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The main challenge for gaining biological insights from genetic associations is identifying

which genes and pathways explain the associations. Here we present DEPICT, an integrative

tool that employs predicted gene functions to systematically prioritize the most likely causal

genes at associated loci, highlight enriched pathways and identify tissues/cell types where

genes from associated loci are highly expressed. DEPICT is not limited to genes with

established functions and prioritizes relevant gene sets for many phenotypes.
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T
he causal variants, genes and pathways in many genome-
wide association studies (GWAS) loci often remain elusive,
due to linkage disequilibrium (LD) between associated

variants, long-range regulation and incomplete biological knowl-
edge of gene function. To translate genetic associations into
biological insight, we need at a minimum to identify the genes
that account for associations as well as the pathways and tissue/
cell type context(s) in which the genes’ actions affect phenotypes.
Although cell-type-specific expression quantitative trait loci
(eQTLs) or coding (non-synonymous) variants in strong LD
with associated variants can potentially link these variants to
genes, overlap with eQTLs or coding variants may be coin-
cidental. In addition, coding variants in high LD with associated
variants are rarely observed, and eQTL data from non-
haematological cell types are rare. Direct functional follow-up
of the many potentially causal variants and genes is typically
difficult and expensive, so an attractive first step is to use
computational approaches to prioritize genes in associated loci
with respect to their likely biological relevance, and to identify
pathways and tissues to define their likely biological context. The
current paradigm for gene prioritization methods is to system-
atically search for commonalities in functional annotations
between genes from different associated loci, such as shared
features derived from text mining1 (which is limited by the
literature’s highly incomplete characterization of gene function)
or propensity to interact at the protein level2 (which is unlikely to
capture the full functional spectrum of a given gene or
phenotype3). The paradigm for gene set analysis is to search for
enrichment of the genes near associated variants in manually
curated gene sets or in gene sets derived from molecular
evidence4. Although certain pathways have been carefully
characterized, and manually curated gene sets and protein–
protein interaction maps can be of great value, pathway
annotation of genes remains sparse and skewed towards well-
studied genes5. At the same time, the availability of large, diverse,
genome-wide data sets, such as gene expression data, can
elucidate and annotate potential functional connections between
genes6. Given these limitations and opportunities, and the wide
spectrum of traits and diseases analysed in association studies,
there is a need for a general computational approach that
integrates diverse, non-hypothesis-driven data sets to prioritize
genes and pathways7,8.

With the goal of meeting this need, we develop and hereby
present a framework called Data-driven Expression Prioritized
Integration for Complex Traits (DEPICT, www.broadinstitu-
te.org/depict), which is not driven by phenotype-specific
hypotheses and considers multiple lines of complementary
evidence to accomplish gene prioritization, pathway analysis
and tissue/cell type enrichment analysis. This framework can
prioritize genes, pathways and tissue/cell types across many
different phenotypes9–13.

Results
Overview of the DEPICT methodology. DEPICT builds on our
recent work that used co-regulation of gene expression (derived
from expression data of 77,840 samples), in conjunction with
previously annotated gene sets, to accurately predict gene func-
tion based on a ‘guilt-by-association’ procedure6. We first
expanded this approach to include 14,461 existing gene sets,
representing a wide spectrum of biological annotations (including
manually curated pathways14–16, molecular pathways from
protein–protein interaction screens17 and phenotypic gene sets
from mouse gene knock-out studies18). By calculating, for each
gene, the likelihood of membership in each gene set (based
on similarities across the expression data; see Methods),

we generated 14,461 ‘reconstituted’ gene sets (see Fig. 1;
Supplementary Data 1). Rather than traditional binary gene sets
(genes are included or not included), these reconstituted gene sets
contain a membership probability for each gene in the genome;
conversely, a gene is functionally characterized by its membership
probabilities across the 14,461 reconstituted gene sets. Using
these precomputed gene functions and a set of trait-associated
loci, DEPICT assesses whether any of the 14,461 reconstituted
gene sets are significantly enriched for genes in the associated loci,
and prioritizes genes that share predicted functions with genes
from the other associated loci more often than expected by
chance. In addition, DEPICT utilizes a set of 37,427 human
microarrays to identify tissue/cell types in which genes from
associated loci are highly expressed. DEPICT uses precomputed
GWAS based on randomly distributed phenotypes to take sources
of confounding into account: it extracts gene-density-matched
input loci from these ‘null GWAS’, recomputes results and adjusts
the P values from the above three analyses for null expectation.
It also uses the null GWAS to adjust for multiple testing by
computing false discovery rates (FDRs, see Methods).

Calibration of locus definitions. Having developed this frame-
work, we first considered a key feature, the definition of an
associated locus—that is, given an associated variant, how many
of the nearby genes should be taken into consideration as
potentially causal? Using as a positive control Mendelian disease
genes that affect skeletal growth and are over-represented in
height-associated GWAS loci10,19, we evaluated DEPICT’s
performance using loci defined by different combinations of
genetic and physical distance from the lead associated variant
(Supplementary Data 2). We found that a locus definition of
r240.5 from the lead variant was optimal (Supplementary
Note 1). We repeated the analysis using genome-wide-
significant associations for low-density lipoprotein (LDL)
cholesterol20 and 14 Mendelian lipid genes20 as positive
controls and observed similar results (r240.4), indicating that
the calibration does not change drastically for other traits
(Supplementary Data 3).

