
Offline Learning for Selection Hyper-heuristics

with Elman Networks

W. B. Yates and E. C. Keedwell

Computer Science, College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter, EX4 4QF, UK.

wy254@exeter.ac.uk E.C.Keedwell@exeter.ac.uk

Abstract. Offline selection hyper-heuristics are machine learning meth-
ods that are trained on heuristic selections to create an algorithm that is
tuned for a particular problem domain. In this work, a simple selection
hyper-heuristic is executed on a number of computationally hard bench-
mark optimisation problems, and the resulting sequences of low level
heuristic selections and objective function values are used to construct
an offline learning database. An Elman network is trained on sequences
of heuristic selections chosen from the offline database and the network’s
ability to learn and generalise from these sequences is evaluated. The net-
works are trained using a leave-one-out cross validation methodology and
the sequences of heuristic selections they produce are tested on bench-
mark problems drawn from the HyFlex set. The results demonstrate that
the Elman network is capable of intra-domain learning and generalisa-
tion with 99% confidence and produces better results than the training
sequences in many cases. When the network was trained using an inter-
domain training set, the Elman network did not exhibit generalisation
indicating that inter-domain generalisation is a harder problem and that
strategies learned on one domain cannot necessarily be transferred to
another.

Keywords: Hyper-heuristics, Elman networks, Offline learning.

1 Introduction

Hyper-heuristics are heuristic methods that are employed to solve computa-
tionally hard problems for which no known effective algorithmic solution exists.
Typically such problems are presented as optimisation problems where the goal
is to minimise an objective function defined on a space of solutions. Such methods
have proved effective on a number of real world problems (see [1]).

A selection hyper-heuristic selects heuristics from a given set of low level
heuristics and applies them sequentially to optimise a particular problem. Many
hyper-heuristics employ learning algorithms in order to improve optimisation
performance, and this learning may be classified as either online or offline. Online
learning is based on the low level heuristic selections and resulting objective
function values computed during the execution of a hyper-heuristic. In contrast,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/132263225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

offline learning is performed on a database of low level heuristic selections and
objective function values computed by a hyper-heuristic on a fixed number of
benchmark problems. This paper is concerned with offline learning for selection
hyper-heuristics.

A variety of machine learning algorithms have been proposed for offline learn-
ing (see for example [2], [3], and [4]). In [2] classifier systems are applied to the
1D bin packing problem. Here the system learns a set of rules which associate
characteristics of the current problem state with specific heuristics. Heuristics
are selected and applied sequentially, thus gradually altering the characteristics
of the problem. The system when trained on several problems, generalises by
also performing well on unseen problems. In [3] case based reasoning (CBR) is
applied successfully to exam timetabling problems. The assumption underlying
CBR is that “similar problems will have similar solutions”. Previous problems
and their “good” solutions (called source cases) are collected and stored. A sim-
ilarity based retrieval process compares the source cases with the problem at
hand, and selects heuristics that were employed successfully in similar situa-
tions. Here the authors employ a two-stage learning process, one for the case
representation (or feature selection) and another for source case selection. In [4],
messy genetic algorithms are used to evolve combinations of condition-action
rules which represent problem states and associated heuristics. Each chromo-
somes represents a hyper-heuristic and contains the set of rules that determine
which heuristic should be applied to which problem state. When tested, these
hyper-heuristics generalised well and solved many of the test problems efficiently.

In each case, learning is used to improve optimisation performance by im-
proving the selection of individual heuristics at particular points in the search
process across a number of training problems. In contrast, recent research (see [5]
and [6]) has argued that heuristic selections should be understood as part of a
sequence of selections. The concept of heuristic sequences is intuitive, certain
heuristic orderings make sense (e.g. an explorative mutation followed by an ex-
ploitative local search) whereas others (e.g. the reverse of the previous example)
do not.

