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ABSTRACT 

Most critical raw materials, such as the rare earth elements (REE), are starting products in   

long manufacturing supply chains. It is difficult for consumers, buying cars or smartphones 

for example, to engage with the original mines and demand environmental and social best 

practice. Geoscientists can become involved in responsible sourcing because geology is 

related to environmental impact factors such as energy requirements, resource efficiency, 

radioactivity and the amount of rock mined. The energy and material inputs and emissions 

and waste from mining and processing can be quantified using life cycle assessment (LCA). 

Preliminary LCA studies for REE show little over all difference between ‘hard rocks’ such as 

carbonatites and easily leachable ion adsorption clays, mainly because of the embodied 

energy in chemicals used for leaching, dissolution and separation.  
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INTRODUCTION 

Current technologies use a wider range of elements than ever before. The manufacture of a 

computer chip demands 44 different elements (Graedel et al. 2015). Touch screens need a 

thin film of indium tin oxide, capacitors in electronics contain tantalum, permanent magnets, 

ranging from the tiny speakers in smartphones to tonnes in large wind turbines, are made of 

NdFeB. Lithium ion batteries, containing also cobalt and graphite, are widespread and 

increasing in use rapidly. Despite the many uses of some of these elements, the amounts 

needed worldwide are often only in the tens to thousands of tonnes per year, orders of 

magnitude less than those of mainstream commodities such as copper. This means that just a 

few mines can be sufficient for supply and thus the choice of source is limited. For some 
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commodities such as indium, there are no mines, and smelter by-products are the only source. 

Recycling rates are often low. The potential supply risk is high, and such elements are called 

’critical’, criticality being usually calculated from a combination of the economic importance 

of the raw materials, the difficulty of substituting another raw material, and the supply risk 

(European Commission 2014; British Geological Survey 2015; Graedel et al. 2015).  

Since many of these critical metals are used in technologies that improve our care of the 

Earth’s environment, it seems appropriate to try to ensure that their production does not itself 

harm the environment, nor the local communities and people that produce them. Responsible 

mining is about minimising the negative effects of mining and maximising the positive 

outcomes (e.g. Goodland 2012). It considers environmental protection, community 

interaction, workforce health and safety, transparency in economic contributions such as 

taxes, and also energy use, carbon footprint, water use, resource efficiency, and resource and 

reserve reporting. Responsible sourcing is about all of these issues and how we can be 

assured as final consumers that the supply chains, including the ultimate sources, for our 

goods meet acceptable standards.  Responsible sourcing was noted as a key stakeholder 

requirement of the mining industry in the seminal Breaking New Ground: Mining, Minerals 

and Sustainable Development report (IIED 2002) and again more recently by multinational 

mining companies (ICMM 2015).  

In this article, we consider the issues involved in critical raw materials, using the example of 

rare earth elements (REE), and draw attention to the challenges relevant to geoscientists. 

 

 RESPONSIBLE MINING AND SOURCING SCHEMES  

Most mining companies seek to demonstrate their commitment to responsible mining 

practices. In order to be able to distinguish ‘window dressing’ from effective and 

comprehensive action, however, some kind of assurance is required. Examples include the 

Global Reporting Initiative used by multinational companies in the ICMM 

(www.icmm.com), and the Responsible Jewellery Council scheme 

(www.responsiblejewellery.com). Some schemes for gold and gemstones, such as Fairmined 

(www.fairmined.org) are similar to the well-known fair trade schemes for tea and coffee. To 

date only a few raw materials, such as the conflict mineral, ‘coltan’ (main ore of Ta) are 

covered under legally binding social regulations.  Manufacturers who have attempted to 

understand their supply chain and connect consumers with raw materials include Fairphone, 

which has designed its product around the need for conflict-free metals. For most complex 
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products though, it is hard for the consumer to make a connection to the mines that produced 

the raw materials. The main drivers for responsible mining of most critical metals are not yet 

responsible sourcing initiatives from consumers but the need for mining companies to (1) 

satisfy investment banks in order to raise capital, (2) gain informal approval (social licence to 

operate) from their host communities and (3) comply with the laws of the countries in which 

they operate. These drivers and controls all apply to critical metals mines as well as to the 

production of mainstream commodities. There are so many different management and 

reporting systems that it is still difficult to identify any clear ‘responsible mined’ mark that 

could penetrate and influence the long supply chains in which critical metals are normally 

involved.  