Type-1 error rate analysis. We next tested whether DEPICT
properly controls the type-1 error rate. Running DEPICT with
random input loci based on either real genotype or simulated
genotype data, we observed nearly uniform distributions for gene
set enrichment, gene prioritization and tissue/cell type enrich-
ment P values (see Supplementary Fig. 1 and Methods). Impor-
tantly, we did not observe any correlation between gene length
and gene prioritization P values (Spearman r2¼ 7.70� 10� 5),
nor correlation with locus gene density (Spearman
r2¼ 7.53� 10� 8), two factors that have often confounded
pathway analyses21. We also did not observe any correlation
between tissue/cell type enrichment P values and the number of
samples available in the expression data sets for each annotation
(Spearman r2¼ 6.9� 10� 4), nor were results dependent on the
particular set of genotype data used to construct the null GWAS
(Supplementary Note 2). Together, these results indicated that
DEPICT results are not driven by bias in its data sources.

Benchmarking the gene set enrichment framework. We next
compared DEPICT with two GWAS pathway methods,
MAGENTA22 and GRAIL1 using GWAS results for three
phenotypes, each with 450 independent genome-wide
significant single-nucleotide polymorphisms (SNPs): Crohn’s
disease23, human height10 and LDL20. DEPICT’s gene set
enrichment functionality outperformed MAGENTA (a widely
used GWAS gene set enrichment tool) by identifying more
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relevant gene sets (both methods exhibited comparable type-1
error rates; Supplementary Figs 1 and 2) for all three phenotypes:
DEPICT identified 2.5 times as many significant gene sets
(FDRo0.05) for Crohn’s disease, 2.8 times as many significant
gene sets for height and 1.1 times as many significant gene sets for
LDL (Fig. 2; Supplementary Figs 3–5; Supplementary Data 4–6).
Many gene sets prioritized by DEPICT, but not MAGENTA,
appear biologically relevant (for example, regulation of immune
response, response to cytokine stimulus and toll-like receptor
signalling pathway for Crohn’s disease; Fig. 2). To test whether
our gene set reconstitution strategy was driving the performance
differences between MAGENTA and DEPICT, we ran
MAGENTA with non-probabilistic, binary (yes/no) versions of
the reconstituted gene sets (see Methods). We found a consistent
increase in the number of nominally significant gene sets when
MAGENTA was run with reconstituted gene sets for Crohn’s
disease, height and LDL (1.4, 1.6 and 1.7-fold increases,
respectively, in number of nominally significant gene sets using
the 95 percentile model; Supplementary Data 4–6; Supplementary
Figs 6–8). To assess whether the reconstituted gene sets enhance
the performance of DEPICT, we ran DEPICT using the original,

predefined gene sets. As expected, the number of prioritized gene
sets (FDRo0.05) dropped to 97.7, 92.9 and 20% for the Crohn’s
disease, height and LDL analyses, respectively (Supplementary
Data 4–6). Together, these analysis indicate that the gene set
reconstitution, combined with DEPICT’s ability to use
probabilistic gene sets, is responsible for the increased
performance of DEPICT compared with MAGENTA in gene
set enrichment analysis.

Benchmarking the gene prioritization framework. Using gene
lists from whole-blood expression quantitative locus data24,
rodent growth plate differential expression data25 and
Mendelian human lipid genes reported in literature20 (see
Methods), we constructed positive sets of genes to compare
DEPICT’s gene prioritization performance with GRAIL (a widely
used GWAS gene prioritization tool). DEPICT and GRAIL
performed similarly in analyses based on all genome-wide
significant loci with at least one positive gene, based on area
under a receiver-operating characteristic (ROC) curve (AUC,
Table 1; Supplementary Datas 7–9; Supplementary Fig. 9).
However, when restricting the height comparison with loci with
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Figure 1 | Overview of DEPICT. DEPICT is designed to identify likely causal genes, functional or phenotypic gene sets that are enriched in genes

within associated loci, and tissues or cell types that are implicated by the associated loci. DEPICT takes as input a set of trait-associated SNPs

and uses them to identify independently associated loci that may comprise up to several genes. DEPICT uses co-regulation data from 77,840 microarrays

to predict genes’ biological functions across 14,461 gene sets representing a wide spectrum of biological annotations and to construct 14,461 ‘reconstituted’

gene sets. DEPICT then uses this information to identify reconstituted gene sets that enrich for genes in the associated loci, and to prioritize genes at

associated loci, by identifying genes in different loci that have similar predicted functions. Finally, DEPICT relies on 37,427 human gene expression

microarrays to assess whether genes in associated loci are highly expressed in any of 209 tissue/cell type annotations.
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no well-known Mendelian human skeletal growth gene, DEPICT
markedly outperformed GRAIL, prioritizing genes at many more
loci (DEPICT: 1.1 genes per locus, GRAIL: 0.4 genes per locus),
suggesting that DEPICT performs better at loci harbouring genes
with less well-established roles in literature (Supplementary
Data 10). We validated this observation using genes nearest to
height-associated SNPs as positive genes at these loci. The nearest
gene is an unbiased, but highly imperfect benchmark (for
example, only 13/21 Mendelian skeletal growth genes in a large
height GWAS19 were the nearest genes to a height-associated
SNP), so AUC is expected to be low using this benchmark.
Nonetheless, DEPICT not only prioritized more genes than
GRAIL, but also had a higher AUC (Supplementary Data 11).