The objective of this study is to test the thesis that subsequences of heuristics
can be found in the offline learning database that are effective across a number
of problems and (it is hoped) problem domains. A selection hyper-heuristic is
executed on the well known HyFlex set of benchmark problems (see [7]) and
the resulting sequences of low level heuristic selections and objective function
values are used to construct an offline learning database. An Elman network
(see [8]) is used to extract effective subsequences of heuristics automatically by
learning from suitable sets of sequences chosen from the offline database. Elman
networks are recurrent neural networks which naturally learn from, process and
produce sequences of data. After training, the Elman network is used to com-
pute new sequences of heuristics which are then evaluated on unseen HyFlex
example problems. The aim is to determine if the network has generalised from
the training sequences. In this context, generalisation means that the network is

3

able to produce a sequence of heuristic selections which, when evaluated on the
unseen examples, outperform the training sequences.

The benchmark problems are drawn from 4 distinct problem domains. Offline
learning can be classified as either intra-domain or inter-domain. In intra-domain
learning, the training sequences and the test optimisation problem are drawn
from the same problem domain. In inter-domain learning, the training sequences
and test problem can be drawn from different domains.

The results presented here demonstrate that an Elman network is capable of
intra-domain learning and generalisation with 99% confidence when trained on
suitable sequences of heuristic selections. When trained using an inter-domain
training set, the Elman network did not exhibit generalisation indicating that
inter-domain generalisation is harder, and the methodology used to choose the
training sets is unsuitable in this case.

This paper is structured as follows. Section 2 details the methodology and
describes the construction of the offline learning database, the structure of the
Elman networks and their training sets, and the hyper-heuristic used to evaluate
the sequences produced by the trained Elman networks. Section 3 contains the
results of two experiments designed to test the suitability of Elman networks for
offline intra-domain and inter-domain learning. Finally, Section 4 presents the
conclusions of this study.

2 Methodology

Section 2.1 contains a description of the HyFlex benchmark problems and the
DBGen hyper-heuristic used to generate the offline learning database. In Section
2.2 the mathematical concept of a logarithmic return is introduced and used
to quantify hyper-heuristic performance, and to select training sequences from
the database. Section 2.3 details the architecture of the Elman network used in
this study, while Section 2.4 describes the construction of the intra-domain and
inter-domain training sets. Finally, in Section 2.5, the BLIND hyper-heuristic
that is used to evaluate the sequences produced by the trained Elman networks
is presented.

2.1 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex1, see [7]) is a set of bench-
mark problems that has been used in a number of studies. See for example [9],
[10], [11], [12], [5], and [13]. HyFlex contains an implementation of four compu-
tationally hard problem domains:

1. 1D bin packing (BP),
2. permutation flow shop (PFS),
3. boolean satisfiability (SAT), and

1 HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this
study (see http://www.asap.cs.nott.ac.uk/chesc2011/).

4

4. personnel scheduling (PS).

Each problem domain contains 10 distinct problems of varying complexity. HyFlex
hides all problem specific information such as the solution representations, the
solution constructions, and the low level heuristic implementations. Each HyFlex
problem has four general heuristic classes:

1. parameterised mutation (M) which perturbs a solution randomly,
2. crossover (C) which constructs a new solution from two or more existing

solutions,

3. parameterised ruin and recreate (R) which destroys a given solution partially
and then rebuilds the deleted parts, and

4. parameterised hill climbing or local search (L) that incorporates an iterative
improvement process and returns a non-worsening solution.

The actual number and implementation of the low level heuristics in each class
differs between problem domains. As a result, it is not possible to directly com-
pare sequences of low level heuristics from different domains. Instead, sequences
of heuristic classes are compared.

Algorithm 1 The DBGen hyper-heuristic in pseudocode.

1. ITERATIONS ← 150;
2. new-sol ← initialiseSolution();
3. new-obj ← f(new-sol);
4. cross-sol ← initialiseSolution();
5. cross-obj ← f(new-sol);
6. while (ITERATIONS−− > 0) do

7. cur-sol ← new-sol;
8. cur-obj ← new-obj;
9. Heuristic h ← selectHeuristic();
10. new-sol ← apply(h, new-sol, cross-sol);
11. new-obj ← f(new-sol);
12. double r ← ran();
13. if (new-obj < cross-obj or r < 0.5) then

