaries) 45% Not tested n/a Tentcheva et al. (2004) 

KBV A. cerana  India, Kashmir No data No data Not tested Y Bailey and Woods (1977) 
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 Aethina tumida Pennsylvania, USA 21 44% Not tested N Levitt et al. (2013) 

 Forficula auricularia Pennsylvania, USA 10 20% Not tested N Levitt et al. (2013) 

 Galleria mellonella Pennsylvania, USA 21 29% Not tested N Levitt et al. (2013) 

 V. destructor France (nationwide) 22,000 (22 apiaries) 5% Not tested n/a Tentcheva et al. (2004) 

 V. destructor Penn State, USA 111 (one hive) No data Not tested n/a Shen et al. (2005) 

IAPV B. impatiens Pennsylvania, USA 13 31% Y N Levitt et al. (2013) 

 B. ternarius Pennsylvania, USA 2 100% Not tested N Singh et al. (2010) 

 B. vagans Pennsylvania, USA 1 100% Not tested N Singh et al. (2010) 

 V. vulgaris Pennsylvania, USA 7 ~71% Not tested N Singh et al. (2010) 

 Vespa velutina Hangzhou, China 10 100% Y (head, thorax & 

abdomen) 

N Yañez et al. (2012b) 

 A. cerana Hangzhou, China 180 (6 hives) 1 hive only N*** N Yañez et al. (2012b) 

 Aethina tumida Pennsylvania, USA 21 78% Not tested N Levitt et al. (2013) 

 Forficula auricularia Pennsylvania, USA 10 40% Not tested N Levitt et al. (2013) 

 Galleria mellonella Pennsylvania, USA 21 14% Not tested N Levitt et al. (2013) 

 Araneae (order) Pennsylvania, USA 10 10% Not tested N Levitt et al. (2013) 

 V. destructor n/a (experimental) 40 n/a Y n/a Di Prisco et al. (2011) 

CBPV Camponotus vagus France 22 (from 2 apiaries) No data Y N Celle et al. (2008) 

 Formica  rufa France 20 (from 2 apiaries) No data N N Celle et al. (2008) 

 V. destructor France 19 (from 1 apiary) No data Y n/a Celle et al. (2008) 

* Bumblebees had deformed wings and were found to be positive for DWV by PCR. However, it is not proven that the symptoms are linked to the virus. 

** The authors use the now out-of-date name Bombus agrorum to refer to B. pascuorum 

***The authors do not believe this result to be true as replication occurred in A. mellifera and the two species are so similar that it seems unlikely replication does not occur 

in A. cerana as well (Yañez et al. 2012b)



39 

 

Chapter 3 : Condition‑dependent virulence of slow bee paralysis virus in Bombus 

terrestris: are the impacts of honeybee viruses in wild pollinators underestimated?
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Supplementary Material 

 

Supplementary tables 

Table S1. The molecular and thermal conditions used for each pair of primers. 
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94|5 

X 35 
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72|7 
915 

ABPV 

4 2.5 0.2 0.4 0.4 0.15 2 20 
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X 35 
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72|70 
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1034 

DWV  
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PCR 
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Table S2. Primer Sequences 

Primer name 

 

Sequence 5’-3’ 

SBPV 774F 

SBPV 1689R 

GAGATGGATMGRCCTGAAGG 

CATGAGCCCAKGARTGTGAA 

ABPV 5088F 

ABPV 6122R 

CyATGGACACACCCTATGTG 

CGCCATTTTGGTACTTCTCC 

DWV 8577F  * 

DWV 7933R 

AACTGGCGAYCATACTCAGC 

WCCAGGCACMCCACATACAG 

BQCV 4119F 

BQCV 5376R 

TCCyCCAGTTCAACCATCTA 

AACGTTGCCTAGrTTCGTCA 

ACTB F 

ACTB R 

TGACAAGCATCCACCAAAAG  

TCGTCGATCAGTTTCTGCTG 

*DWV primers not-specific to any strain of DWV, taken from Wilfert et al. (2016) 
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Table S3. The number of bees in each experimental group, followed by the groups that were 

used in the survival analysis. Note: we tested infected vs uninfected bees, rather than 

inoculated vs control bees because of the number of bees that cleared or gained infection 

within each group. Note 2: 68 of the original 73 control bees in the starvation assay were used 

in the experiment because five bees died prior to the starvation assay (day 10). Importantly, 

the main results remain unchanged whether contaminated/cleared individuals are removed or 

not. The result in bold at the end of the table is the main result we report in the paper.  

 Starvation Survival 

analysis (Cox 

proportional 

hazards 

regression for 

infection 

variable 

reported) 

Satiated Survival  

analysis 

 Inoculated Controls  Inoculated Controls  
Total bees 77 73  73 69  
Used in 

experiment 

77 68 n/a 73 69 n/a 

Bees Cleared 

infection 

34 n/a n/a 14 n/a n/a 

Bees gained 

infection 

n/a 26 n/a n/a 21 n/a 

Total bees 

without 

positive 

controls 

77 42 n/a 73 48 n/a 

 Infected Uninfected  Infected Uninfected  
Total bees 69 76 Sig median 

difference in 

survival = 

1.34hr; N = 

145, HR = 1.4 

(1.0 – 2.0), 
2  

= 3.81, p = 

0.05 

80 62 Not sig 

Total bees 

without 

controls 

43 34 Sig median 

difference in 

survival = 3hr; 

Cox 

regression: N 

= 77, HR = 

1.87 (1.1-

3.16), 
2  

= 

5.421, p = 

0.02) 

59 14 Not sig 

Total without 

positive 

controls 

43 76 Sig median 

difference in 

survival = 

2.3hr: Cox 

regression: N 

= 119, HR = 

1.6, (1.0 – 

59 62 Not sig 
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2.3), 
2  

= 4.51, 

p = 0.03 

 

Table S4. The output from testing the assumption of proportional hazards for the Cox 

proportional hazards model (using coxph function) under starvation (a) conditions and 

satiated (b) conditions. Rho is the Pearson product moment correlation between the scaled 

Schoenfeld residuals and log(time) for each variable. The final row contains the global test 

for all the interactions tested at once. A p value <0.05 shows a violation of the proportionality 

assumption. 

a. 

Variable rho Chi sq p 

Infected -0.026 0.079 0.778 

Fat ratio -0.009 0.006 0.940 

Colony A 0.221 0.359 0.549 

Colony B 0.117 0.087 0.768 

Colony C -0.310 0.352 0.553 

Global n/a 10.421 0.064 

 

b. 

Variable rho chisq p 

Infected 0.072 0.611 0.435 

Wing -0.067 0.569 0.450 

Colony A -0.065 0.020 0.888 

Colony B 0.110 0.068 0.794 

Colony C -0.043 0.017 0.896 

Global n/a 2.156 0.827 
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Supplementary figures 

 

 

Figure S1. Standard curve for SBPV; Slope = -3.5, Y-inter: 36.5, R2 = 1, eff% = 91.8. 

Diagram from StepOne Software v 2.3 

 

 

 

 

 

Figure S2. Cq values of individual bees in the gut time course for both Slow bee paralysis 

virus (SBPV) (black) and Actin Beta (ACTB) (grey) confirming extraction of a valid 

biological template and demonstrating that ACTB Cq stayed stable relative to SBPV Cq. 
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Figure S3. Electrophoresis gel picture of an SBPV PCR product (915 bp fragment) on a 

number of inoculated and control bees from the starvation assay. Unlabelled wells are 

inoculated bees; the bands with an asterisk are inoculated bees positive for SBPV. A1-A5, 

B1-B5 and C1-C5 wells are control bees from colonies A, B and C, respectively; + identifies 

controls positive for SBPV. 

 

 

 

Figure S4. A comparison of the survival probability curves between four groups of bees in 

the starvation assay: Inoculated (+) are bees that were still infected at day 10 post inoculation 

(p.i.), Inoculated (-) are bees that were inoculated but cleared infection by day 10 p.i., 

Controls (-) are clean control bees and control (+) are infected controls. 
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Chapter 4 : Community-level impact of a specialist vector: the honeybee ectoparasite 

Varroa destructor drives DWV prevalence and viral load in sympatric wild 

bumblebees 

 

Abstract 

Emerging infectious diseases (EIDs) in managed and wild bees have the potential to 

compromise pollination services, and consequently our food security. Honeybees carry a 

range of harmful pathogens, many of which are shared across pollinator species. The 

spillover of shared pathogens from managed honeybees may contribute to declines seen in 

wild pollinators. The Deformed wing virus-complex (DWV type A and B) and the 

microsporidian Nosema ceranae are two emerging pathogens known to infect and cause harm 

to both honeybees and bumblebees. Varroa destructor is an ectoparasitic mite, specific to 

honeybees, that vectors and changes the dynamics of DWV: increasing prevalence, titre and 

virulence. In contrast, transmission of N. ceranae has no links with Varroa. To test the effect 

of Varroa on these pathogens on pollinators, we collected honeybees (A. mellifera) and 

bumblebees (B. terrestris and B. pascuorum) from matched Varroa-free and Varroa-present 

sites; using phylogenetic methods, we tested for spillover of DWV from honeybees to 

bumblebees. We found that Varroa presence increases the prevalence and titre of DWV not 

only in honeybees, but also in sympatric bumblebees. Honeybees are likely the source 

population for infections in bumblebees, as the same strains infect sympatric populations, and 

prevalence of DWV is more than three times higher in honeybees. In contrast, the prevalence 

and titre of N. ceranae, which is not known or expected to be vectored by ectoparasites, is 

unaffected by Varroa-presence. In a multi-host-pathogen system, we show that changes to 

host-parasite ecology in a single host – in this case the invasion of a novel virus vector – can 

have community level-effects on transmission dynamics. For wild and managed bees, these 

results highlight the need for further controls on Varroa, and potentially on beekeeping, for 

wild pollinator health.  

 

Introduction 

 

Emerging infectious diseases (EIDs) are an ever-present threat to human, animal and plant 

populations alike. Disease emergence can be driven by ecological, evolutionary and 

anthropogenic factors (Woolhouse et al. 2005). One factor is the acquisition of novel 

transmission routes by existing pathogens, leading to disease spread, and increasing the 
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potential of spillover to naive populations or species. An important example is that of Varroa 

destructor, an ectoparasitic mite that is capable of vectoring numerous bee viruses. This 

ectoparasite jumped hosts from the Asian honeybee (Apis cerana) to the European honeybee 

(Apis mellifera) in the middle of the last century. The Varroa mite has since spread rapidly 

across the globe (Oldroyd 1999) and provided a new route of virus transmission in A. 

mellifera, leading to a dramatic increase, in particular of Deformed wing virus (DWV) 

prevalence, viral load (Martin et al. 2012) and virulence (Genersch et al. 2010; Ryabov et al. 

2014). Wilfert et al. (2016) show trade and movement of A. mellifera around the world is the 

source of the globally emerging DWV epidemic, likely driven by the concurrent spread of the 

Varroa mite. This worldwide epidemic is no doubt a grave threat to apiculture and the 

pollination services it provides. However, while Varroa is a specialist parasite of honeybees, 

it indirectly poses a risk to wild pollinators by altering the disease dynamics of the multihost 

pathogens it transmits.  

 

Pollination services are essential for our food security and the biodiversity of flowering 

plants. A. mellifera are heavily relied upon for commercial pollination, while wild pollinators 

also play an important role in pollination of crops and wild flowers (Albrecht et al. 2012; 

Breeze et al. 2011; Gallai et al. 2009). Two emerging multihost pollinator pathogens, DWV 

and the gut parasite N. ceranae, are suggested to be a driving force of dramatic regional 

declines seen in recent years in the apiculture industry (Fürst et al. 2014; Graystock et al. 

2013a; Potts et al. 2010; Wilfert et al. 2016). N. ceranae is a microsporidian parasite that 

recently jumped hosts from A. cerana to A. mellifera, spreading worldwide, and has since 

been implicated in substantial colony losses (Higes et al. 2006; Klee et al. 2007). N. ceranae 

is transmitted horizontally via faecal-oral transmission (Fries 2010), which has no known link 

to Varroa. Conversely, the damage caused at individual and colony level by the association 

between DWV and Varroa is well documented. The Varroa mite feeds off developing pupae 

and by doing so transmits virus directly into the bee haemolymph, bypassing the natural 

infection barriers of the honeybee such as the exoskeleton and physiological inhibitors in the 

gut (Evans and Spivak 2010). Recent invasions of Varroa in Hawaii and New Zealand led to 

an increase in DWV prevalence and viral load (Martin et al. 2012; Mondet et al. 2014), with a 

severe loss of viral diversity (Martin et al. 2012). There is also evidence that Varroa increases 

mortality of colonies over winter (Dainat et al. 2012; Genersch et al. 2010; Highfield et al. 

2009). 
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DWV is a single-stranded RNA virus comprising of at least three distinct clades: DWV-A is 

the strain currently responsible for the reported global epidemic (Martin et al. 2012; Wilfert 

et al. 2016) (which also contains Kakugo virus (Fujiyuki et al. 2004) and the Southeast-Asian 

variant found in Thailand and Pakistan (Wilfert et al. 2016)); sequence data for DWV-B (also 

known as Varroa destructor virus 1 (Ongus et al. 2004)) has so far only been deposited from 

Europe and the Middle East (Zioni et al. 2011), with unconfirmed individuals in Hawaii 

(Martin et al 2012), mainland USA (Kielmanowicz et al. 2015) and South Africa (Strauss et 

al. 2013); DWV-C is a newly discovered strain from a UK apiary (Mordecai et al. 2015).  

 

In contrast to honeybees, little is known of the impact of DWV-complex on wild bumblebees. 

The Varroa mite does not directly parasitise bumblebees. However, DWV has been identified 

as an emerging disease in wild pollinators with A. mellifera implicated as the reservoir host 

(Fürst et al. 2014). Recent field studies have shown that the DWV-complex is prevalent in 

wild bumblebee populations, with 11% of Bombus carrying DWV compared to 36% of A. 

mellifera (Fürst et al. 2014); further analysis of these field samples demonstrated that DWV-

B was more prevalent than DWV-A, although this difference was not significant (McMahon 

et al. 2016). Experimental infections have shown DWV (mixed variants) reduces longevity of 

B. terrestris workers by a mean of six days (Fürst et al. 2014); a significant decrease for a 

worker that could negatively affect colony dynamics. Further infection experiments have 

shown that DWV-B is potentially more virulent to A. mellifera than DWV-A at both an 

individual and colony level (McMahon et al. 2016). N. ceranae has also been shown to be 

infective for B. terrestris, although the impact on survival was low (Fürst et al. 2014); while 

another study showed a dramatic 48% reduction in survival and sub-lethal behaviour effects 

(Graystock et al. 2013a). Spillover of pathogens into bumblebee populations is believed to 

occur through interspecific transmission via shared foraging sites (reviewed by Manley et al. 

(2015)). Many populations of bumblebee and solitary bee have experienced declines and 

range contractions, some of which can be attributed to disease (Biesmeijer et al. 2006; 

Cameron et al. 2011; Goulson et al. 2015). Widespread pesticide use and loss of nesting and 

foraging habitat also play an important role and put wild bee populations under pressure. This 

is important, as small or declining populations are particularly vulnerable to repeated 

spillover events from a sympatric reservoir host, with the potential to drive them to extinction 

(Dobson 2004).  
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Although Varroa has spread globally, a few Varroa-free refugia still exist on islands around 

the UK and France. We would not expect absence of DWV in Varroa-free refugia because 

firstly, DWV is known to exist in populations without Varroa (Martin et al. 2012), and 

secondly pathogens can spread ahead of their vectors and primary hosts if there is a 

competent novel host, as is the case with other wildlife diseases such as squirrel pox 

(Tomkins, White and Boots, 2003). Thus, anthropogenic movement of A. mellifera can 

spread DWV beyond the range of Varroa itself. We test whether the specialist honeybee 

vector Varroa leads to spillover of DWV from honeybees to wild bumblebees. We use a 

structured field survey across 12 sites, comprising of four Varroa-free and eight Varroa-

present sites, to test the indirect impact of Varroa infestation of honeybees on DWV intensity 

in sympatric B. terrestris and B. pascuorum populations. Since all Varroa-free sites are 

islands, we also sampled three Varroa-present islands, to enable testing of the potentially 

confounding island effect. We compare and contrast prevalence and titre of DWV and N. 

ceranae, two pathogens with very different associations with Varroa, to isolate the impact of 

Varroa.  

 

Materials and methods 

 

Bee samples 

We collected ~30 A. mellifera, ~30 B. pascuorum and ~60 B. terrestris/lucorum individuals 

from 12 sites across the British Isles and Brittany (France), between June-August 2015 (table 

S1 for sample details). The sites comprised four Varroa-free islands (Isle of Man (Douglas), 

Scilly Isles (St Mary’s), Ushant and Alderney (St Anne); three Varroa-present islands 

(Guernsey (St Peter Port), Jersey (St Helier) and Belle Ile (Le Palais) and five Varroa-present 

mainland sites (Liverpool, Penryn, Cherbourg, Le Conquet and Quiberon) (figure S1 for map 

of sites). In total we collected 355 A. mellifera, 640 B. terrestris, 37 B. lucorum (see methods 

below for molecular differentiation of the B. terrestris/lucorum species complex) and 280 B. 

pascuorum. Bees were collected from a 1x1km area whilst foraging on flowers.  We used 

individual collecting tubes and kept samples on ice, before sacrificing and storing them at      

-190° in a dry shipper on the day of collection. For Belle Ile and Jersey, bees were sacrificed 

and stored at in the dry shipper within 48 hours of collection. All samples were then stored at 

-80° on return to the laboratory.  
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RNA isolation and RT-PCR 

To be able to measure the N. ceranae titre microscopically while obtaining whole-body RNA, 

we removed the gut from each individual and macerated them individually in 200μl of insect 

ringer solution. For individual RNA extractions, we used half the head and thorax of 

individuals (bisected laterally) and 80μl of the gut solution described above, using Trizol© 

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instruction. Briefly, samples 

were homogenised with glass beads in 1.3ml Trizol© in a tissue-lyser. RNA was separated 

using bromo-chloropropane and precipitated in isopropanol. The RNA was washed with 75% 

ethanol and re-suspended in 400µl diethylpyrocarbonate (DEPC)-treated water. We 

converted 2µl of RNA into first-strand cDNA using GoScript™ Reverse Transcriptase, 

according to the manufacturer’s instructions (Promega), using random hexamer primers and 

RNasin® to prevent RNA degradation. Honeybee RNA was eluted in 100μl of RNase-free 

water and bumblebees in 400μl to allow for variation in RNA pellet size between the species.  

