
 1 

 August 2017 

 

 

Revisiting peak shift on an artificial dimension: Effects of stimulus variability on 

generalization. 

 

 

E. J. Livesey 

University of Sydney, Sydney, Australia 

 

I. P. L. McLaren 

University of Exeter, Exeter, UK 

 

 

Correspondence: 
Evan Livesey 
School of Psychology 
University of Sydney 
Griffith Taylor Bldg A19 
NSW   2006 
Australia 
Fax: +61 2 9036 5223 
Email: evan.livesey@sydney.edu.au  
 
Please cite as:  
Livesey, E.J. and McLaren, I.P.L. (in press). Revisiting peak shift on an artificial 
dimension: Effects of stimulus variability on generalization. Quarterly Journal of 
Experimental Psychology: Special Issue on the Psychology of Associative Learning in 
honour of N.J. Mackintosh. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/132263196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract: One of Mackintosh’s many contributions to the comparative psychology of 

associative learning was in developing the distinction between the mental processes 

responsible for learning about features and learning about relations. His research on 

discrimination learning and generalization served to highlight differences and 

commonalities in learning mechanisms across species and paradigms. In one such 

example, Wills and Mackintosh (1998) trained both pigeons and humans to discriminate 

between two categories of complex patterns comprising overlapping sets of abstract 

visual features. They demonstrated that pigeons and humans produced similar “peak-

shifted” generalization gradients when the proportion of shared features was systemically 

varied across a set of transfer stimuli, providing support for an elemental feature-based 

analysis of discrimination and generalization.  Here we report a series of experiments 

inspired by this work, investigating the processes involved in post-discrimination 

generalization in human category learning. We investigate how post-discrimination 

generalization is affected by variability in the spatial arrangement and probability of 

occurrence of the visual features, and develop an associative learning model that builds 

on Mackintosh’s theoretical approach to elemental associative learning. 
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Revisiting peak shift on an artificial dimension: Effects of stimulus variability on 

generalization 

 

Associative learning theorists often assume that the psychological mechanisms 

responsible for conditioning in the laboratory animal are the same, or at least 

fundamentally very similar, to those governing human learning. Although we often 

expect core components of learned behavior, such as generalization and discrimination, 

to operate in similar ways across species, the translation of conditioning experiments to 

human learning equivalents is often a fraught exercise that can yield unexpected results. 

At the heart of the problem is that a healthy adult human, faced with a relatively simple 

learning task, can make use of a wide variety of cognitive capacities to approach, solve, 

or circumvent any given task. As Mackintosh put it in the 22nd Bartlett Memorial lecture, 

“people are not so easily persuaded to behave like pigeons, rabbits, or rats” (1995, p194). 

Mackintosh’s comparative research on associative learning in pigeons and humans often 

focused on developing novel ways to tackle this problem, with the aim of revealing the 

commonalities in learning across species. He argued that a relatively simple form of 

elemental associative learning underpinned much of human and animal behavior, a 

hypothesis he studied in collaboration with many postgraduate students and colleagues, 

with a particular focus on discrimination learning and generalization. The present study 

evolved as a continuation of one such line of enquiry, and concerns the nature of feature-

based discrimination learning in humans. 
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Associative learning models essentially describe feature-based learning. They assume 

that the perceived properties of a stimulus come to be mentally linked with 

representations of the events that they predict. Mackintosh (1995; 1997; 2000) argued 

that this capacity to learn about basic physical properties of events is something we share 

with other animals, whereas the ability to compare the properties of stimuli, to identify 

the manner in which they are related, and to mentally represent those relations 

symbolically and independently of the stimuli themselves, was something uniquely 

human. This opinion has been shared by many researchers over the last century, but has 

at times been a contentious one (e.g. see Penn, Holyoak & Povinelli, 2008 and the 

ensuing commentaries). For reasons that will become clear, Mackintosh's work on this 

issue focused on discrimination learning and its impact on generalization. In particular, 

he pursued an interest in the phenomenon known as the peak shift effect in animals and in 

people. 

 

Feature-based generalization and the peak shift effect. 

As a guiding principle, feature-based learning theories predict that generalization will be 

monotonically related to stimulus similarity.  Situations or stimuli that share many 

features in common with prior experience are relatively likely to elicit the same 

behavioural decisions, with the strongest generalization reserved for occasions where 

precisely the same stimuli are re-experienced, as described by Shepard's (1987) 

"universal law" of generalization. It is the exceptions to this law that are often of greatest 

theoretical interest and the peak shift effect is an example that is widely observed in 

animal discrimination learning (Ghirlanda & Enquist, 2003). When an animal is trained 
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to discriminate between two similar stimuli, for instance by reinforcing responses to one 

(S+) and not the other (S-), under some circumstances the subject no longer displays the 

strongest conditioned response to S+, but rather to a slightly different stimulus, one 

which is less similar to S-. Most animal demonstrations of this phenomenon use stimuli 

that lie along simple natural continua. For instance, in Hanson’s original (1957; 1959) 

demonstration, pigeons trained on a spectral (colour) discrimination between 550 nm 

(green) S+ and 560 nm (yellow-green) S- showed stronger conditioned responding to a 

540 nm (blue-green) test stimulus than to the well-learned S+. In most demonstrations of 

the peak shift effect, a discernible peak in learned behavior is clearly evident, such that 

responding declines at more extreme test values (e.g. 530 nm, 520, etc.), which suggests 

that behavior is still controlled by the presence of simple physical characteristics of the 

test environment. 

 

When similar experiments are run in humans, the results can be quite different. Two-

choice categorization tasks (for instance where S+ and S- are replaced with SLeft and 

SRight) tend to produce gradients that are best described as sigmoidal and monotonic, 

instead suggestive of a simple relational response rule (see Livesey & McLaren, 2009). In 

contrast, Blough (1973) found that pigeons still produced peak-shifted gradients when 

given an equivalent two-response task. Some human studies using absolute identification 

(e.g. participants must respond only to stimuli identical to S+) have reported peak-shifted 

gradients after discrimination learning between an S+ and S-. However, these procedures 

tend to be highly susceptible to relative stimulus effects, for instance showing a strong 

sensitivity to the range of stimuli used on test. In some experiments that measure 
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generalization along simple continua such as stimulus luminance, test range effects 

completely overshadow any experience of the specific featural properties shown during 

training (see Thomas, 1993 for a review), which suggests that relational comparison 

between stimuli dominates under these conditions. A simple explanation is that 

participants’ understanding of the dimensional construct along which the stimuli are 

related (e.g. colour or brightness as a continuum) comes to control the way they make 

decisions.1  

 

This raises the question; do feature-based learning mechanisms actually produce anything 

like the peak-shift effect in humans? Answering this question requires a different 

approach, one in which the dimension along which the stimuli are organized is not easily 

recognized. Mackintosh (1995; 1997) advocated using stimuli whose relatedness is not 

easy to articulate, either because it is masked by competing task goals, or because it is 

simply not of a form that is easy to describe. One solution used by Wills and Mackintosh 

(1998) was to construct complex patterns of abstract shapes, or icons (A. J. Wills & 

McLaren, 1997; Jones, Wills & McLaren, 1998; see Figure 1) and by varying the icons 

that appeared in each stimulus, create a series of stimuli with a systematic and ordinal 

                                                
1 As one reviewer pointed out, there are other interpretations of Thomas' range effects, 
especially those conducted using a luminance dimension. For instance, intensity 
dimensions such as luminance also produce biased gradients in animal learning 
(Ghirlanda & Equist, 2003) and, as Ghirlanda (2002) has shown, this may be due to the 
way changes in stimulus intensity are represented, and not because of an understanding of 
stimulus relations. Luminance perception is also likely to be particularly susceptible to 
sensory adaptation effects. Coupled with continued learning during extensive testing (e.g. 
see Ghirlanda 2007 and Livesey & McLaren, 2009), this might explain some of the 
strong range effects that Thomas reported. Nonetheless, the presence of range effects is a 
cause for concern when using these types of procedures and has contributed to the 
motivation to look for other solutions to studying discrimination learning and 
generalization. 
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relationship to one another, in effect an artificial continuum along which stimuli could be 

ordered.   

 

[Figure 1 about here] 

 

Wills and Mackintosh (1998) used these icon stimuli to provide a means of 

experimentally modeling how any given set of related stimuli might be represented in 

learning.  They made the assumption that related stimuli activate overlapping sets of 

elements, an assumption that Blough (1975) had used to great effect in combination with 

a summed prediction error learning algorithm to quantitatively model discrimination and 

generalization along natural continua. The frequency of occurrence (i.e. the number of 

copies presented) of a particular icon within a stimulus was taken to be analogous to the 

level of activation of a particular set of stimulus elements.  Thus it was assumed that 

varying the frequency of presentation of an icon in this way would have a corresponding 

effect on the activation of units involved in the representation of that icon.  Blough’s 

model assumed that when stimulus elements were ordered appropriately according to 

their dimensional properties, the pattern of activation generated by perception of a 

stimulus drawn from a naturally occurring dimension would approximate a normal 

density function or Gaussian curve.  The complex stimuli used in Wills and Mackintosh’s 

experiments were organised in exactly this way. 

 

[Table 1 about here] 
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The design in Table 1 is taken from the unpublished PhD thesis of Oakeshott (2002) and 

is similar to other published examples.  Each stimulus has four copies of a central icon, 

three copies of the icons immediately adjacent to the central icon, and one copy each of 

the next icon on either side (henceforth this will be referred to as a 1-3-4-3-1 

distribution).  Stimuli with the same sampling properties (i.e. the same relative 

proportions of adjacent icons) can be constructed for each of the stimulus positions along 

the artificial dimension.  Thus the icon stimuli can be assumed to have overlapping 

activation of elements in the manner hypothesized to underpin representation of stimuli 

that differ along real physical dimensions.  Examining Table 1, after training on the 

shaded S+ and S- stimuli, peak shift would be evident if the response rate to N+ was 

higher than the response rate to both S+ and F+.   