14. cross-sol ← new-sol;
15. cross-obj ← new-obj;
16. end if

17. if (new-obj ≥ cur-obj and r ≥ 0.5) then

18. new-sol ← cur-sol;
19. new-obj ← cur-obj;
20. end if

21. end while

The random, unbiased, single selection hyper-heuristic DBGen used to gener-
ate the offline learning database is shown in listing 1. The function select() (line
9) selects a single low level heuristic class at random from the set {C, L, R, M}. The
function apply() (line 10) takes the heuristic class and chooses, again at random,
an actual low level heuristic and its parameters from the available heuristics of
that class. The actual heuristic is then applied to the current solution cur-sol,
and if the class is C, to the current crossover solution cross-sol. An objective
function evaluation (line 11) and an acceptance check (lines 12–20) are then

5

performed. The function ran() (line 12) returns a uniformly distributed pseu-
dorandom number in the interval (0, 1). If a new solution’s objective value is
less than the current solution’s objective value cur-obj or ran() < 0.5 then it is
accepted. Otherwise the new solution is rejected. The random term allows new
solutions to be accepted regardless of their objective function approximately
50% of the time. Accepting states that may lead to a large increase in objective
function value forces the DBGen hyper-heuristic to explore the space of low level
heuristic selections instead of optimising the problem efficiently.

The DBGen hyper-heuristic is executed 40 times, for 150 selections, on the
10 problems in each of the 4 HyFlex domains. The resulting 1600 sequences of
low level heuristic selections and associated objective function values are used
to construct an offline learning database. The number of 40 trials was chosen
because for a sufficiently large number (say n > 30) the central limit theorem
ensures that the arithmetic mean of any observed values will be approximately
normally distributed, regardless of the underlying distribution. This allows ro-
bust statistics to be calculated for each problem. The number of 150 selections
was chosen after experimental observations indicated that no major improve-
ments in objective function occurred beyond this point.

2.2 Final Log Returns and the BEST Sequences

In this study, logarithmic returns are used to measure the performance of a
hyper-heuristic. The final log return αf of a hyper-heuristic run or sequence s is
the log return between the initial solution of a run x0, which has an objective
function value o0, and the best final solution xmin found during the run, which
has an objective function value of omin. In symbols

αf (s) = log10

(
omin

o0

)

.

Logarithmic returns allows us to easily compare the objective function values
produced by a hyper-heuristic executing on a number of distinct problems or
problem domains.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) = 1

N

N∑

i=1

αf (si).

The function αf is the mean of log values. The anti-log of the mean of the logs
is equivalent to the geometric mean. In symbols

log−1
(

1

N

N∑

i=1

log(xi)

)

= N
√
x1 · x2 · · ·xN

assuming the values xi all have the same sign. The geometric mean is always
less than or equal to the arithmetic mean, and is employed to average values

6

which have very different ranges. The geometric mean normalises the ranges, so
that no range dominates the average. Although the use of log returns normalises
the ranges of different objective functions, the log return values can still differ
significantly, as some problems are harder to optimise than others. For this
reason, in this study, the arithmetic mean of the final log returns αf is used
in preference to the arithmetic mean of the decimal returns.

The final unit log return βf is the final log return αf divided by the sequence’s
length up to (and including) the minimum objective function value. That is

βf (s) =
αf (s)

min
.

The length of a sequence is important because for many real world optimisation
applications the execution times of the low level heuristics and objective function
evaluations can be non-trivial.

The HyFlex benchmark problems set consists of 4 problem domains, each
one containing 10 problems. The set of the 40 “best” sequences in the offline
database, denoted BEST, consists of the sequences with the lowest final unit
log return βf for each problem. These sequences are the shortest sequences that
produce the largest decrease in the objective function value for each problem. As
the offline database was generated by executing the DBGen hyper-heuristic 40
times on each of the 40 HyFlex problems, the “best” sequence for each problem
is selected from a pool of 40 sequences.

2.3 Elman Networks

Elman networks are examples of simple recursive neural networks. They are
typically applied to problems which express themselves naturally as temporal
sequences such as natural language processing applications (see [8] and [14]).
Such networks learn from, process, and produce sequences of data.