Finally, DEPICT performed consistently better than a gene
expression-based version of GRAIL (Supplementary Data 7–9),
indicating that use of gene expression data in the prediction is not
driving DEPICT’s superior performance across several of
the comparisons. Together, these analyses indicate that DEPICT
performs particularly well for gene prioritization at what
are arguably the most important loci for new discovery: those
with biology that is less well captured in already published
literature.

Prioritization of genes outside genome-wide significant loci.
We hypothesized that DEPICT could also be used to prioritize
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genes outside genome-wide significant loci, based on predicted
functional relatedness to genes within genome-wide significant
loci. Similar to the gene prioritization implemented in DEPICT,
we prioritized genes with higher than expected pairwise simila-
rities to genes from trait-associated loci (across the 14,461 func-
tional predictions; see Methods). SNPs within or near (±50 kb)
the 3,022 genes that were functionally related to Crohn’s disease
loci genes (at FDRo0.05) had lower association P values than
SNPs in the same number of unrelated genes (genes with
FDR40.99; genomic inflation factor k¼ 1.49 versus k¼ 1.31),
indicating that DEPICT enriches for as-yet-unidentified genes
associated with Crohn’s disease. The enrichment was further
increased when considering only SNPs that overlap with eQTLs
in whole blood24 (k¼ 1.69 versus k¼ 1.25). A similar enrichment
of associations was seen for height (k¼ 1.92 versus k¼ 1.62) and
LDL (k¼ 1.06 versus k¼ 0.97).

To begin to assess the performance and specificity of DEPICT
across a wider range of phenotypes, we applied DEPICT to
61 phenotypes in the NHGRI GWAS Catalog26 that had at
least 10 genome-wide-significant (unadjusted association P value
o5� 10� 8) associations. DEPICT identified at least one
significantly enriched (P value o10� 6, the Bonferroni-corrected
significance threshold) reconstituted gene set for 39 of the 61
phenotypes (Fig. 3; Supplementary Data 12). To test whether
DEPICT identified similar gene sets for related phenotypes, we
clustered the 39 traits based on their gene set enrichment scores
across the 14,461 reconstituted gene sets (Fig. 3). Related traits
clustered with each other, but different phenotypes yielded quite
different gene sets. Furthermore, many of the top gene sets were
of clear relevance to the phenotype (Supplementary Data 12).
Thus, DEPICT is able to identify, with specificity, biologically
relevant gene sets for a wide range of human traits and diseases.
Consistent with these results, we recently used DEPICT to
analyse GWAS data for height, body mass index and waist–hip
ratio adjusted for body mass index (from the GIANT
Consortium)10,12,13 and for hypospadias9. For each phenotype,
DEPICT highlighted a distinct and biologically meaningful group
of known and novel genes, gene sets and tissue/cell types.

Discussion
We present a computational framework called DEPICT, which
enables gene prioritization, gene set enrichment analysis and
tissue/cell type enrichment analysis to generate specific testable
hypotheses that are critical to inform experimental follow-up of
GWAS. DEPICT implements these three distinct functionalities
into a single, publicly available tool. Apart from providing useful
insights into pathways and biological annotations of relevance to
a phenotype, a key application of the gene set enrichment
functionality is to use it for selecting in vitro phenotypes that may
serve as readouts in cellular assays used to validate prioritized
genes for a complex trait. A key advantage of DEPICT over
existing tools is the gene set reconstitution, which enables
prioritization of previously poorly annotated genes, as well as
more specific and powerful gene set enrichment analysis. By using
data sets and methods that are not specific to any particular
disease or trait, DEPICT does not depend on phenotype-specific
hypotheses (for example, particular neuronal gene sets being
important for schizophrenia).

On the basis of our current experience, we recommend
employing DEPICT on genome-wide significant loci as well as all
loci with association P values o10� 5 (see Supplementary Fig. 10
for results based on LDL loci using the relaxed threshold and
for an example on visualizing DEPICT results). We also
recommend a locus definition of r240.5 from lead SNPs. It is
important to note that reconstituted gene sets should be
interpreted in light of the genes that are mapped to them, rather
than strictly by their identifiers (which are carried over from the
predefined gene sets).

Despite DEPICT’s ability to identify relevant gene sets for a
large number of traits and diseases, the method may be less
sensitive to phenotypes caused by genes that have specialized
functions that cannot be well predicted based on integrating gene
expression data with the currently existing predefined gene sets.
Indeed, there are multiple ways in which the DEPICT framework
could be improved further. Additional future work includes
iteratively conditioning on significant genes, gene sets and tissue/
cell types to enhance prioritization of genes with weaker, yet

Table 1 | Overview of DEPICT and GRAIL comparison.

Comparison Trait/disease Gold standard genes Method ROC AUC F-measure
at P¼0.05

Maximum
F-measure

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Nearest to associated SNPs DEPICT 0.63 0.66 0.74
GRAIL 0.60 0.47 0.74

Prioriziation at loci with no Mendelian
human skeletal growth genes

Human height Growth plate biology DEPICT 0.76 0.82 0.82
GRAIL 0.57 0.56 0.78

All loci, default method settings Crohn’s disease eQTLs DEPICT 0.68 0.60 0.62
GRAIL 0.71 0.39 0.69

Human height Growth plate biology DEPICT 0.78 0.80 0.82
GRAIL 0.64 0.59 0.70

LDL cholesterol Mendelian lipid disorders DEPICT NA 1.00 1.00
GRAIL NA 1.00 1.00

All loci, GRAIL with Gene Expression
Atlas data

Crohn’s disease eQTLs DEPICT 0.70 0.62 0.64
GRAIL (Exp.) 0.68 0.44 0.64

Human height Growth plate biology DEPICT 0.73 0.76 0.78
GRAIL (Exp.) 0.61 0.44 0.70