 

RARE EARTH SUPPLY  

An introduction to REE has been given in a previous Elements volume edited by 

Chakhmouradian and Wall (2012).  Other reviews of REE as critical metals are given in Wall 

(2014) and Verplanck and Hitzman (2016). As mentioned above, the REE (the term is used 

here to include 15 elements: Y, La – Lu without Pm which has no long-lived isotope) are 

essential in many technologies owing to their magnetic, redox and luminescent properties. 

They are classed as critical because supply is dominated by just one country, China. Prices 

for REE rose dramatically in 2010 and 2011, when China threatened to cut supply quotas, but 

more recently the supply situation has eased and prices have now dropped back to 2010 

levels. A complication of REE deposits is the propensity of the REE to follow one another 

geochemically, such that there are no ore deposits of individual members of the REE series. 

Although some geological processes fractionate the light REE from the heavy REE 

(Chakhmouradian and Wall 2012) all members of the series occur together.  

The production of REE usually follows conventional mining techniques, with open pit mines, 

followed by comminution (crushing and grinding) of the ore, separation of the ore from waste 

by physical methods such as gravity and magnetic separation, or by froth flotation or a 

combination of the two (Figure 1). The REE minerals then need to be dissolved (‘cracked’) to 

release the REE. An intermediate mixed REE carbonate or oxalate can be shipped at this 

stage. The next step, required in all cases, is further processing to separate the REE from each 

other which is the most important step in adding value, and leads to high purity REE metals 

and oxides that are sold to manufacturing industry (Figure 1).  
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By far the largest mine is in altered and metamorphosed carbonatite at Bayan Obo, Inner 

Mongolia, China with smaller carbonate/alkaline rock and carbonatite mines at Weishan, 

Shandong, and Maoniuping/Dalucao, Sichuan, for ‘light’ REE (La-Sm). All are open cast 

quarries. The higher atomic number, ‘heavy’ REE (Eu-Lu) come mainly from about 200 

small mines working ‘ion adsorption clays' in weathered granite across southern China, 

especially in Jiangxi province. The mining methods used for these deposits are either removal 

of the ore material to leaching tanks or in-situ leaching with ammonium sulphate (Figure 2). 

These leaching methods use very simple technology but cut out comminution and physical 

upgrading stages and go straight to dissolution (Figure 2).   

The pollution damage from Bayan Obo and associated processing plants in nearby Baotou is 

significant, and features frequently in newspaper articles (Ali 2014). The extensive land 

degradation and pollution associated with mining ion adsorption clays is also a serious 

problem, as is illegal mining, and the Chinese government is taking action to consolidate the 

REE industry throughout China and improve its environmental performance. Nevertheless, it 

is a sobering thought that we are all implicated in this environmental damage through 

everyday pieces of equipment that almost certainly contain Chinese REE. 

There are few alternative supplies. Outside of China there are only three substantial active 

mines. The loparite mine in nepheline syenite at Lovozero, Kola Peninsula, Russia produces 

REE as a co-product with Nb. Ore treatment is done in Solikamsk, Ural, Russia. Mineral 

sands at Orissa, India are mined by Indian Rare Earths Ltd. (IRE). This ore is treated on site 

and the REE separation is also done in India, through a joint venture between IRE and Toyota 

Tsusho. There is little public information on the environmental performance of either of these 

operations. The third mine is in weathered carbonatite at Mt Weld, Western Australia, 

operated by Lynas Corporation Ltd, with ore treatment and REE separation in Kuantan, 

Malaysia. The mining operation itself has not been controversial but the ‘LAMP’ separation 

plant in Malaysia was subject to considerable protest on environmental grounds during its 

development because of fear of pollution from Th and U in the monazite ore (Ali 2014). The 

company now publishes details on their website (www.lynascorp.com) of environmental 

monitoring around the plant and uses international auditable management systems (e.g. 