The training sequences are sequences of low level heuristics selections chosen
from the offline learning database. Each such sequence is encoded using a field
representation so that it can be processed by the Elman network. Specifically,
each low level heuristic selection {M, C, R, L} is encoded as a vector in {0, 1}4
where

M = (1, 0, 0, 0)

C = (0, 1, 0, 0)

R = (0, 0, 1, 0)

L = (0, 0, 0, 1),

and X = (0, 0, 0, 0) denotes a missing or unknown selection. These vectors are
then concatenated to form an input pattern. For example, given the sequence
MCRLR, an input pattern of 4 low level heuristic selections, corresponding to the
current selection L and the three past selections MCR is

(

M

︷ ︸︸ ︷

1, 0, 0, 0,

C

︷ ︸︸ ︷

0, 1, 0, 0,

R

︷ ︸︸ ︷

0, 0, 1, 0,

L

︷ ︸︸ ︷

0, 0, 0, 1)

7

while the output pattern corresponding to the next selection in the sequence is

(

R

︷ ︸︸ ︷

0, 0, 1, 0).

The number of selections to be used as an input is termed the memory length
of a selection strategy (see [15]). Using the current heuristic selection and those
prior to it as inputs provides context for the next selection.

Initial experiments with memory length show that Elman network learning
improves significantly as the number of past selections increases. Figure 1 shows
the results of training an Elman network with a memory length of 1, 2, 3, 4 and
5, on the INTRA training sequences for each domain (see Section 2.4). It should
be noted that increasing the number of past selections also increases the number
of weights which also improves learning.

In this study, a memory length of 4 is used because, with this number, the
Elman network learns 80% (or more) of each training set. Thus, the 3-layer
Elman network used in this experiment has 16 input units, 16 hidden units (and
therefore 16 context units), 4 output units, and 596 weights. The hidden and
output units employ the sigmoid activation function. The number of 16 hidden
units was chosen arbitrarily.

Fig. 1: The percentage of LLH training errors for an Elman network with 4, 8,
12, 16 and 20 inputs, 16 hidden units, and 4 output units, for each domain.

0

10

20

30

40

50

4 8 12 16 20

L
L
H

T
ra
in
in
g
E
rr
o
rs

(P
er
ce
n
t)

Network Inputs

BP
PFS
SAT
PS

After training, given some initial input, an Elman network produces a se-
quence of outputs. The output sequence may converge to a single point, a limit
cycle of repeating values, or produce a chaotic non-repeating sequence.

8

2.4 Training Sets

This study is concerned with offline intra-domain and inter-domain learning of
heuristic classes. In intra-domain learning, the training sequences and the test
optimisation problem are drawn from the same problem domain. This simplifies
the learning task considerably as the low level heuristics in each class are iden-
tical for each problem and so the heuristic classes will have similar statistical
characteristics across the problems of the domain. This is not generally the case
for inter-domain learning where the training sequences and test problem can be
drawn from different domains. These different domains will have different low
level heuristic implementations and so the heuristic classes can have different
statistical characteristics in each domain (see figure 2). However, the general
underlying principles of each heuristic class should remain similar, for example
a mutation operation should make small random changes, while a local search
operation will greedily search the surrounding space.

Fig. 2: The scaled mean log returns α of the heuristic classes C, L, M, and R

for each domain. In each domain the α values have been scaled by the largest
absolute α value into the interval [−1, 1].

−0.5

0

0.5

1

BP PFS SAT PS

S
ca
le
d
m
ea
n
lo
g
re
tu
rn

C

L

M

R

The training sets for intra-domain and inter-domain learning are constructed
from the BEST heuristic class sequences. As these sequences are the most efficient
optimisations of each problem available they contain the most “useful informa-
tion” regarding that problem and therefore they are prime candidates for inputs
to a machine learning algorithm. In this study, leave-one-out cross-validation
(see [16]) is employed to determine whether the Elman network sequences are
able to outperform the BEST training sequences.

9

For intra-domain learning, the BEST subsequences are divided by domain
into 4 sets of 10 sequences. For each problem in a domain, the sequence for
that problem is left out of the training set and the remaining 9 sequences are
used to train a network. The sequence produced by the trained network is then
evaluated on the problem that was left-out. Thus the sequence generated by the
network is always evaluated on a problem that the network has not been trained
on. Applying this methodology gives rise to 40 training sets of 9 sequences, one
for each problem, constructed from the 10 sequences selected for each domain.

For inter-domain learning, the BEST subsequences are again divided by do-
main into 4 sets of 10 sequences. For each domain, 3 sequences are selected from
each of the 3 remaining domains. These sequences correspond to the problems
with the lowest βf in those domains. Applying this methodology gives rise to
4 training sets of 9 sequences, one for each domain, constructed from the 9
sequences selected from the other domains.