 

DNA extraction 

DNA was extracted from the gut solution described above using a modified Chelex® 

method: 100μl of 10% Chelex® 100 resin (Biorad) solution was added to 35μl of gut 

solution, with 2μl of Proteinase K (20μg/μl) before incubation at 56°C for one hour, and 

vortexed twice during this time. Samples were incubated at 95°C for 15 minutes, centrifuged 

and the supernatant was stored at -20°C until use. 

 

Prevalence 

We differentiated between the B. terrestris/lucorum species complex via a DNA length 

polymorphism in the mitochondrial IGS region, using the primer pair BBMI_IGSF1 and 

BBM1_IGSR1 (pers comm Regula Schmid-Hempel, table 4:1). To determine pathogen 

prevalence of DWV-A, DWV-B and N. ceranae, cDNA (for viral detection) and DNA (for N. 

ceranae detection) were diluted 1:10 prior to PCR. We used previously published primer 

pairs to identify positive samples by PCR and carried out PCR in 20µl reactions using 

GoTaq® DNA Polymerase, with PCR programs specific to each primer pair (table 4:1). 

Every run included a known positive sample and a water negative as controls. 5µl of PCR 

product were run on 1.5% TAE agarose gel with ethidium bromide nucleic acid staining 

solution.  
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Table 4-1: Primers and protocols used to differentiate the B. terrestris/lucorum complex, and 

detect the prevalence of pathogens deformed wing virus (type A and B) and Nosema ceranae 

Target Primer name Sequence Amplification 

program  

Amplicon 

(bp) 

Reference 

B. terrestris/ 

B. lucorum 

complex 

BBM1IGSF 

BBM1IGSR 

GGAGCAATAATTTCAATAAATAG 

AARTTCAAAGCACTAATCTGC 

15 s at 95C 15 

s at 55C 

45 s at 72C 

X38 cycles 

 

180 

210 

Regular 

Schmid-

Hempel 

(pers 

comm) 

DWV-A  

DWV-B 

 

DWV F1a 

VDV F1a 

DWV-VDV 

7aR 

GGAAACATCTGGAATTAGCGACAA 

GAAAACATTTGGAATTAGCAACGAC 

AATCCGTGAATATAGTGTGAGG  

 

10 s at 95C,  

30 s at 60C,  

30 s at 72C 

X35 cycles 

 

360 

360 

McMahon 

et al. (2015) 

N. ceranae 

(Multiplex 

PCR 

differentiates 

between three 

species of 

Nosema) 

Mnapis_F 

MnBombi-F 

Mnceranae_F 

Mnuniv_R 

GCATGTCTTTGACGTACTATG 

TTTATTTTATGTRYACMGCAG 

CGTTAAAGTGTAGATAAGATGTT 

GACTTAGGAGTAGCCGTCTCTC 

30 s at 95C 30 

s at 56C 

60 s at 72C 

X35 cycles 

 

224 

171 

143 

Fries et al. 

(2013) 

 

 

Quantitation of viral load by reverse transcription-PCR (qRT-PCR) 

All DWV-A positive samples were analysed by qRT-PCR (N = 94). For DWV-B, the sample 

size was much larger, thus we randomly chose ten positive samples per site per species (or 

total number if there were less than ten positives available) for qRT-PCR analysis (N = 184).  

We measured nucleic acid quality (Nanodrop™ 2000 spectrophotometer) and concentration 

(Qbit™ Fluorometer) for each individual. No samples were excluded for poor quality as all 

Nanodrop 280/260 ratios were greater than 1.8. Based on Qubit concentrations, each RNA 

sample was diluted to 100ng/μl in RNase free water. cDNA was synthesised from 400ng of 

RNA template using GoScript™ Reverse Transcriptase, as reported above. cDNA was then 

diluted 1:10 prior to use in qPCR. For absolute quantification, duplicate reactions were 

performed for each sample on a Strategene machine (Mx3005P) using GoTaq® qPCR Master 

mix for dye-based detection (Promega) on the following program: 2 mins at 95 °C, followed 

by 40 cycles of 10s at 95 °C, and data collection for 60s at 57°C. We used virus specific 

primers for the detection DWV-A and DWV–B, and the internal reference marker Rp49 was 

amplified in duplicate for all A. mellifera samples (table 4:2). Two no-template negative 

samples containing RNase-free water were run on each plate. No virus detection threshold 

was set because only samples already identified as positive by PCR were used in these 

reactions. Quantification was calculated using duplicate eight-point standard curves of 

plasmid DNA in a 1:10 serial dilution on each plate. DWV-A and DWV-B plasmids were 

generated using Promega pGEM®-T Easy Vector, according to the manufacturer’s 
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instructions, to clone a 360bp fragment and 89bp fragment of the rdrp-gene in DWV-A and –

-B, respectively, from purified PCR products (primer details in table 4:2). Successful 

transformants were selected via blue/white screening, and plasmids were extracted using 

GeneJET Plasmid Miniprep Kit (ThermoFisher). M13 primers (designed to sequence inserts 

inside pGEM®-T Easy Vector: forward 5´- GTTTTCCCAGTCACGAC -3´, reverse 5´-

CAGGAAACAGCTATGAC -3´) were used to determine the correct product had been 

cloned. We linearlised the plasmids using the restriction enzyme Apa 1 (New England 

Biolabs), according to the manufacturer’s instructions, and diluted them 1:1000 with RNase-

free water. Mean efficiency across plates for DWV-A was 90.6% (four plates with range 89.2 

- 92.1%) and DWV-B was 92.2% (seven plates ranging from 90.8 - 92.2%) with R
2
 > 0.98 

across assays (for standard curves see figure S2). 

 

Table 4-2: Primers and protocols used for qPCR amplification and to create plasmids for 

standard curves.  

Primer  Sequence Amplification program Reference 

DWV_F2* 

DWV_R2a* 

TGTCTTCATTAAAGCCACCTGGAA 

TTTCCTCATTAACTGTGTCGTTGAT 

10 s at 95C,  

30 s at 60C,  

X40 cycles 

 

Melting curve profile: 

55 – 95C (0.5C per second 

increments) 

McMahon et al. 

(2015) 

DWV_F1a ** 

DWV_7Ra** 

GGAAACATCTGGAATTAGCGACAAA 

AATCCGTGAATATAGTGTGAGG 

VDV_F2 

VDV_R2a 

TATCTTCATTAAAACCGCCAGGCT 

CTTCCTCATTAACTGAGTTGTTGTC 
 

Rp49_qF AAGTTCATTCGTCACCAGAG de Miranda and Fries 

(2008) 
Rp49_qB CTTCCAGTTCCTTGACATTATG 

Note * primers were used for DWV-A qPCR assays, while ** primers were used to create the 

DWV-A plasmid. 

 

Nosema spore counts  

For all samples positive for N. ceranae by PCR (above), we diluted the gut homogenate 1:10 

and counted spores on a hemocytometer (Immune Systems FastRead 102) under 40x 

magnification (Motic BA300 phase contrast light microscope). Each sample was first scanned 

for four minutes for the presence of spores; if a single spore was detected in this time then 

spores were counted across eight small squares of the counting chamber. 

 

Sanger sequencing 

DWV-A and DWV-B have positive, single-stranded monocistronic RNA genomes 

comprising 10,140 (Lanzi et al. 2006) and 10,112 (Ongus et al. 2004) nucleotides, 

respectively, which have a nucleotide similarity of 84% (Mordecai et al 2015). Both viruses 
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are consigned to the Iflavirus family and contain a single open-reading-frame (Lanzi et al. 

2006; Ongus et al. 2004). Following Wilfert et al. (2016), all individuals identified as positive 

for DWV-A by PCR (as detailed above) were assayed by PCR for four genomic regions; L-

protein, vp3, helicase and RNA-dependent RNA polymerase (Rdrp) (table S2a). We designed 

four additional primer pairs to sequence the same regions of all samples positive for DWV-B 

(table S2b). 15μl of PCR product were purified using Exonuclease 1 and Antarctic 

phosphatase (NEB) incubated at 37°C for 60 minutes and denatured at 80°C for 20 mins. Big 

Dye Terminator v3.1 (ThermoFisher Scientific) was used for florescence-based direct 

sequencing of amplicons, following manufacturer’s instructions. The Big Dye PCR products 

were purified by filtering through Sephadex® G-50 (Sigma-Aldrich) and directly sequenced 

in the reverse direction (except for helicase DWV-B samples, which were sequenced in the 

forward direction) on an ABI 3730 Genetic Analyser using the appropriate PCR primer (table 

S2). Sequencing direction was chosen to maximise the overlap between DWV-A and -B 

sequences. 

 

Single-molecule real-time (SMRT) sequencing (Pacbio) 

The concentration of individual RNA samples were measured using a Qbit™ Fluorometer, 

and 1000ng of RNA from each of 30 A. mellifera and 30 B. terrestris from two Varroa-free 

sites (Ushant and the Isle of Man) and their paired Varroa-present mainland sites (Le 

Conquet and Liverpool) were pooled to create eight populations for SMRT sequencing. Note: 

B.terrestris was rare on Ushant, thus only 13 individuals were collected and used in this pool. 

The individual RNA samples were quality checked with the Nanodrop™ 2000 

spectrophotometer (all samples had 280/260 ratio >1.8), and the pooled RNA run on Agilent 

2200 Tapestation (pools all had high RIN values (>9), except for Liverpool honeybees with 

RIN=7.6). Full-length cDNA libraries (using the BluePippin System) were prepared using the 

Clontech SMARTer PCR cDNA Synthesis Kit. Following this, the PacBio Template Prep Kit 

was used to generate SMRTbell™ libraries, which were then sequenced on the PacBio 

System (library prep and sequencing was carried out by the Exeter Sequencing Service). 

Non-chimeric reads from each pool were mapped first against their respective host species 

genomes using BWA (Li and Durbin 2009) (v. 0.7.12) with the following parameters: “bwa 

mem -x pacbio” to remove host-derived sequences. Remaining reads were mapped against all 

sequenced bee RNA viruses and 23 novel bumblebee viruses (Pascall et al, pers comm) (table 

S3). Reads mapping to the genomes of DWV-A, B and C were then extracted for further 

analysis. To identify recombinants, reads mapping to known DWV variants from each pool 
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were fragmented into 100bp windows with a 50bp overlap (windows of 200-2000nt were also 

tested, but resulted in reduced sensitivity in the detection of synthetic in silico recombinants).  

Windows were then mapped back to known DWV genomes using bbmap to identify the best 

mapping for each window. Putative recombinants were identified when three consecutive 

windows (150bp) aligned to a different variant compared to the rest of the windows from the 

parent read. Further, the presence of unknown DWV variants was investigated by aligning 

windows against the genomes of DWV-A, DWV-B and DWV-C separately using BLASTN 

(Camacho et al. 2008) and recording the percentage identity of the best alignment (with a 

minimum cut-off of 70%) against each of the genomes. Percentage identity of the parent read 

to each of the DWV genomes was then calculated as the mean percentage identity of its 

windows.  

 

Statistics 

All statistical analyses were carried out in RStudio (v0.99.896). Note, B. lucorum samples 

were excluded from prevalence and viral load analyses because of low sample size. True 

prevalence with 95% confidence intervals were calculated to account for assay efficiency and 

sensitivity, which was conservatively set at 95% (Reiczigel et al. 2010) using R library epiR 

v.0.9-82 and the function epi.prev. Within the package, confidence intervals are calculated 

based on methods in Blaker (2000). 

 

To examine if disease prevalence was affected by Varroa-presence, we used generalised 

linear mixed models (GLMMs) (with DWV-complex, DWV-A, DWV-B and N. ceranae 

prevalence tested in four separate models) with binomial error distribution and logit link 

function, using the lme4 package (v1.1-12) (Bates and Sarkar 2006). Full models included 

three-way interactions between the fixed effects Varroa-presence, species (a factor with three 

levels: A. mellifera, B. terrestris and B. pascuorum) and island/mainland location, with 

latitude and sunshine hour duration as additional fixed effects; field site and individual were 

included as random effects (individual was added to account for over-dispersion in the model 

(Harrison 2014)). Sunshine hours provided a proxy for favourable disease transmission 

conditions (Fürst et al. 2014) and were calculated as the mean sunshine hours from monthly 

data between March and July 2015 collected from MET office data (pers comms) and Meteo 

France (http://www.meteofrance.com/climat/france). The minimum adequate model (MAM) 

was found through removal of non-significant terms and comparison of models using anova – 

if the simplified model was not significantly different at p > 0.05 the term was removed from 

http://www.meteofrance.com/climat/france
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the model. To test the full effect of our test predictors we compared the MAM with the null 

model (which only included random effects) using anova. Residual plots were examined to 

assess model fit.  

 

Varroa-free refugia only exist on islands, thus it was necessary to also sample on Varroa-

present islands, as well as paired Varroa-present mainland sites, to test a possible island 

effect on disease prevalence. Further, we ran models on reduced datasets 1) comparing island 

sites with and without Varroa, and 2) comparing Varroa present islands and mainland sites. 

If the island/mainland effect is not a confounding factor, in 1) we expect to maintain a 

significant effect of Varroa, and in 2) we expect island to remain a non-significant effect. 

 

To investigate if viral load was affected by Varroa-presence, we ran GLMMs (DWV-A and 

DWV-B were tested in separate models) with Gamma error distribution and reciprocal link 

function. Viral load data varied across orders of magnitude from 10
3
 to 10

10
, thus these data 

were log transformed. Full models, model simplification and testing model fit were carried 

out as described above.  

 

Alignments 

Sequences were individually manually inspected in Geneious® (v.6.8); only high-quality 

non-heterozygous sequences (less than three ambiguous base pairs) of a minimum length 

were included in further sequence analysis. Not all fragments from all samples were 

amplified successfully (of the 94 DWV-A positive samples Nlp = 11, Nvp3 = 8, Nhelicase = 19, 

Nrdrp = 8: and of 294 DWV-B positives Nlp = 117, Nvp3 = 200, Nhelicase = 146, Nrdrp = 147). 

Thus distinct datasets were used for each fragment, optimising information by maximising 

the alignment length whilst keeping as many samples as possible (table 4:3). Alignments 

were created using Geneious® (v.6.8) by mapping the sequences to DWV-A and DWV-B 

reference sequences (NC_004830 and NC-006494), assigning each sequence to a viral strain. 

We created an alignment for each fragment for DWV-A and –B sequences combined, and for 

DWV-B alone (table 4:3). Note there were too few DWV-A sequences to focus on this 

variant alone.  In addition, to maximise the genetic information, we concatenated the DWV-B 

sequences from all samples that amplified across all four fragments (N = 67), as well as 

across three fragments excluding the lp-gene (N = 103) to increase the number of samples 

from bumblebee hosts (table 4:3) (using Fasta Alignment Joiner (http://users-

birc.au.dk/biopv/php/fabox/alignment_joiner.php). To confirm that there was no 

http://users-birc.au.dk/biopv/php/fabox/alignment_joiner.php
http://users-birc.au.dk/biopv/php/fabox/alignment_joiner.php
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recombination within fragments at a p value of 0.05, we used the GENECONV (Padidam et 

al. 1999), MaxChi (Maynard Smith 1992), BootScan (Martin et al. 2005) and SiScan (Gibbs 

et al. 2000) algorithms in the Rdp4 package (v4.56) (Martin et al. 2015). Only the lp-gene 

fragment contained recombinants (N = 13), and these were removed for phylogenetic 

analysis. We found two points of recombination within the lp region: one at ~1550 and one 

~1660, with both DWV-A and DWV-B seen at the 5’ and 3’ end of the sequenced fragment.  

 

Table 4-3: Alignments details: number of sequences and alignment length, genetic diversity 

(π), number of segregating sites and parsimony informative sites, and the number of 

sequences from each host species (A. mellifera, B. terrestris and B. pascuorum).  

Note, recombinant lp samples were excluded from alignments.  

Fragment 

(viral spp.) 

N. 

seqs 

Length 

(bp) 

π N. seg. 

sites 

N. parsimony 

inf. sites 

N.  

A.mel 

N 

B.ter 

N. 

B.pas 

lp (A&B) 128 132 0.058 75 73 108 17 3 

lp (B) 117 329 0.0083 42 21 98 16 3 

vp3 (A&B) 208 209 0.01 40 23 139 51 18 

vp3 (B) 200 209 0.00015 21 2 135 48 17 

helicase (A&B) 165 214 0.057 60 52 128 32 5 

helicase (B) 146 214 0.00018 12 5 110 31 5 

rdrp (A&B) 155 176 0.018 38 30 130 22 3 

rdrp (B) 147 176 0.0023 17 4 122 22 3 

Concat-4 (B) 67 906 0.0042 60 27 62 5 0 

Concat-3 (B) 102 617 0.0022 38 8 87 14 1 

 

 

Phylogenetic reconstruction: model selection, evolutionary rates and migration routes 

For individual and concatenated DWV-B fragment alignments (table 4:3), we used 

Jmodeltest (v.2.1) (Darriba et al. 2012; Guindon and Gascuel 2003) to compare evolutionary 

substitution models based on the Bayesian Information Criterion (Alizon and Fraser 2013) 

(table S4). In Beast 1.8, we partitioned substitution rates between the 1
st
, 2

nd
 and 3

rd
 codon 

positions. For the concatenated alignments we fit discrete trait models with asymmetric 

substitution models for host species and geographic location (note, there was insufficient 

genetic information in the individual fragment alignments to include traits). The evolutionary 

rate prior was set at 1.35 x 10
-3

 changes per site per year (95% HPD 5.41 x 10
-4

 - 2.63 x 10
-3

), 

with a lognormal distribution and standard deviation of 0.4 (Mordecai et al. 2015) to estimate 

time since divergence from a common ancestor. This rate was chosen as there was little 

temporal information in the currently available DWV-B sequences; only the lp-fragment 
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showed a weak temporal signal (correlation coefficient with best fitting root 0.27, R2 = 0.07) 

based on a MrBayes-generated phylogenetic tree analysed in TempEst (Rambaut et al. 2016). 

There was no signal for the vp3- or rdrp-fragments (correlation coefficients -0.12 and -0.19, 

R2 = 0.012 and 0.0035 respectively). For the lp-fragment, we estimated the evolutionary 

clock using a lognormal relaxed clock and an exponential growth prior, based on our standard 

model selection procedure. We used the SRD06 model of sequence evolution (Shapiro et al. 

