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On-chip photonic synapse
Zengguang Cheng,1 Carlos Ríos,1 Wolfram H. P. Pernice,2 C. David Wright,3 Harish Bhaskaran1*

The search for new “neuromorphic computing” architectures thatmimic the brain’s approach to simultaneous proces-
sing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many
orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essen-
tial step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical
domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast
operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses
phase-changematerials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the syn-
aptic weight simply by varying the number of optical pulses sent down thewaveguide, delivering an incredibly simple
yet powerful approach that heralds systemswith a continuously variable synaptic plasticity resembling the true analog
nature of biological synapses.
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INTRODUCTION
In stark contrast to conventional computing systems based on the von
Neumann architecture where the central computing unit is separated
from the main memory, the human brain contains a large number of
neurons with synapses, each of them acting as both the computing and
the memory unit (1). This unique structure makes the brain energy-
efficient (2) in dealing with emotions, learning, and thinking—actions
that are nearly impossible, or at least far less efficient and effective, for
traditional computers (3). As shown in Fig. 1A, a neuron (pre-neuron)
generates action potentials (spikes, fire time tpre) that propagate along the
axon and are transmitted through a junction to the next neuron (post-
neuron) that generates the postsynaptic action potentials (fire time tpost).
The junction is called a synapse (inset inFig. 1A),with the synapticweight
(w) determining the communication strength between the two neurons.
The synaptic plasticity (that is, the change in synaptic weight) Dw is
determined by neural activities, for example, Dw = f(tpost − tpre) based
on the Hebbian learning rule (4), and is believed to be the primary
mechanism for memory and learning in the human and animal brain
(5). Inspired by the brain, neuromorphic computing that attempts to
imitate the neural system at the physical level has gained significant
attention, recently driven by the needs of “big data” (6), artificial in-
telligence (7), and a supporting computing concept for the internet
of things (8). As a first and key step to the construction of neuromorphic
architecture, it is essential to develop suitably plastic synapse-like de-
vices (1, 9, 10)—not least because synapses are by far the most numer-
ous component of real brains, outnumbering neurons by several orders
of magnitude (2).

Several electronic devices have recently been investigated to achieve
synaptic function, such as those based on electrically induced resistive
changes in phase-change chalcogenides (11–13), metal-insulator-metal
structures (14, 15), and ferroelectricmaterials (16), as well as nanomaterial-
based field-effect transistors (17, 18). A photonic synapse based on mi-
crofibers (19) and an optoelectronic synapse using carbonnanotubes (20)
have also been demonstrated with potential benefits of large bandwidth
(21, 22) andno electrical interconnect power loss (22) inherently from the
computing by optical means, although they tend to be either difficult to
integrate and speed-limited, or still rely on electrical excitation signals.
Here, we demonstrate a fully integrated all-photonic synapse based on
phase-change materials (PCMs) that resembles the neural synapse at the
physical level and can achieve synaptic plasticity compatible with the well-
knownHebbian learning or spike timing–dependent plasticity (STDP) rule.
RESULTS
Concept of on-chip photonic synapse
The concept of a photonic synapse is shown schematically in Fig. 1B. A
waveguidewithdiscretePCMstructureson topacts as thephotonic synapse
with the input and output of the waveguide connected with a pre-neuron
and a post-neuron. An optical circulator is used for connecting the output
of the synapse and the post-neuron (fromport 2 toport 3) and for applying
optical pulses to alter the synaptic weight (from port 1 to port 2). Low-
energy optical transmission can be measured from the pre-neuron to the
post-neuron,with the transmission level dependent on the synapticweight.

It has previously been demonstrated that optical pulses can switch
PCMs integrated on waveguides to provide non-volatile photonic mem-
ories storing up to eight levels in a single cell (23). To move between
levels in thatmemory implementation required single pulseswith varying
powers for amorphization and a complicated multipulse, multipower
format for recrystallization. However, for the realization of a practicable
synapsemimic, not only precise control of synaptic weighting but also a
devicewhoseweight is controlled by fixed pulse characteristics is crucial.
Here, we achieve this by designing a tapered waveguide structure and
then incorporating multiple, small, discrete PCM islands (Fig. 1, C and
D). This enabled us to have much improved control of the electric field
(of the optical pulses propagating along thewaveguide) that interactswith
the PCM. This resulted in a very effective method for synaptic weight
control that is based entirely on the number of fixed-duration, fixed-
power excitation pulses applied, as we demonstrate later.