ISO14001, OHSAS 18001). They are developing their own chain of assurance with magnet 

manufacturers. The Mountain Pass (California, USA) carbonatite mine reopened in 2012. It 

also made an issue of being a more environmentally-friendly source of REE than Chinese 

producers (Loye 2015) but did not survive the recent low REE prices and closed again in 

August 2015. So since the crisis of 2010/11, the choice of major supplier has only widened 
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by one mine (Mt Weld). Processing and separation of REE is becoming progressively more 

concentrated in China. For example, Solvay, one of few processors outside of China has 

moved to downstream applications rather than processing REE raw materials. Its two Chinese 

plants have stopped their REE separation lines and its separation lines at La Rochelle, France 

are only partly used. The plant at NPM Silmet AS, Sillamae, Estonia only produces separated 

light REE products.  

 

CONNECTING GEOLOGY AND GEOCHEMISTRY TO RESPONSIBLE 

SOURCING 

Despite the difficulties in current REE supplies, a wide range of REE deposits are being or 

have recently been explored, providing a particular opportunity to consider how the geology 

and geochemistry of a deposit can affect responsible mining and sourcing.  Deposits include 

carbonatites, including hydrothermally altered and weathered varieties, alkaline igneous 

rocks including nepheline syenite and granite, various other hydrothermal deposits, high 

temperature igneous monazite veins, mineral sands, and various possibilities for REE as by-

products; even deep sea muds are being explored (Wall 2014, Chakhmouradian and Wall 

2012)  

A qualitative comparison of the intrinsic properties of the main varieties of REE ore deposits 

shows wide variation (Table 1). Five factors have been chosen: (1) the presence of 

radioactive minerals because this is the main reason for restrictions on shipping and 

processing of REE ores and concentrates as well as the main public fear, (2) the amount of 

environmental disturbance likely, considering the size of the likely mine (assumed to be open 

cast, few REE mines are proposed as underground operations) and amount of rock that needs 

to be processed to obtain the REE, (3) energy for crushing and grinding, the main energy use 

in mining, according to whether the deposit is a hard rock requiring considerable energy for 

comminution or a friable placer or weathered deposit, (4) a measure of resource efficiency 

based on how easy it is usually to recover a high proportion of the REE from this type of 

deposit and (5) a measure of whether the REE are a by- of or co-product of another 

commodity.    

Light REE-enriched carbonatites are generally low in Th and U, even if the ore mineral is 

monazite (see above). As these are some of the highest grade ores, the amount of land 

disturbed is likely to be low compared to other REE deposits. The energy required for 

comminution is variable. Carbonatites are not particularly tough rocks but even weathered 
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deposits require comminution to fine grain size (e.g. 50 µm) if flotation is used to recover the 

REE minerals.    

The nepheline syenite alkaline rock deposits are large and low grade hard rock deposits, thus 

requiring large amounts of energy for comminution. The mineralogy is complex, and 

attaining good resource efficiency is difficult, hence the lower mark in this category. There 

are possibilities for multiple products and an intermediate rating has been given here. The 

radioactivity of eudialyte as the REE ore mineral in nepheline syenite is low and a particular 

advantage of these deposits. Other minerals such as steenstrupine may, however, contain 

higher amounts of Th and U. In alkaline granites, the amount of Th and U can be much 

higher and such deposits would score red in this category.  

Mineral sands, as unconsolidated, easy to process, shallow deposits score well in all 

categories except radioactivity. With monazite and xenotime derived from granitic rocks, 

they are at the higher end of the range of Th contents and concentrates are significantly 

radioactive.  

Ion adsorption deposits are easy to mine. They occur close to the surface in weathering 

profiles typically 15 to 35 m thick. They require disturbance of a large amount of land owing 

to their low grade (typically about 800 ppm and usually <4000 ppm) but since they are 

mainly heavy REE deposits, the amounts being dealt with are small and being near the 

surface, high quality remediation shortly after mining should be possible. Little energy is 

required for mining or processing. The recovery of exchangeable REE cations is likely to be 

good but insoluble REE minerals will remain in the waste. Th and U values are reported as 

low although the presence of Th and U-bearing minerals in insoluble residual minerals such 

as monazite, xenotime, thorite or uraninite is likely to vary according to the protolith 

composition.  