 

Unlike discrimination learning with stimuli that possess simple relations, Wills and 

Mackintosh (1998) found that discrimination learning and subsequent generalization with 

these artificially constructed stimulus dimensions readily produces peak shift effects in 

both pigeons and in people. Indeed, several studies (McLaren & Mackintosh, 2002; 

Oakeshott, 2002; Wills and Mackintosh, 1998) have shown that a pseudo-Gaussian icon 

distribution such as the one shown below in Table 1 can be used to successfully mimic 

the results obtained with other animals using naturally occurring dimensions. These 

results have been used to lend support for the idea that feature-based associative learning 

operates in a similar way in humans and other animals, that post-discrimination 

generalization possesses the same lawful properties under at least some conditions (those 

in which associative learning is not in competition with relational rules). Wills and 
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Mackintosh (1998) further claimed that the peak-shift result was uniquely supportive of 

the elemental learning approach of the kind suggested by Blough (1975) among many 

others. For instance, they argued that Pearce's (1987; 1994) configural learning model 

could not easily account for the result because it predicted that generalization decrement 

across the dimension would be too rapid, even after extensive discrimination learning. 

We will return to this argument in the discussion. 

 

Notwithstanding the demonstrations of peak shift discussed above, there appear to be 

versions of the icon-based paradigm that do not produce peak shift.  In particular, post-

discrimination gradients are affected by the spatial variability of the stimuli – the manner 

in which the icons are organized or distributed within the array when presented to 

subjects.  In the icon experiments that have produced peak shift effects, the arrangement 

of icons has been randomly varied from one exemplar to the next.  That is, on every 

occasion in which S+ is presented, the position of each icon within the spatial array is 

determined randomly.  Thus each exemplar of S+ will vary in terms of the spatial 

organization of its icons.  Oakeshott (2002) observed a difference in post-discrimination 

gradients produced by stimulus arrays in which the arrangement of icons was either 

variable as just described, or fixed so that each icon is presented in one given position.  In 

the variable condition, there were no constraints on the position within the array at which 

any given icon could appear and the arrangement was randomized on each trial.  In the 

fixed condition, the arrangement was randomized at the beginning of the experiment but 

then remained constant for all presentations of the stimuli. The spatial arrangements of 

neighbouring stimuli on the dimension were also interdependent such that the icons that 
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were shared with adjacent stimuli remained in the same positions across the dimension. 

For instance, the 8 icons that S+ and S- shared in common retained their spatial locations 

between stimuli.  Likewise, N+ had four icon positions that differed from S+ but was 

otherwise identical.  F+ shared only 5 icon positions in common with N+ and only 2 in 

common with S+. 

 

Oakeshott (2002) found that pigeons produced strikingly different patterns of 

generalization when the spatial arrangement of the icons was fixed versus variable. While  

variable conditions generally produce peak-shifted generalization gradients, there was 

much stronger generalization decrement under fixed conditions, such that responding was 

clearly at its highest for S+. We also observed a similar pattern in a pilot study using 

human participants performing a categorization task (see Livesey, Pearson & McLaren, 

2005; Livesey & McLaren, 2011). The absence of peak shift in the fixed condition 

conflicts with a simple elemental analysis that disregards the position of the icons, which 

would predict equivalent effects in both conditions.  The difference between conditions 

suggests that a strong change in the form of the generalization gradient was caused by a 

relatively simple change to the regularity of the physical features that comprise the 

discriminative stimuli. That associative learning theories fail to capture this effect is 

symptomatic of what we see as a broader challenge to associative learning theory as it 

exists today. Models of associative learning rarely specify the mechanics of stimulus 

representation in anything but the most abstract terms, which means that many simple 

manipulations of basic stimulus properties, even those that seem to have a profound 

effect on learning-related phenomena, are simply beyond the scope of most learning 
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models. Theories that have explicitly specified how variations in simple stimulus features 

should manifest in stimulus representation often prove to be surprisingly effective in 

accounting for differences in animal learning phenomena (e.g., McLaren, Kaye and 

Mackintosh, 1989;  Ghirlanda & Enquist, 1998). 

 

The present study examined similar manipulations of stimulus variability in human 

categorization, with a view to better understanding the implications of these effects for 

models of feature-based learning. In order to examine the form of the generalization 

gradient in more detail, we used larger stimuli with richer icon-based distributions. We 

constructed stimuli with distributions that we have previously used to test for changes in 

feature associability in human discrimination learning (Livesey & McLaren, 2007).  

Using manipulations of the trial-to-trial variability in both the spatial layout and the 

frequency of occurrence of the component features, we tested for variations in 

generalization. After reporting the results of these tests, we will then discuss the 

implications of these results for the nature of stimulus representation in associative 

learning. 

 
 
 

Experiments 

Since the procedures for all three experiments were very similar, we describe them 

together, before going through the results of each. To provide some continuity with past 

studies, Experiment 1 replicated the peak-shifted generalization gradient previously 

reported when trial-to-trial spatial and frequency variability is used during training (e.g. 

Wills and Mackintosh, 1998; McLaren and Mackintosh, 2002), but with this larger 
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stimulus dimension from which we can gain a well-sampled generalization gradient.  

Experiments 2 and 3 then went on to explore manipulations of spatial and frequency 

variability and their impact on post-discrimination generalization. 

 

In each experiment, participants were presented with a two-choice learning task, in which 

they categorized each stimulus using left and right responses.  Thus, rather than using an 

S+ and S-, we will refer to the training stimuli as SL and SR for stimuli requiring left and 

right key presses respectively.  Each stimulus consisted of 36 icons arranged in a 6x6 

array (see Figure 1).  The dimension was designed so that the two training stimuli shared 

the same proportion of features in common as did the 12-icon training stimuli used by 

Oakeshott (2002).  However the size of the array allowed stimuli centred on adjacent 

icons to be much more similar (in terms of the proportion of features that they shared in 

common), thereby providing a greater number of measurable steps over which to gauge 

post-discrimination gradients.  Hence two steps along the dimension, rather than one, 

separated SL and SR.  Table 2 shows the 15 stimuli along the full dimension.  The design 

of this full dimension is symmetrical around stimulus 8, with stimuli 7 & 9 used as the 

training stimuli SL and SR respectively.  For all analyses, the two ‘sides’ of the dimension 

were collapsed, with results to be expressed as test accuracy plotted over the ordinal 

distance to the nearest training stimulus.  This has been the convention used in several 

previous studies involving human categorization (e.g. Jones and McLaren, 1999; Livesey 

& McLaren, 2009; McLaren and Mackintosh, 2002; Natal, McLaren, & Livesey, 2013; 

Wills and Mackintosh, 1998), and simplifies analysis of the gradient over multiple points.  
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Combined in this way, SL and SR will be referred to as S, and thus values 1 and 15 are 6 

steps from S, values 2 and 14 are 5 steps from S, and so on. 

 

[Table 2 about here] 

 

The icons were randomly ordered along an artificial dimension that determined which 

icons appeared in each stimulus array.  There were 24 types of icons used to represent the 

elemental components of the dimension, labeled by a letter A-X in Table 2.  Each 

stimulus consisted of a variable number of copies of 10 types of icon, with the icons 

positioned consecutively along the artificial dimension.  The stimulus was composed in 

such a way that the number of copies of each icon reflected its ordinal position on a 

Gaussian curve.  This approximation to a Gaussian distribution was designed to be 

similar to the distribution used by Oakeshott (2002), though the stimulus itself is much 

larger.  Each stimulus consisted of 6 of each of 2 ‘central’ icons, then progressively less 

copies of adjacent icons as one moves away from the centre of the distribution.  The 

identity of each icon depended upon the position of the stimulus along the dimension.  

For instance, stimulus 7 (SL) would contain 6 copies of icons K and L, 5 copies of J and 

M, 4 of I and N, 2 of H and O, and 1 copy of G and P.  Any pair of stimuli with this 1-2-

4-5-6-6-5-4-2-1 distribution that are two steps removed from each other along the 

dimension share two thirds of their icons, as do any pair of adjacent stimuli on the 1-3-4-

3-1 distribution used by Oakeshott (2002). 
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Participants were first given discrimination training in which they were required to 

respond differentially to intermixed presentations of SL and SR (7 and 9 on the full 

dimension in Table 2).  A transfer test then followed in which all 15 stimuli along the 

dimension were presented.   

 

In Experiment 1 the configuration of icons used for a given stimulus could vary 

stochastically in terms of both position of the icons and frequency of their occurrence. 

This was done by sampling from a pool of icons assigned to a given stimulus such that 

the probability that an icon was selected depended on its frequency in the distribution for 

that stimulus. So, taking our example of stimulus #7, the probability that icon K would be 

selected was 6/36 on every sample. Sampling continued until 36 icons had been selected 

to make up that stimulus, and these were then randomly allocated to positions in the 

array. Hence both the exact frequency and the spatial position of the icons were 

stochastic, whilst still reflecting the distribution of icons for a stimulus at that position on 

the dimension. Experiments 2 and 3 used manipulations of the spatial arrangement of the 

icons within exemplars of each stimulus in order to test for a similar effect of spatial 

variability as that reported by Oakeshott (2002). For participants in the spatially variable 

condition, the position of each icon was randomized on every trial as already described, 

whereas for participants in the spatially fixed conditions, the positions of icons within the 

array remained constant throughout the experiment (though the initial positions chosen 

were random).  
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In Experiment 2, all participants underwent training with stimuli that contained no trial-

to-trial frequency variability, that is the exact number of copies of each icon as indicated 

in Table 2 were used every time a stimulus was presented, even if the location of each 

icon was randomized. In Experiment 3, spatial variability and frequency variability were 

manipulated independently. The method used to create stochastic stimuli in Experiment 1 

(i.e. selection with replacement) had to be modified to accommodate fixed spatial 

conditions.  Thus, on every trial in the frequency variable conditions, a proportion of the 

icons for a given training stimulus were replaced with icons from the corresponding 

locations in the other training stimuli.  Thus, in the spatially fixed, frequency variable 

condition, there was variation from trial to trial in the exact number of each icon, but the 

spatial structure of the patterns remained as constant as possible, and no icon appeared 

"out of place" in the array. 