LDL cholesterol Mendelian lipid disorders DEPICT 0.83 0.92 0.92
GRAIL (Exp.) 0.79 0.83 0.92

AUC, area under the curve; DEPICT, Data-driven Expression Prioritized Integration for Complex Traits; eQTLs, expression quantitative trait loci; LDL, low-density lipoprotein; NA, not available; ROC,
receiver-operating characteristics curve; SNP, single-nucleotide polymorphism.
DEPICT and GRAIL1 ROC AUC estimates, and precision and recall estimates for genome-wide significant SNPs for Crohn’s disease23, human height10 and low-density lipoprotein cholesterol20. The height
comparison was conducted as loci with and without Mendelian human stature genes19 to assess which method performed best at loci without known height biology. All comparisons were conducted
based on all loci using the default version of GRAIL except the comparisons labelled ‘Exp.’, which were conducted using GRAIL with Human Gene Expression Atlas data40 instead of literature. NA because
there were the only positive genes in benchmarking loci.
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significant, relationships, and quantification of the relative
importance of significant predictions. Additional expression data
would enhance the data sources available for DEPICT, especially
for prioritization of tissues/cell types. Other data types, such as
epigenetic data, have yet to be integrated into the DEPICT
framework, and DEPICT does not yet use information that could
further prioritize genes within loci, such as LD with eQTLs or
missense variation, or being the nearest gene to the lead SNP.
Finally, DEPICT is currently optimized for GWAS results, but
could be adapted to other types of data sets (custom arrays,
exome chip or sequencing).

In conclusion, there is a need for approaches that are not
driven by phenotype-specific hypotheses and that consider
multiple lines of complementary evidence to accomplish gene
prioritization, pathway analysis and tissue/cell type enrichment
analysis. We have developed a computational and publicly
available tool—DEPICT—that can address this need by perform-
ing integrative analysis, thereby generating novel, testable

hypotheses from genetic association studies across a wide
spectrum of traits and diseases.

Methods
Data and software availability. The following sections describe the DEPICT
methodology in detail. DEPICT source code and example data are available at
https://github.com/DEPICTdevelopers. Ready-to-use software is available at
www.broadinstitute.org/depict.

Definition of associated loci. From the set of associated SNPs at a particular
threshold (such as genome-wide significance, Po5� 10� 8), we generated inde-
pendent ‘lead SNPs’ by retaining the most significant SNP from each set of SNPs
that are in LD (pairwise r240.1) and/or in proximity (physical distance of
o1 Mb). We computed pairwise LD coefficients based on the imputation panel
used in the GWAS, either HapMap Project release 2 and 3 CEU genotype data27 or
1000 Genomes Project Phase 1 CEU, GBR and TSI genotype data28. We defined
positions in the human genome according to genome build GRCh37. Next, we
created lists of genes at associated loci by mapping genes to loci if they resided
within, or were overlapping with, boundaries defined by the most distal SNPs in
either direction with LD r240.5 to the given lead SNP (see Supplementary Note 1
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Figure 3 | DEPICT analysis using GWAS Catalog results. DEPICT identified at least one significant reconstituted gene set for 39 traits and diseases from

the GWAS Catalog (we investigated 61 traits with at least 10 independent genome-wide significant loci). (a) Unsupervised clustering of the 39 phenotypes

based on their gene set enrichment scores across all reconstituted gene sets yielded 7 clusters of phenotypes (roughly corresponding to metabolic, lipids,

haematological, autoimmune, blood pressure/cardiac conduction, growth/bone/menopause and a second autoimmune cluster), which indicates that

DEPICT is able to identify phenotypic-specific and biologically relevant gene sets for a wide range of phenotypes. The inset shows that the multiple sclerosis

and coeliac disease gene set enrichment scores are highly correlated and therefore were clustered within the same clade. (b) The number of genome-wide

significant loci for a given phenotype was positive correlated with the number of significant (FDRo0.05) reconstituted gene sets for that phenotype

(Pearson r2¼0.26, t-test P value¼6.86� 10� 5).
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for justification of this locus definition). If no genes were within the locus defined
by r240.5, the gene nearest to the given lead SNP was included. Loci with
overlapping genes were then merged. Due to the extended LD in the major
histocompatibility complex region and the resulting challenges in delineating
associated loci, genes within base pairs 25,000,000–35,000,000 on chromosome 6
were excluded. DEPICT takes as input a set of independent, associated SNPs and
automates all other steps outlined here.

Gene sets used in DEPICT. DEPICT is based on a large number of predefined
gene sets from diverse databases and data types (Supplementary Data 1). Gene
ontology15, Kyoto encyclopedia of genes and genomes14 and REACTOME16 gene
sets were mapped to Ensembl database identifiers. Molecular pathways were
constructed based on experimentally derived high-confidence protein–protein
interactions from the InWeb database17 by considering each of the 12,793 genes in
the database and annotating direct, high-confidence interaction partners of a given
gene as a molecular pathway (including the given gene itself). We defined high-
confidence interactions as pairs of gene products with InWeb-specific protein–
protein interaction confidence scores above 0.154, a cutoff previously justified17.
In addition, we constructed 2,473 phenotypic gene sets based on 211,882
phenotype–gene relationships from the Mouse Genetics Initiative18. These gene
sets were constructed by adding genes to the same gene set if they were related to
the same Mouse Genetics Initiative phenotype. From all repositories, we only
included gene sets with at least 10 genes and at most 500 genes.