Synaptic-mimic design with FEM analysis
We use the well-studied chalcogenide Ge2Sb2Te5 (GST) (24–27) for
the PCM cells, with indium tin oxide (ITO) as the capping layer (see
Materials andMethods). Figure 1C shows the optical image of a typical
device. Two diffraction grating couplers are used to connect the device
with fiber arrays for signal transmission (Fig. 1C and fig. S1). The central
part of the waveguide (with the discrete GST islands on top) is tapered
to a 0.8-mmwidth from a nominal width of 1.3 mm elsewhere (Fig. 1D).

The effectiveness of the combination of the tapered structure with
the discrete PCM islands for controlling the interaction field along the
waveguide is exemplified in Fig. 2 (and fig. S3). Here, a transverse
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electric (TE) optical field at 1580 nm is “launched” into the left side of
several alternative waveguide designs (Fig. 2, A and B, and fig. S3, A
and B), and the strength of the electric field (E-field) at the waveguide
surface is simulated for the PCM in the crystalline (Fig. 2 and fig. S3)
and amorphous phase (fig. S3).With the GST in the crystalline phase, a
simple rectangular waveguide with a single large GST cell on top [Fig.
2A, as used in the memory application of Ríos et al. (23)], the E-field
decays rapidly because of the very strong absorption and exhibits many
resonant peaks and troughs (standard design in Fig. 2C). However, for
the tapered waveguide with discrete GST islands (synapse-mimic de-
sign in Fig. 2C), the interaction of the E-field (and so the absorption)
is much more “controlled,” with a much more gradual decay and little
evidence of resonance effects. To quantitatively compare the electric
field distributions in the various structures, we calculated the average,
SD, and range of the E-field inside the GST regions, as well as the ratio
between the fields at the right (E out

GST) and left sides (E
in
GST) of theGST cells

(Fig. 2D). The SDand the range of the electric field in theGST regions of
the synapse-mimic structure are the smallest, and this structure also has
the highest E out

GST=E
in
GST ratio, thus demonstrating the smoothest

distribution of the E-field inside and that most energy transmitted past
the GST cells in this structure (detailed comparisons between four
structures are elucidated in section S2 of Supplementary Text).

Synaptic weighting and plasticity
The enhanced E-field control engendered by the use of the structure
comprising a tapered waveguide with discrete PCM islands leads di-
rectly to the implementation of a simple yet most effective integrated
photonic synapse, as we now show. Before optical measurements, the
devices were annealed on a hot plate (~250°C) for 10 min to com-
pletely crystallize the GST. The optical transmission (T0) of the device
with the GST in the fully crystalline state is defined as the baseline of
the readout and assigned to a synaptic weight “0.” Any subsequent
change of the readout (DT = T − T0) during themeasurement is normal-
ized as the relative change in percentage (DT/T0) to the baseline (Fig. 3A).
Changes in synaptic weighting, as shown in Fig. 3, were then achieved
Cheng et al., Sci. Adv. 2017;3 : e1700160 27 September 2017
by sending fixed-duration, fixed-energy optical pulses down the wave-
guide. Using one single pulse of 50 ns at 243 pJ (section S1 of Sup-
plementary Text), the transmission readout changed by ~7% to weight
“3” (arbitrarily defined, but predetermined weight numbers). The
weight could then be decreased fromweight “3” to “1”with 100 identical
pulses (repetition rate, 1 MHz; total weighting time, 100 ms) using the
exact same pulse parameters (that is, 50 ns, 243 pJ).When we increased
the pulse number to 1000 (total weighting time, 1 ms), the device went
from weight “1” to “0.” This represents a crucial advance, because it
allows one to arbitrarily adjust the synaptic weight using a set of known
pulses without having previous knowledge of the current actual weight.