 

We will first outline the methods and results from each experiment, including a curve-

fitting analysis of the generalization gradient in each experimental condition. We will 

then discuss the theoretical implications of the research for associative learning theories. 

 

Methods 

Participants and Apparatus 

In Experiment 1, 16 undergraduate students participated in the experiment, and were 

given monetary compensation for their participation.  The experiment was run using a 

Macintosh desktop computer attached to a 17-inch CRT monitor.  Participants were 

tested individually in a dimly lit room. In Experiment 2, a total of 99 students 
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participated, 43 tested individually in the same fashion as Experiment 1, and 56 as part of 

two practical classes. Group testing in the practical classes was conducted using 

Macintosh iMac computers with 15-inch color monitors, in a large classroom with 

computers spaced approximately 1m apart. In Experiment 3, 65 students participated in 

the experiment under the same individual testing conditions as used for Experiment 1.  

 

We applied a standard learning criterion (e.g. Livesey & McLaren, 2007) to exclude 

participants who did not show evidence of learning during training. Participants who did 

not score higher than 55% accuracy on the icon stimuli over the second half of training 

were removed from the analysis.  Four participants in Experiment 1, 35 participants (11 

individually tested and 24 group tested) in Experiment 2, and 17 participants in 

Experiment 3 did not pass this criterion and were removed from the analysis. This left 

N=12 in Experiment 1, N=64 in Experiment 2; 33 in Group Fixed (17 group tested, 16 

individually tested), and 31 in Group Variable (15 group tested, 16 individually tested), 

and N=48 in Experiment 3 (12 in each of four groups).  

 

Presentation of stimuli and measurement of responses was programmed using 

REALbasic software in all experiments. Participants made left and right key responses by 

pressing ‘x’ or ‘.’ respectively on a standard computer keyboard. 

Stimuli 

Each icon stimulus consisted of an array of 36 icons presented against a black 

background.  On screen, each icon appeared within an area approximately 8 mm wide by 

8 mm high, the array of 6x6 icons measuring approximately 5 cm x 5 cm.  The stimulus 
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array was surrounded by a thin square white border.  As described above, the icons with 

which each stimulus was endowed depended on the position of the stimulus on the 

artificial dimension (Table 2).  24 icons from a pool of 36 were assigned to icon positions 

A to X so that each participant would in fact be presented with a different set of randomly 

ordered icons. 

 

Presentations of the icon stimuli were interleaved with filler trials consisting of uniform 

colored squares that differed in hue.  The colors were varied in similar fashion to the 

artificial dimension, with two very similar shades of green presented during training, SL 

and SR, and a wider range of colors, varying from blue-green to yellow-green, presented 

during the transfer test.  The primary purpose of the color trials was to negate any effect 

of immediate contrast that could influence learning of the icon discrimination. 

 

Spatial variability: All three experiments contained at least one condition in which the 

spatial layout of the icons varied randomly from trial to trial during training. Experiments 

2 and 3 also contained conditions in which there was no spatial variability during 

training.  In these spatially fixed conditions, the position of each icon was randomised on 

the first trial for each subject, but then remained constant for all subsequent presentations 

of that stimulus.  In these conditions, the icons that two neighbouring stimuli (i.e. 

stimulus n and stimulus n+1) shared in common appeared in identical locations in both 

stimuli. For instance if SL contained 4 copies of a particular icon and SR contained 6 

copies (i.e. icon N from Table 2), then the 4 locations occupied by copies of that icon in 

SL would also contain copies of the same icon in SR. The additional two copies of the 
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icon in SR would be placed in positions vacated by other icons no longer present in SR. In 

contrast, in the spatially variable conditions there was no such relationship since the 

position of the icons varied randomly on every presentation. Examples of fixed and 

variable spatial conditions are shown in Figure 1. 

 

Frequency variability: Experiments 1 and 3 used conditions in which discrimination 

learning contained trial-to-trial variability in the numbers of icons presented. In 

Experiment 1, icon presentation during discrimination training varied from trial to trial in 

a stochastic fashion.  For instance, for stimulus SL, a pool of 36 icons was constructed 

according to its distribution in Table 1 (i.e. 1 copy of icon G, 2 of H, 4 of I, etc.).  To 

create an exemplar of SL, each position within the stimulus array was randomly allocated 

an icon from the pool, irrespective of the icons selected at other points in the array.  In 

other words, the icons were sampled from the pool with replacement. Take icon K from 

Table 2, for instance, which ideally occurs on 6 of 36 locations (1/6) within SL and 4 of 

36 locations (1/9) within SR. Under stochastic presentation, for each location in a given 

presentation of SL there would be 1/6 probability of presenting icon K, regardless of 

which icons were shown in the other positions in the array.  

 

In Experiment 3, where the presence of spatial and frequency variability were 

manipulated independently, stochastic presentation of the icons was achieved in a 

different way. In the conditions that contained frequency variability, on each training 

trial, six randomly selected icons in the training stimulus were swapped with the six icons 

from the same positions in the opponent training stimulus.  Thus, the icons within each 
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stimulus in these conditions varied stochastically, independently of whether they varied 

spatially.  

 

In Experiment 2 and in the frequency fixed conditions in Experiment 3, presentation of 

icons during training was not stochastic, with the precise numbers of icons always 

adhering to those shown in Table 2. In other words, the icons were sampled from the 

stimulus pool without replacement until they were all used. For example, there were 

always 6 presentations of icon K in each presentation SL and 4 presentations of icon K in 

each presentation of SR. 

 

Procedure 

On starting the experiment, participants were given written instructions informing them 

they would be presented with various stimuli, one at a time, and that their task was to 

learn which of two responses was appropriate for each stimulus.  A brief description of 

the icon-based and hue-based stimuli was given, along with instructions about the 

responses, the feedback given after each response, and the time limit on each trial.  

Participants were told that the correct response depended entirely on the visual 

appearance of each stimulus, and to attend to the whole stimulus as attending to only part 

of it would make the later phase of the experiment more difficult to solve.  They were 

informed that a test phase with no response feedback would be given at the end of the 

experiment.  Participants were also informed that the icon and colored square stimuli 

were completely unrelated and to treat them as independent tasks. 
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Discrimination training: Training consisted of alternating presentations of icon stimuli 

and colored square stimuli. Trial order was randomized within blocks of 12 trials, 

containing three presentations each of SL and SR and three each of the corresponding filler 

trials (which were also reliably associated with Left and Right responses), with the 

condition that trials alternate between icon stimuli and filler stimuli.  There were 12 

blocks of training in Experiments 1 and 3, and 8 blocks in Experiment 2.  In each 

experiment, these trials were presented as two continuous blocks of trials with 

participants instructed to take a short rest between the two blocks.  

 

On each trial, participants were given 4s to respond to each stimulus.  Feedback after 

each response consisted of a ‘correct’ or ‘wrong’ message appearing in the centre of the 

screen, followed by an inter-trial interval of 1.5s.  Failure to respond in 4s resulted in the 

trial timing out and a ‘no response’ message appearing as feedback. 

 

Transfer test:  The 15 icon stimuli shown in Table 2 were tested, with an equal number of 

colored square filler trials, once again with alternating icon and filler trials.  Trial order 

was randomised within blocks of 30 trials (one trial of each stimulus and 15 filler 

stimuli).  In Experiment 1, there were 3 blocks (90 trials) in total whereas in Experiments 

2 and 3, there were 6 blocks (180 trials).  In all experiments, the test stimuli did not 

contain frequency variability. That is, icons that comprised the transfer stimuli were 

sampled without replacement such that the number of icons for each stimulus adhered 

precisely to the frequencies in Table 2. The spatial variability present in training was 

retained at test; spatially variable for Experiment 1 and the spatially variable conditions 
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in Experiments 2 & 3, and spatially fixed for participants in the spatially fixed conditions 

in Experiments 2 & 3.  

 

 

Data Analyses. 

As noted, we followed a convention established by Wills & Mackintosh (1998) to 

simplify analysis of the generalization gradient. To calculate response accuracy on test, a 

left response was considered correct for stimulus positions 1-7 and a right response was 

considered correct for positions 9-15 (stimulus 8 was omitted from analyses). We then 

collapsed the test dimension on itself and arranged 7 stimulus values classified according 

to ordinal distance from the nearest trained stimulus. Hence, the trained stimuli 7 and 9 

form a single stimulus value 0, stimuli 6 and 10 form a single stimulus value 1 and so on 

up to the extreme stimuli 1 and 15 (stimulus value 6). 