Gene function prediction for gene set reconstitution. DEPICT performs gene
prioritization and gene set enrichment based on predicted gene function and
reconstituted gene sets (note that the reconstituted gene sets are a consequence of
the gene function prediction). Please refer to Fehrmann et al.6 (and
www.genenetwork.nl) for a detailed description of the gene function prediction
method. The main hypothesis behind the gene function prediction follows a guilt-
by-association logic: a gene that is co-regulated with say 20 other genes, which
perform a specific function, is likely to exhibit the same function. In Fehrmann
et al.6, we developed an approach that quantifies co-regulation between pairs of
genes based on gene expression data, even in instances where transcriptomic co-
regulation is subtle. In Fehrmann et al.6, we conducted the following steps to
predict functions of genes and construct reconstituted gene sets:

1. We first renormalized 77,840 microarrays from two human, one rat and one
mouse Affymetrix gene expression platform downloaded from the Gene
Expression Omnibus (GeO) database29 (Supplementary Data 13).

2. We constructed a probe–probe correlation matrix (using Pearson correlation to
compute all pairwise probesets correlations) for each of the four platforms.

3. We performed principal component analysis on each of the four correlation
matrices, and used Cronbach’s Alpha and Split-half reliability statistics to retain
777 and 377 eigenvectors (hereafter ‘transcriptional components’ or ‘TCs’;
Fehrmann et al.6) from the two human platforms, 677 TCs from the mouse
platform and 375 TCs from the rat platform.

4. We mapped all human genes to Ensembl identifiers30; mouse and rat genes were
mapped to their human homologues (Ensembl database orthology mapping).
The loadings of each gene on each TC are the elements of a gene-TC matrix
with 19,997 gene rows (the number of genes covered by the Affymetrix
platforms) and 2,206 TC columns.

We then used the gene-TC matrix to predict 19,997 genes’ function across the
14,461 functional annotations represented by the predefined gene sets, by doing the
following steps:

1. For each gene set, we computed the enrichment on each TC (using z-scores
derived from Welch’s t-test to assess whether the TC loadings from genes from
the given set significantly deviated from all other genes’ loadings). This resulted
in a TC profile for each gene set (a gene set-TC matrix of z-scores with 14,461
gene set rows and 2,206 TC columns).

2. To obtain gene function predictions and reconstituted gene sets, we quantified
each gene’s likelihood of being part of a given predefined gene set by correlating
the gene’s 2,206 TC loadings (from the gene-TC matrix) with the z-score TC
profile of each gene set (from the gene set-TC matrix). To avoid circularity in
cases where a particular gene was part of a predefined gene set, we left out that
gene from the gene set, recomputed the gene set z-score profiles along all TCs
and then computed the correlation of the gene with the gene set.

3. We converted the correlation P values to z-scores to obtain a gene-gene set
matrix of z-scores comprising 19,997 gene rows and 14,461 gene sets columns.
This matrix is used by DEPICT to perform gene prioritization and gene set
enrichment analysis.

Null GWAS construction. To take sources of confounding into account, DEPICT
makes use of precomputed GWAS based on randomly distributed phenotypes to
(‘null GWAS’). We computed 200 GWAS based on genome-wide CEU genotype
data from the Diabetes Genetics Initiative31 (DGI) and simulated Gaussian
phenotypes (random draws from N(0,1) distribution) with no genetic basis.

DEPICT gene prioritization. For gene prioritization, DEPICT employs a
phenotype- and mechanism-agnostic algorithm, which is predicated on a
previously formulated assumption that truly associated genes share functional
annotations1,17,32. In other words, genes within associated loci that are functionally
similar to genes from other associated loci are the most likely causal candidates.
DEPICT prioritizes genes based on three major steps: a scoring step, a bias
adjustment step and a FDR estimation step. In the scoring step, the method
quantifies the similarity of a given gene to genes from other associated loci by
correlating their reconstituted gene set memberships (across all 14,461 gene sets).
The bias adjustment step is designed to control inflation in gene scores caused by,
for example, gene length (longer genes are more likely to be part of associated
GWAS loci) or structure in the underlying expression data. In this step, the method
normalizes the given gene’s similarity score based on the distribution of the given
gene’s similarity to genes from 1,000 sets of gene-density-matched loci, derived
from the 200 pre-permuted null GWAS. In the last step, experiment-wide FDRs are
estimated by repeating the scoring and bias adjustment steps 20 times based on top
SNPs from precomputed null GWAS. For a given gene (gene x) that has a
prioritization P value y in the actual data, a FDR is calculated by first counting the
number of genes having a P value smaller or equal to y across all 20 null runs and
dividing this count by the rank of gene x in the actual data. We note that in the
version of DEPICT implemented in the studies of anthropometric traits10,12,13,
we included a correction for the number of genes at a given locus. Because this
correction does not change gene prioritization results markedly (gene set
enrichment results and tissue/cell type enrichment results are unchanged), we
recommend not using this correction because it imposes an overly conservative
correction on genes in relatively gene-poor loci. This correction was not
implemented in the version described here.