This finding is worth discussing further. For example, weight “1” in
Fig. 3A can be switched from weight “3,” “2,” or “0” with exactly the
same parameters of pulses (100 pulses of 243 pJ and 50-ns length);
similarly, weight “0,” “2,” and “3” can be set with 1000, 50, and 1 pulses,
respectively, from any (undetermined) previous weight. Moreover, we
examined the long-term durability of the switching between different
weights, as shown for example in Fig. 3B. Even after 38 cycles of
switching, carried out over a period of many minutes, the individual
weights are clearly distinguishable with the deviation of each weight
below 0.77% in readout transmission. These results illustrate a direct and
unambiguous achievement of deterministic synaptic weighting using
a known number of optical pulses (section S3 of Supplementary Text).

To uncover the relationship between the synaptic weight and the
pulse number in more detail, we increased the power of the pulse to
obtain five stable weights with high signal-to-noise ratio (Fig. 3C and
fig. S5). The device started at weight “0” (baseline), which was then
followed by pulses of 200, 100, 50, and 1 (404.5 pJ, 50 ns) to reach
weights “1,” “2,” “3,” and “4,” respectively; the pulse sequence was then
reversed (that is, 50, 100, 200, and 1000 pulses applied corresponding to
a total weighting update time of 50 ms, 100 ms, 200 ms, and 1 ms, respec-
tively) to access weights “3,” “2,” “1,” and “0,” and thewhole process was
repeated 10 times. We extracted the mean value of the transmission
change for each weight (monitored for ~10 s) from the 1st and 10th
weighting cycle and plotted them versus the corresponding pulse
Fig. 1. On-chip photonic synapse. (A) Structure of neuron and synapse. Inset: Illustration of the synapse junction. (B) Schematic of the integrated photonic synapse resembling
the function of the neural synapse. The synapse is based on a tapered waveguide (dark blue) with discrete PCM islands on top, optically connecting the presynaptic (pre-neuron)
and the postsynaptic (post-neuron) signals. The red open circle is a circulator with port 2 and port 3 connecting the synapse and the post-neuron; weighting pulses are applied
through port 1 to the synapse. (C) Optical microscope image of a device with the active region (red box) as the photonic synapse. The optical input to and output from the device
are via apodized diffraction couplers (white boxes). Inset: A typical photonic chip containing 70 photonic synapses has a dimension smaller than a 5-pence coin. (D) Scanning
electron microscope image of the active region of the photonic synapse corresponding to the red box in (C) with six GST units (1 mm× 3 mm, yellow, false-colored) on top of the
waveguide (blue, false-colored). Inset: The zoomed-in tapered structure of the waveguide highlighted by the white dashed box.
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numbers, shown in Fig. 3D. First, as previously stated, we see that the
change in synaptic weight is exponentially and monotonically depen-
dent on the number of pulses applied. This relation is very stable and
is sustained for long periods of time (it took us 7 min to complete the
experiments in Fig. 3C and fig. S5, for example).Moreover, we note that,
by tuning of the pulse parameters, we can readily achieve an increased
number of synaptic weights. For example, with a decreased pulse width
of 20 ns and a pulse energy of 216 pJ, we readily achieved 11 synaptic
weights, with a similar exponential relationship between the change of
synaptic weight and the number of pulses (fig. S6). By further pulse con-
trol, and/or by increasing the signal-to-noise ratio [for example, by
increasing the readout power (23)] and/or by further device optimiza-
tion, it will be possible to access considerably more synaptic weighting
levels or even achieve continuous weighting to mimic the true analog
nature of synaptic weight change in biological systems (28).