 

The curvature of the resulting generalization gradient is the critical measure of interest 

and may take several forms. In each experiment the 7 stimulus values were subjected to a 

repeated measures ANOVA to confirm that test accuracy varied as a function of stimulus 

value. In Experiment 2 and 3, this analysis also included the group factors of spatial 

variability and (in Experiment 3 only) frequency variability to test whether the pattern of 

generalization was affected by variability during training. The existing evidence suggests 

that we should expect a peak-shifted gradient, at least after training with variable stimulus 

conditions, but that this peak shift may be missing or reduced when conditions are 

spatially fixed. A key prediction that follows from Oakeshott's (2002) research in pigeons 
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is that the fixed condition will peak closer to (possibly precisely at) the trained stimuli. 

This prediction is not adequately tested by looking at trend analyses within the ANOVA. 

For instance unimodal non-monotonic gradients that are peak-shifted and monotonic 

gradients that are highest at either stimulus value 0 or stimulus value 6 can generate 

strong quadratic trends, see Livesey & McLaren, 2009. Thus, a different approach is 

necessary. 

 

To test the hypothesis that generalization followed a peak-shifted function and that this 

effect was more pronounced under variable than under fixed conditions, we fit a normal 

curve to each individual's generalization results using maximum likelihood estimation. 

We assumed that this function followed the following equation, which describes a 

Gaussian function with baseline performance at chance: 

 

Equation 1. 

!(#$%%&#'|), +) = 	0.5 + (# − 0.5)&4
(546)7
897  

 

In this equation, ) corresponds to the stimulus value (0-6) around which the test stimulus 

is constructed, c corresponds to the height of performance at its peak, a corresponds to 

the location of that peak, and b corresponds to the width of the curve (a and b correspond 

to the mean and standard deviation of a normal curve). For the purposes of constraining 

the curve fitting to realistic parameters, we made the following assumptions: 
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1) Peak location, a, could take only an integer value between 0 and 6, so that the 

peak of the function resided precisely at one of the 7 discrete positions along the 

artificial stimulus value continuum. Since our dimension is artificial and 

arbitrarily arranged, it is only meaningful to consider generalization peaking at a 

value that can actually be constructed on that dimension. 

2) Width of the curve, b, can take a value between 0.1 (very sharply decreasing 

accuracy around the peak) to 20 (virtually flat accuracy function across the 7 test 

points).  

3) Maximum accuracy, c, was always equal to the maximum observed level of 

accuracy for that individual at any stimulus value.  

 

Thus for each participant, the function fitting returns values for one fixed parameter c and 

two free parameters a and b. Examples of these functions are shown for data from a real 

participant in Figure 2. 

 

[Figure 2 about here] 

 

Using this function fitting approach, we estimated the most likely location of the peak of 

the generalization gradient for each individual and for responses aggregated across the 

whole group. We used this information to compare the effects of manipulating frequency 

and location variability across the three experiments.  
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Summary. All participants in this study engaged in trial-and-error learning over multiple 

presentations of SL and SR (interleaved with another class of very different filler stimuli). 

For all participants, SL and SR were complex arrays composed of overlapping sets of 

features (icons), where the frequency of occurrence of each feature was determined by 

the position of these stimuli along an artificial dimension, as shown in Table 2. What 

differed between conditions was the variability in the positioning of these features within 

the array across exemplars, and variability in the precise number of each feature within 

the array across exemplars. We then tested participants' responses to related stimuli with 

different frequencies of icons, again determined by their position along the artificial 

dimension, and fitted unimodal functions to the resulting generalization gradient to 

determine the most likely position of the peak of this gradient at a participant and group 

level. 

 

Results 

Response Accuracy in Training. 

Figure 3 shows performance over the course of training for each condition in the three 

experiments, averaged into blocks of equal numbers of trials (resulting in 6 blocks for 

Experiments 1 & 3, 4 blocks for Experiment 2). Gradual improvement across the phase is 

evident in all cases. In Experiment 1, there was a significant linear trend across blocks, 

F(1,11) = 33.67, p < .001, ηp
2 = .754. In Experiment 2, there was a significant linear trend 

across blocks, F(1,62) = 121.59, p < .001, ηp
2 = .662, which did not interact with group, F 

< 0.1. However, a main effect of group indicated that the spatially fixed group performed 

significantly better than the spatially variable, F(1,62) = 14.20, p < .001, ηp
2 = .186.  
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[Figure 3 about here] 

 

In Experiment 3 also, it appears that variability was associated with lower accuracy in 

training.  Main effects revealed that spatially fixed groups performed better than spatially 

varied, F(1,44) = 7.82, p = .008, ηp
2 = .151 and frequency fixed groups performed better 

than frequency variable, F(1,44) = 8.73, p = .005, ηp
2 = .166. There was also a significant 

linear trend across training block, F(1,44) = 118.09, p < .001, ηp
2 = .729 indicating clear 

improvement with training. No interactions between spatial and frequency variability 

were significant, though the interaction between linear trend across blocks and frequency 

variability, F(1,44) = 3.90, p = .054, ηp
2 = .081, and the three-way interaction, F(1,44) = 

3.79, p = .058, ηp
2 = .079, approached conventional levels of statistical significance, 

suggesting that the condition with both spatial and frequency variability improved less 

than the other three groups. Taken together, these results suggest that adding variability 

during training reduced accuracy, which is to be expected from a very simple learning 

perspective.  

 

Response Accuracy during Transfer Test.  Figure 4 shows mean accuracy during the 

transfer test for each experiment, in each case collapsed across the two sides of the 

dimension to form 7 stimulus values. Across the three experiments, the conditions 

containing spatial variability show a consistent pattern where, moving progressively 

further away from the trained stimuli, accuracy increases slightly, peaks at stimulus value 

3, then decreases. The conditions that were spatially fixed revealed a subtly different 
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pattern whereby accuracy tends to peak closer to the trained stimuli (numerically highest 

at stimulus values ranging from 0-2). There was a significant main effect of stimulus 

value in Experiment 1, F(6,66) = 2.90, p = .014, ηp
2 = .014,2 and in Experiment 2, 

F(6,372) = 15.17, p < .001, ηp
2 = .197. Although the main effect of group in Experiment 

2 was not significant, F(1,62) = 1.40, p = .242, ηp
2 = .022, a significant interaction was 

found between group and stimulus value, F(6,372) = 2.90, p = .009, ηp
2 = .045 suggesting 

that the pattern of generalization differed as a function of spatial variability.  

 

[Figure 4 about here] 

 

In Experiment 3, there was a significant main effect of stimulus value, F(6,264) = 21.87, 

p < .001, ηp
2 = .332, a significant interaction between stimulus value and spatial 

variability, F(6,264) = 3.25, p = .004, ηp
2 = .069, but no interaction between stimulus 

value and frequency variability F(6,264) = .55, p = .768, ηp
2 = .012.  The three way 

interaction and main effects of spatial and frequency variability were also non-significant, 

Fs < 1.  This suggests that the pattern of generalization was substantially affected by 

spatial variability but not frequency variability, despite both spatial and frequency 

variability clearly affecting training. 

 

                                                
2 Wills and Mackintosh (1998) focused on whether peak responding was reliably greater 
than responding for the trained stimuli and responding at the test extremes, whereas in 
this study, we focus more on differences in generalization as a function of variability and 
the relative position of the peak along the dimension. Nevertheless, it is worth noting that 
Experiment 1 replicated Wills & Mackintosh’s peak shift effect in the sense that peak 
accuracy at stimulus value 3 was significantly greater than accuracy for the trained 
stimulus value 0, t(11) = 3.07, p =  .011 and stimulus value 6, t(11) = 3.77, p = .003.  
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Peak of the generalization gradient. In order to estimate how the position of the peak of 

the generalization gradient is affected by variability, we fit the Gaussian function 

described in Equation 1 to the experimental data, in effect calculating a log likelihood 

function for each of the 124 individual participants in this study. From this likelihood 

function, one can estimate the most likely position of peak accuracy. However, the 

certainty of this estimate naturally differs from one participant to the next. A small 

proportion of participants had very flat generalization gradients (usually either at ceiling 

or at chance) and were best fit with a very broad Gaussian function. For instance, when 

b=13, the greatest deviation the function can predict (when c=1 and a=0 or a=6) across 

the possible x test values is 5%. Fitting functions that are this broad is not informative 

because a function centered on any value of a will do a reasonable job of capturing the 

(flat) gradient. There are several ways to mitigate this problem when attempting to 

estimate the most likely position of the peak of the generalization gradient. We report two 

here, one at an individual participant level, another at a group level, which treat functions 

with the 7 possible discrete values of a (i.e. stimulus values 0 to 6) as 7 independent 

models, and maximizing the log likelihood function for each of these models by varying 

the parameter b. We then compared the fit using a Bayesian Information Criterion (BIC), 

following this equation: 

 

Equation 2. 

:;< = 	−2>?@ + A>?(2) 
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where lnL is the maximized value of the log likelihood function produced from Equation 

1, k is the number of free parameters (b was the only free parameter, fit separately for 

each participant), and n equals the number of observations, which could be up to 42 per 

participant in Experiment 1 and 84 per participant in Experiments 2 & 3 (we omitted the 

rare trials where the participant failed to respond completely). BIC is a criterion 

commonly used for model selection, in which the lowest BIC indicates the best match 

with observed data.   