DEPICT reconstituted gene set enrichment. The gene set enrichment analysis
algorithm comprises the same three steps as employed in gene prioritization: a gene
set scoring step, a bias correction step and a FDR estimation step. For a given
reconstituted gene set, DEPICT quantifies enrichment by (1) summing the given
gene set membership z-scores (entries in the gene-gene set matrix) of all genes
within each associated locus and then computing the sum of sums across all loci;
(2) repeating step 1 a thousand times based on random loci that are matched by
gene density, and using the thousand null z-scores to adjust the real z-score by
subtracting their mean, dividing by their s.d. and converting the adjusted z-score to
a P value; and (3) repeating steps 1 and 2 twenty times to estimate experiment-wide
FDRs similar to the method described above.

DEPICT tissue/cell type enrichment analysis. DEPICT utilizes 37,427 human
Affymetrix HGU133a2.0 platform microarrays (approximately half of the
microarrays used to reconstituted gene sets) to assess whether genes in associated
loci are highly expressed in any of the 209 Medical Subject Heading (MeSH) tissue
and cell type annotations. The tissue/cell type expression matrix was constructed by
averaging gene expression levels of microarray samples with the same MeSH
annotation6. This process included N(0,1) normalizing across all tissue/cell type
annotations to remove effects of ubiquitously expressed genes, N(0,1) normalizing
the columns of the tissue/cell type expression matrix (to allow enrichment analysis
identical to the gene set enrichment analysis framework) and retaining only tissue/
cell type annotations covered by at least 10 microarrays. Conceptually, the resulting
gene-tissue/cell type expression matrix resembles the gene-gene set matrix, the only
difference being that columns represent the relative expression of genes in a given
tissue compared with the other tissues, as opposed to the likelihood of membership
of a gene in a gene set. Consequently, the tissue/cell type enrichment analysis
algorithm is conceptually identical to the gene set enrichment analysis algorithm.

Adjusting for confounding sources. For a given set of associated loci from the
‘real GWAS’ (the study of interest), DEPICT extracts the same number of inde-
pendent loci from the 200 precomputed null GWAS. For a given null GWAS, this
is accomplished by varying the SNP association P value cutoff until the number of
independent top loci is the same as the number of independent loci in the real
GWAS. The independent top loci from each null GWAS are then collected into a
single pool of loci. During the DEPICT gene prioritization, gene set enrichment
and tissue/cell type enrichment analyses, this pool of loci is used to sample 1,000
collections of gene density-matched ‘null loci’ (in each collection there are as many
null loci as the number of loci observed in the real GWAS). Null loci within a given
collection are not allowed to overlap (in terms of genes). During the DEPICT
background correction step, if a locus from the real GWAS is represented by
o10 gene-density-matched null loci, DEPICT iteratively includes larger and
smaller null loci (to avoid oversampling the same null loci during the 1,000
background runs). We employed different numbers of null GWAS contributing to
the pool of null loci, and observed no major differences between using 200, 500
or 900 null GWAS (Supplementary Note 3).

Type-1 error rate analyses. To compute type-1 error rates for the gene prior-
itization, gene set enrichment and tissue/cell type enrichment analyses, we first
computed 100 DGI null GWAS the same way as describe in the above section.
Spearman correlation coefficients were computed based on log10 transformed
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P values. We used an alternate approach to estimate type-1 error by replacing the
null GWAS with simulated GWAS that have positive signals but no underlying
biological basis. We simulated 50,000 individuals using HAPGEN33 using
parameters from the HapMap Project release 3 CEU population. From this,
we obtained 1,175,577 genotypes for all autosomes (chromosomes 1–22) and
calculated the allele frequency for each SNP using the 50,000 individuals. We then
randomly selected 1,000 SNPs to have an effect on the phenotype and assigned
effect sizes such that all SNPs jointly explain 45% of the total variance. The effect
size for each SNP was calculated as follows,

b ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2pð1� pÞ

s
ð1Þ

where b is the effect size in s.d. units, s2 is the variance explained for each SNP, p is
the SNP’s minor allele frequency and d denotes a random variable with equal
probability of being þ 1 or � 1. Once each SNP’s effect size was determined, we
calculated the weighted allele score for each individual by summing up the SNP
minor allele dosages weighted by their effect size. The weighted allele score was
calculated as follows,

WAS ¼
XN

i¼1
biSNPi � 2bipi ð2Þ

where N is the number of SNPs (N¼ 1,000), bi is the effect size of the ith SNP as
calculated earlier, SNPi is the dosage of the minor allele for the ith SNP (0,1 or 2)
and pi is the minor allele frequency of the ith SNP. The subtraction of 2bipi served
to adjust the weighted allele score such that its mean was 0. We obtained the final
phenotypic z-score by adding a remaining noise term such that the total variance
was 1. The z-score was calculated as follows,

z-score ¼WASþNð0; variance remainingÞ ð3Þ

where N(0, variance_remaining) is a randomly generated number sampled from a
Normal (N) distribution with mean 0 and variance 0.55. This process was repeated
100 times to obtain 100 sets of phenotypic z-scores for each of the 50,000
individuals. We used PLINK34 to perform GWAS on each set of phenotypes using
the 50,000 simulated genotype samples, and then, for each null GWAS, identified
the association P-value threshold that resulted in 100 fully independent loci
(DEPICT locus definition). Finally, we ran DEPICT with default settings on each of
the n¼ 100 sets of input SNPs.

Crohn’s disease DEPICT analysis. Summary statistics from GWAS-based meta
analysis of Crohn’s disease23 (downloaded from www.ibdgenetics.org) were used to
identify genome-wide significant loci (using PLINK and parameters ‘--clump-kb
1000 --clump-r2 0.01’). As input to DEPICT we used the resulting 63 genome-wide
significant (w2-test P value o5� 10� 8), which were located in 54 fully
independent loci based on DEPICT definitions of independence.