Production of REE as by-products of other ores such as apatite and bauxite is possible (Table 

1) and the environmental impact of this depends on whether the production of REE is 

considered a bonus or, as is more usual, the overall environmental impacts (which may be 

large, Figure 3) are apportioned to both the major and the by-products.  

Overall, the conclusions from this comparison are that mineral sands score well apart from 

the radioactivity of the ore minerals. Most mineral sand operations ship concentrates from 

their mine to separate processing factories but their monazite and xenotime concentrates are 

likely to be too radioactive for transportation, or even for storage. However, this is a 

challenge that would be overcome if it were possible to install a processing method on site so 

that Th and U (and Ac) are removed from the ore concentrates, an intermediate product could 
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be shipped and the Th and U stabilized and returned to source. Ion adsorption clay deposits 

can also score well as environmentally favourable deposits, so long as good methods are 

designed to strip mine and remediate rapidly or to carry out safe in-situ leaching. 

Carbonatites generally appear more environmentally favourable than alkaline rock deposits 

because of their higher grade. Alkaline rock deposits have the advantage of higher 

proportions of heavy REE. 

 

QUANTIFYING THE COMPARISON OF DEPOSIT TYPES USING A LIFE CYCLE 

ASSESSMENT (LCA) APPROACH  

It is possible to compare the environmental performance of the production of critical raw 

materials, using Life Cycle Assessment (LCA), calculating all the energy and material inputs 

and the associated emissions and waste outputs over an entire life cycle, from raw material 

acquisition to ultimate disposal (International Organization for Standardization (ISO) 14040 

2006a). This method has the advantage of incorporating a wide range of environmental issues 

into an integrated assessment framework, including climate change, ecotoxicity and resource 

depletion. Calculations are done with proprietary software that incorporate databases of 

previous LCAs for inputs such as chemical reagents and power generation. The assessments 

can stop part way through a life cycle, and most studies of mined materials go ‘mine to gate’, 

encompassing mining and some parts of the processing to give an intermediate product used 

in the next stage of the value chain. To date there have only been a handful of LCAs for REE 

production, with studies primarily focusing on Bayan Obo  (Sprecher et al. 2014; Koltun and 

Tharumarajah 2014; Zaimes et al. 2015).  Sprecher et al. (2014) also extended their LCA to 

the production of NdFeB magnets. These studies yielded different results (Table 2). For 

example global warming impacts (GWI) range from 12 to 35.27 kg CO2 eq at Bayan Obo and 

acidification has a range from 6.4 to 99.28 kg SO2 eq. The variation of the REE results can be 

explained by the fact that different software packages, datasets and methods have been used 

and different assumptions about the processing routes were made for each LCA. For 

example, Koltun and Tharumarajah (2014) used a two-step allocation procedure to deal with 

the co-production of iron ore at Bayan Obo. Comparison of two LCAs done at different times 

can also be difficult because the inventories in the software are updated periodically as new 

data become available for specific processes, and to reflect the changing mix of energy 

generation in the countries in the database. 
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An important point that comes from these analyses is the high contribution of chemical 

reagents, especially when they are manufactured in countries with high fossil fuel use. 

Although crushing and grinding prior to mineral separation is energy intensive, it has a 

smaller contribution to greenhouse gas emissions than dissolving the REE minerals and 

separating the individual REE from each other (Figure 4). Various new processes have been 

proposed to separate REE but none are in commercial production yet. Learning from nature 

in order to find novel ways to carry out these processing stages is certainly a challenge to 

which geochemists could contribute.   