In each case, for each problem, the Elman network is trained with 9 sequences
drawn from the set BEST. It should be noted that for network training, only
the accepted selections of each sequence up to (and including) the minimum
objective function value are used. Rejected selections, and those selections that
occur after the minimum objective function value are not used.

2.5 The BLIND Hyper-heuristic

The BLIND hyper-heuristic is used to evaluate sets of heuristic sequences on
the HyFlex problems. It is intended to serve as a simple test bed and a “level
playing field”, in order to evaluate and compare the performance of sequences.
The sequence based hyper-heuristic BLIND used in these experiments blindly
applies a given sequence, one low level heuristic class after another to a HyFlex
problem, accepting every selection. The actual low level heuristics and their
parameters are chosen at random.

3 Results

Section 3.1 presents the results of training the Elman networks with the intra-
domain and inter-domain training sequences. In Section 3.2 the sequences that
are generated by the trained networks are evaluated on the HyFlex problems
using the BLIND hyper-heuristic.

3.1 Network Training

An Elman network is trained with the intra-domain and inter-domain training
sets using stochastic Backpropagation with early stopping over a maximum of
1000 epochs (see [16]) using the parameters shown in table 1. The learning rate,
momentum term, and the number of training epochs have not been optimised.

The results of network training are summarised in table 2 and figure 3. Ta-
ble 2 shows the results of training the Elman network with the 40 intra-domain

10

Table 1: The Elman network structure and training parameters.

Input Hidden Out Learn Momentum Epochs

16 16 4 0.1 0.25 1000

training sets. The results are averaged over the 10 training sets in each domain.
The columns show the average number of low level heuristics in each set, the
average percentage of low level heuristics incorrect after training, the average
network root mean square error, and the average number of epochs. Low level
heuristic correctness is determined by applying a winner-take-all strategy to the
network’s output units and comparing the network’s choice of heuristic with the
target heuristic. Figure 3a shows the percentage of low level heuristic errors dur-

Table 2: The averaged training results of the Elman network on the intra-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 369.0 12.6407 4.2958 907.7
PFS 94.5 1.0260 1.0491 328.9
SAT 288.2 18.3158 4.1991 918.9
PS 121.5 3.0474 0.9290 947.3

ing intra-domain training for 4 representative problems (number 7, 19, 34, and
14) chosen from the BP, PFS, SAT and PS domains. These results demonstrate
that the difficulty of learning intra-domain sequences of heuristic selections varies
by domain. For example, the SAT domain sequences are much harder to learn
than the training sequences of the other domains.

Table 3: The averaged training results of the Elman network on the inter-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 151 1.7391 1.0443 999
PFS 224 1.0638 1.3208 994
SAT 175 0.7194 0.8031 616
PS 221 1.0810 0.9290 739

11

Fig. 3: The Elman network training results for the intra-domain and inter-domain
sets. In figure (a) the training sequences are drawn from the BP, PFS, SAT and
PS domains. In figure (b) the training sequences are drawn from the {PFS SAT
PS}, {BP SAT PS}, {BP PFS PS}, and {BP PFS SAT} domains.

0

10

20

30

40

50

60

0 200 400 600 800 1000

L
L
H

E
rr
o
rs

(P
er
ce
n
t)

Iteration

BP
PFS
SAT
PS

(a) Intra-domain training results.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000
L
L
H

E
rr
o
rs

(P
er
ce
n
t)

Iteration

PFS SAT PS

BP SAT PS

BP PFS PS

BP PFS SAT

(b) Inter-domain training results.

Similarly, table 3 and figure 3b show the results of training the Elman network
with the 4 inter-domain training sets. These results demonstrate that intra-
domain learning is harder than inter-domain learning.

After training, the Elman network is then given the initial “blank” input
XXXX. As Elman networks are deterministic, the intra-domain trained networks
produces a set of 40 sequences, one for each problem, while the inter-domain
trained networks produce a set of 4 sequences, one for each domain.