Human height DEPICT analysis. As input we used 697 genome-wide significant
human height associations identified in GWAS-based meta analysis10 (accessible
through http://www.broadinstitute.org/collaboration/giant), which were located in
566 fully independent loci based on DEPICT definitions of independence.

Low-density lipoprotein cholesterol DEPICT analysis. Summary statistics from
GWAS-based meta analysis of LDL20 (downloaded from www.sph.umich.edu/csg/
abecasis/public/lipids2010) were used to identify genome-wide significant loci
(using PLINK with parameters ‘--clump-kb 1000 --clump-r2 0.01’). As input to
DEPICT we used the resulting 67 independent loci, which resulted in 40 fully
independent loci used DEPICT definitions of independence.

Gene set enrichment benchmark. Due to the lack of an unbiased set of gold
standard pathways for any complex trait, we compared DEPICT and MAGENTA22

by counting the number of statistically significant gene sets predicted based on
Crohn’s disease, height and LDL loci. Prior to the benchmark, we estimated the
type-1 error rate of both methods by running them with summary statistics from
100 null GWAS constructed based on simulated Gaussian phenotypes with no
genetic basis, and HapMap Project release 2 imputed DGI Consortium genotype
data (Supplementary Figs 1 and 3). For the null analyses, the top 200 independent
loci from each null GWAS were used as input, whereas genome-wide significant
loci were used as input in the Crohn’s disease, height and LDL analyses. All
MAGENTA runs were based on the complete set of summary statistics. We
restricted the comparison to a list of 1,280 gene sets (gene ontology terms, Kyoto
encyclopedia of genes and genomes and REACTOME pathways) with overlapping
identifiers between both methods. DEPICT was run on reconstituted gene sets.
MAGENTA was run with default settings and both methods excluded the major
histocompatibility complex region. The non-probabilistic, binary (yes/no) version
of the reconstituted gene sets used in one of the MAGENTA comparisons were
constructed by applying a threshold on the gene scores for a given reconstituted
gene set (all genes above a permutation-based cutoff were considered part of the
given reconstituted gene sets, as reported in ref. 6). Entries with ‘NA’ in columns
‘DEPICT with predefined gene sets P’ and ‘DEPICT with predefined gene sets FDR’

in Supplementary Data 4–6 marked predefined gene sets for which enrichment
could not be computed in the DEPICT analysis based on predefined gene sets.

Gene prioritization benchmark. We ran each method (DEPICT and GRAIL1)
using their default settings on all genome-wide significant Crohn’s disease23,
height10 and LDL20 associations. To evaluate the methods’ performance on the
same set of positive genes (genes that are highly likely to be causal to the
phenotype) and negative genes (genes that are unlikely to be causal), we limited the
comparison to loci at which there was at least one positive gene present across
both methods, and discarded any genes at these benchmark loci that were not
considered by each method. For the Crohn’s disease comparison, we used as
positives 31 genes that were transcriptionally regulated in whole blood24 by a
genome-wide significant Crohn’s disease association or a SNP in high LD (r240.7)
with a genome-wide significant SNP. For the height comparison, we used as
positives a set of 44 genes that were within genome-wide significant height-
associated loci and differentially expressed in rodent growth plate expression
studies; we have previously shown that the rodent gene expression data are
enriched for genes in height-associated loci25 (Supplementary Table 2 in Lango
Allen et al.19). For the LDL comparison, we used as positives a set of seven genes
with reported Mendelian mutations proposed to cause lipid-related traits20. For all
three benchmarks, we removed negative genes that had a missense variant in
strong LD (r240.7) with an associated SNP; for the height and LDL benchmarks,
we removed negative genes that were transcriptionally regulated24 by a SNP in
strong LD (r240.7) with an associated SNP; in the height benchmark, we removed
negative genes that were differentially expressed in rodent growth plates versus
other tissues, spatially regulated across different growth plate zones (hypertrophic
versus proliferating, and proliferative versus resting) or temporally regulated in
growth plates between week 12 and week 3 at nominal significance in reference25,
and genes that were reported in the high-confidence list in ref. 19. After these steps,
we were able to use 42 negative genes across 18 loci as Crohn’s disease benchmarks
and 37 negative genes across 43 loci as height benchmarks. There were no negative
genes among the seven LDL benchmark loci. Positive and negatives genes, are
listed in Supplementary Data 7–9. Precision (the fraction of positive genes among
all prioritized genes at a given P-value threshold) and recall (the fraction of
correctly classified positive genes at a given P-value threshold also referred to as
sensitivity) estimates were used to measures accuracy and summarized using the
F-measure, which incorporates the ability to recall positive genes with a high
precision into a single measure. (Maximum precision implies no false positives,
whereas maximum recall implies no false negatives.) To measure the ability to
discriminate positive and negative genes at a relative scale, we also computed ROC
AUC estimates. To avoid circularity, the growth plate data25 and the eQTL data24

were not part of the data used by any of the three methods tested. The R software35

and the ROCR R library36 were used to construct the precision recall and ROC
curves and the AUC estimates.