 

Importantly a difference in BIC between models of less than 2 is generally considered 

uninformative in terms of which model provides a better fit. Thus if a participant has a 

minimum BIC for a particular value of a, there may be other values of a that produce 

virtually just as good matches to the observed data. Across all experiments, 50 

participants had minimum BICs that were unequivocal (difference in BIC was greater 

than 2 for all other values of a).  29, 19, and 14 participants had comparable BICs for 1, 

2, and 3 other values of a, respectively. 12 participants had comparable BICs for 4 or 

more other values of a (these are participants for whom the model fitting exercise is more 

or less completely uninformative). Figure 5 shows the number of participants for whom 

the most likely estimate of a is 0 to 6, removing those participants who had a b estimate 

of 13 or greater (very flat gradient) and those who had equivalent BICs for an additional 

4 or more values of a in addition to the most likely value (n = 13 in total). These 

frequency histograms aggregate data for the spatially variable and spatially fixed 

conditions separately. For many participants in both conditions, the most likely location 

of peak accuracy is at stimulus value 1. However, the distributions around this value are 
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strikingly different, with a = 0 being the most likely peak for a larger proportion of 

participants under Spatially fixed conditions than Spatially variable. Collapsed across 

experiments (and complementing the analyses reported earlier), Chi Square tests reveal 

that a differs significantly as a function of spatial variability, c2(5, N = 111) = 12.18, p = 

.032, but not as a function of frequency variability, c2(5, N = 111) = 3.09, p = .685.    

 

[Figure 5 about here] 

 

A complementary analysis can be performed by assuming a equals a single value for each 

experimental condition and, for each a, calculating the likelihood functions across all 

individuals, allowing b to vary for each participant. The BICs for models with a equal to 

0 to 6 is shown in Table 3. Across the four Spatially varied groups, the a = 3 models wins 

out three times and a = 2 wins for the Experiment 3 spatially varied, frequency varied 

condition.  Across the three Spatially fixed groups, a = 0, a = 1, and a = 2 all win out 

once. 

[Table 3 about here] 

 

On balance, these results suggest that there is a strong likelihood that the gradients 

produced under spatial variability are peak-shifted and, although there is some variation 

in the precise location of peak performance, the peak tends to be further removed under 

spatially variable than under spatially fixed conditions. Evidence for peak shift under 

spatially fixed conditions is more equivocal. Many participants are best fit by functions 
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that assume a small shift in peak accuracy, as did the spatially fixed conditions in 

Experiment 3 taken as a whole.  

 

Discussion 

Experiment 1 demonstrated the classic peak shift effect using stimuli that varied in terms 

of their spatial arrangement and the frequency of occurrence of the component features of 

the stimulus. In Experiments 2 and 3, significant differences between the post-

discrimination gradients produced under fixed versus variable spatial arrangement were 

evident, and all analyses suggest that this was due to the generalization gradient peaking 

closer to the trained stimuli under spatially fixed conditions.  In contrast, the 

manipulations of frequency variability did not appear to have a substantial effect on the 

generalization gradients even though they impacted training accuracy. 

 

Whereas the differences in generalization gradient produced under spatially fixed and 

variable conditions appear to be more of scale than kind in these experiments, 

Oakeshott’s (2002) variable and fixed post-discrimination gradients appeared to be 

starkly different from one another. The variable condition resulted in a pronounced peak 

shift effect while the fixed condition displayed highest responding for S+ and sharp 

generalization decrement to N+ and beyond. However, Oakeshott's results were observed 

over relatively few test stimuli over which the gradient could be sampled.  In contrast, 

our experiments that use larger stimuli with more gradual change in stimulus value across 

the artificial dimension suggest a more subtle quantitative influence of spatial variability 

on generalization. Although generalization gradients under spatially fixed conditions 
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were narrower, we still observed at least some evidence of a peak shift effect and the 

gradients across three spatially fixed conditions consistently possessed a negatively 

accelerated form, with fairly similar levels of performance for stimulus values 0 – 2 

followed by more pronounced generalization decrement thereafter.  

 

An elemental approach to modeling discrimination and generalization. 

Mackintosh favored an explanation of peak shift in terms of elemental associative 

learning, in which the representation of a stimulus comprises a collection of smaller 

mental components that can individually enter into associations. These components may 

or may not have a one-to-one mapping to isolable features of the actual stimuli, but their 

mental activation is assumed to vary lawfully with changes in sampled physical 

properties. Learning of the general form typified by Mackintosh (1975) and Rescorla and 

Wagner (1972), among many others that incorporate some form of prediction error 

signal, has of course become a mainstay of contemporary associative theory.  A pertinent 

example is the model of operant discrimination and generalization proposed by Blough 

(1975), which incorporates summed-error learning (Rescorla & Wagner, 1972) with a 

simple elemental mechanism for stimulus representation and generalization, to simulate 

discrimination learning and post-discrimination behaviour.  Within its own ambit, 

Blough’s (1975) model proved to be particularly powerful, and its central assumptions 

have strongly influenced more recent elemental associative models (e.g. Ghirlanda & 

Enquist, 1998; McLaren and Mackintosh, 2000, 2002). Blough’s model predicts the 

general form of post-discrimination generalization gradients, and particularly peak shift, 

with impressive accuracy. 



 32 

 

As noted, Wills and Mackintosh (1998) also argued that their results were less consistent 

with configural learning theories of the variety proposed by Pearce (1987; 1994), 

whereby a mental representation of the unique combination of stimuli present in a given 

instance (rather than individual components) enters into association. They argued that the 

Pearce model cannot account for a peak-shifted gradient, essentially because it predicted 

much stronger generalization decrement between neighbouring stimuli on the artificial 

dimension. For instance in reference to the simple animal conditioning example shown in 

Table 1, the model would predict that there is insufficient excitatory generalization from 

S+ to N+ to sustain strong responding and also insufficient inhibitory generalization from 

S- to S+ to reduce responding to S+ to a lower level than would be observed for N+ (see 

Wills & Mackintosh, 1998 for a full explanation of this prediction).  

 

The merits of this argument rest on several assumptions about how stimulus elements are 

mentally represented in learning and are certainly questionable in light of the 

generalization gradients observed by Oakeshott (2002), Livesey et al., (2005) and here 

under fixed spatial conditions. However, we will refrain from providing a full configural 

learning analysis because the distinction between elemental and configural learning may 

not actually be particularly meaningful in this context. For instance, Ghirlanda (2015) has 

argued that for every elemental learning model (at least within the class of associative 

learning models under scrutiny here) there is a configural model that will generate the 

same predictions such that the two are formally equivalent. It thus seems likely that if an 

elemental model provides a strong quantitative account of the data, so too can a 
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configural learning model. Other quantitative characteristics of particular models, for 

instance the manner in which representations of features are normalised when they are 

experienced in combination with others, may be much more important than whether the 

learning itself occurs to elemental or configural representations (Thorwart, Uengoer, 

Livesey and Harris, 2016). 

 

Instead, we will focus here on how an elemental associative model might capture the 

observed effects of spatial variability on discrimination and generalization. Most 

associative learning models do not make explicit assumptions about stimulus 

representation in a way that provides for such an explanation. Blough’s (1975) 

assumptions about the underlying activation of elements, which emulate simple sensory 

tuning curves, seem plausible when modeling generalization between stimuli that possess 

continuous physical characteristics such as colour or luminance.  However, continuing to 

use the same dimensional assumptions when the dimension of interest is completely 

artificial is less tenable. In any case, Blough's scheme does not speak to within-stimulus 

spatial variability in any obvious way.  An alternative approach that has been used 

specifically for these artificially dimensional stimuli has been to assume that different 

units are solely activated by a single type of icon, essentially a one-to-one mapping of 

stimulus feature to representational element, with the activation of each element being 

directly proportional to the number of copies of each icon present in the stimulus. 

However, this approach assumes that the spatial location of each feature within the 

stimulus array is irrelevant and therefore cannot account for effects of spatial variability.  
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We have previously suggested a means of capturing spatial representation in the learning 

of these icon-based stimuli, in a way that might prove generally useful for problems 

involving considerations of both feature identity and spatial layout (Livesey & McLaren, 

2011). There is clearly a case for a model that makes predictions which are sensitive to 

the effects of spatial variability and that can accommodate the results of both Oakeshott 

(2002) and the present experiments. But, in order for the model to be generally 

applicable, it needs to make minimal and generalisable assumptions about featural and 

spatial representation. The elemental model that we proposed then built upon 

assumptions about stimulus representation outlined by McLaren and Mackintosh (2000; 

2002; see also Jones and McLaren, 1999; Ghirlanda & Enquist, 1999); namely distributed 

and overlapping representation of stimulus features, and nonlinearities in the activation of 

units that represent the stimuli coupled with an error-correction learning algorithm.  Here 

we offer a simpler version of this model and test its ability to produce the generalization 

gradients from our three experiments.  

 

Summary of model. We use an elemental prediction-error model with two important 

stages of processing; elemental stimulus representation (stimulus inputs) and output 

activation. Associative weights between the representational elements and the outputs are 

updated according to a prediction error algorithm, and predictions of each outcome on 

each trial are estimated using the relative activations of the outputs. These aspects of the 

model are widely used in other associative models. The key aspect of this model is the 

manner in which the features of the stimulus (i.e. the icons) activate the stimulus inputs. 

The stimulus inputs have overlapping and diverse sensitivities in terms of both the region 
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of the stimulus and the types of features that result in input activation. Each input unit is 

assumed to have a receptive field of a random size and shape, to be activated by a random 

subset of the icons, and to have variable sensitivity (i.e. it could take many or few of the 

right kinds of icon within the receptive field to yield strong activation). These details and 

the formal equations of the model are described further below. 

 

 

[Figure 6 about here] 
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Stimulus Input. The stimuli present on a given trial are represented as a distributed 

pattern of activation over a set of input units. We impose relatively few constraints on 

what form these inputs might take other than that they are overlapping and diverse. There 

is no explicit representation of the artificial continuum built into the model. Rather, we 

assume partial spatial and feature specificity in the representational elements within the 

network. That is, each element is activated by several features occurring within a region 

of adjacent locations, and the specificity of this activation varies across elements. This is 

an important departure from the simpler approaches used in the past because it allows 

complex representation of spatially-specific features without combinatorial explosion, 

which could be a substantial problem if every possible feature in every possible location 

were represented independently.  Following McLaren and Mackintosh (2002), element 

activation A is a nonlinear function of the sum of all the features present in the stimulus 

to which the element is sensitive, or total feature input Fi.  