3.2 Evaluating the Elman Network Sequences

The BLIND hyper-heuristic is parameterised with three sets of sequences denoted
BEST, INTRA, and INTER and then executed 40 times on each of the HyFlex
problems. The INTRA sequence set is generated by the intra-domain trained
Elman networks, while the INTER sequence set is generated by the inter-domain
trained Elman networks. It should be noted that the pseudorandom number
seeds and therefore the initial solutions used for the INTRA, INTER, and BEST

evaluation runs presented here are identical and distinct to the pseudorandom
number seeds used by DBGen to generate the offline database from which the
BEST sequences are selected.

When parameterised with the BEST sequences the BLIND hyper-heuristic
applies all the accepted selections including those after the minimum objective
function value. This is done because some sequences in BEST find a minimum
quickly, in some cases after only 9 selections. Using all accepted selections gives

12

the BLIND hyper-heuristic a larger number of iterations/selections to better op-
timise a problem. The length of the BEST sequences also dictate the number
of selections used by the INTRA and INTER parameterisations. The results of
evaluating the INTRA and INTER sequence sets on the HyFlex problems are
compared to the BEST sequences (see table 4). The intention of the comparison
is to determine whether the network has learned anything over and above the
information contained in the BEST sequences. The INTRA sequences outper-
form the BEST sequences overall and on each domain, while BEST outperforms
INTER overall, and on each domain except the PFS domain. The best general-
isation is observed between INTRA and BEST on the SAT domain (which was
the hardest to learn). The overall averages are calculated over 1600 sequences,
and the domain averages are calculated over 400 sequences.

Table 4: A domain by domain and overall comparison of the mean final log return
αf of BEST, INTRA and INTER.

Dom. BEST INTRA INTER

BP -0.2172 -0.2202 -0.0375
PFS -0.0043 -0.0049 -0.0051

SAT -0.4345 -0.6919 -0.2313
PS -1.7912 -1.8042 -1.5560

All -0.6118 -0.6803 -0.4575

A paired t-test is used to establish whether the difference observed in the
mean final log returns of BEST and INTRA is statistically significant. Formally,
the null hypothesis

αf (BEST) ≥ αf (INTRA)

is rejected if t lies outside the interval [−2.3287,∞) and the alternative hypoth-
esis

αf (BEST) < αf (INTRA)

is accepted with 99% confidence. The results of the t-test are shown in table 5.
The difference in mean is statistically significant overall, and for the PFS and
SAT domains with 99% confidence. For the BP and PS domains the difference
in mean is not statistically significant.

4 Conclusions

The sequence set BEST consists of the sequences with the lowest final unit log
return βf for each HyFlex problem. An intra-domain training set INTRA and
an inter-domain training set INTER are constructed from the BEST sequences
and used to train an Elman network. In order to estimate the Elman network’s

13

Table 5: The domain, the sample mean difference, the standard deviation, the
t score, and the interval within which the population mean difference falls with
99% confidence.

Dom. Diff. SD t Conf. Int.

BP -0.0030 0.0821 -0.7214 [-0.0136, 0.0077]
PFS -0.0006 0.0024 -5.2796 [-0.0009, -0.0003]
SAT -0.2573 0.1085 -47.4485 [-0.2714, -0.2433]
PS -0.0130 0.1225 -2.1289 [-0.0289, 0.0028]

All -0.0685 0.1424 -19.2384 [-0.0777, -0.0593]

capacity for generalisation the network is evaluated using a leave-one-out cross-
validation methodology. The first result presented in this study demonstrates
that the Elman network is capable of intra-domain generalisation with 99% con-
fidence. This result is notable because the Elman network is able to significantly
outperform the sequences on which it was trained. The process of generalisa-
tion across the training problems within a domain has generated a network that
is able to perform better on unseen test problems in that domain. This shows
that useful information can be learned about the problems in a domain from
the sequences of heuristic selections used to optimise them. The second result
shows that the Elman network is not capable of inter-domain generalisation us-
ing the training set INTER in spite of the fact that the training sets are easier to
learn. This suggests that inter-domain generalisation is harder than intra-domain
generalisation, and that low training errors need not translate into good gener-
alisations. This was generally to be expected, the sequences of heuristics learned
on one domain are not expected to be applicable to another. However, there are
exceptions, for example the performance on PFS domain from the INTER trained
network performed well and indicates perhaps that a more general strategy for
solving the PFS domain would be successful.