2006). Based on this procedure, the clock rate for DWV-B was estimated as 1.99 x10
-3

 (95% 

HPD 4.58 x10
-4

 to 4.07 x10
3
); this overlaps with the 95% HPD of the mean DWV-A clock 

mean so we therefore chose to use the better supported prior previously estimated from 

DWV-A (Mordecai et al. 2015). We ran and compared nine models per fragment with 

different demography and molecular clock rates, and used path sampling maximum 

likelihood estimator, implemented in Beast 1.8, to determine the best model (table S4). All 

models were run long enough to obtain effective sample sizes >200 for all parameters, with a 

10% burn in of MCMC generations, sampling the chain at equal distances to obtain a total of 

10,000 trees per analysis. By analysing the output in Tracer (v1.6) we checked models for 

convergence, determined if a strict clock could be excluded or not by examining the relaxed 

lognormal clock’s coefficient of variation statistic (if it shoulders the zero boundary a strict 

clock cannot be excluded), and for models with an exponential growth prior, we determined 

if there was significant exponential growth (Drummond and Bouckaert 2015). We produced 

Maximum Clade Credibility (MCC) trees (TreeAnnotator (v1.8.4)) to infer host ancestral 

state probabilities. Phylogenetic trees were also produced for each alignment using MrBayes 

3.2.6. For the concatenated data sets, well supported rates for migration routes between host 

species and sites were identified using a Bayes factors analysis (SPREAD v1.0.6 (Bielejec et 

al. 2011)), with a Bayes Factor of 3 as a cut-off.  

 

Population genetics measures 

For DWV-B concatenated fragment (including lp-gene), a median joining phylogenetic 

networks was produced using PopArt (v.1.7) (http://popart.otago.ac.nz). Using 

DNASPv5.10.1 (Librardo and Rozas 2009) we calculated Kst, a measure of population 

differentiation based on the proportion of between-population nucleotide differences (Hudson 

et al. 1992) and the nearest neighbour statistic SNN, which calculates the proportion at which 

the genetic nearest neighbours are found within same population (Hudson 2000).  

 

http://popart.otago.ac.nz/
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Results 

 

Prevalence 

We analysed the prevalence of DWV-A, DWV-B and N. ceranae in 355 A. mellifera, 640 

Bombus terrestris and 280 B. pascuorum across 12 locations, illustrated in figure 4:1. We 

find that Varroa presence is a significant predictor of prevalence of DWV-complex for all 

bee species, predicting a ~10 fold increase in A. mellifera and ~15 fold increase in both B. 

terrestris and B. pascuorum (table S5) (GLMM: estimate ± s.e. of the fixed factor ‘Varroa 

presence’ in the model = 3.06 ±1.02, p = 0.003, table 4:4). There was no evidence that 

honeybees and bumblebee species respond differently to Varroa presence, as the interaction 

between species and Varroa did not contribute to the model fit (anova: χ
2 

= 4.252, p = 0.119). 

Importantly, given that all Varroa-free sites were islands, there was no evidence that 

island/mainland location influenced DWV prevalence (anova: χ
2 

= 4.252, p = 0.12). [To 

further confirm that Varroa presence, rather than an island effect, explained DWV 

prevalence, we ran the model on a dataset excluding Varroa-free sites and with island as an 

explanatory model: there was no significant difference in DWV prevalence on Varroa-

present islands compared to Varroa-present mainland (estimate ± s.e. of the fixed factor 

‘island/mainland’ in the model = 0.51 ±0.89, p=0.57). In addition, we ran a model on a 

dataset including only island sites; here Varroa presence remained a significant explanatory 

factor of DWV prevalence, with higher prevalence on Varroa-present islands compared to 

Varroa-free islands (estimate ± s.e. = 3.06 ±1.03, p < 0.001)]. Our full model for DWV 

prevalence fitted the data significantly better than the null model with only random factors 

included (anova: χ
2 

= 25.493, p < 0.001). Examining the DWV variants individually, Varroa 

presence influences DWV-B prevalence (estimate ± s.e. = 3.16 ±1.11, p = 0.004, table 4:4); 

DWV-A was notably absent from samples collected from all Varroa-free sites (save for one 

B. terrestris from the Isle of Man): in a GLMM without Varroa as a predictor, sunshine hours 

was a positive significant predictor of DWV-A (estimate ± s.e. = 8.71 ± 2.82, p = 0.022) 

(table 4:4). Coinfection rates of DWV-A and -B are also influenced by Varroa presence (χ
2 

= 

48.612, p < 0.001), linked to low DWV-A presence in Varroa-present sites only. 
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Figure 4:1: Prevalence data mapped by pollinator genus (Apis a-c, Bombus d-f), location and 

Varroa presence/absence. Varroa-free sites are black, Varroa-present islands are light purple, 

and Varroa-present mainland sites are fuchsia pink. 
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Table 4-4: Best model explaining pathogen prevalence using GLMMs with binomial error 

structure and logit function 

Pathogen (response) Parameters (predictors) Estimate SE z-value P-value 

DWV-complex 

prevalence Intercept -2.46 0.88 -2.77 0.0056 

 

B. pascuorum -2.32 0.39 -6.04 <0.001 

 

B.terrestris -2.38 0.35 -6.88 <0.001 

 

Varroa presence 3.06 1.02 2.97 0.0030 

DWV-A Intercept -1.10 0.39 -2.81 0.0050 

 

B. pascuorum -4.64 1.10 -4.24 <0.001 

 

B.terrestris -4.36 0.7 -6.23 <0.001 

 

Log sunshine hours duration 8.73 2.82 2.29 0.022 

DWV-B Intercept -2.49 0.87 -2.86 0.0042 

 

B. pascuorum -2.22 0.38 -5.19 <0.001 

 

B.terrestris -2.38 0.35 -6.89 <0.001 

 

Varroa presence 2.96 1.01 2.95 0.0032 

N. ceranae Intercept -2.35 0.64 -3.70 <0.001 

 

B. pascuorum -3.31 0.99 -3.33 <0.001 

 

B.terrestris -2.97 0.81 -3.68 <0.001 

  Varroa presence -0.33 1.17 -0.28 0.78 

 
There were differences in DWV prevalence between honeybee and bumblebee hosts in 

association with Varroa presence, which are shown in figure 4:2 and illustrated in figure 4:1. 

In tests of proportions, both DWV-A and DWV-B were significantly less prevalent in A. 

mellifera on Varroa-free islands compared to Varroa-present sites (including island and 

mainland sites) (χ
2 

= 56.982, p < 0.0001 and χ
2
=93.172, p < 0.0001, respectively) (figure 

4:2a&b). Prevalence of DWV-A was equally low in B. terrestris and B. pascuorum across all 

sites (χ
2 

= 2.772, p = 0.25; χ
2 

= 1.58, p = 0.45) (figure 4:2a), but prevalence of DWV-B was 

significantly lower in Varroa-free sites for both B. terrestris and B. pascuorum (χ
2 

= 60.84, p 

< 0.001 and χ
2 

= 12.042, p = 0.002, respectively) (figure 4:2b).  

  

In contrast, the prevalence of N. ceranae – for which there is no evidence that Varroa effects 

transmission - was unaffected by the presence of Varroa (GLMM estimate ± s.e. = -0.33 

±1.17, p = 0.78, table 4:4) as shown in figure 4:2c and illustrated in figure 4:1. There was 

also no evidence that island/mainland location influenced N. ceranae prevalence (anova: χ
2 

= 

1.041, p = 0.31). N. ceranae prevalence was low generally; but there was a significant 

difference between species, with prevalence in A. mellifera more than 6 times higher than B. 

terrestris and B. pascuorum (table S5, illustrated in figure 4:1). 
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Figure 4:2: Prevalence (with 95% confidence intervals) of Deformed wing virus (DWV) type 

A (a) and type B (b), and Nosema ceranae (c) by host species and Varroa-free (V-, grey), 

Varroa-present islands (V+I, black) and Varroa-present mainland sites (V+M, white). 
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Viral load 

We quantified DWV-A and DWV-B from positive bees and detected a wide range of viral 

loads, from 10
3
 – 10

10
, for both A. mellifera and Bombus (figure 4:3a and b). There was a 

significant difference in DWV-B viral load between Varroa-free islands and Varroa-present 

sites (both mainland and islands) (two-sided Kolmogorov-Smirnov, D = 0.697, p < 0.001 and 

D = 0.70, p < 0.001, respectively) with low level infections (10
2
 – 10

4
 virus particles) found 

in Varroa-free sites compared to high level infections in Varroa-present sites (10
3
 -10

10
) 

(figure 4:3b): there was no difference in DWV-B load between mainland and island Varroa-

present sites (D = 0.11, p = 0.85). It is clear from GLMMs that Varroa presence is a 

significant driver of DWV-B viral load (estimate ± s.e. of the fixed factor ‘Varroa presence’ 

in the model = -0.089 ± 0.026, p < 0.001). For A. mellifera the mean DWV-B viral load is 1.5 

x 10
4 

on Varroa-free sites, compared to 4.2 x 10
6 

in Varroa-present sites, thus Varroa 

presence drives a predicted increase in mean viral load by two orders of magnitude. DWV-B 

viral load is also significantly lower in B. terrestris and B. pascuorum in Varroa-free sites 

(estimate ± s.e. of the fixed factors ‘B. terrestris’ and ‘B. pascuorum’ in the model = 0.04 ± 

0.01, p < 0.001; 0.06 ± 0.002, p < 0.01, respectively) and Varroa presence significantly 

increases the predicted mean DWV-B viral load in these bumblebee species from 3.7 x 10
3
 – 

1.7 x 10
5
 and 2.4 x 10

3
 – 7.1 x 10

4
, respectively. Sample size for DWV-A from Varroa-free 

sites was too low to estimate the effect of Varroa on DWV-A load; however, there was no 

difference in DWV-A load between Varroa-present mainland and islands (KS test: D = 0.14, 

p = 0.87). In a GLMM, DWV-A loads are significantly higher in A. mellifera compared to B. 

terrestris and B. pascuorum (estimate ± s.e. = 0.22 ± 0.023, p < 0.001). In both DWV-A and 

DWV-B models, island/mainland location did not contribute to the model fit and was 

removed from the models (anova: χ
2 

= 0.131, p = 0.72, χ
2 

= 0.09481, p = 0.76, respectively). 

  

We found no difference in N. ceranae spore load between Varroa-present islands (mean = 

78.18 spores (N = 23)) and Varroa-free islands (mean = 81.9 spores (N = 31)) (KS-test: D = 

0.36, p = 0.061) or between Varroa-present mainland sites (mean = 180.18 spores (N=34) 

and Varroa-free islands (D = 0.18, p = 0.69) (figure 4:3c). 
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Figure 4:3: % frequency of pathogen load: DWV-A (a), DWV-B (b) and Nosema ceranae (c) 

on Varroa-free islands (grey), Varroa-present islands (black) and Varroa-present mainland 

sites (white). 
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Virus population genetics and phylodynamics 

DWV–B was the most prevalent species, and all samples that tested positive for DWV–A 

were co-infected with DWV-B. While the prevalence primers (table 4:1) are species-specific 

(McMahon et al. 2016), the sequencing primers (table S2) are not, thus the majority of co-

infected individuals were sequenced as DWV-B likely reflecting its dominance within co-

infected individuals. Consequently, we focus on DWV-B for this analysis. We find that 

DWV-B populations for each fragment are not structured by host species (note, a Kst value 

nearing 1 indicates strong population differentiation: Kstlp = 0.00017, Kstvp3 = 0.0021, 

Ksthelicase = 0.0016, Kstrdrp = 0.002; p > 0.05 for all fragments). However, when all four 

fragments are concatenated together there is an extremely modest indication of host 

differentiation (Kst = 0.016, p = 0.015) (note, this fragment only contains five bumblebees 

sequences, and this significance does not hold for the concatenated alignment without the lp-

gene, which contains 15 bumblebee sequences (table 4:3) (Kst = 0.0015, p = 0.26)). There is 

evidence of moderate geographic population differentiation for all fragments (table S6a) 

supported by the concatenated fragment (Kst = 0.303, p < 0.001). Samples that are genetic 

nearest neighbours often come from the same population (Snn = 0.30; p < 0.01). We tested 

the effect of Varroa presence on the vp3 fragment, the only alignment containing multiple 

sequences from Varroa-free sites, but there was no evidence for sequence differentiation due 

to Varroa presence (Kst = 0.0008, p = 0.58). These results hold for individual fragment 

alignments containing both DWV-A and DWV-B sequences combined (table S6b).  

 

The low genetic diversity of the DWV-B phylogeny (π = 0.0042, with 60 polymorphic sites 

out of 906 sites of the concatenated fragment, examined over 67 sequences) suggests a recent 

bottleneck and subsequent exponential expansion, with the sequences forming a star-shaped 

network as expected following exponential expansion (figure 4.4). This result is supported by 

phylogenies for the concatenated fragment (figure 4:5) and each individual fragment (figure 

S3). The low levels of population structure enabled us to combine sequences from across 

populations to investigate the past demography of the virus. We found a large excess of rare 

variants compared with the neutral model, suggestive of an expanding population after a 

bottleneck (Tajima’s D for DWV-B concatenated fragment = -2.4, p = 0.002). This is 

supported for each individual fragment across populations (Tajima’s D for lp = -2.14, vp3 = -

2.5, helicase = -2.16, rdrp = -2.34; p < 0.01). 
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Figure 4:4: Median joining phylogenetic network of sequences from Deformed wing virus-B 

(N = 67). The colours represent sampling location, the size of the node represents the number 

of samples with the same sequence and the dashes on branches show the number of mutations 

between nodes. 

 

To reconstruct past changes in the DWV-B populations we ran the concatenated fragments 

(both with and without the lp-gene fragment) in Beast 1.8 to estimate the routes of 

transmission by comparing geographic and host-specific patterns dated via the mean viral 

evolutionary rate (1.35 x 10
-3

 mutations per site per year, as discussed in the methods). We 

note that the MCC trees had low posterior support (the fragment with the lp-gene had high 

posterior support (>0.8) for one major clade, but <0.6 for another (figure S4) likely due to 

extremely low genetic variation across DWV-B sequences (note, the shorter fragment without 

the lp-gene had very poor posterior support at less than 0.5, thus this model was discarded). 

The most recent common ancestor for the concatenated fragment dates back to within this 

decade (mean root height for concatenated fragment (with lp-gene) = 4.46 (95% HPD 1.56 - 

8.17), which corroborates findings for individual fragments (table S7).  All DWV-B 

individual and concatenated fragments showed exponential growth, with doubling rates 

estimated to be less than a year (doubling rate for concatenated fragments (with lp-gene) = 
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0.7 years (95% HPD 0.38 – 2.28). These data, population genetics (figure 4:4) and the 

phylogeny (figure 4:5) suggest a recent bottleneck and subsequent exponential expansion of 

DWV-B. However, although the ancestral host was identified as A. mellifera in both 

concatenated phylogenetic reconstructions (state probability Pconcatenated = 99.9%), we found 

no support for transmission routes between host species (A. mellifera and B. terrestris) in 

either direction. There is strong support for DWV-B reciprocal transmission between 

geographic locations (table S8, figure S5). However, there is no obvious pattern - for 

example, locations that are closer together do not necessarily have the strongest support. 

 

 
Figure 4:5: MrBayes tree showing phylogenetic relationships of DWV-B sequences isolated 

from A. mellifera and B. terrestris (sequences comprised of four concatenated fragments of 

DWV-B; regions of the lp-, vp3-, helicase- and rdrp-gene fragments, total length = 906bp). 

Host species are A. mellifera unless indicated by an asterisk to be B. terrestris. The tip ends 

are coloured by geographic location (see key). Posterior support is indicated for nodes up 

until the 4
th

 node.  



77 

 

SMRT sequencing 

Single molecule sequencing produced 31,297 non-chimeric reads  greater than 1000bp long, 

with an average length of 4172 bp. 24,302 reads mapped to known viruses, with 20,578 reads 

mapping to DWV genomes. Reads mapping to DWV genomes reached a maximum of 

6048bp from the 3’ end, including the helicase and rdrp genes but not the vp3 and lp genes. 

DWV-B was shown to be the dominant species across both Varroa-present and Varroa-free 

sites, with 20,560 DWV-B reads, compared to 18 DWV-A reads across sites and zero DWV-

C reads. Window analysis of DWV reads showed no evidence of either significant 

recombination or unknown variants. We found recombination between DWV-A and DWV-B 

to be rare in nature with only five potential recombinants (figure S6) within the rdrp-gene 

region, found in A. mellifera from Liverpool, which was notably the pool with the largest 

population of viral sequences (N = 12,108, compared to a range of 146 viral reads (from the 

B. terrestris population in Brest) – 8703 viral reads (from the A. mellifera population in 

Brest). Similarity of reads to DWV-A, DWV-B and DWV-C showed no evidence of 

unknown variants with most reads placed in a large, single cluster containing reads with high 

similarity to both DWV-A and DWV-B (figure S7).  

 

Discussion 

We have shown that infestation of honeybees by the virus-vectoring Varroa mite is correlated 

with increased DWV prevalence and titre in sympatric wild bumblebee populations, who 

themselves are not parasitized by Varroa mites. In direct comparison, prevalence and 

intensity of N. ceranae, a microsporidian parasite not hypothesised to be vectored by Varroa, 

was unaffected by the presence of this honeybee ectoparasite. Together, our results show that 

Varroa-present honeybees are associated with a higher DWV disease prevalence and titre in 

wild bumblebees. This demonstrates how the introduction of a specialised vector can have 

community-level effects on pathogen transmission. 

 

Data is scarce on DWV prevalence, titre and diversity preceding the arrival of Varroa into 

western honeybee populations, especially in relation to wild bees. However, low-level and 

apparently benign DWV infections likely circulated in A. mellifera (de Miranda and 

Genersch 2010; Genersch and Aubert 2010), suggested to be transmissible within its 

honeybee host via multiple routes both directly (faecal-oral and food contamination) and 

indirectly (sexual and transovarial) (reviewed in Manley et al. (2015)). Indeed, phylogenetic 

analyses suggest that the current DWV epidemic is a re-emergence of the virus driven by 
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anthropogenic movement of honeybees, coinciding with the invasion of a novel vector, the 

Varroa mite (Wilfert et al. 2016). The primary mechanism behind the dramatic effect of 

Varroa on DWV re-emergence is likely the increase in transmission events and titre through 

the direct injection of viruses into the honeybee haemolymph. It is also possible that the 

physical feeding activity of the mite itself (Kuster et al. 2014) or immunosuppression of the 

bee (Nazzi et al. 2012) could cause the increase in DWV. In addition, it has been suggested 

that Varroa drives selection on DWV leading to loss of variant diversity, and resulting in the 

dominance of a single master variant (Martin et al. 2012).  