 

Equation 3. 

BC =
&DE − 1
&DE + GC

 

 

Equation 3 describes a sigmoidal function in which Di controls how responsive the 

element is to the detection of features; when Di is relatively high, it takes several features 

to activate the element, when Di is relatively low, one feature in the receptive field is 

sufficient to achieve strong activation of the element. Di is randomly chosen for each 

element, in a range from 0.1 up to the number of spatial locations to which the element is 

sensitive (e.g. if a particular representational element samples from an area covering 9 
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different locations then D for that element was randomly assigned a value from 0.1 to 

9.0). Values are randomly assigned using a uniform distribution between these limits. 

This effectively means the representations produced by the model are not tightly 

controlled but are diverse and complex. 

 

In our previous model (Livesey & McLaren, 2011), we also included inhibitory 

relationships between features and elements such that the presence of some features could 

deactivate a representational element that would otherwise respond to other features of 

the stimulus. A combination of inhibitory and excitatory links serves to produce replaced 

elements; some of the elements activated by feature X will be turned off and others will 

be turned on when X appears alongside feature Y. Thus the inclusion of inhibitory links 

serves a similar function to the explicit implementation of replaced or inhibited elements 

(see Wagner, 2003; Wagner & Brandon, 2001). Here, we have opted for an even simpler 

approach to test the capabilities of a model that simply contains elements that are 

activated by multiple features. If an element is activated by feature X and feature Y 

(within a given region of the stimulus) then input from X and Y may produce nonlinear 

activation. That is, activation by X and Y together may be more or less than activation by 

X alone plus activation by Y alone. However, the activation from these inputs will always 

be monotonically increasing. That is, activation by X and Y together will never be less 

than activation by X alone.  

 

Learning. Simulating categorization experiments with associative learning requires at a 

minimum two output units corresponding to the left and right key press responses. 
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Associative weights linking the representational elements to these output units were 

initially set to zero and were modified using a simple error correction algorithm shown in 

Equation 4. 

 

Equation 4. 

∆WCJ = KBC(L − ;) 

 

Here ∆Wij is the change in the associative weight that links element i to output unit j and 

is changed as a function of the discrepancy between external input E (i.e. the actual 

outcome) and summed internal input I (i.e. the predicted outcome), weighted by the 

activation Ai of element i and a learning rate parameter S. Internal input I is calculated 

according to Equation 5, which is a simple summed prediction weighted by the activation 

of each element (Blough, 1975). 

 

Equation 5. 

; = ACWCJ 

 

During training, one output unit (e.g. corresponding to Left category) was given an 

external input E = 1 for reinforced SL trials and E = 0 for SR trials, and vice versa for the 

other output unit.  This learning rule is equivalent to that used by Blough (1975) and, 

although simplified, forms the basis for weight change in the McLaren and Mackintosh 

(2000; 2002) model. 
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Network Output. An exponential version of Luce's (1959) ratio rule was used to predict 

the probability of making the correct response for each test stimulus, according to 

Equation 6: 

 

Equation 6. 

!(<$%%&#') 	= 	
&NOPQRRSPT

(&NOPQRRSPT + &NOEUPQRRSPT)
 

 

Here, Icorrect corresponds to the summed input I to the Left output unit for stimuli 1 to 7 

and the Right output unit for stimuli 9 to 15 (with Iincorrect corresponding to the alternate 

output unit in each case). A single k value was used for all subjects in each experiment, 

rather than being varied for each individual subject.  While this parameter was used to fit 

the simulation data to the overall level of accuracy, it appeared to have very little effect 

on either the curvature of the gradients or the relative levels of accuracy of each 

condition. 

 

Simulations. Figure 7 shows results from simulations with the model described above. 

These results were produced by taking the mean of 30 simulated participants for each 

condition across the three experiments. Each simulation used 100 representational 

elements. Each element was activated by icons in a receptive field ranging randomly 

from 1-5 icons wide and 1-5 icons high (i.e. receptive field varied randomly from 1 to 25 

icons), located randomly around the stimulus display. On average, each element was 

activated by one third of the different varieties of icon, that is, p(icon type x activates 

element i) = 0.333. This value was chosen as a compromise between featural specificity 
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and representational efficiency. After some rough parameter fitting, we chose a learning 

rate constant S = .01 for all runs in all experiments, but used a different ratio rule constant 

for each experiment (k = 5.90, 2.87, 2.56 for Experiments 1 - 3 respectively). The 

constant k changes the overall level of accuracy achieved during test but has relatively 

little impact on the shape of the generalization gradient itself. This helps to account for 

differences in accuracy between experiments that may well be attributable to time of 

testing or variations in the recruitment of motivated participants. By keeping the other 

parameters fixed across all conditions, we hope to provide a clear illustration of the 

model's strengths and weaknesses. 

 

[Figure 7 about here] 

 

Several characteristics of the model predictions evident in Figure 6 are worth noting. 

First, the model clearly predicts a peak shift effect, but more importantly one that is more 

pronounced under spatially variable than spatially fixed conditions. This fits well with the 

generalization gradients observed over Experiments 1-3. Second, the model generally 

predicts higher accuracy under spatially fixed conditions, especially for stimulus values 

0-3. For these fixed conditions, the decline in accuracy for stimulus values greater than 3 

is more pronounced in the experimental data than in the simulated data. Nevertheless, the 

model anticipates a sharper decline in accuracy at the test extrema under spatially fixed 

compared to variable conditions. Third, frequency variability during training has a 

negligible effect on the shape of the generalization gradient, as seems to be the case in the 
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experimental data. These properties hold true for a wide range of parameters that we have 

investigated.  

 

The quantitative fit of the model is limited in some respects, for instance it slightly (but 

consistently) underestimates performance for the trained stimuli at stimulus value 0 

relative to peak performance. The model also often predicts peak accuracy at stimulus 

value 2 rather than 3 under spatially variable conditions, however this may not be 

particularly problematic given the individual variability in the peak of individual 

gradients (illustrated in Figure 5).  

 

This model is a simplified version of one that we developed earlier, which accounts for 

gradients produced in conditioning by pigeons (Livesey & McLaren, 2011). Both of these 

models have been loosely based on the elemental approach to stimulus representation 

outlined by McLaren and Mackintosh (2000; 2002).  One of the main differences is that 

in the previous model the presence of certain icons inhibited the activation of elements 

within the representation of the stimulus, whereas this model relies solely on summative 

excitatory input. Although the inclusion of inhibitory inputs is certainly plausible, we 

chose the current model to provide a simpler test of the elemental approach to stimulus 

representation, and to provide an existence proof that this fairly limited set of associative 

resources would nevertheless prove equal to the task of capturing the basic pattern 

present in our data. The combination of a basic summation of stimulus inputs with a 

nonlinear activation function has been shown to be surprisingly powerful in learning 

complex discriminations (e.g. see Livesey, Thorwart, & Harris, 2011; McLaren & 
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Mackintosh, 2002 for simple examples). We are confident that other means of achieving 

similar forms of complex elemental representation would prove effective to this end as 

well (e.g. Ghirlanda & Enquist, 1998; 2005; Harris & Livesey, 2010; Thorwart, Livesey 

& Harris, 2012).  

 

Elemental prediction-error learning is at its most powerful when the stimulus 

representations implemented in the model are rich and capture many diverse 

characteristics of the stimuli. The learning algorithm allows the most predictive statistics 

to incrementally gain control of discriminative choices. Provided the representation of the 

stimulus is rich enough to capture spatially specific and spatially general feature 

properties, different aspects will win out during spatially fixed versus variable training. In 

both cases the strongest learning will occur to the sub-set of elements that are more active 

for one training stimulus than for the other. For instance, the strongest associations with 

the left response will accrue to those elements for which the difference in activation for 

Sleft versus Sright is the greatest. However, this discriminating sub-set will be different 

under spatially fixed versus variable conditions.  In the fixed case, the activation across 

elements is highly consistent across trials of the same stimulus. Even if some frequency 

variability is present, as in Experiment 3, patterns of activation will be very similar across 

trials because icons consistently occur in the same locations. The elements that come to 

control the discrimination will be those that differentially respond to a highly location-

specific set of features, for instance an element that responds to a particular feature in the 

top-left of the stimulus, which is present in Sleft but not Sright.  In the spatially variable 

case, the activation of elements across trials will be much less consistent. There will still 
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be elements that, for instance, respond more to Sleft than to Sright on average. However, on 

any given Sleft trial, not all of these elements will be active. Therefore discriminative 

control comes to be distributed over more elements, many of which will also be activated 

by other test stimuli. It is this characteristic that leads to a broader generalization 

gradient, which results in a peak shift being observed at a greater distance along the 

artificial dimension under spatially variable conditions.  

 

This general quality of error correcting learning, the ability to extract the most predictive 

components of a stimulus representation, has been a major reason for its success and 

widespread application to associative learning. The McLaren and Mackintosh (2000; 

2002) model explicitly appealed to this capability in developing a general approach to 

stimulus representation, one which uses rich and overlapping elemental representation of 

stimuli, even those lying on continua. Here we have incorporated a simple form of spatial 

specificity into this scheme, one which we hope can be applied to other associative 

learning phenomena that seem to be affected by spatial layout (e.g. Glautier, 2002; 

Livesey & Boakes, 2004).  The scheme is also in keeping with the elemental analysis that 

Mackintosh appealed to in explaining the peak shift phenomenon (Mackintosh, 1995; 

1997), but provides a means of accounting for differences due to variability during 

training, as found in this study, as well as solving other complex nonlinear 

discriminations. 