All-optical STDP plasticity
Finally, we point out that the exponential dependence of synaptic
weight on the number of applied pulses in our photonic synapse leads
to a very simple and compact implementation of the STDP rule using
photonic integrated-circuit techniques. The STDP rule to describe syn-
aptic weight change in a biological system has the form (4) of Dw =
Ae−Dt/t. Here, Dw and Dt are the synaptic weight change and the time
delay between pre- and postsynaptic signals, whereas A and t are
constants. This STDP behavior could be achieved quite simply with
Cheng et al., Sci. Adv. 2017;3 : e1700160 27 September 2017
an all-optical structure based on our photonic synapse (Fig. 4). As
shown in Fig. 4A, the presynaptic signal with power Ppre is split into
two beams with 50% coupled into a photonic synapse similar to that
of Fig. 1, and the other 50% (Pin1) is connected to an interferometer
via a phase modulator. The postsynaptic signal (Ppost) is also divided
into two parts, with 50% transmitted and the remainder (Pin2) fed
back to the interferometer. By adjusting the phase modulator, the
net output power (Pout) of the interferometer obtains the tunability
between zero and (Pin1 + Pin2), and this output is used to update the
weight of the synapse. In this particular design, the powers of pre-
andpostsynaptic signals are chosen to lie betweenPth and 2×Pth [where
Pth is the threshold power for switching PCMs (23)] such that Pth/2 <
Pin1, Pin2 < Pth, as shown in Fig. 4B. The pulse widths and repetition
rates of pre- and postsynaptic signals are intentionally set differently.
When there is no time delay (Dt = 0) between the pre- and postsynaptic
signals, the net output power from the interferometer applied to the
synapse (the red trace in Fig. 4B) has a single pulse larger than Pth.With
increasing the time delay (Dt = Dt1, Dt2, Dt3, and Dt4, arbitrarily chosen
values), the number of output pulses with net power abovePth gradually
increases to 2, 3, 4, and 5 in this example, as shown in Fig. 4 (C to F). By
an appropriate design of the pre- and postsynaptic signals, the number
of output pulses with power larger than Pth could be linearly dependent
on Dt, leading to the required exponential dependence of the synaptic
weight change on the time delay (between pre- and post-neuron firings),
thus mimicking the STDP behavior in a simple and effective manner.
Fig. 2. Finite elementmethod (FEM) simulations of the photonic synapse with different structures. (A) Top: Schematic shows photonic synapse with a standard design: a
straight waveguide with a thin film of GST (6 mm × 0.8 mm, orange block) on top. Bottom: TE mode E-field distribution at the surface of the waveguide with the entire GST film
(white box) in the crystalline state. (B) Top: Schematic showsphotonic synapsewith synapse-mimic design: a taperedwaveguidewith six discreteGST islands (1 mm×0.8 mmeach)
on top, which is the structure used in our experiments. Bottom: E-field distribution with all GST islands in crystalline states. (C) E-field distributions along the center line of the
waveguide surface. The yellow, purple, green, and cyan curves correspond to the E-field distribution along the dashed horizontal lines in (A) and (B) (standard and synapse-mimic)
and fig. S3 (A and B) (S1 and S2), respectively. The dashed red (black) lines illustrate the left and right boundaries of the GST film (discrete GST islands) in standard and S1 (synapse-
mimic and S2) designs. (D) Top: Statistical results of the E-field inside theGST filmor islands (square, average value; box, SD; bottomand top lines,minimumandmaximumvalues).
Bottom: The ratio between the average E-field at the output (E out

GST) and input (E
in
GST) edges of the GST film or islands corresponding to the orange dashed lines in (A) and (B) and fig.