Recent work by Vahidi et al. (2016) has examined the environmental performance of ion-

adsorption clays. The LCA results indicated that production of REE from ion adsorption 

clays has a similar GWI as production from Bayan Obo, a lower acidification rate, and a 

higher cumulative energy demand (CED). It should be noted that the difference in REE 

composition (i.e. higher HREE content in the ion-adsorption clays) and the use of an 

economic allocation in the comparison means that the potentially better environmental 

performance of the ion-adsorption clays is offset by its higher relative economic value. 

Comparisons could be improved by comparing LCA results for individual REE, e.g. Nd, Dy, 

Eu rather than grouping the whole set together. 

Other challenges specific to use of LCA to evaluate REE production are that there are often 

limited data available for specific processing steps, and therefore surrogate information is 

required. This is especially true when comparing deposits that are still in the exploration and 

development phase. There is also the issue about what factor to measure environmental 

performance against. Should it be measured against individual REE or against an economic 

value? Previous studies have tended to incorporate some economic criteria because this is 

more realistic when considering the high value variation of the individual elements. Ce oxide 

sells for a few dollars a kg whereas more scarce HREE with specific uses such as Dy and Eu 

sell for thousands of dollars per kg. Trying to work on the whole set of REE adds a 

complicating factor but of course this is how the REE occur in ore deposits.  

REE production as whole (using figures for Bayan Obo) performs slightly worse than 

average when compared against LCA results for other metals. For example, Graedel et al. 

(2015) used an LCA metric for environmental impact, based on the earlier studies of Bayan 

Obo contained in LCA inventories, and graded the LREE, La, Ce, Pr, Nd low and three of the 

heavy REE, Eu, Dy, Tb, medium, compared with other metals; all lower than gold, LREE 

similar to copper and higher than iron.  
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A limitation of LCA is that although the software packages have been developed to 

incorporate many factors, such as those discussed in the quantitative comparison above, the 

results tend to be presented in term of energy use, global warming impact, greenhouse gas 

emissions, thus missing or apparently downplaying all the other factors of responsible 

sourcing. LCA also misses the behavioural element of whether a mining company is abiding 

by the regulations and good practice guidelines. Despite the challenges that exist in LCA, it 

can be a powerful tool in calculating the environmental performance of REE production, and 

offers insight into hotspots of production that need further research, as well as calculating 

values that can feed into full life cycle analyses of manufactured goods. At the moment, the 

only deposit information available in commercial inventories is for Bayan Obo, and this is a 

major limitation for consideration of future supplies. Further work should consider 

formalising a consistent process for LCA use in the context of REE production. 

 

CONCLUSIONS 

Most critical raw materials contribute to long manufacturing supply chains for complex 

devices such as smartphones, computers and cars. It is much more difficult for consumers to 

engage with the original mining operations in these cases than for products such as jewellery 

where the raw materials are more obvious. Only high profile humanitarian issues such as 

conflict minerals have really penetrated these long chains to produce action to help ensure 

responsible sourcing. There are no responsible mining schemes generally applicable to mid-

size critical metal suppliers yet, although there are international management systems and 

other relevant information that companies can use and make directly available.  

Considering the beginning of the supply chain and using the REE as an example, it can be 

demonstrated that geology and geochemistry have a strong influence on mining and 

processing techniques, and thus to environmental performance and responsible sourcing. 

There are plenty of challenges for the geoscience community to find more environmentally-

friendly ore types and processing methods, including mitigating the ore dissolution stage, and 

remediation techniques. 

Life cycle assessment and qualitative approaches have different uses in responsible sourcing. 

LCA is particularly good for technical application in processing design and supply chain 

analysis. More studies of critical raw materials are needed to show the manufacturers a better 

choice of raw materials supply routes. LCA is less useful for communication directly to the 
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public because of the way it condenses information. A single issue, such as radioactivity or 

landscape degradation, can outweigh all other factors in pubic consideration and will have to 

be addressed as highest priority.  These issues of responsible sourcing are the same for 

critical and non-critical raw materials.  