 

Vector-borne transmission places a strong selection pressure on pathogens regardless of 

whether a pathogen is actively or passively transmitted by the vector, because even with a 

mechanical mechanism of transmission, complex adaptations between vector and pathogen 

need to occur for transmission to take place (Gray and Banerjee 1999). Thus, pathogen 

evolution is constrained by selection because of the inevitable trade-offs between adaptations 

to the phylogenetically divergent vector and host species (Chare and Holmes 2004; Jenkins et 

al. 2002). For example, an amino acid substitution adaptive for DWV proliferation in the 

vector would likely be maladaptive to proliferation in the bee host; indeed, a study across the 

capsid proteins of 36 plant viruses observed increased purifying selection against amino acid 

change in those viruses transmitted by vectors (Chare and Holmes 2004).  It is currently 

controversial as to whether DWV replicates in the Varroa mite (Erban et al. 2015; Ryabov et 

al. 2014), but still adaptations are likely to occur. Despite these selection pressures, DWV 

remains a multihost pathogen and we see community-wide effects of raised prevalence and 

titre amongst our wild bee populations. Given the variety of transmission pathways that will 

concurrently occur within a honey bee colony, it is plausible that selection on DWV by 

Varroa-transmission is diluted, thus not limiting interspecific transmission that likely occurs 

via flower sharing and other social behaviours (reviewed by Manley et al. (2015)). 

 

In a comprehensive study of over 400 vector-borne plant viruses the majority of viruses 

showed high levels of vector-specificity coupled with a broad host range (Power and Flecker 

2003). This suggests that the biological barriers to infecting a vector must be greater than 

those to overcome host defences and infect multiple hosts (Power 2000). This is logical given 

the disparate relatedness of vectors and their hosts; in this case the Varroa mite compared to 

pollinator hosts. Certainly, the immune repertoire across bee species, including social and 

solitary species, has been shown to be strikingly similar, which could reduce biological 
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barriers to infecting multiple pollinator hosts (Barribeau et al. 2015). However, evidence for 

co-evolution between anti-viral RNAi genes, which exhibit rapid adaptive evolution, and 

viruses in invertebrates, suggests selection pressures on adapting to multiple hosts likely exist 

(Obbard et al. 2009). We find the same viral variants circulating between hosts, yet 

differences in prevalence and viral load across hosts, indicating that there are few barriers to 

exposure and initial infection, but the host tolerances or susceptibilities exist. For DWV-A 

and –B we find that prevalence and titre is significantly higher in A. mellifera compared to 

both B. terrestris and B. pascuorum. Interestingly, while the two variants are equally 

common across honeybees, in our bumblebee hosts DWV-A is extremely rare while DWV-B 

is prevalent, suggesting the viral variants differ in their ability to cross host barriers. 

 

We present compelling evidence, in line with other studies (Fürst et al. 2014; Wilfert et al. 

2016), that A. mellifera is the ancestral and the reservoir host for DWV. Significantly higher 

prevalence of both DWV variants in A. mellifera compared to bumblebees found in this 

study, and others is consistent with this hypothesis. The prevalence of DWV in A. mellifera 

has been linked to prevalence in bumblebees, strongly suggesting spillover between managed 

honeybees and wild pollinator populations (Fürst et al. 2014). [Note, we did not find this 

effect, potentially because of the dominance of DWV-B in our samples that is highly 

prevalent in bumble bees compared to DWV-A, while in the 2011 survey by Fürst et al. 

(2014), DWV-B was prevalent, but not significantly different to DWV-A]. Replication of 

DWV in bumblebees has previously been demonstrated by detection of the negative strand, 

which is only present during replication for a positive-sense RNA virus (Fürst et al. 2014; 

Radzevičiùte et al. 2017). While we did not test for replication specifically, the high viral 

loads across bumblebees, specifically in DWV-B (figure S8), combined with the effect of 

Varroa-presence increasing DWV viral load in bumblebees, suggests we are detecting true 

DWV infections in bumblebee hosts. However, we cannot confirm if higher viral loads in 

bumblebee hosts are simply the result of spillover of higher viral loads also recorded in 

sympatric honeybees; or if the recently emerged DWV-B variant that dominates in our 

samples is better able to replicate to high level in bumblebee hosts. As the same strains are 

found in Varroa-free sites but at lower prevalence and titre, spillover is the likely 

explanation.   

 

RNA viruses frequently recombine, which can result in phenotypic changes including 

increased virulence. It has been shown experimentally and in the field that recombination 
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occurs between DWV-A and -B (Moore et al. 2011; Ryabov et al. 2014; Wang et al. 2013; 

Zioni et al. 2011). Ryabov et al. (2014) suggest an association between Varroa transmission 

and a virulent recombinant DWV strain. In our populations, evidence from both SMRT and 

Sanger sequencing showed that while recombination occurs between DWV-A and -B, in both 

the lp gene (5’ end) and rdrp gene (3’end), their occurrence was rare in nature. The 

recombination points we find differ from those determined by others (Moore et al. 2011; 

Ryabov et al. 2014). While the rare recombinants were found only in sites with Varroa, this 

may simply be explained by the higher prevalence and titre, especially of DWV-A, in 

Varroa-present sites; rather than Varroa-mediated selection as suggested by Ryabov et al. 

(2014). In addition, recombinants only occurred in honeybee hosts; again this likely reflects 

the higher prevalence of both virus variants in A. mellifera, rather than host specificity. 

 

In contrast to Martin et al. (2012), we did not find greater viral diversity without Varroa and 

we found no evidence of Varroa causing a decrease in viral diversity. However, pathogens 

can spread ahead of their vector if a host can carry, replicate and transmit viruses. As our 

populations have lived through 20 years of Varroa infestation to date, we would expect to 

find a similar diversity of viral variants on Varroa-free islands due to spillover from imported 

infected bees over time. A surprising finding is that DWV-B is the dominant variant, rather 

than the globally distributed DWV-A variant implicated in the current worldwide DWV 

epidemic (Martin et al. 2012; Wilfert et al. 2016). We find little genetic variation across the 

DWV-B populations, with no population structure by host species and only modest 

population structure by location. Phylogenetic analyses suggest that DWV-B emerged within 

the last decade and expanded exponentially after this genetic bottleneck; this result is 

supported by a significant excess of rare mutations in these populations. Recent surveys 

across similar locations from 2009 (Wilfert et al. 2016), 2011 (McMahon et al. 2016) and the 

current 2015 data further support our data showing a recent exponential spread of DWV-B: in 

2009 DWV-A dominated; in 2011 DWV-B was high but equal to that of DWV-A; and in 

2015 we find DWV-B is dominant. Interspecific transmission clearly occurs because the 

same strains are found across all bee species. We find DWV-B to be far more prevalent than 

DWV-A in bumblebees across our samples. This is particularly concerning in light of 

McMahon et al. (2016) demonstrating in laboratory studies that DWV-B is a more virulent 

strain than DWV-A in A. mellifera, with unknown effects on Bombus species. 
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Emerging viral pathogens exert an additional pressure on already vulnerable wild bee 

populations. We demonstrate a clear impact of Varroa on disease prevalence in honeybees 

and also sympatric wild bumblebees, which highlights the importance of controlling the 

Varroa mite for the protection of all pollinators. Greater knowledge of the epidemiology and 

cross-species effects of DWV – specifically with regard to different genetic variants - will aid 

efforts for disease control. One controversial outcome of this research is that if honeybees are 

the main reservoir host and source of disease to wild bees, they need to be managed to protect 

wild pollinators, which could include limiting or regulating bee keeping in conservation 

areas. 
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Supplementary material 

 

Supplementary tables 

Table S1. The town and location of field site, and the total number of each bee species 

collected from each site. Note. Bombus terrestris and B. lucorum are cryptic and required 

molecular identification post-collection 

Location  Apis  

mellifera 

B. terrestris B. lucorum B. pascuorum 

Guernsey (St Peter Port)  22 45 15 32 

Jersey (St Helier)  30 59 1 33 

Alderney (St Anne)  30 57 3 30 

Cherbourg (marina area)   30 61 3 30 

Ushant  30 13 2 29 

Le Conquet, Brittany  33 59 2 19 

Quiberon, Brittany  30 59 1 19 

Belle Ile (Le Palais)  29 59 0 1 

Penryn (University campus)  30 56 5 30 

Isles of Scilly (St Mary’s)  30 60 0 0 

Liverpool  29 59 0 29 

Isle of Man (Douglas)  32 53 5 29 
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Table S2. Primer sequences, protocols and amplicon product size for four genomic fragments 

across a) DWV–A and b) DWV-B genomes. Note for DWV-A rdrp primers, the genome 

position is given in brackets as it was not included in the name 

a) 
Primer name and 

genome position 

Sequence Amplification 

program 

35 cycles 

 

Amplicon 

(bp) 

Reference 

DWV–A primers     

Lp _F1153 

Lp_ B1806 

ATTAAAAATGGCCTTTAGTTG 

CTTTTCTAATTCAACTTCACC 

30 s at 94C 

30 s at 55C 

30 s at 72C 

X35 cycles 

653 Wilfert et 

al. (2016) 

 

VP3_DWV F1 

VP3_DWV B1 

CCTGCTAATCAACAAGGACCTGG 

CAGAACCAATGTCTAACGCTAACCC 

30 s at 94C 

30 s at 55C 

30 s at 72C 

X35 cycles 

355 Genersch 

(2005) 

 

Helicase_6285F 

Helicase_6693R 

GAGCGTACACTATGGTCAGA 

GTTCACGACGCTTACTACAC 

30 s at 94C 

30 s at 56.6C 

30 s at 72C 

X35 cycles 

409 Berényi 

et al. ( 

2007) 

 

RdRp_F15 (9247) 

RdRp_B23 (9697) 

TCCATCAGGTTCTCCAATAACGGA 

CCACCCAAATGCTAACTCTAAGCG 

30 s at 94C 

30 s at 49.2C 

30 s at 72C 

X35 cycles 

450 Yue and 

Genersch 

(2005) 

 

     

b)     

DWV–B primers     

Lp_1_1520F AAGAAAGTGAAACGGGTGGC 30 s at 94C 

30 s at 62.2C 

30 s at 72C 

X35 cycles 

437bp This 

study Lp_1_1998R ATTAAGCGCGCCAATTCCTT 

VP3_1_3707 CAAGGACCCGGCAAAGTAAG 30 s at 94C 

30 s at 63.3C 

30 s at 72C 

X35 cycles 

383bp 

VP3_1_4089 CCATCACGGCAGCGATTAAA 

Heli_1_6428 TATGCAGCAGGAATGAACGC 30 s at 94C 

30 s at 59.6C 

30 s at 72C 

X35 cycles 

318bp 

Heli_1_6745 TGTAGAACGCTCGTGGACAT 

RdRp_2_9343 CGTGCTAGTTTGTTACGGTGA 30 s at 94C 

30 s at 61.6C 

30 s at 72C 

X35 cycles 

435bp 

RdRp_2_9777 ACATCCATTTCTTCCCATGTGA 
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Table S3. List of reference virus genomes used in BWA to align SMRT sequence reads. * 

DWV-C sequences can be found at http://www.ebi.ac.uk/ena/data/view/CEND01000001 

Virus 

Full virus name Genbank 

Reference 

 

BQCV Black queen cell virus NC-0003784  

SBPV Harpenden Slow bee paralysis virus GU93876  

SBPV Roththamsted Slow bee paralysis virus EU035616  

DWV-A Deformed wing virus A NC-004830  

DWV-B Deformed wing virus B NC-006494  

DWV-C Deformed wing virus C ENA: CEN01000001*  

SBV Sacbrood virus AF092924  

ABPV Acute bee paralysis virus NC-002548 

KBV Kashmir bee virus NC-004807 

IAPV Israeli acute paralysis virus KY243933 

CBPV Chronic bee paralysis virus NC-010711 and NC010712 

LSv 1 Lake Sinai virus 1 HQ871931  

LsV 2 Lake Sinai virus 2 HQ888865  

Alpv Aphid lethal paralysis virus        KJ817182  

AmFv Apis mellifera filamentous virus          NC- 027925  

New bumblebee 

viruses 

Acry1 

Bloom1 

Bloom2 

Bloom3 

Bou1 

Bou2 

Bou3 

Corn1 

Dia1 

Dicist_Full 

Dicist_Half 

Grange1 

I1 

I2 

Mut1 

N1 

N2 

Sac1 

Toti1 

Toti2 

Toti3 

Toti4 

Wuchang1 

 

N/A 

 

N/A 

 

Pascall 

et al, 

pers 

comm 

 

 

http://www.ebi.ac.uk/ena/data/view/CEND01000001
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Table S4. Substitution models for each DWV-B alignment based on jModelTest (Darriba et 

al. 2012; Guindon and Gascuel 2003). Results of path sampling maximum likelihood 

estimator analysis comparing demographic and molecular clock models run in Beast 1.8. 

Analyses of each model in Tracer showed that a strict molecular clock could not be excluded 

for any model, and all fragments had significant exponential growth, thus for these models * 

we override path sampling selection 

Fragment and 

traits 

Substitution 

model 

Molecular 

clock 

Population demography 

Constant Exponential GMRF 

Skyride 

DWV-B Lp  HKY + G Strict -1335.06 -1317.47 -1323.90 

(no traits)  Exponential -1332.10 -1313.63* -1321.31 

  Lognormal -1332.00 -1319.72 -1327.38 

DWV-B VP3  K80 + G Strict -1245.50 -1226.50 -1235.76 

(no traits)  Exponential -1245.57 -1222.91 -1229.38 

  Lognormal -1241.78 -1220.23* -1237.03 

DWV-B Heli  HKY + G Strict -749.74 -743.06 -750.49 

(no traits)  Exponential -749.67 -745.22 -750.50 

  Lognormal -751.36 -744.81 -751.41 

DWV-B RdRp  K80 + G Strict -621.20 -610.98 -617.97 

(no traits)  Exponential -621.35 -610.82 -618.76 

  Lognormal -621.00 -610.63* -618.74 

DWV_B concat 4  K80 + G Strict -2573.87 -2556.42 -2560.85 

(host and site)  Exponential -2573.13 -2558.87 -2562.56 

  Lognormal -2573.58 -2558.83 -2560.00 

DWV-B concat 3  HKY + G Strict -1941.46 -1915.93 -1923.10 

(host and site)  Exponential -1940.47 -1918.40 -1926.44 

  Lognormal -1940.86 -1917.77 -1928.30 
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Table S5. Predicted proportions (%) of pathogen prevalence for three bee species when 

Varroa is present and absent (conversion of GLMM (table 4:1) estimates on the logit scale to 

proportions using the formula exp(x)/(1+exp(x)), where x equals the parameter estimate 

Response Species 

Prevalence when 

Varroa absent 

Prevalence when  

Varroa present 

DWV-

complex A. mellifera 7.87 64.56 

 

B. pascuorum 0.83 15.19 

 

B. terrestris 0.78 14.43 

DWV-B 

alone A. mellifera 7.66 61.54 

 

B. pascuorum 0.89 14.80 

 

B. terrestris 0.76 12.89 

N. ceranae A. mellifera 8.71 6.42 

 

B. pascuorum 0.35 0.25 

  B. terrestris 0.49 0.35 

 

 

Table S6. Population genetics for DWV by individual fragment: Kst and Snn are calculated 

to determine if populations are structured by either host or geographic location; a) DWV-B 

only alignments and (b) DWV-A and B combined. Bold text indicates significance. 

a) 

Fragment Trait Kst P Snn p 

lp host -0.0017 >0.05 0.71 >0.05 

lp location 0.21 <0.01 0.47 <0.01 

vp3 host 0.0021 >0.05 0.56 >0.05 

vp3 location 0.074 <0.01 0.19 <0.01 

vp3 Varroa 0.0001 >0.05 0.94 >0.05 

helicase host 0.0016 >0.05 0.64 >0.05 

helicase location 0.068 <0.01 0.25 <0.01 

rdrp host 0.0020 >0.05 0.72 >0.05 

rdrp location 0.090 <0.01 0.025 <0.01 

 

b) 

Fragment Trait Kst P Snn p 

lp host -0.0001 >0.05 0.075 >0.05 

lp location 0.050 <0.01 0.36 <0.01 

vp3 host -0.00054 >0.05 0.56 >0.05 

vp3 location 0.068 <0.01 0.21 <0.01 

vp3 Varroa 0.0008 >0.05 0.95 >0.05 

helicase host 0.00042 >0.05 0.59 >0.05 

helicase location 0.054 <0.01 0.29 <0.01 

rdrp host 0.0083 >0.05 0.79 >0.05 

rdrp location 0.012 <0.01 0.27 <0.01 
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Table S7. Mean root heights and exponential growth with 95% HPD (Highest posterior 

density) in brackets, estimated from Beast 1.8 models for concatenated and individual 

fragments. Note: Concat 3 is vp3, helicase and rdrp fragments concatenated, Concat 4 

additionally includes lp-fragments). 

Fragment Partitions 

Mean exponential 

growth rate (95% HPD) 

Doubling 

rate 

Mean root height 

(95% HPD) 

Concat 3 no traits 1.46 (0.46 - 2.81) 0.47 4.40 (1.58 -7.98) 

Concat 3 host and site 1.47 (0.44 -  2.71) 0.47 4.46 (1.56 -8.17) 

Concat 4 no traits 0.99 (0.30 - 1.84) 0.70 5.69 (1.98 -10.37) 

Concat 4 host and site 0.95 (0.31 -1.78) 0.73 5.83 (1.91 -10.64) 

Lp-gene no traits 1.07 (0.26  -2.11) 0.65 6.31 (2.11 -12.27) 

Vp3-gene no traits 0.92 (0.24 -1.87) 0.76 7.14 (2.05 -13.93) 

Helicase-gene no traits 1.32 (0.15 - 2.83) 0.52 4.12 (1.13 -8.21) 

RdRp-gene no traits 2.00 (0.31 -4.10) 0.35 3.45 (1.10 -6.61) 

 

Table S8. Bayes factor support for DWV-B transmission between sites for concatenated 

fragments without lp-gene (a), and with lp-gene (b). Note, not all sites had samples where all 

four, or all three, fragments were amplified, thus not all locations could be included in this 

analysis (i.e. Isle of Man and Liverpool). 