 

So far, we have not discussed the role of attention in this task, even though discrimination 

learning is thought to affect (and be affected by) selective attention (Mackintosh, 1975). 
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For instance, in human learning, subjects appear to devote greater attention to the most 

informative or predictive stimulus features and less attention to those that are irrelevant, 

and we have previously found evidence that this true for these complex icon-based 

stimuli (Livesey & McLaren, 2007). In this study, participants were trained on a 

discrimination equivalent to the variable conditions used in Experiment 1, such that the 

most predictive features were those icons that appeared relatively often in Sleft but rarely 

in Sright (or vice versa) regardless of their exact locations.  In two experiments, 

participants found a subsequent discrimination easier if these predictive icons were once 

again the most predictive features, relative to conditions in which the most predictive 

icons became less predictive in the second discrimination.  

 

In the case of the spatially fixed location conditions, selective attention may shift towards 

particularly predictive locations rather than (or as well as) towards predictive features. 

Other learning tasks indicate that participants will deliberately and strategically bias their 

attention towards regions of a stimulus array that are likely to contain task-relevant 

information (e.g. some perceptual learning phenomena, see Jones & Dwyer, 2012; Wang, 

Lavis, Hall & Mitchell, 2012). As noted in the methods, participants in these experiments 

were told to attend to the whole stimulus because attending to only one part would make 

the later phase of the experiment more difficult to solve. However, we cannot verify 

whether they followed this instruction. Even if they attempted to, associative learning 

may guide attention to informative stimulus locations incidentally and automatically. 

Implicit learning effects in visual search (i.e. contextual cuing; Chun & Jiang, 1998) 

demonstrate this capacity, albeit under different task requirements. In contextual cuing, 
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visual search is faster if the distractors predict the location of the response-relevant target, 

irrespective of its identity. This effect appears to be both incidental in terms of the 

sampling of predictive information (Beesley, Hanafi, Vadillo, Shanks, & Livesey, in 

press) and may even be relatively nonconscious under some circumstances (e.g. see 

Colagiuri & Livesey, 2016), but has a demonstrable effect on how the complex visual 

search array is processed.  

 

Changes in selective attention towards predictive features and predictive locations are 

thus both possible in this task and may well impact on generalization to different test 

stimuli. Selective attention was not incorporated into our relatively simple model. 

Although the model fairs relatively well without it, we see this as a possible extension of 

the model's operations that is very much in keeping with Mackintosh's views on 

associative learning, and one which may generate further testable predictions. 

 

Conclusion 

Mackintosh (1995; 1997; Wills & Mackintosh, 1998) argued that using peak shift along 

an artificial dimension is one way of studying feature-based generalization in humans 

while circumventing the use of strategies based on relational learning. It is therefore 

important that our models of associative learning, which are designed specifically to 

predict feature-based generalization, can adequately account for the results from such 

experiments. The current study provides further confirmation that spatial variability 

within complex visual stimuli has a clear and robust effect on post-discrimination 

generalization. However, in this study, the fixed and variable conditions produced 
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gradients that appear to have a similar general curvature; all were negatively accelerated 

and were modestly peak-shifted for the majority of participants.  Thus the gradient 

differences under fixed and variable spatial conditions appear to be more quantitative 

than qualitative. Training under spatially fixed conditions produced test accuracy 

generalization that, on average, peaked closer to the trained stimuli. In contrast, 

frequency variability during training seemed to have very little effect on the 

generalization gradient at test but did impact accuracy during training. These effects are 

accounted for by an associative learning model that incorporates a simple means of 

representing spatial and feature properties of the stimuli, using distributed elemental 

representation of stimulus properties.  

 

 

References 

Beesley, T., Hanafi, G., Vadillo, M. A., Shanks, D. R. & Livesey, E. J. (in press). 
Selective attention in contextual cuing is driven by properties of the search task and 
not by the predictiveness of distractors. Journal of Experimental Psychology: 
Learning, Memory & Cognition. 

Blough, D. S. (1973). Two-way generalization peak shift after two-key training in the 
pigeon. Animal Learning & Behavior, 1(3), 171-174. 

Blough, D. S. (1975). Steady state data and a quantitative model of operant generalization 
and discrimination. Journal of Experimental Psychology: Animal Behavior 
Processes, 1, 3-21. 

Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of 
visual context guides spatial attention. Cognitive psychology, 36, 28-71. 

Colagiuri, B. C., Livesey, E. J. (2016). Contextual cuing as a form of nonconscious 
learning: theoretical and empirical analysis in large and very large samples. 
Psychonomic Bulletin & Review, 23, 1996-2009. 

Ghirlanda, S., & Enquist, M. (1998). Artificial neural networks as models of stimulus 
control. Animal Behaviour, 56, 1383-1389. 



 47 

Ghirlanda, S., & Enquist, M. (1999). The geometry of stimulus control. Animal 
Behaviour, 58(4), 695-706. 

Ghirlanda, S., & Enquist, M. (2003). A century of generalization. Animal Behaviour, 66, 
15-36. 

Ghirlanda, S., & Enquist, M. (2005). Neural Networks and Animal Behavior. Princeton 
University Press. 

Ghirlanda, S., & Enquist, M. (2007). How training and testing histories affect 
generalization: a test of simple neural networks. Philosophical Transactions of the 
Royal Society of London B: Biological Sciences, 362(1479), 449-454. 

Ghirlanda, S. (2015). On elemental and configural models of associative learning. 
Journal of Mathematical Psychology, 64, 8-16. 

Glautier, S. (2002). Spatial separation of target and competitor cues enhances blocking of 
human causality judgements. Quarterly Journal of Experimental Psychology, 55B, 
121–135. 

Hanson, H. M. (1957). Discrimination training effect on stimulus generalization gradient 
for spectrum stimuli. Science, 125(3253), 888-889. 

Hanson, H. M. (1959). Effects of discrimination training on stimulus generalization. 
Journal of Experimental Psychology, 58, 321-334. 

Harris, J. A. & Livesey, E. J. (2010). An Attention-Modulated Associative Network. 
Learning & Behavior, 38, 1-26. 

Jones, F., & McLaren, I. P. L. (1999). Rules and associations. In Proceedings of the 
Twenty-First Annual Conference of the Cognitive Science Society. Mahwah, NJ: 
Erlbaum. 

Jones, F., Wills, A.J., and McLaren, I.P.L. (1998). Perceptual categorisation: 
connectionist modelling and decision rules. Quarterly Journal of Experimental 
Psychology, 51B, 33-58. 

Jones, S. P., & Dwyer, D. M. (2013). Perceptual learning with complex visual stimuli is 
based on location, rather than content, of discriminating features. Journal of 
Experimental Psychology: Animal Behavior Processes, 39, 152-165. 

Livesey, E. J. & Boakes, R. A. (2004).  Outcome additivity, elemental processing and 
blocking in human causality judgements.  Quarterly Journal of Experimental 
Psychology, 57B, 361-379. 

Livesey, E. J., & McLaren, I. P. L. (2007). Elemental associability changes in human 
discrimination learning. Journal of Experimental Psychology: Animal Behavior 
Processes, 33, 148-159. 

Livesey, E. J. & McLaren, I. P. L. (2009).  Discrimination and Generalization Along a 
Simple Dimension: Peak Shift and Rule-Governed Responding.  Journal of 
Experimental Psychology: Animal Behavior Processes, 35, 554-565. 



 48 

Livesey, E. J. & McLaren, I. P. L. (2011).  An elemental model of associative learning 
and memory, in E. Pothos & A. J. Wills (Eds). Formal Approaches in 
Categorization. Cambridge University Press (pp. 153-172).  

Livesey, E. J., Pearson, L. S., & McLaren, I. P. L. (2005). Spatial variability and peak 
shift: A challenge for elemental associative learning. In Proceedings of the XXVIIth 
Annual Convention of the Cognitive Science Society (pp. 1302-1307), Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Livesey, E. J., Thorwart, A., & Harris, J. A. (2011).  Comparing positive and negative 
patterning in human learning. Quarterly Journal of Experimental Psychology, 64, 
2316–2333.  

Luce, R. D. (1959). Individual choice behavior. New York: Wiley. 
Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli 

with reinforcement. Psychological Review, 82, 276–298. 
Mackintosh, N. J. (1995). Categorization by people and pigeons: The twenty-second 

Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 48, 
193-214. 

Mackintosh, N. J. (1997). Has the wheel turned full circle? Fifty years of learning theory, 
1946–1996. The Quarterly Journal of Experimental Psychology: 50A, 879-898. 

Mackintosh, N. J. (2000). Abstraction and Discrimination.In C. M. Heyes & L. Huber 
(Eds.), The evolution of cognition (pp. 123-142). Cambridge MA: MIT Press. 

McLaren, I.P.L., Kaye, H. and Mackintosh, N.J. (1989). An associative theory of the 
representation of stimuli: applications to perceptual learning and latent inhibition. In 
R.G.M. Morris (Ed.) Parallel Distributed Processing - Implications for Psychology 
and Neurobiology. Oxford. OUP. 

McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative 
learning: I. Latent inhibition and perceptual learning. Animal Learning & Behavior, 
28, 211-246. 

McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental 
representation: II. Generalization and discrimination. Animal Learning & Behavior, 
30, 177-200. 

Natal, S. D. C., McLaren, I. P. L. & Livesey, E. J. (2013).  Generalisation of Feature- and 
Rule-Based Learning in the Categorization of Dimensional Stimuli: Evidence for 
Dual Processes Under Cognitive Control. Journal of Experimental Psychology: 
Animal Behavior Processes, 39, 140-151. 