Overall, the Elman network proved to be able to generalise the training
sequences for intra-domain learning which opens up the possibility of the use of
bespoke learned algorithms for particular problems. Inter-domain generalisation
was more difficult, as expected, and more work would need to be conducted to
determine whether a different methodology would allow domains with similar
sequences to be identified.

References

[1] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. Woodward, A
Classification of Hyper-heuristic Approaches. Springer US, 2010.

[2] P. Ross, S. Schulenburg, J. G. Maŕın-Bläzquez, and E. Hart, “Hyper-heuristics:
Learning to combine simple heuristics in bin-packing problems,” in Proceedings of
the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO

14

2002, (San Francisco, CA, USA), pp. 942–948, Morgan Kaufmann Publishers Inc.,
2002.

[3] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for
timetabling problems,” Journal of Scheduling, vol. 9, no. 2, pp. 115–132, 2006.

[4] H. Terashima-Maŕın, J. C. Ortiz-Bayliss, P. Ross, and M. Valenzuela-Rendón,
“Hyper-heuristics for the dynamic variable ordering in constraint satisfaction
problems,” in Proceedings of the 10th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO 2008, (New York, NY, USA), pp. 571–578, ACM,
2008.

[5] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic utilising a
hidden Markov model,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2015, pp. 417–424, ACM, 2015.

[6] W. B. Yates and E. C. Keedwell, “Clustering of hyper-heuristic selections using the
Smith-Waterman algorithm for offline learning,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), (Berlin), pp. 119–120, ACM,
2017.

[7] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker, M. Gendreau,
G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic, and E. K. Burke, “HyFlex: A
benchmark framework for cross-domain heuristic search,” in Evolutionary Com-
putation in Combinatorial Optimization (J. K. Hao and M. Middendorf, eds.),
pp. 136–147, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[8] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–
211, 1990.

[9] J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle routing and
adaptive iterated local search within the HyFlex hyper-heuristic framework,” in
Learning and Intelligent Optimization - 6th International Conference, LION 6,
Paris, France, January 16-20, 2012, Revised Selected Papers, pp. 265–276, 2012.

[10] J. H. Drake, E. Özcan, and E. K. Burke, “An improved choice function heuristic
selection for cross domain heuristic search,” in Parallel Problem Solving From Na-
ture (PPSN XII), Lecture Notes in Computer Science (C. A. C. Coello, V. Cutello,
K. Deb, S. Forrest, G. Nicosia, and M. Pavone, eds.), vol. 7492, pp. 307–316, 2012.

[11] M. Mısır, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “A new hyper-
heuristic as a general problem solver: an implementation in HyFlex,” Journal of
Scheduling, vol. 16, no. 3, pp. 291–311, 2013.

[12] J. H. Drake, E. Özcan, and E. K. Burke, “A comparison of crossover control
mechanisms within single-point selection hyper-heuristics using HyFlex,” in IEEE
Congress on Evolutionary Computation (CEC), (Sendai, Japan), pp. 3397–3403,
May 2015.

[13] P. Dempster and J. H. Drake, “Two frameworks for cross-domain heuristic
and parameter selection using harmony search,” in Harmony Search Algorithm:
Proceedings of the 2nd International Conference on Harmony Search Algorithm
(ICHSA2015) (H. J. Kim and W. Z. Geem, eds.), (Berlin, Heidelberg), pp. 83–94,
Springer Berlin Heidelberg, 2016.

[14] J. L. Elman, “Distributed representations, simple recurrent networks, and gram-
matical structure,” Machine Learning, vol. 7, pp. 195–224, 1991.

[15] R. Bai, E. K. Burke, M. Gendreau, G. Kendall, and B. McCollum, “Memory
length in hyper-heuristics: An empirical study,” in Proceedings of the 2007 IEEE
Symposium on Computational Intelligence in Scheduling, pp. 173–178, 2007.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

	Offline Learning for Selection Hyper-heuristics with Elman Networks
	Introduction
	Methodology
	HyFlex and the Offline Learning Database
	Final Log Returns and the BEST Sequences
	Elman Networks
	Training Sets
	The BLIND Hyper-heuristic

	Results
	Network Training
	Evaluating the Elman Network Sequences

	Conclusions