 

a) 
 Receiver      

Donor Falmouth Jersey Cherbourg Le 

Conquet 

Belle Ile Quiberon 

Falmouth NA 114 84 93 64 90 

Jersey ns NA 255 40 ns ns 

Cherbourg 64 ns NA 185 ns ns 

Le Conquet 99 58 52 NA 52 40 

Belle Ile 60 78 31 23 NA 43 

Quiberon 56 ns ns 38 84 NA 

 

 

 

b) 
 receiver       

donor Liverpool Falmouth Jersey Cherbourg Le 

Conquet 

Belle Ile Quiberon 

Liverpool NA 228 230 ns ns ns ns 

Falmouth ns NA 88 86 ns ns ns 

Jersey ns ns NA 599 46 62 140 

Cherbourg ns 81 65 NA 81 ns ns 

Le Conquet 79 179 239 ns NA 81 57 

Belle Ile ns ns ns 28714 45 NA 51 

Quiberon ns 62 259 ns 102 ns NA 
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Supplementary figures 

 

 
Figure S1. Location of field sites: white circles are Varroa-free islands, black circles are 

Varroa-present islands, and black triangles are Varroa-present mainland sites 

 

 

 
Figure S2. DWV-A (a) and DWV-B (b) 8 points standard curve and amplification plot  
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Aims 

The aims of this field study are to test how the viral vector Varroa destructor changes 
the disease dynamics of multi-host pathogens in honeybees and wild bumblebees. 
We focus on four target viruses, Deformed wing virus (DWV), Black Queen Cell 
Virus (BQCV), Acute bee paralysis virus (ABPV) and Slow bee paralysis virus 
(SBPV). We are collecting data on virus prevalence, titre and sequences for the four 
viruses and four species of bee. Below we present our progress and data collected 
to date. 

Field sampling 

From June to September 2015 we completed collection of ~30 Apis mellifera, ~60 
Bombus terrestris/lucorum complex and ~30 B. pascuorum from 14 field sites across 
France, England and Scotland. Field sites included four Varroa-free islands – 
Alderney, Ushant, Scilly Iles, and the Isle of Man; four Varroa-positive islands - 
Guernsey, Jersey, Belle Ile and the Isle of Arran; and six Varroa-positive mainland 
sites located near to the island sites – Cherbourg , Le Conquet, Quiberon, Penryn, 
Liverpool and Ardrossan (figure 1). At each site, collections were made within a 1km2 
area of urban environment. 

There was some variation in the prevalence of species present at each site (table 1). 
Note, B. pascuorum and B. lucorum are not present on the Scilly Isles, and poor 
weather conditions reduced collections of all species in Scotland – particular 
honeybees. 

  

 

Figure 1. Location of field sites. 
White circles are Varroa-negative 
islands, black circles are Varroa-
positive islands, and black triangles 
are Varroa-positive mainland sites. 

 

Annual report to C B Dennis trust, May 2016 

Multi-host pathogens of honeybees and wild bumblebees:  

Does Varroa change disease dynamics? 

 

Robyn Manley and Dr Lena Wilfert 
Centre for Ecology and Conservation, University of Exeter 

 

Aims 

The aims of this field study are to test how the viral vector Varroa destructor changes 
the disease dynamics of multi-host pathogens in honeybees and wild bumblebees. 
We focus on four target viruses, Deformed wing virus (DWV), Black Queen Cell 
Virus (BQCV), Acute bee paralysis virus (ABPV) and Slow bee paralysis virus 
(SBPV). We are collecting data on virus prevalence, titre and sequences for the four 
viruses and four species of bee. Below we present our progress and data collected 
to date. 

Field sampling 

From June to September 2015 we completed collection of ~30 Apis mellifera, ~60 
Bombus terrestris/lucorum complex and ~30 B. pascuorum from 14 field sites across 
France, England and Scotland. Field sites included four Varroa-free islands – 
Alderney, Ushant, Scilly Iles, and the Isle of Man; four Varroa-positive islands - 
Guernsey, Jersey, Belle Ile and the Isle of Arran; and six Varroa-positive mainland 
sites located near to the island sites – Cherbourg , Le Conquet, Quiberon, Penryn, 
Liverpool and Ardrossan (figure 1). At each site, collections were made within a 1km2 
area of urban environment. 

There was some variation in the prevalence of species present at each site (table 1). 
Note, B. pascuorum and B. lucorum are not present on the Scilly Isles, and poor 
weather conditions reduced collections of all species in Scotland – particular 
honeybees. 

  

 

Figure 1. Location of field sites. 
White circles are Varroa-negative 
islands, black circles are Varroa-
positive islands, and black triangles 
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Figure S3. Individual fragment phylogenetic trees produced using MrBayes analysis with all 

major nodes showing high posterior support >0.8.  
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Figure S4. Maximum clade credibility (MCC) tree for Deformed wing virus (type B) 

(genomes comprised of four concatenated fragments of DWV-B; regions of the lp-, vp3-, 

helicase- and rdrp-gene fragments, total length = 906bp) showing host and location structure. 

Branches are coloured according to host species (A. mellifera in red, and B. terrestris in 

blue), and the branch tips are coloured by location (see key). Posterior support >0.5 is 

indicated for nodes up to the 3rd order. The scale is time, in years. 
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Figure S5. DWV-B transmission routes between sampling locations supported by Bayes 

factors >3 between field sites based on concatenated fragments - with (a) and without (b) lp-

gene included. Note, the dataset that included the lp-gene didn’t include any sequences from 

Liverpool or the Isle of Man. 

  



92 

 

 

 
 

 
Figure S6. Three DWV reads from SMRT sequencing of A. mellifera pool collected from 

Liverpool, identified as recombinant within the rdrp-gene: DWV-A (red) and DWV-B (blue). 

Note, five reads were identified as recombinants by the analysis, but only the three displayed 

above are convincing. 
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Figure S7. Similarity of SMRT sequencing reads to DWV-A, DWV-B and DWV-C showed 

no evidence of unknown variants with most reads placed in a large, single cluster containing 

reads with high similarity to both DWV-A and DWV-B. Example plots from two pools a) B. 

terrestris and b) A. mellifera collected from Le Conquet, France. 
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Figure S8. Viral titre by host for DWV-A and DWV-B: A. mellifera and Bombus species 

combined 
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Chapter 5 : The epidemiology of multihost RNA viruses in pollinator communities 

 

Abstract 

The majority of pathogens are generalists, infecting multiple hosts. Each host differs in their 

contribution to the persistence and transmission of a pathogen, often with a key host playing a 

disproportionate role. Pollinators are host to numerous multi-host RNA viruses, known to 

replicate and cause harm to both honeybees and bumblebees. The epidemiology of these 

viruses in their wild bumblebee hosts is largely unknown. The emergence and subsequent 

spread of the virus-vectoring Varroa mite, that is specific to honeybees, plays a particular 

role in the emergence of RNA viruses in honeybees and potentially indirectly in bumblebees. 

We carried out a large-scale field study, including Varroa-free locations, to test the effect of 

host species, location and Varroa-presence on RNA viral composition; we studied the 

genetics, prevalence and titre of two viral diseases, Slow bee paralysis virus (SBPV) and 

Black queen cell virus (BQCV), that have been shown to vary in their affinity to honeybees 

and bumblebees based on previous field studies. We find that viral communities and genetic 

variation within viral species are structured by location, not host species or Varroa presence. 

The same viral variants circulate between hosts in each location, indicating interspecific 

transmission is pervasive; yet, we find virus-specific host differences in prevalence and viral 

load. Significantly, the specialist honeybee mite, Varroa destructor, increases the prevalence 

of BQCV and SBPV in honeybees and, indirectly, in wild bumblebees. Importantly, in 

contrast to DWV, BQCV and SBPV viral loads are not increased by Varroa presence, 

indicating these viruses have a less active association with Varroa. Our findings provide 

further evidence that effective control of Varroa in managed honeybee colonies is necessary 

to mitigate further disease emergence, and alleviate the pressure on our vital wild bee 

populations. 

 

Introduction 

The majority of pathogens exist in complex communities infecting multiple host species 

(Pedersen et al. 2005; Woolhouse et al. 2001). Pathogen host-switching has been a major 

cause of epidemics in humans and vertebrates (Woolhouse et al. 2005). Within multi-host 

systems, host species are unlikely to contribute evenly to disease transmission as they vary in 

their abundance, ecology and behaviours, as well as in their susceptibility to pathogens and 

subsequent transmission potential (Haydon et al. 2002; Streicker et al. 2013). Thus, often a 

key species drives a disproportional amount of the disease persistence and transmission to 
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sympatric hosts, while other hosts are sub-optimal for pathogen transmission (Streicker et al. 

2013). Further, the addition of a vector into these complex multi-host transmission cycles can 

complicate systems as the vector’s behaviour and population dynamics must be taken into 

account (Dobson 2004). For example, a generalist vector can dilute transmission by 

parasitising multiple hosts with varying transmission potential e.g. the white-footed mouse is 

the most competent vector of Borrelia burgdorferi (the causative agent of Lyme disease), 

thus increased diversity of mammalian hosts that are hosts for the tick-vector but sub-optimal 

for the pathogen, dilute the impact of this key host on disease transmission (LoGiudice et al. 

2003). Conversely, a specialist vector can increase the transmission potential of a key host 

e.g. the American robin is believed to be responsible for the West Nile virus epidemic in New 

York due to preferential feeding behaviour of a mosquito vector on this relatively rare but 

highly competent host (Kilpatrick et al. 2006). Thus, consideration of the epidemiology of 

pathogens across multiple host species, and vector behaviour, is essential to identify key 

hosts and mechanisms driving disease emergence, and ultimately for disease control.  

 

Pollinators are host to a large number of RNA viruses known to be pathogenic to honeybees, 

and more recently discovered to be multi-host pathogens, prevalent in wild bee populations 

(Evison et al. 2012; Fürst et al. 2014; Levitt et al. 2013; McMahon et al. 2015; Singh et al. 

2010). However, there are known differences in viral prevalence and load across honeybee 

and bumblebee hosts for many RNA viruses (McMahon et al. 2015). The mechanisms behind 

host heterogeneity for DWV are relatively well understood: A. mellifera has been strongly 

implicated as the ancestral and reservoir host for DWV (Fürst et al. 2014) in association with 

the virus-vectoring ectoparasitic mite, Varroa destructor (Wilfert et al. 2016, chapter 4 of this 

thesis). Varroa jumped from its native Asian host, Apis ceranae, to the European honeybee A. 

mellifera, in the middle of last century, and has since spread worldwide (Oldroyd 1999) 

causing high colony mortality by vectoring and increasing DWV (Dainat et al. 2012; 

Genersch 2010; Highfield et al. 2009). DWV potentially increases in the mite by replication 

(Gisder et al. 2009; Ryabov et al. 2014), or possibly through bioaccumulation of virus 

particles through blood feeding (Erban et al. 2015). While Varroa is a specialist vector to 

honeybees, it indirectly increases DWV prevalence and titre in sympatric honeybees by 

dramatically increasing the transmission potential of A. mellifera, i.e. A. mellifera becomes a 

‘superspreader’ host (Lloyd-Smith et al. 2005) (chapter 4 of this thesis).  
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RNA viruses differ in their genetics and epidemiology, and in their association with the 

Varroa mite. Consequently, this will influence the risk of that virus emerging in wild 

bumblebees. Here we study the RNA viral composition and diversity across a honeybee and 

bumblebee host, with regard to geography and Varroa presence. Further, we focus on the 

epidemiology of two multi-host viruses SBPV and BQCV, and compare and contrast them 

with DWV. Based on their genomic organisation, SBPV has been assigned to the genus 

Iflavirus - the same genus as DWV (de Miranda et al. 2010b), while BQCV is a member of 

the Dicistroviridae family. Varroa has been shown experimentally to be capable of 

transmitting SBPV (Santillán-Galicia et al. 2014) and to be more prevalent in Varroa-present 

colonies (Carreck et al. 2010). However, in the wild, SBPV has been found at higher 

prevalence in certain bumblebee species (specifically in B. horturum), rather than A. mellifera 

(McMahon et al. 2015), suggesting that A. mellifera is not the reservoir host for this virus. 

Further, SBPV has been shown to be infective to B. terrestris, significantly reducing 

longevity under nutritional stress (Manley et al. 2015). This is important to realise the risk of 

viral prevalence to the health of wild bumblebees at a population level. BQCV is closely 

linked with honeybees, with significantly higher prevalence in A. mellifera compared to 

bumblebee species (McMahon et al. 2015), but there is currently no clear evidence 

associating this virus to Varroa (Locke et al. 2012; Ribière et al. 2008; Tentcheva et al. 

2004), although one recent study found a weak correlation of BQCV titre with Varroa 

infestation rates (Mondet et al. 2014). To my knowledge, there have been no studies on the 

pathogenic effect of BQCV to non-Apis hosts. 

 

We carried out a structured field survey across 12 sites, comprising of four Varroa-free and 

eight Varroa-present sites, to understand viral composition of pollinator populations, and to 

test the indirect impact of Varroa infestation of honeybees on prevalence and titre of multi-

host viruses in sympatric B. terrestris and B. pascuorum populations. Since all Varroa-free 

sites are islands, we also sampled three Varroa-present islands, to enable testing of the 

potentially confounding island effect.  We determine how host species, location and the 

presence/absence of the Varroa mite, influence viral composition and the cross-species 

epidemiology of viruses with different life histories. 

 

Methods 

Please note: The samples and many of the methods are used in both chapter 4 and 5. Details 

are repeated here for completeness, with additional methods added when necessary. 
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Bee samples 

We collected ~30 A. mellifera, ~30 B. pascuorum and ~60 B. terrestris/lucorum from 12 sites 

across the British Isles and Brittany (France) in the summer of 2015 (for sample details see 

table S1 – chapter 4). The sites comprised four Varroa-free islands (Isle of Man (Douglas), 

Scilly Isles (St Mary’s), Ushant and Alderney (St Anne); three Varroa-present islands 

(Guernsey (St Peter Port), Jersey (St Helier) and Belle Ile (Le Palais) and five Varroa-present 

mainland sites (Liverpool, Penryn, Cherbourg, Le Conquet and Quiberon) (figure S1 – 

chapter 4). In total we collected 355 honeybees (Apis mellifera), 640 Bombus terrestris, 37 B. 

lucorum (see methods below for molecular differentiation of the B. terrestris/lucorum species 

complex) and 280 B. pascuorum. Bees were collected from a 1x1km area whilst foraging on 

flowers.  We used Individual collecting tubes and kept samples on ice, before sacrificing and 

storing them at -80 in a dry shipper on the day of collection. For Belle Ile and Jersey, bees 

were sacrificed and stored at -80 deg. within 48 hours of collection.  

 

DNA and RNA isolation 

To extract DNA as well as RNA from the samples, we removed the gut from each individual 

and macerated them individually in 200μl of insect ringer solution. DNA was extracted from 

35μl of the gut homogenate using a modified Chelex® method: 100ul of 10% Chelex® 100 

resin (Biorad) solution was added to the gut solution, with 2μl of Proteinase K (20μg/μl) 

before incubation at 56°C for one hour, and vortexed twice during this time. Samples were 

incubated at 95°C for 15 minutes, centrifuged and the supernatant was stored at -20°C until 

use. For individual RNA extractions, we used half the head and thorax of individuals 

(bisected laterally) and 80μl of the gut solution (described above), using Trizol© (Invitrogen, 

Carlsbad, CA, USA) following the manufacturer’s instruction. Briefly, samples were 

homogenised with glass beads in 1.3ml Trizol© in a tissue-lyser. RNA was separated using 

bromo-chloropropane and precipitated in isopropanol. The RNA was washed with 75% 

ethanol and re-suspended in 100μl (A. mellifera) or 400μl (Bombus species) of RNase-free 

water (Sigma), to allow for variation in RNA pellet size between the species.  

 

Single molecule real-time (SMRT) sequencing to determine viral composition of populations 

The concentration of individual RNA samples was measured using a Qbit™ Fluorometer. 

1000ng of RNA from 30 A. mellifera and 30 B. terrestris individuals, from two Varroa-free 

sites (Ushant and the Isle of Man) and their paired Varroa-present mainland sites (Le 



99 

 

Conquet and Liverpool), were pooled to create eight populations for SMRT sequencing. 

Note: B. terrestris was rare on Ushant, thus only 13 individuals were collected and used in 

that pool. The individual RNA samples were quality checked with the Nanodrop™ 2000 

spectrophotometer (all samples had 280/260 ratio >1.8), and the pooled RNA run on an 

Agilent 2200 Tapestation: pools all had high RIN values (>9), except for Liverpool 

honeybees with RIN=7.6. Full-length cDNA libraries (using the BluePippin System) were 

prepared using Clontech SMARTer PCR cDNA Synthesis Kit. Following this, the PacBio 

Template Prep Kit was used to generate SMRTbell™ libraries, which were then sequenced 

on the PacBio System (library prep and sequencing was carried out by the Exeter Sequencing 

Service). Non-chimeric reads from each pool were mapped first against their respective host 

species genomes using BWA (Li and Durbin 2009) (v. 0.7.12) with the following parameters: 

“bwa mem -x pacbio” to remove host-derived sequences. Remaining reads were mapped 

against all sequenced RNA viruses and 23 novel bumblebee viruses (Pascall et al. pers 

comm) (table S3 in chapter 4). We ran principle component analysis (PCA) in RStudio 

(v0.99.896) using the prcomp function to look at similarity in viral composition between 

pools. We calculated traditional measures of diversity for each pool: Simpson’s Diversity 

Index (1-D) and Shannon’s Diversity Index (H). Reads that did not map to either known 

viruses or hosts were assembled with canu (v.1.5) to look for novel viruses with the following 

parameters: ‘genomeSize=100k useGrid=false -pacbio-raw contigFilter="2 1000 1.0 1.0 2". 

Assemblies were analysed using the gene annotator software Genemark 

(http://opal.biology.gatech.edu/GeneMark), with each putative gene examined individually 

using BLASTP+. 

 

Prevalence by RT-PCR 

We converted 2µl of RNA into first-strand cDNA using GoScript™ Reverse Transcriptase, 

according to the manufacturer’s instructions (Promega), using random hexamer primers and 

RNasin® to prevent RNA degradation. We differentiated between the cryptic species B. 

terrestris and B. lucorum using the DNA extractions (diluted 10%) and PCR using primer 

pair BBMI_IGSF1 and BBM1_IGSR1 (pers comm Regula Schmid-Hempel, table S1). To 

determine viral prevalence of BQCV and SBPV, cDNA was diluted 1:10 prior to PCR; we 

used previously published primer pairs to identify positive samples and carried out PCR in 

20µl reactions using GoTaq® DNA Polymerase, with PCR programs specific to each primer 

pair (table S1). Every run included a known positive sample and a water negative as controls. 

Five µl of PCR product were run on 1.5% TAE agarose gel with ethidium bromide nucleic 
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acid staining solution. We used Chi-square pairwise comparisons with Bonferroni corrected 

P-values and Yates’ continuity correction to assess if co-infection of viruses occurred more 

often than expected based on individual prevalence rate. Note, we used prevalence data for 

DWV-A and DWV-B (chapter 4 of this thesis) for this analysis. 