Oakeshott, S. M. (2002). Peak shift: An elemental vs a configural analysis. Unpublished 
PhD, University of Cambridge, Cambridge. 

Pearce, J. M. (1987). A model of stimulus generalisation for Pavlovian conditioning. 
Psychological Review, 94, 61-73. 



 49 

Pearce, J. M. (1994). Similarity and discrimination: A selective review and a 
connectionist model. Psychological Review, 101, 587-607. 

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin's mistake: Explaining the 
discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 
31, 109-130. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations 
in the effectiveness of reinforcement and non-reinforcement. In A. H. Black & W. F. 
Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). 
New York: Appleton-Century-Crofts. 

Shepard, R. N. (1987). Toward a universal law of generalization for psychological 
science. Science, 237(4820), 1317-1323. 

Thomas, D. R. (1993). A model for adaptation-level effects on stimulus generalization. 
Psychological Review, 100(4), 658. 

Thorwart, A., Livesey, E. J. & Harris, J. A. (2012).  Normalisation between stimulus 
elements in a model of Pavlovian conditioning: Showjumping on an elemental horse. 
Learning & Behavior, 40, 334-346. 

Thorwart, A., Uengoer, M., Livesey, E. J. & Harris, J. A. (2016). Summation effects in 
human learning: evidence from patterning discriminations in goal-tracking. 
Quarterly Journal of Experimental Psychology. First online: 29 Apr 2016, DOI: 
10.1080/17470218.2016.1184290 

Wang, T., Lavis, Y., Hall, G., & Mitchell, C. J. (2012). Location and salience of unique 
features in human perceptual learning. Journal of Experimental Psychology-Animal 
Behavior Processes, 38, 407-418. 

Wagner, A. R. (2003). Context-sensitive elemental theory. Quarterly Journal of 
Experimental Psychology, 56B, 7–29. 

Wagner, A. R., & Brandon, S. E. (2001). A componential theory of Pavlovian 
conditioning. In R. Mowrer, & S. Klein (Eds.), Handbook of contemporary learning 
theories, (pp. 23–63). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

Wills, S., & Mackintosh, N. J. (1998). Peak shift on an artificial dimension. Quarterly 
Journal of Experimental Psychology Section B- Comparative and Physiological 
Psychology, 51, 1-32. 

Wills, A.J., and McLaren, I.P.L. (1997). Generalisation in human category learning: a 
connectionist account of differences in gradient after discriminative and non-
discriminative training. Quarterly Journal of Experimental Psychology, 50A, 607-30. 

 
 
  



 50 

Tables 

Table 1.  An example of stimuli designed with a pseudo-Gaussian distribution on an 

artificial dimension.  This distribution of icons is that used by Oakeshott (2002; 

Experiment 4).  Stimuli shown in bold were presented during discrimination training. 

  Features comprising artificial dimension. 

  A B C D E F G H I 

St
im

ul
us

 v
al

ue
s a

lo
ng

 

ar
tif

ic
ia

l d
im

en
si

on
. 

F+ 1 3 4 3 1     

  1 3 4 3 1    

N+   1 3 4 3 1   

S+    1 3 4 3 1  

S-     1 3 4 3 1 
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Table 2.  The distribution of icons for each stimulus value.  The bolded stimuli, 7 and 9, were used in discrimination training as SL and 
SR respectively.  For each participant, elements A to X were randomly allocated one of 36 abstract icons.  All fifteen stimuli were 
presented during the transfer test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stimulus Test Features comprising artificial dimension. 
Value Stimulus A B C D E F G H I J K L M N O P Q R S T U V W X 

6 (FL)    #1 1 2 4 5 6 6 5 4 2 1               
5 #2  1 2 4 5 6 6 5 4 2 1              
4 #3   1 2 4 5 6 6 5 4 2 1             
3 #4    1 2 4 5 6 6 5 4 2 1            
2 (NL)   #5     1 2 4 5 6 6 5 4 2 1           
1 #6      1 2 4 5 6 6 5 4 2 1          
0 (SL)    #7       1 2 4 5 6 6 5 4 2 1         
 #8        1 2 4 5 6 6 5 4 2 1        

0 (SR)    #9         1 2 4 5 6 6 5 4 2 1       
1 #10          1 2 4 5 6 6 5 4 2 1      
2 (NL) #11           1 2 4 5 6 6 5 4 2 1     
3 #12            1 2 4 5 6 6 5 4 2 1    
4 #13             1 2 4 5 6 6 5 4 2 1   
5 #14              1 2 4 5 6 6 5 4 2 1  
6 (FL)  #15               1 2 4 5 6 6 5 4 2 1 
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Table 3. BIC for models of the generalization gradient following Equation 1, where peak accuracy (a) is assumed to fall on exactly 
one stimulus value (0-6) for all participants, but the width of the generalization gradient (b) is a free parameter for each participant. 
Bolded BICs indicate the best model (i.e. most likely value of a) for each experimental condition. Experimental conditions are 
organized according to spatial variability, then frequency variability. 
Experiment	&	 k	participants;	 BIC	for	each	value	of	a	

Condition	 n	observations	 0	 1	 2	 3	 4	 5	 6	

1	 Sp.	V,	Fr.	V	 k	=	12,	n	=	502	 966.8	 860.5	 777.0	 552.9	 852.8	 1059.5	 1218.8	

3	 Sp.	V,	Fr.	V	 k	=	12,	n	=	990	 1388.3	 1539.0	 1192.3	 1210.6	 1797.3	 2084.4	 2938.0	

2	 Sp.	V,	Fr.	F	 k	=	31,	n	=	2562	 4100.1	 3998.5	 3891.0	 3701.8	 4457.6	 5109.2	 5421.0	

3	 Sp.	V,	Fr.	F	 k	=	12,	n	=	969	 1195.6	 1130.1	 1008.4	 945.5	 1362.6	 2832.2	 2959.6	

3	 Sp.	F,	Fr.	V	 k	=	12,	n	=	992	 1301.5	 1183.6	 1160.3	 1616.2	 2026.5	 2934.9	 3426.3	

2	 Sp.	F,	Fr.	F	 k	=	33,	n	=	2744	 3430.3	 4495.4	 3843.1	 4930.0	 7647.3	 9303.5	 9638.9	

3	 Sp.	F,	Fr.	F	 k	=	12,	n	=	990	 1423.1	 1319.7	 1522.5	 1974.6	 2919.7	 3765.1	 4002.9	

Note:  Sp. V and Sp. F denote Spatially varied and Spatially fixed respectively.  
Fr. V and Fr. F denote Frequency varied and Frequency fixed respectively. 
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Figures 
 
 

 
 
 
 
 
 
Figure 1.  Examples of icon-based stimuli used to generate peak shift along an 
artificial dimension, given one possible ordering of the icons (i.e. the random 
allocation of icons G-R, shown at the bottom of the figure). Two examples of each of 
the SL and SR training stimuli are shown, for each combination of frequency and 
spatial variability.  The icons vary slightly in color and form from those used by Wills 
and Mackintosh (1998) and by Oakeshott (2002).  
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Figure 2. Example of the function fitting used to estimate the peak of gradients for 
individual participants. Data points represent test accuracy data for a single 
participant, the dotted line indicates the predicted gradient for the best-fitting 
function. For fitting the function, the location of the peak of the gradient a was 
constrained to fall precisely on one of the 7 stimulus values (0-6) and the maximum 
accuracy c was matched to the maximum observed accuracy. The width of the 
gradient b was varied continuously.  
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Figure 3.  Percentage correct responses during discrimination learning phase.  Data 
points indicate accuracy for successive blocks of 12 icon-based discrimination trials. 
Top panel shows training for Experiment 1 and the spatially fixed and variable groups 
in Experiment 2. Bottom panel shows training accuracy for Experiment 3. Error bars 
indicate SEM. 
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Figure 4.  Mean test accuracy as a function of stimulus value, i.e. distance from the 
nearest training stimulus (S). Top panel shows test accuracy for Experiment 1 and the 
spatially fixed and variable groups in Experiment 2. Bottom panel shows test 
accuracy for Experiment 3. Error bars indicate SEM. 
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Figure 5.  Number of participants (aggregated across experiments) for which peak 
accuracy (a) was most likely to fall at stimulus values 0 – 6. Top panel shows the four 
spatially variable conditions from Experiments 1-3. Bottom panel shows the three 
spatially fixed conditions from Experiments 2 & 3. Darker and lighter shades show 
frequency variable and frequency fixed conditions, respectively. Thirteen participants 
with essentially flat gradients were removed from this analysis (see text for details). 
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Figure 6. Schematic diagram showing the operations of the elemental associative 
learning model used to simulate post-discrimination generalization. Each 
representational element (labeled "Inputs") is sensitive to a randomly selected subset 
of the icons (e.g. those in bold in the figure) within a randomly determined region of 
the stimulus. These stimulus inputs have activation (A) as a function of the number of 
target features present (F) within this given region (with varying sensitivity as shown 
by the different sigmoid functions in the figure). Associative links between these 
Inputs and the Outputs used to generate a prediction are updated according to a 
prediction-error algorithm.  
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Figure 7. Left panels show generalization gradients from the three experiments 
grouped according to spatial variability (top panel: spatially variable; bottom panel: 
spatially fixed). Right panels show simulated data using an elemental model with 
simple stimulus sampling assumptions, again grouped according to spatial variability. 
All simulations were run with 100 representational elements, activated by 1-25 
locations with the stimulus array and on average one third of the different types of 
icons, with a fixed learning rate S = .01, and a choice rule constant k = 5.90, k = 2.87, 
k = 2.56 for Experiments 1-3 respectively. 
 

 