For REE, it is important to consider that most users still purchase from China and much of 

the REE supply chain sits in China. Several mining projects under development outside 

China have agreements to sell to Chinese processors. A particular challenge for Chinese REE 

producers is that they have to demonstrate both an improvement in their environmental and 

social performance and show that there is enough diversity in the World market to guarantee 

a secure supply.  
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Box  

Solvent extraction of REE  

Perhaps the most complex chemical challenge of REE production is that applications need 

individual high purity REE.  The separation of the natural mixtures into individual pure REE 

is particularly difficult, chemically intensive and has always been a challenge in terms of 

science and technology and also economics (Lucas et al. 2015). A breakthrough in producing 

a separation process that uses more environmentally-friendly chemicals and/or can be applied 

at the same time as the first processing, or during in-situ leaching would be a major advance 

in responsible sourcing of REE. Historically REE separation was done by selective 
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crystallization and then later by ion exchange and now by solvent extraction.  A number of 

new techniques have been proposed but none are yet being used commercially.  

Solvent Extraction is currently the only industrial scale REE separation process. The 

separation is done step by step, with a mixer-settler technology and each step performed in 

equipment called a Solvent Extraction battery. Each solvent extraction battery can separate 

one group of REE into two sub-groups, or a mixture of two REE into two pure individual 

REE. So, the separation of mixture of n REEs into n individual REE will need n-1 solvent 

exchange batteries. Industrially, REE separation processes are all done in a battery of mixer-

settlers with counter-current flows: the purification of each REE can reach as high as 6N 

(99.9999%). 

The choice of solvent depends on:  selectivity (for the REE3+ valency), loading capacity and 

how the extracting molecule affects the energy and chemical reagent consumption.  The 

classical extractants used are Ethyl2hexyl Ethyl2hexyl phosphonic acid (H(EH)EHP), 

Tributyl phosphate (TBP) and Aliquat 336. H(EH)EHP gives the highest total difference of 

partition coefficients between REE: P(Lu2+)/P(La3+) > 106  (Figure 1 Box).  It is the most 

selective extractant along the lanthanoid series and can be used for all REE separations. 

Nevertheless, tri butyl phosphate in a nitrate medium can be used for La/Ce/Pr/Nd separation 

and Aliquat 336 in a nitrate medium can be used for some light and heavy REE separations 

(Figure 1 Box). The loading capacity of a solvent, defined as the maximum quantity of REE 

that this solvent can load can be improved by lower molecular weight and lower viscosity of 

the solvent.  

The chemical and energy consumptions depend on the extraction mechanisms. All the 

solvents can be classified into three different types of extracting molecules: solvating agents 

or neutral extractants (e.g tributyl-phosphate, TBP) which consume steam and water, anion 

exchangers (e.g. Salts of trilauryl methyl ammonium and of tricapryl methyl ammonium) 

which also consume steam and water and cation exchangers (e.g. Ethyl2hexyl,ethyl2hexyl 

phosphonic acid, HEHEHP) which  consume basic chemicals (NaOH or NH4OH) in the 

extraction section and acids (HCl or HNO3) in the stripping section. 

The usual way to classify solvent extraction processes is to distinguish between the chloride 

process and the nitrate process. The chloride process is the most widely used, in all Chinese 

plants. Its advantages are that the same solvent can be used for all the REE separations 

because H(EH)EHP is selective throughout the lanthanoid series (Figure 1 Box) and the 

liquid wastes contain NaCl which can usually be  released into the environment with no 
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constraints. The main disadvantage is the large consumption of HCl and NaOH. The nitrate 

process has lower operating costs than the chloride process. Solvating and basic extracting 

molecules can both be used and the solvents based on these molecules consume almost no 

chemicals. Ce and Eu are easy to convert to the 4+ and 2+ oxidation states, respectively, and 

this can be used to facilitate their separation. 

 

Figure captions 

Figure 1 Summary of mining and processing routes for REE deposits. Ores are divided into 

three types: hard conventional such as igneous carbonatite and alkaline igneous rocks, soft 

conventional such as mineral sands and easily leachable which includes ion adsorption clays.  