S3 (A and B).
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DISCUSSION
In conclusion,with a specially designed structure of discrete phase-change
islands on a tapered waveguide, we have obtained a brain-inspired, on-
chip biomimetic photonic synapsewith analog and cumulative program-
mability, essential requirements (29) for neuromorphic computing.
Optical field simulations demonstrate that the distribution of the electric
field in the photonic synapse is much more homogeneous than in
conventionalwaveguide designs. This feature allows for the deterministic
adjustment of synaptic weights with a predetermined number of identi-
cal, fixed-energy, fixed-duration pulses. Furthermore, by intentionally
arranging the pre- and post-neuron signals, we have elucidated an all-
optical method tomodulate the synaptic weight based on the time delay
between the pre- and post-neuron signals that canmimic the STDP rule
in biological systems. Moreover, via the use of improved/optimized de-
vice designs and switching protocols, along with the use of alternative
PCMs having lower switching powers (cf. GST), it should ultimately be
possible to realize large-scale photonic neuromorphic networks similar
in scale to state-of-the-art electronic neuromorphic computers [for ex-
ample, the SpiNNakermachine (30)] but operating at powers approach-
ing that of the human brain (see section S4 of Supplementary Text).
Cheng et al., Sci. Adv. 2017;3 : e1700160 27 September 2017
Significantly advancing our earlier work on accumulation-based com-
puting (31) and integrated photonic memory (23, 27) using PCMs, our
study has established a novel architecture combining neuromorphic
and photonic computing, with the synapse based on PCMs being the
first crucial step. Future workmight focus on the implementation of an
on-chip “integrate and fire”neuron, whichwould complete the building
blocks required to enable truly integrated, biologically inspired photonic
computing paradigms.
MATERIALS AND METHODS
Device fabrication and characterization
The photonic synapses were fabricated on a Si3N4/SiO2 platform, as re-
ported previously (23, 27). A JEOL JBX-5500ZX 50-kV electron beam
lithography systemwas used to define the photonic devices on thewafer
spin-coated with Ma-N 2403 negative-tone resist, followed by reactive
ion etching (PlasmaPro 80,Oxford Instruments) inCHF3/O2/Ar to etch
down 300 nm of Si3N4. A second step of electron beam lithography
using poly(methyl methacrylate)–positive resist was used to define
the pattern of discrete PCM islands, and 10-nm GST/10-nm ITO was
Fig. 3. Synapticweighting andplasticity. (A) Demonstration of differential synaptic weighting of the device in Fig. 1 during switching between the crystalline and amorphous
states of GST islands with the relative transmission change (DT/T0) recorded. Each weight can be reached with the same number of pulses (50 ns at 243 pJ, 1 MHz) from any
previousweight. (B) Repeatability of theweighting overmultiple cycles. Inset: Statistical analysis of the change in readout forweight “0,” “1,” and “4.” The pulse applied herewas 50
ns at 320 pJ, slightly larger than that in (A). (C) Five weights of the photonic synapse are obtainedwith switching at optical pulse energy (404.5 pJ, 50 ns). The dashed blue (yellow)
boxes correspond to the first (last)weighting cycle. Theupward anddownward arrows in the boxes are theweightingdirections. (D) Photonic synapticweight (DT/T0) as a function
of optical pulse numbers. The left (right) panel corresponds to the data of the dashed blue (yellow) box in (C). The solid triangles (hollow boxes) are the data from the upward
(downward) weighting direction. The dashed lines are the exponential fittings of the data with detailed fitting parameters elucidated in table S2.
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subsequently sputter-deposited. The structure of the photonic synapse
was characterized by a scanning electron microscope (Hitachi S-4300)
with a low accelerating voltage (1 to 3 kV). The images were obtained
using the secondary electron detector at a working distance of ~13mm.

Finite element method simulations
The finite element method simulations were carried using the COMSOL
Multiphysics software with the RF module. A TE mode optical field
with a nominal power of 1 W was injected into the waveguide. The
electromagnetic field distribution in the frequency domain was simu-
lated inside a three-dimensional model of the waveguide with GST
films or islands. The results shown in the text are the amplitudes of
the electric fields recorded in the central cross section in the x-y plane
of the structure.

Optical measurement
Real-time transmission measurements of the photonic synapse during
optical pulse switching were performed using a probe-pump technique,
as described previously (23) and in section S4 of SupplementaryMaterials
and Methods. The measurement setup is illustrated in fig. S2. Briefly, a
low-power probe laser and a high-power pump laser working at different
wavelengths were routed through the photonic synapse from opposite
directions. Two optical circulators were used to guide one laser into the
device while directing the other laser out to detectors. To suppress inter-
ference between the two signals, we used two optical band-pass filters
(OTF-320, Santec) in the probe and pump lines. A continuous-wave
(CW) diode laser (TSL-550, Santec) as a probe laser was used to inter-
Cheng et al., Sci. Adv. 2017;3 : e1700160 27 September 2017
rogate the transmission of the photonic synapse. The pump pulse was
generated from a CW diode laser (N7711A, Keysight) combined with
an electro-optic modulator (EOM) (2623NA, Lucent) that was
controlled by an electrical pulse generator (AFG 3102C, Tektronix),
and subsequently amplified by a low-noise erbium-doped fiber ampli-
fier (AEDFA-CL-23, Amonics).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/9/e1700160/DC1
Supplementary Materials and Methods
Supplementary Text
fig. S1. Design of photonic synapse.
fig. S2. Optical measurement scheme.
fig. S3. Optical field distribution in photonic synapses.
fig. S4. Optical field distributions in S2 and synapse-mimic designs.
fig. S5. Full trace of five-level weighting.
fig. S6. Eleven-level weighting.
table S1. Dimensions of photonic synapses.
table S2. Fitting of synaptic weight on pulse number.
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