 

Quantitative reverse transcription PCR (qRT-PCR) 

Ten positives per site per species (or total number if there were less than ten positives 

available) were randomly selected from samples that tested positive for BQCV and SBPV by 

PCR analysis (described above), and analysed by qRT-PCR. We measured nucleic acid 

quality (Nanodrop™ 2000 spectrophotometer) and concentration (Qbit™ Fluorometer) for 

each individual. No samples were excluded due to poor quality, as assessed with Nanodrop 

280/260 ratios greater than 1.8. Based on Qubit concentrations, each RNA sample was 

diluted to 100ng/μl in RNase free water. cDNA was synthesised from 400ng of RNA 

template using GoScript™ Reverse Transcriptase, as reported above. cDNA was then diluted 

1:10 prior to use in qRT-PCR. For absolute quantification, duplicate reactions were 

performed for each sample on a Strategene machine (Mx3005P) using GoTaq® qPCR Master 

mix for dye-based detection (Promega) on the following program: 2 mins at 95 °C, followed 

by 40 cycles of 10s at 95 °C, and data collection for 60s at 57°C. We used virus specific 

primers for the detection of BQCV and SBPV, and Rp49 was amplified in duplicate for all A. 

mellifera samples as an internal reference marker (table S2).Two no-template negative 

samples containing RNase-free water were run on each plate. Quantification was calculated 

using duplicate eight-point standard curves of plasmid DNA in a 1:10 serial dilution on each 

plate. BQCV and SBPV plasmids were generated using Promega pGEM®-T Easy Vector, 

according to the manufacturer’s instructions, to clone a 257bp fragment of ORF 2 of the 

BQCV genome and 186bp fragment of the VP2-gene in SBPV from purified PCR products 

(primer details in table S2). Successful transformants were selected via blue/white screening, 

and plasmids were extracted using GeneJET Plasmid Miniprep Kit (ThermoFisher). M13 

primers (designed to sequence inserts inside pGEM®-T Easy Vector: forward 5´- 

GTTTTCCCAGTCACGAC -3´, reverse 5´-CAGGAAACAGCTATGAC -3´) were used to 

determine the correct product had been cloned. We linearlised the plasmids using the 

restriction enzyme Apa 1 (New England Biolabs), according to the manufacturer’s 

instructions, and diluted them 1:1000 with RNase-free water. Mean efficiency across plates 

for BQCV was 95.7% (four plates ranging from 93.5 - 96.7%) and SBPV was 95.2 (five 



101 

 

plates ranging from 91.6 – 101.8) with R
2
 > 0.98 across assays (for standard curves see figure 

S1).  

 

Statistics for prevalence and viral load 

All statistical analyses were carried out in RStudio (v0.99.896). True prevalence with 95% 

confidence intervals were calculated to account for assay efficiency and sensitivity, which 

was conservatively set at 95% (Reiczigel et al. 2010) using R library epiR v0.9-82) and the 

function epi.prev. Within the package, confidence intervals are calculated based on methods 

in Blaker (2000). To examine if disease prevalence was affected by Varroa-presence we ran 

generalised linear mixed models (GLMMs) (with BQCV and SBPV tested in separate 

models) with binomial error distribution and logit link function, using the lme4 package 

(v1.1-12) (Bates & Sarkar, 2006). Full models included three-way interaction between the 

fixed effects; Varroa-presence/absence, species (a factor with three levels: A. mellifera, B. 

terrestris and B. pascuorum) and island/mainland location, with latitude and sunshine hours 

duration as additional fixed effects: field site and individual were included as random effects 

(individual was added to account for over-dispersion in the models (Harrison 2014)). 

Sunshine hours provided a proxy for favourable disease transmission conditions (Fürst et al. 

2014) and were calculated as the mean sunshine hours from monthly data between March and 

July 2015 at each location (or as near to the sampling location as possible), collected from 

MET office data (pers comm) and Meteo France (http://www.meteofrance.com). The 

minimum adequate model (MAM) was determined through removal of non-significant terms 

and comparison of how much variation was explained by each model using the anova 

function: if the new model was not significantly different at p<0.05 the term was removed 

from the model. To test the full effect of our predictors we compared the MAM with the null 

model (which only included random effects) using ANOVA. Residual plots were examined 

to assess model fit.  

 

Varroa-free refugia only exist on islands, thus it was necessary to also sample on Varroa-

present islands, as well as paired Varroa-present mainland sites, to test a possible island 

effect on disease prevalence. Further, we ran further models on reduced datasets 1) 

comparing island sites with and without Varroa, and 2) comparing Varroa present islands 

and mainland sites. If the island effect is not confounding, in 1) we expect to maintain a 

significant effect of Varroa, and in 2) we expect island to remain a non-significant effect.  
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To investigate if viral load was affected by Varroa-presence we ran GLMMs: BQCV and 

SBPV were tested in separate models with Gamma error distribution and inverse link 

function. As viral load data varied across orders of magnitude from 10
3
 to 10

10
 these data 

were log transformed before analysis. Full models, model simplification and testing model fit 

were carried out as described above.  

 

Nucleotide sequencing 

We sequenced the same samples that were selected for qPCR. We assayed these samples by 

PCR for one genomic region in BQCV and SBPV (primers detailed in table S1). We purified 

15μl of PCR product using Exonuclease 1 and Antarctic phosphatase by incubation at 37°C 

for 60 minutes and denaturation at 80°C for 20 mins. We used Big Dye™ Terminator v3.1 

(ThermoFisher) for florescence-based direct sequencing of amplicons, following the 

manufacturer’s instructions. The Big Dye PCR products were purified by filtering through 

Sephadex® G-50 (Sigma-Aldrich) and directly sequenced in the reverse direction on an ABI 

3730 Genetic Analyser using the appropriate PCR primer (table S1). Sequencing direction 

was chosen to optimise the number of sequences and the length of amplicon. Not all positive 

samples were successfully amplified for each chosen region.  We inspected all sequences 

manually in Geneious® (v6.8) for quality and excluded any sequences based on the following 

quality criteria: heterozygosity, too short for the chosen region, and >3 unidentified base-

pairs. Alignments were made in Geneious® using the ‘map to reference’ tool. To confirm 

that there was no recombination within fragments at a p-value of 0.05, we used the 

GENECONV (Padidam et al. 1999), MaxChi (Maynard Smith 1992), BootScan (Martin et al. 

2005) and SiScan (Gibbs et al. 2000) algorithms in the Rdp4 package (v4.56) (Martin et al. 

2015).  

 

Population genetics 

For BQCV and SBPV sequence alignments (table S3), median joining phylogenetic networks 

were produced using PopArt (v.1.7), (http://popart.otago.ac.nz). We used DNAsp (v5.10.1) 

(Librardo and Rozas 2009) to calculate population genetic measures: we looked at differences 

in populations by host species and geographic location with Kst (a measure of population 

differentiation based on the proportion of between-population nucleotide differences (Hudson 

et al, 1992), and the nearest neighbour statistic SNN (which calculates the proportion at 

which the genetic nearest neighbours are found within same population (Hudson, 2000). We 

calculated Tajima’s D: a statistic that compares the average number of pairwise differences 

http://popart.otago.ac.nz/
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with the number of segregating sites. A negative estimate indicates an excess of rare 

mutations, for example after a selective sweep there will be very little genetic variation, thus 

any mutations that occur will be rare within the population.  

 

Reconstructing viral phylogenies 

We ran Jmodel test to compare and select an appropriate evolutionary substitution model for 

each alignment based on Bayesian Information Criterion (Alizon and Fraser 2013) for use in 

phylogenetic reconstructions (table S4). We fit discrete trait models with asymmetric 

substitution models for host species and geographic location, which allows transitions to and 

from a host or location to occur at different rates (trait rate and indicators operators weight = 

1), implemented in Beast v1.8 (Drummond and Bouckaert 2015). We ran and compared nine 

models concurrently for each alignment with different demography and molecular clock 

rates, and used path sampling maximum likelihood estimator, implemented in Beast 1.8, to 

determine the best model (table S4). Models were run without prior knowledge of the 

evolutionary rate. BQCV models were run for 10,000,000, and SBPV models for 20,000,000 

MCMC steps with sampling every 1000 or 2000 generations, respectively. Posterior 

distribution, convergence and effective sample size was assessed using Tracer v1.6 

(Drummond and Rambaut 2007): all models achieved high effective sample size (>200). In 

addition, we identified exponential population growth (if the 95% HPD of estimates for 

growth did not cross zero), and detected if the model follows or excludes a molecular strict 

clock (by examining the relaxed lognormal clock’s coefficient of variation statistic – if it 

shoulders the zero boundary a strict clock cannot be excluded) (Drummond and Bouckaert 

2015). We produced Maximum Clade Credibility (MCC) trees (TreeAnnotator (v1.8.4)) to 

infer host ancestral state probabilities. Phylogenetic trees were also produced for each 

alignment using MrBayes 3.2.6. Phylogenetic tree figures were created using Figtree v1.4.3 

(http://tree.bio.ed.ac.uk/software/figtree/). Well-supported migration routes between host 

species and sites could be identified using Bayes factors (SPREAD v1.0.6.).  

 

Results  

Viral composition 

We determined viral composition across host species, geographic location and Varroa-

presence/absence using SMRT sequencing reads from eight populations (these were pools of 

A. mellifera and B. terrestris from four sites - two paired locations each comprising of a 

Varroa-free island and Varroa-present mainland site). From principle component analysis, it 

http://tree.bio.ed.ac.uk/software/figtree/
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is clear that geographic location, rather than host species or Varroa presence/absence, 

determines the viral composition of pollinator populations (figure 5:1). Both A. mellifera and 

B. terrestris populations from the geographically paired sites - Liverpool and the Isle of Man, 

carry a more diverse viral fauna (mean Simpson’s Index of Diversity (1-D) = 2.33 (range: 

1.91-2.62), and mean Shannon’s diversity Index (H) = 1.17 (range: 0.92 – 1.36)) than 

populations from the geographically paired sites - Le Conquet and Ushant ((1-D) = 1.31 

(range: 1.02-2.00), H = 0.31 (0.05-0.72)). While viral composition in B. terrestris populations 

mirror that of A. mellifera from the same location, the total number of virus reads from the B. 

terrestris populations are significantly lower (tests of proportions: Brest χ
2
=165451, p < 

0.001; Liverpool - χ
2
=6761 p < 0.001; Isle of Man - χ

2
=28431, p < 0.001; Ushant was the 

exception with significantly more reads in B. terrestris compared to A. mellifera (χ
2 

= 841, p< 

0.001). 

 

A striking finding was that DWV-B is the dominant virus across all eight populations, 

comprising 75% of all virus reads, while DWV-A is rare comprising only 0.07% of reads. 

Apis mellifera filamentous virus, a double-stranded DNA virus distantly related to 

Bracoviruses (Gauthier et al. 2015), is also common across all populations (6.8% of reads). 

SBPV (12.9% of reads), Sacbrood virus (4.4% of reads) and BQCV (0.5% of reads) are 

notably common in the Liverpool/Isle of Man populations but absent from the Le 

Conquet/Ushant populations (figure S2) (for map of sites see figure S1, chapter 4); reads 

from all other viruses (table S3, chapter 4) are rare (including four newly discovered 

bumblebee viruses (Pascall et al. pers comm) or absent across all populations. We found no 

evidence for further novel viruses within these pools from analysis of contigs assembled from 

reads that did not map to either host or viral genomes.  
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Figure 5:1: Principle component analysis on the viral composition of eight bee populations, 

based on single molecule real-time (SMRT) sequences mapped by BWA-mem to all 

previously sequenced ‘honeybee’ viruses and fragments from 23 newly discovered 

bumblebee viruses. A. mellifera populations are shown with red circles and B. terrestris 

populations shown with blue circles. The ovals indicate the clustering of populations from 

geographically close locations along principle component 1 (PC1). 38.8% of the variance is 

explained by PC1, and the cumulative % variance explained by PC1 and PC2 is 62.7%. 

 

BQCV and SBPV prevalence and viral load across host species 

We mapped the prevalence of BQCV and SBPV across all bees sampled from 12 locations by 

pollinator species (figure 5:2). In GLMMs, host species was a significant predictor of BQCV 

prevalence (table 5:1), but for SBPV host species was not significant and was removed from 

the model (anova: χ
2
 = 2.622, p = 0.27). BQCV is more prevalent in A. mellifera compared to 

Bombus species (tests of proportions: BQCV χ
2
 = 229.751, p < 0.001) (table 5:2). Prevalence 
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of SBPV, in contrast to the other viruses, was highest in B. pascuorum compared to both B. 

terrestris (χ
2
 = 29.861, p < 0.001) and A. mellifera (χ

2
 = 4.891, p = 0.027 – though note this 

difference is small) (table 5:2). 

 

Table 5-1: GLMMs with binomial error structure and logit function: BQCV and SBPV 

prevalence as a response to Varroa presence and host species (minimum adequate models) 

Pathogen prevalence Parameters Estimate SE z-value P-value 

BQCV Intercept -2.62 0.98 -2.65 0.008 

 

B. pascuorum -4.73 0.62 -7.55 <0.001 

 

B.terrestris -2.78 0.39 -6.99 <0.001 

 

Varroa presence 3.05 1.14 2.66 0.008 

SBPV Intercept -7.74 2.22 -3.46 <0.001 

 

Varroa presence 4.98 2.44 2.05 0.0408 

 

 

Table 5-2: True prevalence (with 95% confidence intervals) of Black queen cell virus 

(BQCV) and Slow bee paralysis virus (SBPV) detected using PCR (primer details table S1) 

*For populations where true prevalence = 0 (because it is based on 95% sensitivity and 

specificity of the PCR assay) we report actual prevalence based on our data (positives 

confirmed by Sanger sequencing) 

 BQCV SBPV 

A.mellifera (N = 355) 46.4 (40.58-52.2) 16.97 (12.49 – 21.92) 

B.terrestris (N = 640) 7.81 (5.14-10.88) 8.85 (6.09 – 12.01) 

B.pascuorum (N = 280) 2.14* (0.9 – 4.5) 25.79 (20.13 – 32.08) 
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Figure 5:2: Individual prevalence of BQCV (a) and SBPV (b) mapped across 12 field sites. 

Scales represent % prevalence, colour represents host species (A. mellifera (black), B. 

terrestris (light purple) and B. pascuorum (fuchsia pink). 

 

Viral loads ranging from 10
3
 – 10

10
 were found for all viruses; host species is a significant 

factor predicting SBPV viral load (table 5:3, figure 5:3). B. pascuorum has significantly 

higher SBPV loads than A. mellifera (KS-tests: D = 0.71, p < 0.001); with SBPV loads in B. 

pascuorum predicted from the GLMM to be one order of magnitude higher than A. mellifera 

and B. terrestris. There were no significant differences in viral load between host species for 

BQCV (D = 0.18, p = 0.37). 

 

Table 5-3: GLMMs on SBPV viral load with Gamma error structure 

Pathogen viral load Parameters Estimate SE z-value P-value 

SBPV Intercept 0.195 0.024 8.036 <0.001 

 

B. pascuorum  -0.046 0.013 -3.45 <0.001 

 

B. terrestris -0.0016 0.0137 -1.176 0.239 
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Figure 5:3: Percentage frequency of viral loads for BQCV and SBPV displayed by host 

genus: As samples were already identified as positive by PCR, a detection threshold was only 

set based on residual amplification of the no-template samples; this was only necessary for 

SBPV where a cut-off point of Cq = 31 was set. 

 

Varroa drives prevalence but not viral load of BQCV and SBPV 

The influence of Varroa on viral prevalence is highlighted by the apparent absence of viruses 

from two Varroa-free sites (Scilly Isles and Alderney). In GLMMs, Varroa presence was a 

significant predictor for virus prevalence for both viruses (table 5:1, figure 5:4). Varroa 

presence predicts an increase in BQCV prevalence by 10 times in A. mellifera and by 20 

times in both bumblebee species; and an increase in SBPV prevalence across host species by 

over 100 fold (table S5). Interactions between Varroa presence and host species were 

included in each full model, but were removed by model selection indicating that Varroa 

presence increases prevalence in both honeybees and bumblebees equally. Sunshine hours 
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and latitude were removed from all models by model selection. Island-mainland location was 

also included as a fixed factor and excluded by model selection for both viruses (anova: 

BQCV χ
2
 = 0.8441, p = 0.35; SBPV χ

2
 = 3.31, p = 0.070), suggesting that we are indeed 

seeing an effect of Varroa presence, rather than an island effect. We ran further tests and 

models that confirmed island location did not influence viral prevalence (see note S1). Our 

full models for viral prevalence fitted the data significantly better than the null model that 

contained random factors only (ANOVA: BQCV χ
2 

= 41.373, p < 0.001, SBPV χ
2 

= 4.123, p = 

0.04).  

 

Figure 5:4: Prevalence of BQCV and SBPV across host species and Varroa-presence: 

Varroa-free sites (grey, V-), Varroa-present islands (black, V+I), and Varroa-present 

mainland (white, V+M) 

 

Although Varroa influences prevalence of both BQCV and SBPV, it is not a significant 

predictor of viral load (figure 5:5). Latitude, sunshine hours duration and island/mainland 

location were included in the initial model, but had no influence on viral load and were 

removed from the models by model selection.  
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Figure 5:5: Percentage frequency of viral loads for BQCV and SBPV displayed by Varroa 

status: Varroa-present mainland sites = white (V+ mainland), Varroa-present island sites = 

black (V+ island) and Varroa-free sites = grey (V- island). As in figure 5:4, a cut-off point of 

Cq 31 was set for SBPV. 

 

Coinfection 

Co-infection occurred in all combinations between four viruses (BQCV, SBPV and DWV 

(type A and B)); co-infection was rare in bumblebees and highly common in A. mellifera but 

only in Varroa-present sites (figure S3). True prevalence of co-infection for two viruses was 

8% (95% CI 6.11- 10.13); co-infection of three (N= 49 A. mellifera and 1 B. terrestris) and 

four viruses (N=11 A. mellifera) was rare, with true prevalence <1%. The proportion of co-

infected individuals was higher than expected based on single infection rates (χ
2
 = 150.333, p 
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< 0.001). Further, pairwise comparisons of the four viruses, using Bonferroni corrected P-

values (p = 0.008) and Yates’ continuity correction, revealed that DWV-A presence was 

linked to DWV-B, BQCV and SBPV presence (χ
2

 = 142.181, p < 0.001, χ
2

 = 102.31, p < 0.001 

and χ
2

 = 106.961, p < 0.001, respectively). Indeed, DWV-A only occurred in co-infection with 

DWV-B. In contrast, DWV-B, BQCV and SBPV presence were all independent of each 

other. We confirmed these results in an analysis excluding the DWV-A Varroa negative sites. 