	  

Figure 2 In situ leaching pond for ion adsorption clay REE deposit, China. A low technology 

technique, in which drainage holes at the rear of the collection pond bring the leach solution 

down the hillside through the weathered granite. In theory, this could be a low environmental 

impact method to produce REE but it depends on the chemicals used and how well they are 

controlled. Photo courtesy of Alain Rollat. 
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Figure 3 Waste tips associated with the apatite mines in the Khibiny nepheline syenite 

complex, Kola peninsula, Russia. 

	  

	  

Figure 4  Greenhouse gas emissions equivalent per kg of REO produced calculated from a 

life cycle assessment of mining, concentrating Bayan Obo REE ore, dissolving (cracking) the 

two ore minerals, bastnäsite and monazite to release their REE, and then separating the REE 

from each other (Koltun and Tharumarajah 2014). 

	  

Figure 1 Box.   Relative partition coefficients of RE3+, i.e. [P(RE3+)] for the three  extractants,  

Ethyl2hexyl Ethyl2hexyl phosphonic acid (H(EH)EHP), Tributyl phosphate in a nitrate 

medium (TBP/NO3) and Aliquat 336 in a nitrate medium (Aliquat336/NO3). The scale is 

normalized to a partition of one for Y. The larger the difference of P(RE3+) between two 

adjacent REE, the more selective the extractant.  Modified from Lucas et al. (2015). 
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Tables 

Table 1 Examples of REE deposits and qualitative analysis of their mining and processing 

characteristics 

 

Table 2. Summary of four LCAs with a functional unit of 1 kg of REO, three from Bayan 

Obo (China), highlighting different results obtained from the same deposit, plus one for a 

Chinese ion adsorption deposit.

 

Ore$type$ Energy$for$
crushing$and$
grinding$

Grain$size$/Difficulty$of$
beneficiation$

Chemicals$
(acid,$flotation$

reagent)$$

Radioactivity:$
ore$mineral$
and$host$rock$

Amount$of$
rock$to$be$
moved*$

ByFproducts$
$

Carbonatite$ Med$High $ Variable$–$10$µm $ Flotation $ LowFmed. $ Low $ Not$usually $

Weathered$$
carbonatite$ Medium $ 10$µm$and$finer $ Flotation $ Low$–$med. $ Low $ Not$usually $

Alkaline$rock$ High $ µm$and$larger $ High $ Variable $ High $ Coproducts $

Ion$adsorpF
tion$clay$(inF
situ$leaching)$

None $ n/a $ Leaching $ Low $ Low $ None $

Mineral$sand$
(placer)$ None$–low $ 10$F$100 µm$ Low $ High $ High $ REE$byFproduct$

of$TiO2$etc.$$

ByFproduct$of$
apatite$ High $ 100 µmFmm$ Medium $ Low $ High $ Fertiliser$

manufacture$
Red$mud$ bauxite$ n/a,REE$from$red$mud $ Medium? $ Low $

$

High $

$

Al$production $

$ $ $ $ $ $ $
*i.e.$low$grade$=$large$amount$of$$rock$$
$

! ! ! ! ! !

Factor! unit! Bayan!Obo!1! Bayan!Obo!2! Bayan!Obo!3! Ion!adsorp1
tion!clay!

Global!warming! kg!CO2!eq! 12116! 32.29132.49! 22.98135.27! 20.9135.5!

Acidification! kg!SO2!eq! 6.418.8! N/A! 96.27199.28! 0.16510.288!

Eutrophication! kg!N!eq! 0.0410.06! N/A! 0.1810.27! 0.30312.87!

Respiratory!effects! kg!PM2.5!eq! N/A! N/A! 0.1610.18! 0.02610.045!

Ozone!depletion! kg!CGC111!eq!E106! 213.5! N/A! 3.8120! 2.413.2!

Cumulative!energy!demand! MJ! 1741232! 169.21179.5! 3151578.8! 2551388!

Data!from!Sprecher!et!al.!(2014),!Koltun!and!Tharumarajah!(2014),!Zaimes!et!al.!(2015),!Vahidi!et!al.!(2016)!
All!results!are!presented!as!a!range!from!low!to!high!!!!!!!!!!
N/A=!no!result!available!for!this!factor!