Prioritizing genes outside genome-wide significant loci. To enable prioritiza-
tion of genes below the genome-wide significance threshold, we scored each gene
outside the genome-wide significant loci with respect to its similarity to genes
within associated loci. For a given gene outside genome-wide significant loci,
we (1) correlated (Pearson) its predicted functions across all 14,461 gene sets
to every gene in each of the trait-associated loci, (2) kept the lowest correlation
P value from each genome-wide significant locus, (3) converted the P values to
z-scores and (4) summed the z-scores and converted the sum back to a P value
(alternative hypothesis: gene functionally related to genes in trait-associated loci).
We computed FDRs, by redoing steps 1–4 based loci from null GWAS. Using
FDR o0.05 as the threshold, we identified 3,022, 5,916 and 1,901 related genes for
Crohn’s disease, height and LDL. For each of the three traits, we then calculated
genomic inflation factors for SNP P values in the functionally related genes and for
SNP P values in the same number of genes exhibiting the highest (non-significant)
FDRs. We added 50 kb flanking loci to gene boundaries (defined by the boundaries
of the most extreme transcripts) and required genes to be at least 1 Mb away from
the nearest genome-wide significant locus.

GWAS catalog analysis. The GWAS Catalog26 was downloaded from www.
genome.gov/gwastudies/ (download date: 02 January 2014) and 61 phenotypes with
at least 10 fully independent regions (DEPICT definitions) based on genome-wide
associations were retained. Hierarchical clustering implemented in the R software
method ‘hclust’ was run with default settings (method¼ ‘complete-linkage’,
dist¼ ‘euclidean’). The DEPICT locus definitions for all GWAS catalog traits
can be downloaded from www.broadinstitute.org/mpg/depict.

Overlap of gene sets and visualization. A previous version of DEPICT used in
analyses of anthropometric traits10,12,13 computed gene set overlap by imposing a
threshold on which genes belong to a given reconstituted gene set and then used
the Jaccard index to compute pairwise overlaps. Overlapping reconstituted gene
sets were grouped as pathway families. Here, we instead computed the pairwise
Pearson correlation between all reconstituted gene sets and then used the Affinity
Propagation method37 to group similar reconstituted gene sets. We named each
cluster (‘meta gene set’) by the name of the representative gene set automatically
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identified by the Affinity Propagation method (for examples, see the top 10 gene set
enrichment meta gene sets for Crohn’s disease, height and LDL in Supplementary
Data 14–16). The R software35 and a R version of the Affinity Propagation
method38 was used setting the parameters ‘maxits’ to 10,000 and ‘convits’ to 1,000
to ensure conversion when thousands of reconstituted gene sets needed to be
clustered. We visualized the overlap between pathway families pathways using
Cytoscape39.
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Jeffrey Baron, Kasper Lage and Pascal Timshel for helpful comments and discussions.
This work was supported by The National Institute of Diabetes and Digestive and Kidney
Diseases [2R01DK075787 to J.N.H.].

Author contributions
Planning and design was performed by T.H.P., J.M.K., J.N.H. and L.F. Computational
analyses were performed by T.H.P., J.M.K., Y.C., H.-J.W. and L.F. The manuscript
was written by T.H.P., J.N.H. and L.F. with relevant comments and suggestions by all
co-authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Pers, T. H. et al. Biological interpretation of genome-wide
association studies using predicted gene functions. Nat. Commun. 6:5890
doi: 10.1038/ncomms6890 (2015).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6890 ARTICLE

NATURE COMMUNICATIONS | 6:5890 | DOI: 10.1038/ncomms6890 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Results
	Overview of the DEPICT methodology
	Calibration of locus definitions
	Type-1 error rate analysis
	Benchmarking the gene set enrichment framework
	Benchmarking the gene prioritization framework

	Figure™1Overview of DEPICT.DEPICT is designed to identify likely causal genes, functional or phenotypic gene sets that are enriched in genes within associated loci, and tissues or cell types that are implicated by the associated loci. DEPICT takes as inpu
	Prioritization of genes outside genome-wide significant loci

	Figure™2Comparison of DEPICT and MAGENTA for CrohnCloseCurlyQuotes disease.Comparison of DEPICT, which was run with 63 genome-wide significant CrohnCloseCurlyQuotes disease SNPs as input, and MAGENTA, which was run using the complete list of CrohnCloseCur
	Discussion
	Table 1 
	Methods
	Data and software availability
	Definition of associated loci

	Figure™3DEPICT analysis using GWAS Catalog results.DEPICT identified at least one significant reconstituted gene set for 39 traits and diseases from the GWAS Catalog (we investigated 61 traits with at least 10 independent genome-wide significant loci). (a
	Gene sets used in DEPICT
	Gene function prediction for gene set reconstitution
	Null GWAS construction
	DEPICT gene prioritization
	DEPICT reconstituted gene set enrichment
	DEPICT tissuesolcell type enrichment analysis
	Adjusting for confounding sources
	Type-1 error rate analyses
	CrohnCloseCurlyQuotes disease DEPICT analysis
	Human height DEPICT analysis
	Low-density lipoprotein cholesterol DEPICT analysis
	Gene set enrichment benchmark
	Gene prioritization benchmark
	Prioritizing genes outside genome-wide significant loci
	GWAS catalog analysis
	Overlap of gene sets and visualization

	RaychaudhuriS.Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletionsPLoS Genet.5e10005342009LeisersonM. D. M.EldridgeJ. V.RamachandranS.RaphaelB. J.Network analysis of GWAS dataCurr. Opi
	T.H.P. was supported by The Danish Council for Independent Research Medical Sciences (FSS) The Alfred Benzon Foundation. J.C.L. was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Dev
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