Further, we carried out the same analysis on Varroa-free sites in the absence of DWV-A, 

SBPV presence was linked to DWV-B and BQCV presence (χ
2

 = 7.691, p < 0.005; χ
2

 = 

12.021, p < 0.001, respectively). BQCV and DWV-B presence remained independent of each 

other. 

 

Population genetics and phylogenies 

SBPV and BQCV genomes are highly structured by geographic location, not host species. 

Kst values for genetic differences between locations are significant (note, Kst and Snn values 

close to 1 represent strong population differentiation (Hudson 2000; Hudson et al. 1992)); Kst 

SBPV = 0.78, p < 0.001 and Kst BQCV = 0.79, p < 0.001. In addition, samples that are genetic 

nearest neighbours largely come from the same populations: Snn SBPV = 0.97, p < 0.001, Snn 

BQCV = 0.93, p < 0.001. SBPV and BQCV show some weak host differentiation on the edge 

of significance (Kst SBPV = 0.034, p = 0.040, Kst BQCV = 0.019, p = 0.068).  

 

We produced median joining phylogenetic networks for each virus (figure 5:6). Both BQCV 

and SBPV population are highly structured by location: BQCV (π = 0.044, with 64 

polymorphic sites out of 432 examined over 69 sequences) and SBPV (π = 0.074, with 118 

polymorphic sites out of 535 examined over 78 sequences) (figure 5:6a and 5:6b). As 

Tajima’s D statistic is sensitive to population structure, we restricted our analyses of 

demography to populations within locations, choosing those with the largest sample size. For 

SBPV, we examined Jersey (N = 28) and Guernsey (N = 29), and for BQCV we examined 

Liverpool (N = 13) and Belle Ile (N = 11), and found no evidence for an excess of rare 

variants (Tajima’s D = 1.58, 1.15, -1.054, -0.3219, respectively, p > 0.05). In addition, 

models of exponential growth for both viruses were rejected in a Beast analysis, as the 95% 

HPD of the growth rate overlapped zero. Phylogenetic trees using MrBayes are available in 

figures S4 and S5). 
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Figure 5:6: Median joining phylogenetic network of sequences from two viruses a) BQCV (N 

= 69) and b) SBPV (N = 78). The colours represent sampling location, the size of the node 

represents the number of samples with the same sequence and the dashes on branches show 

the number of mutations between nodes. 

 

For BQCV and SBPV, genetic diversity was sufficiently high to estimate the routes of 

transmission by comparing geographic and host specific patterns in Beast. The BQCV 

ancestral host was identified as A. mellifera (state probability, P = 94%), while the SBPV 
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ancestral host was identified as B. pascuorum (state probability, P = 47%). For BQCV there 

is support for transmission between A. mellifera and B. pascuorum (BF = 7.91) and for 

transmission between B. terrestris and B. pascuorum (BF = 4.9) (table S6a). For SBPV, there 

is strong support for transmission between all species, but strongest support for transmission 

between A. mellifera and B. pascuorum, and vice-versa (BF = 30.14, BF = 28.78, 

respectively, table S7a). There is no clear pattern of transmission routes between locations; 

for example, locations nearest each other did not have the strongest support for routes of 

transmission (tables S6b and S7b, figure S6).   

 

Discussion 

RNA viruses, historically associated with honeybees, are now recognised to be multihost 

pathogens of a broad range of pollinator species (Evison et al. 2012; Fürst et al. 2014; Manley 

et al. 2015; McMahon et al. 2015). Our findings from the deep-sequencing of eight honeybee 

and bumblebee populations, and a large-scale field study focussing on viruses with different 

life histories confirm that RNA viruses are prevalent in wild bee populations across England 

and northern France and that communities are shaped by geography, not host species or the 

presence of Varroa. 

 

We find the viral composition in B. terrestris mirrors that of A. mellifera hosts, with B. 

terrestris harbouring significantly lower level across all viruses. Further, we find the same 

viral variants of BQCV and SBPV circulating within sympatric A. mellifera, B. terrestris and 

B. pascuorum individuals within each location. These findings strongly suggest that these 

viruses, along with DWV (chapter 4 of this thesis) are continually transmitted inter-

specifically across sympatric species. However, prevalence of viruses significantly varies 

across species and viral pathogen. A. mellifera has previously been implicated as the reservoir 

host for DWV-A and DWV–B (Fürst et al. 2014, chapter 4 of this thesis; McMahon et al. 

2015), and results of this study suggest it is the reservoir host for BQCV, inferred from both 

prevalence data and phylogenetic analysis: BQCV is significantly more prevalent in A. 

mellifera compared to both Bombus species, with A. mellifera identified as the ancestral host. 

Conversely, we identified B. pascuorum as the ancestral host for SBPV and record the 

highest prevalence and titre of SBPV in B. pascuorum, compared to A. mellifera and B. 

terrestris. These differences indicate the existence of virus-specific host barriers to infection. 

The significantly lower prevalence of DWV and BQCV in bumblebee species compared to A. 

mellifera suggests that bumblebees are sub-optimal hosts for these viruses. The presence of 
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sub-optimal hosts in a multi-host system can have a dilution effect on disease transmission; or 

conversely, amplify transmission by increasing the abundance of both infected and 

susceptible hosts (Dobson 2004; Keesing et al. 2006). However, while our results suggest that 

A. mellifera is the key host for DWV and BQCV, and B. pascuorum is the key host for 

SBPV, we cannot identify the cause of these host differences, or the contribution of each host 

to transmission, from our data. It would be necessary to collect data on host relative 

abundance, transmission potentials and interspecific contact rates, all factors that will all 

influence the contribution of hosts to disease transmission. Further, the seasonal changes in 

host abundance and reproductive stage mean that pathogen prevalence and titre will vary 

temporally (Runckel et al. 2011); thus temporal data are necessary to acquire a true picture of 

the relative importance of host species to transmission.  

 

We found that Varroa presence does not determine viral composition and suggest that the 

current viral populations are the result of long-term exposure to Varroa. The Varroa 

epidemic began in the middle of last century, reaching UK shores in 1992 and mainland 

France in the 1980s, leaving a few isolated islands Varroa-free. Thus, the populations in this 

study have been exposed to Varroa for over 20 years either directly (mainland sites), or 

indirectly (Varroa-free island sites) through interconnection by trade and transportation. 

Pathogens can spread ahead of their vector if a host can carry, replicate and transmit viruses 

(e.g. Squirrel pox, Tomkins et al. 2012). Therefore, finding similar viral composition on 

Varroa-free islands is likely due to transportation of infected bees and subsequent 

interspecific transmission. The apparent absence of viruses on two Varroa-free sites, 

Alderney and the Scilly Isles, suggests that these islands are less connected by trade and 

transportation.  

 

While not impacting on viral composition, the direct presence of Varroa significantly 

increases prevalence across all viruses. Notably, we demonstrate that the presence of Varroa 

mites in honeybee populations’ drive an increase in prevalence of BQCV and SBPV in 

honeybees, and indirectly, sympatric bumblebee hosts. The significant effect of Varroa on 

BQCV was unexpected because there is no evidence of Varroa-transmission or replication 

within Varroa for this virus, with only one study correlating BQCV viral load to Varoa 

infestation (Mondet et al. 2014). Further, a previous study found no effect of Varroa on 

SBPV prevalence (Martin et al. 2012), despite associations with Varroa transmission 

(Carreck et al. 2010; Santillán-Galicia et al. 2014).  
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Crucially, BQCV and SBPV viral load is not increased by Varroa presence, suggesting that 

Varroa does not increase the initial titre by replication or bioaccumulation; rather these 

results suggest that Varroa can passively transmit the virus between individuals. One possible 

explanation is that the natural titre is high enough to cause maximum effect without 

amplification by Varroa, but this is unlikely given the broad range of viral titres found across 

naturally infected individuals (10
3
-10

11
). A more likely explanation is that the indirect effects 

of Varroa infection such as immunosuppression (Nazzi et al. 2012) or simply the 

physiological damage from piercing the hemolymph (Bowen-Walker et al. 1999) could make 

A. mellifera more susceptible to other viruses. Moreover, the well documented pathogenic 

association of Varroa with DWV infection (Bowen-Walker et al. 1999; Evans and Schwarz 

2011; Highfield et al. 2009; Martin et al. 2012) could lead to opportunistic co-infection of A. 

mellifera by other viruses. Indeed, we found that DWV-A co-infection with DWV-B, BQCV 

and SBPV occurred significantly more often than expected, suggesting that DWV-A infection 

increases the chances of infection with another virus by some mechanism. However, in 

models DWV-A prevalence was not determined to be a significant driver of the prevalence of 

other viruses.  

 

In contrast to the low genetic variation and exponential expansion of DWV-B (chapter 4 of 

this thesis), BQCV and SBPV have higher genetic diversity, are highly structured by location, 

and show no exponential growth. Further, analysis restricted to populations from specific 

locations also showed no localised expansion for either virus. Although we were not able to 

date the common ancestor because evolutionary rates for these viruses have yet to be 

estimated, all evidence combined suggests that SBPV and BQCV are relatively stable 

infections compared to DWV-B, which we show in chapter 4 to be rapidly expanding. 

Interestingly, there is no clear pattern of transmission routes between locations, for example 

locations nearest each other did not have the strongest support for routes of transmission, 

which further suggests that these are long term stable virus populations with strong 

geographic structure, obscuring any pattern of geographic movement.  

 

In combination, our results suggest that Varroa presence increases intra-specific BQCV and 

SBPV prevalence in A. mellifera by direct but passive (i.e. no direct replication or 

bioaccumulation of the viruses by the vector) transmission, and possibly opportunistic 

infection of individuals weakened by Varroa or Varroa-DWV infection; thereby, increasing 
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spillover to wild bumblebees resulting in increased prevalence across hosts, but not causing 

epidemic spread. This is in stark contrast to DWV-B, where Varroa dramatically increases 

DWV prevalence and viral loads in A. mellifera, leading to increased spillover of high viral 

loads to competent bumblebee hosts, resulting in emerging disease across hosts (chapter 4 of 

this thesis). It is clear that Varroa plays a complex role in facilitating disease emergence in 

wild bumblebees. Controlling the Varroa mite infection in managed honeybees is vital to 

prevent further impact of viral disease in wild bees, already under pressure from habitat loss 

and pesticide use. 
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Supplementary material 

Supplementary tables 

Table S1. Primers and protocols to differentiate between Bombus terrestris/lucorum species 

complex, and detect prevalence of Black queen cell virus (BQCV) and Slow bee paralysis 

virus (SBPV). Note *BQCV primers were used for nucleotide sequencing, while the same 

SBPV primers were used for both prevalence and sequencing. 

Target Primer name Sequence Amplification 

program  

Amplicon 

(bp) 

Reference 

B. terrestris/ 

lucorum 

complex 

BBM1_IGSF-1 

BBM1_IGS_R 

GGAGCAATAATTTCAATAAATAG 

AARTTCAAAGCACTAATCTGC 

15 s at 95C 15 s at 

55C 

45 s at 72C 

x38 cycles 

 

180 

210 

Regular 

Schmid-

Hempel 

(pers comm) 

BQCV 

 

BQCV4119 

BQCV5476 

TCCyCCAGTTCAACCATCTA 

AACGTTGCCTAGrTTCGTCA 

15 s at 95C,  

30 s at 60C,  

60 s at 72C 

x40 cycles 

 

1257 Lena 

Wilfert 

(pers comm) 

*BQCV 

 

BQCVLF_6527 

BQCVLR_7513 

GCGKGCCAAAGAGAGTAAGG 

TTGyTGTTCAGTCCCCGAAT 

Touchdown PCR 62C 

15 s at 95C,  

30 s at 62C,  

60 s at 72C 

X10 cycles 

 

15 s at 95C,  

30 s at 602     52C,  

60 s at 72C 

X30 cycles 

986 Lena 

Wilfert 

(pers comm) 

SBPV SBPV_F3168 

SBPV_B4193 

ATGCGTGATGGTCATATTCC 

CGGTCGCTTGGTGAAAGTAT 

Touchdown PCR 60C 

15 s at 95C,  

30 s at 60C,  

60 s at 72C 

x10 cycles 

 

15 s at 95C,  

30 s at 60     50C,  

60 s at 72C 

x30 cycles 

955 Lena 

Wilfert 

(pers comm) 
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Table S2. Primers and protocols used for qPCR amplification and to create plasmids for 

standard curves used in qPCR assays. 

Primer  Sequence Amplification 

program 

Amplicon (bp) Reference 

SBPV_F3177 

SBPV_B3363 

GCGCTTTAGTTCAATTGCC 

ATTATAGGACGTGAAAATATAC 

10 s at 95C,  

30 s at 60C,  

X40 cycles 

 

Melting curve 

profile: 

55 – 95C (0.5C per 

second increments) 

186 de Miranda et 

al. (2010b) 

BQCV_F7893 

BQCV_B8150 

AGTGGCGGAGATGTATGC 

GGAGGTGAAGTGGCTATATC 

257 Locke et al. 

(2012) 

Rp49_qF AAGTTCATTCGTCACCAGAG  de Miranda and 

Fries (2008) 

Rp49_qB CTTCCAGTTCCTTGACATTATG   

 

Table S3. BQCV and SBPV alignment details: * note, 7 B. lucourum were also sequenced for 

SBPV but removed from other alignments because of small sample size 

Virus 

 

Genbank Length 

N total 

seqs 

N A.mellifera 

sequences 

N. B.terrestris 

sequences 

N. B pascuorum 

sequences 

BQCV NC0003784 432 69 52 16 1 

SBPV * GU93876 535 78 20 19 32 
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Table S4. Substitution models for BQCV and SBPV alignments based on jModelTest 

(Darriba et al. 2012; Guindon and Gascuel 2003). Results of path sampling maximum 

likelihood estimator analysis comparing demographic and molecular clock models run in 

Beast 1.8. Analyses of each model in Tracer showed that a strict molecular clock could be 

excluded from both models; there was no significant exponential growth. Bold text highlights 

the chosen model for each alignment. 

Fragment Substitution model Molecular clock Population demography 

Constant Exponential GMRFSkyride 

BQCV HKY + I + G Strict -1744.59 -1744.02 -1829.75 

  Exponential -1741.92 -1739.38 -1810.10 

  Lognormal -1744.27 -1740.74 -1801.56 

SBPV HKY + G Strict -1790.59 -1793.56 -1913.68 

  Exponential -1780.61 -1774.47 -1847.92 

  Lognormal -1774.55 -1775.58 -1787.82 

 

Table S5. Predicted proportions (%) of pathogen prevalence for three bee species when 

Varroa is present and absent (conversion of GLMM (table 5:2) estimates on the logit scale to 

proportions using formula exp(x)/(1+exp(x)), where x equals the parameter estimate). 

Response Species 

Prevalence when 

Varroa absent 

Prevalence when  Varroa 

present 

BQCV A. mellifera 6.78 60.61 

 

B. pascuorum 0.064 1.34 

 

B. terrestris 0.45 8.74 

SBPV All species 0.04 5.95 
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Table S6. Bayes factors a) support for BQCV transmission between hosts b) support for 

BQCV transmission between locations 

a) 

 

receiver 

  donor Am Bt Bp 

Am NA ns 7.91 

Bt ns NA 4.94 

Bp ns ns NA 

b) 

 receiver          

donor IOM Liv Fal Jer Guern Cher Brest Ush Bell Qui 

IOM NA 250 72 ns 73 ns 1559 173 287 78 

Liverpool ns NA ns ns 273 ns ns 190 ns 333 

Falmouth 283 83 NA ns 160 348 2936 ns 301 81 

Jersey ns ns ns NA 349 1150 39 72 ns ns 

Guernsey 152 71 84 69 NA 5804 ns ns 116 120 

Cherbourg ns ns 137 195 141 NA ns ns 130 ns 

Brest  461 175 573 1013 ns ns NA ns 75 77 

Ushant ns 591 ns 53 85 ns 544 NA 94 49 

Belle Ile 129 ns ns 101 49 ns 44 ns NA 79 

Quiberon 1544 598 69 ns 131 ns 172 87 143 NA 

 

Table S7. Bayes factors SBPV a) support for SBPV transmission between hosts b) support 

for SBPV transmission between locations 

a) 

 

receiver 

   donor Am Bt Bl Bp 

Am NA 9.89 ns 30.14 

Bt 9.8456 NA 9.937 11.33 

Bl ns 6.95 NA 

 Bp 28.78 10.705   NA 

 

b) 

 

recipient 

    donor Cherbourg Jersey Guernsey IOM Liverpool 

Cherbourg NA 61.15 39.69 ns ns 

Jersey 23.5 NA 19.72 21.54 42.17 

Guernsey 27.25 no support NA 23.54 31.24 

IOM ns 771.82 55.62 NA ns 

Liverpool ns ns 37.22 ns NA 
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Supplementary figures 

 

a) 

 

b) 

 

Figure S1. Standard curves used to quantify a) BQCV and B) SBPV; displaying R-squared 

value (RSq), curve equation and efficiency (Eff.) 
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Figure S2. The number of SMRT sequencing reads that mapped against reference virus 

sequences (this included all sequenced ‘honeybee’ viruses and 23 novel bumblebee viruses. 

Only the viruses that had > 0 reads are displayed here. Note; Acute bee paralysis virus, Israeli 

acute paralysis virus, Kashmir bee virus, Aphid lethal paralysis virus and Chronic bee 

paralysis virus are all absent from these populations; and Bou1, Bou3, N1 and N2 are four of 

the new bumblebee viruses discovered by Pascal et al. (pers comm) present in these 

populations. A. mellifera populations are in grey scale, and B. terrestris populations in red 

scale. 
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Figure S3. % prevalence of co-infections of four RNA viruses (DWV-A, DWV-B, SBPV and 

BQCV) by host species and Varroa-presence/absence (V+I = Varroa-present island, V+M = 

Varroa-present mainland, V- = Varroa-free islands. 
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Figure S4. MrBayes phylogenetic tree for SBPV sequences showing posterior support (>0.5) 

for each node up until the 3
rd

 order. The tip label colours represent locations (see key), branch 

colours represent species (A. mellifera black, B. terrestris/lucorum blue and B. pascuorum 

green). This three include three samples from Genbank, all isolated from A. mellifera: 

GU938761.1 (Harpenden strain), KY243931.1 and EU035616.1 (Rothamsted strain). 
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Figure S5. MrBayes phylogenetic tree for BQCV sequences showing posterior support (>0.5) 

for each node until the 3
rd

 order. The tip label colours represent location, branch colours 

represent species (A. mellifera black, B. terrestris blue and B. pascuorum  green). Samples 

include all sequenced isolates from the current study and eight Genbank sequences, all 

isolated from A. mellifera. 
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Figure S6. Map showing Bayes Factor support for BQCV (a) and SBPV (b) transmission 

routes between sampling locations, from Beast phylogenetic analysis 

 

Note S1. Ruling out the island effect 

To further confirm that Varroa presence, rather than an island effect, explained viral 

prevalence, we ran GLMMs on a dataset excluding Varroa-free sites and with island as an 

explanatory variable: there was no significant difference in BQCV or SBPV prevalence on 

Varroa-present islands compared to Varroa-present mainland (estimate ± s.e. of the fixed 

factor ‘island/mainland’ in the model = 1.03 ± 0.95, p = 0.27; 0.97±1.0, p = 0.26, 

respectively). In addition, we ran the same models on a dataset excluding mainland sites, here 

Varroa presence remained a significant explanatory factor of BQCV and SBPV prevalence, 

with higher prevalence on Varroa-present islands compared to Varroa-free islands (estimate 

± s.e. of the fixed factor ‘Varroa presence in the model = 3.76 ± 1.49, p = 0.018; 7.19 ± 3.87, 

p = 0.063, respectively. It is notable that SBPV was found at extremely high prevalence on 

two Varroa-present islands, Guernsey and Jersey, but is absent on the Belle-Ile (the third 

Varroa-present island): however, prevalence is also high and absent on their paired mainland 

sites, Cherbourg and Quiberon respectively, thus this is likely a location difference rather 

than an island effect. 
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Chapter 6 : General Discussion 

 

Emerging infectious diseases are a major threat to human health (Jones et al. 2008), 

ecosystem services and biodiversity, with dramatic declines in bats (Frick et al. 2010), 

amphibians (Lips et al. 2006) and pollinators (Cameron et al. 2011; Fürst et al. 2014) all 

linked to emerging pathogens. Understanding the ecological and evolutionary dynamics of 

viral disease emergence is fundamental to furthering our knowledge of disease epidemiology 

and host-pathogen co-evolution, and ultimately, for disease control. Throughout this thesis I 

focus on the epidemiology of multi-host RNA viruses in pollinating insects. This system 

enables the study of pathogen evolution and dynamics across multiple hosts. The inherent 

ecology and behaviours of social insects and the recent global spread of a specialist honeybee 

mite, Varroa destructor, that vectors and amplifies RNA viruses, have greatly increased the 

risk of viral emergence in this system.  

 

The majority of earlier work in this field focussed on honeybees. A. mellifera are kept and 

managed at both a commercial and amateur level, thus signs of disease and their subsequent 

impacts are conspicuous. However, within the last decade many researchers have recognised 

the risks of interspecific disease transmission across the broader pollinator community. The 

work in this thesis contributes to this expanding field, presenting data on basic epidemiology, 

transmission dynamics and epidemics of RNA viruses in wild bumblebees.   

 

Pinpointing the ecological, evolutionary and anthropogenic risks to viral disease in 

pollinators is fundamental to identifying gaps in our knowledge and to help optimise disease 

control. RNA viruses are known to be high risk pathogens because of their fast evolutionary 

rate and poor-error correction abilities that enables rapid adaptation to new hosts (Cleaveland 

et al. 2001; Taylor et al. 2001; Woolhouse and Gowtage-Sequeria 2005). The ecological traits 

of pollinating insects, particularly those of social bees, e.g. overlapping ranges, niches and 

behaviours, promote cross-species transmission of RNA viruses. While biological factors of 

both hosts and pathogens clearly impact on disease transmission, we find the intensive 

rearing of commercial honeybees and bumblebees, along with global trade and transportation, 

to be a key driver of disease emergence. The spread of the invasive Varroa mite, also caused 

by global trade, is the main cause of increased viral transmission in honeybees. The key 

knowledge gaps I identify are the scarcity of data on the pathogenicity of viruses to 

bumblebees; viral prevalence and infection outside of A, mellifera; and more broadly, 
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understanding the epidemiology of multiple RNA viruses in multi-host systems. I have 

addressed these knowledge gaps using controlled experiments, field collections, molecular 

and phylogenetic techniques.  

 

Multiple RNA viruses are prevalent across the pollinator community (this thesis, Evison et al. 

2012; Levitt et al. 2013; McMahon et al. 2015; Singh et al. 2010), and I find that both A. 

mellifera and Bombus hosts share the same viruses and viral variants, indicating that host 

barriers are not a limiting factor to virus spillover and cross-species transmission is pervasive. 

Instead, viral composition, diversity and genetic variation are determined by geographic 

location. I have shown that DWV-B is the dominant virus across populations. Interestingly, 

DWV-A (the variant responsible for the current worldwide epidemic (Martin et al. 2012; 

Wilfert et al. 2016)) is rare in these populations. The timeline of prevalence data from the 

field surveys in 2009 (Wilfert et al. 2016) and 2011 (McMahon et al. 2016) and the current 

study collected in 2015, combined with phylogenetic reconstructions of the 2015 sequences, 

strongly suggest that DWV-B is a currently emerging viral variant and is exponentially 

expanding across the UK and Europe. In contrast, all evidence suggests that SBPV and 

BQCV populations are relatively stable infections, showing higher genetic variation and 

strong structuring by location. We were able to date the divergence of DWV-B from its 

common ancestor using the evolutionary rate previously estimated for DWV-A using 

sequence data across time (Mordecai et al. 2015). For SBPV and BQCV, because the viral 

populations are highly structured by location, it would be necessary to collect localised long 

term data from multiple locations to accurately estimate the rate of evolution; data that is 

currently not available.   

 

I used next generation Pacbio single-molecule real-time (SMRT) sequencing combined with 

Sanger sequencing to generate genetic data for phylogenetic and evolutionary analysis. 

SMRT sequencing enables the detection of full RNA viral assemblage, without bias towards 

known viruses from PCR and Sanger sequencing. SMRT sequencing also has the potential to 

sequence full viral genomes, without the need to reassemble genomes; this is particularly 

useful for the study of rapidly evolving, genetically variable RNA virus populations (e.g. it 

has been used to characterise Hepatitis C virus populations, (Ho et al. 2016)) and may be a 

useful tool to study recombination. Recombination in DWV has been well documented 

(Dalmon et al. 2017; Moore et al. 2011), with potential impacts on virulence and 

epidemiology (Mordecai et al. 2015; Ryabov et al. 2014). Recombination is rare in my 
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foraging populations of honeybees, and absent from B. terrestris populations. I find points of 

recombination in the 5’ lp-gene (from Sanger sequencing) and the 3’ rdrp-gene (from SMRT 

sequencing – note, SMRT sequence reads did not cover the lp-gene region so we were unable 

to compare recombination rate or breakpoints), at different break points to previous studies 

(Dalmon et al. 2017; Moore et al. 2011; Ryabov et al. 2014). However, SMRT sequencing 

has its own inherent biases depending on the library prep. For example, we sequenced a 

maximum of ~6000bp (of viruses that are ~ 10,000bp long), with a bias from the 3’ end due 

to the Clontech technology that uses the polyA tail to create a cDNA library. Further, the 

error rate is high and chimeric sequences can be produced during library prep, thus limiting 

the detection of single-base mutations and true recombination. 

 

Significantly, the presence of Varroa had no effect on viral composition, diversity or genetic 

variation. I expected to see higher viral variant diversity on Varroa-free sites, based on a 

previous study that showed the arrival of Varroa in Hawaii reduced a formerly highly diverse 

DWV community to a single DWV-A variant (Martin et al. 2012). However, the pollinator 

populations from my Varroa-present sites have endured over 20 years of Varroa infestation; 

while Varroa-free sites would have felt the impact indirectly over the years through spillover 

via trade, travel, deliberate and accidental transportation, and possibly migration, of infected 

competent pollinator hosts across these highly connected locations. In contrast, Hawaii is 

extremely isolated and data were collected over the first few years of Varroa invasion; and by 

year three post-infestation, diversity had already been reduced to a single strain (Martin et al. 

2012).  

 

A novel and significant finding is that the presence of Varroa increases the prevalence of 

RNA viruses in honeybees, but also sympatric wild bumblebees. By piercing the hemolymph 

of developing honeybee pupae, Varroa not only cause physiological damage, but also 

provides a new route of infection for viruses that are currently circulating via established 

routes of transmission (Genersch 2010; Martin 2001; Sumpter and Martin 2004); i.e. social 

behaviours within colonies, such as trophallaxis, brood care, grooming and hygienic removal 

of infected bees, enable both direct and indirect transmission to occur (Cremer et al. 2007). 

The association between DWV and Varroa and subsequent negative impacts on A. mellifera 

are well documented (Genersch 2010; Highfield et al. 2009; Martin et al. 2012; Ryabov et al. 

2014; Sumpter and Martin 2004) and I find the expected increase in prevalence and titre here. 

However, it is interesting that Varroa also increases the prevalence of BQCV – a virus with 
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no known association with Varroa transmission (except, Mondet et al. (2014) describe a 

weak correlation between BQCV titre and Varroa infestation rates), and SBPV – a virus that 

has been linked with Varroa (Carreck et al. 2010; Santillán-Galicia et al. 2014) but is also 

associated with higher prevalence in bumblebees (McMahon et al. 2015 and this thesis). 

Varroa has no impact on viral variants in this study, but significantly increases prevalence of 

all viruses irrespective of an active or passive association with transmission by Varroa; thus, 

I suggest that rather than selection on the virus, transmission by Varroa turns A. mellifera 

into a ‘superspreader’ species i.e. Varroa increases intra-specific transmission of viruses 

leading to increased spillover to wild bumblebees (figure 6:1).  

 

 

 

Figure 6:1: A. mellifera become ‘superspreaders’ of viral diseases in association with Varroa 

infestation. Varroa increases intra-specific viral transmission within colonies, increasing 

spillover to sympatric wild bumblebees 

 

I also find Varroa increases titre in honeybees and sympatric bumblebees for DWV-B (note 

DWV-A could not be tested directly because it was absent on Varroa-free sites), but not 



131 

 

SBPV and BQCV; strongly implying that the viruses differ in their association with Varroa. 

Varroa increases DWV-B during transmission to A. mellifera, however, there is currently not 

enough evidence to confirm if amplification occurs by replication within the Varroa mite 

(Gisder et al. 2009; Ryabov et al. 2014), or by passive accumulation of viral particles during 

blood feeding (Erban et al. 2015), as can be the case for Norovirus in shellfish (Maalouf et al. 

2011). 

 

Within a multi-host-pathogen system, hosts differ in their contribution to transmission 

(Streicker et al. 2013), which has implications for the risk of disease emergence. I find 

differences in prevalence and titre across pollinator species – the pattern of which differs 

across viruses - suggesting that some hosts are more susceptible, or conversely, more tolerant, 

to infection than others. Deformed wing virus (type A and B) and BQCV are more prevalent 

with high titres in A. mellifera, while SBPV is more prevalent with high titres in B. 

pascuorum. These data support previous field studies (Fürst et al. 2014; McMahon et al. 

2015; McMahon et al. 2016). However, caution must be taken when inferring direction of 

transmission or source/sink dynamics based on these data: viral prevalence and titre are 

known to vary temporally (Runckel et al. 2011) because of phenological traits such as the 

relative abundance at each reproductive stage in bumblebees to sympatric honeybees. The 

pollinator community is broad and even relatively rare species that are active for a short 

period of time that can harbour viruses (e.g. hoverflies and species of solitary bee) could be 

particularly effective at spreading disease; inherently, these are the less well studied species  

(e.g. the relatively rare but competent host American robin was identified as a 

‘superspreader’ of West Nile virus (Kilpatrick et al. 2006)). Thus it is important to sample 

across all present host species, across locations and across time. Phylogenetic trait models in 

Beast combined with Bayes factor analysis can determine support for direction of 

transmission between hosts; however it is essential to sample evenly across the potentially 

extensive host populations, including rare species. My field survey was designed to sample 

equally across three host species to enable phylogenetic reconstruction of the host 

associations and the reconstruction of epidemics; and also to directly test the effect of Varroa 

across pollinator species. My data powerfully suggest that A. mellifera in combination with 

Varroa is the major cause of viral disease spread. However, we do lack the host abundance 

data to determine their relative contribution to disease transmission, and the temporal 

resolution required to test whether this picture remains stable throughout the year, or if some 

host species are of greater importance at certain times of year.  
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Critically, all these findings are only relevant if viruses cause harm to their non-Apis hosts. 

Controlled infection studies are sorely needed to answer basic questions on the impacts of 

viruses on non-Apis hosts. We know that DWV-A reduces longevity in bumblebees (Fürst et 

al. 2014); while DWV-B is more virulent in honeybees (McMahon et al. 2016), it is not yet 

known if this is the case for bumblebees. However, this is concerning given the dominance of 

this variant in our viral populations, specifically across bumblebee hosts. In addition, a study 

by Meeus et al. (2014) found that KBV and IAPV negatively impacted colony set up and 

fecundity in B. terrestris. Here, I provide the first evidence that SBPV is pathogenic to a 

bumblebee host (B. terrestris). In a controlled infection study, I find that B. terrestris infected 

with SBPV were 1.6 times more likely to die than uninfected bees at a given time point, but 

importantly this increased virulence was only seen under conditions of nutritional stress. This 

has clear implications for virulence in wild bees, as they face external stresses such as 

nutritional stress through bad weather or lack of forage, pesticides, predation and co-infection 

with other parasites. From my field study, SBPV prevalence was relatively low in B. 

terrestris compared to B. pascuorum, and McMahon et al. (2015) found highest prevalence in 

B. horturum, implying that the effect on longevity may be greater on other bumblebee 

species. However, there is a possibility that B. pascuorum and B. horturum are more tolerant 

to SBPV, while B. terrestris is more susceptible; in this case highly infected B. terrestris 

individuals might be excluded from field collections if they are unable to forage. This 

highlights the need for further studies on the pathogenicity of multiple viruses and their 

variants, across multiple host species and a range of viral loads. 

 

The research within this thesis raises further questions, both for pollinator conservation and 

for understanding epidemiology of multi-host pathogens that can be addressed using this 

system:  

 

What are the true infection levels across honeybees and bumblebees? 

Social bees live in colonies, where intra-specific transmission occurs; thus analysing infection 

levels across randomly collected foragers with unknown ancestry could overestimate rates of 

interspecific transmission. Data on the relatedness of collected foragers is an important 

additional aspect of epidemiology that would greatly add to current prevalence data. For 

polyandrous honeybees matriline composition can be determined through direct sequencing 

of the mitochondrial CO1-CO11 region. It is possible to reconstruct colony composition for 

monandrous bumblebees using multiplexed microsatellite analysis (Lepais et al. 2010). As 
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well as confirming true infection levels, this will further our knowledge of the genetic 

diversity and population structure of bumblebee populations. This would benefit both 

pollinator conservation and increase our understanding of epidemiology across bumblebee 

hosts. 

 

How does the transmission potential vary across pollinator hosts? 

In a multi-host system, transmission potential will vary between hosts and determine if cross-

species disease emergence is a risk (Haydon 2008). Prevalence and viral load vary across 

pollinator hosts, with the key host identified as A. mellifera for DWV and BQCV; it is less 

clear for SBPV, but evidence suggests a bumblebee (B. horturum or B. pascuorum) may be a 

key host for this virus. However, the factors behind this heterogeneity and the contribution of 

each host to transmission in this system are not currently known, but are important for 

effective disease control. Below I identify such factors and suggest means to test them:  

 

- Host resistance: DWV and BQCV are far less prevalent in bumblebee hosts compared 

to A. mellifera. However, there is no evidence to confirm if species with low 

prevalence of a virus are more tolerant or more susceptible. Transmission potential of 

species can be estimate by measuring viral load. Yet, field studies have the potential 

for bias if highly infectious individuals avoid collection because they are unable to 

forage due to behavioural changes or increased mortality. Thus, experimental 

infection and transmission studies are necessary to identify transmission potential of 

each host species. 

- Host abundance: A highly abundant host can often equate to greater transmission 

potential, but that assumption does not always hold true (e.g. the American robin is a 

rare yet highly competent spreader of West Nile Virus (Kilpatrick et al. 2006). Within 

the pollinator community there are species that are common throughout the year, but 

also those that are rare or active for a short time (e.g. solitary bees) that could be 

particularly effective at spreading disease. However, abundance of all present host 

species is essential data, in combination with transmission potential data, to determine 

hosts contribution to disease transmission. 

- Host exposure: Contact between hosts will influence transmission rates. Observational 

field and semi-natural field experiments could identify foraging networks, 

generalist/specialist flower feeders, and lag time between pollinator visits. As well as 

measuring the effect of flower complexity, pollinator flower handling time and the 
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production of floral secondary components are all factors that are likely to influence 

transmission (McArt et al. 2014).  As contact rates do not necessarily equate to 

transmission, this must be combined with the direct measures of transmission 

potential mentioned above. 

- Behavioural changes: There is a possibility that viral infection can influence 

pollinator behaviour, and further, that these behaviours may vary depending on level 

of infection. For example, transmission potential of hosts could be altered by sub-

lethal impacts of infection, such as reduced queen fecundity, foraging behaviours, 

longevity of workers and social worker behaviours. Infection experiments at an 

individual and colony level, in the laboratory and in semi-natural conditions, could 

measure these effects. 

- Temporal change: Across host species there will be seasonal changes in abundance 

and in population composition e.g. the proportion of workers to sexuals in social bees, 

and thus, host transmission potential will change temporally. Sampling at different 

time points throughout the year, specifically when the different life stages are present 

(i.e. bumblebee queens in spring, workers throughout the colony lifecycle and males 

towards the end of colony life), is necessary to make sure the data represent more than 

just a snapshot in time. 

 

In summary, I find that wild bumblebees are at high risk of disease transmission from 

managed honeybees, particularly in combination with Varroa mite infestation. Interspecific 

transmission across pollinators is pervasive, with the same viral variants crossing species. I 

show that DWV-B, a virulent variant, is amplified by Varroa and is currently emerging 

across the UK and Europe in both honeybees and wild bumblebees. Other RNA viruses, 

SBPV and BQCV, appear to be stable but their prevalence in honeybees and wild 

bumblebees is also increased by the presence of Varroa. Further, I provide the first evidence 

of SBPV pathogenicity to a bumblebee host, suggesting that increased spillover of this virus 

could impact wild bumblebees at a population level. Overall, a specialist vector can increase 

the prevalence of multi-host viruses, influencing disease emergence across the host 

community. This novel contribution to the field of multi-host pathogen dynamics further 

highlights the current risk of multi-viral pathogen spillover from managed honeybees to wild 

pollinators. Both commercial and wild pollinators contribute to pollination services, but 

managed honeybees, in combination with the invasive Varroa mite, represent a 
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disproportional threat to the system. It is clear from this thesis that further disease control 

measures are needed to protect pollination services and conserve wild pollinators.  
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