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Abstract 

 

Sexual conflict can occur whenever the evolutionary interests of males and females 

differ, and when sexually antagonistic selection acts upon traits shared between the 

sexes, one or both sexes can be constrained from reaching their phenotypic optima. 

This intralocus sexual conflict can be characterised by a tug-of-war of allelic 

replacement until it is resolved, but examples of well-characterised sexually 

antagonistic loci are rare. This thesis investigates the basis and dynamics of 

intralocus sexual conflict over insecticide resistance at the Cyp6g1 locus in 

Drosophila melanogaster, and wing colouration in Drosophila simulans. 

In D. melanogaster, the Cyp6g1 locus is the site of a series of insecticide resistance 

alleles, one of which is sexually antagonistic when back-crossed to the old isogenic 

lab strain Canton-S. I investigated the presence of sexual conflict over this same 

allele in a recently collected and genetically heterogeneous population. I found 

evidence of balancing selection on resistance (Ch. 2) that could not be explained by 

overdominance or sex-specific dominance (Ch. 3). However, balancing selection 

could be explained by resistance conferring increased fecundity to females (Ch. 2-4), 

and decreased reproductive success to males (Ch. 4). This male cost can in turn be 

explained by a negative genetic correlation between reproductive success and 

Cyp6g1 expression (Ch. 4), possibly influencing levels of reproductive investment 

(Ch. 2). Additionally, I explored the dynamics of the sex-specific fitness effects of 

resistance across three Cyp6g1 alleles back-crossed to a single genetic background. 

I found no evidence of sexual antagonism, but revealed that the cost of resistance 

increased with more derived alleles, and that all alleles were more costly to females 

(Ch. 5). After decades of strong selection imposed by insecticide use an unresolved 

sexual conflict persists at the Cyp6g1 locus despite sexual dimorphism in resistance, 

and it does not appear that more derived Cyp6g1 alleles are necessarily involved in 

mediating this conflict. 

Wing interference patterns (WIPs) are a newly discovered trait subject to female 

mate choice in Drosophila. I explored the potential for intralocus sexual conflict over 

WIPs by measuring WIP traits from males and females from populations of D. 
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simulans evolved under relaxed or elevated sexual selection. In response to sexual 

selection male WIPs evolved to be brighter, higher contrast, and shifted to longer 

wavelengths of light, but there was no associated response to selection in females 

(Ch. 6). While WIPs did not appear to be constrained from detectably responding to 

selection by acute intralocus sexual conflict, male WIPs from the relaxed selection 

regime were similar to female WIPs, suggesting a cost to sexually selected WIPs 

that may be indicative of sexually antagonistic selection. 

IASC is pervasive and can influence a wide range of fundamental evolutionary 

processes including sexual selection, speciation, and extinction. The research 

presented in this thesis adds to a body of evidence that sexual dimorphism does not 

necessarily resolve IASC, and documents the first evidence that WIPs do not appear 

to be subject to acute IASC and can evolve in response to sexual selection. 
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Chapter 1 

General introduction 

 

Sexual conflict is an outcome of the divergent evolutionary interests of males and 

females that occur because of anisogamy (Parker 1979; Chapman et al. 2003). It is 

a fundamental evolutionary phenomenon that can be an engine of co-evolutionary 

change as well as a tether between the sexes preventing independent evolution. 

Anisogamy has placed males and females on two different evolutionary trajectories 

that, generally, have selected females to invest more in offspring and males to invest 

more in securing fertilisations (Bateman 1948; Trivers 1972; Parker 1979). These 

divergent reproductive interests have seen natural and sexual selection shape the 

sexes in ways that have allowed them to achieve vastly different life-histories (Archer 

et al. 2012), morphology (Harano et al. 2010), and behaviour (Maklakov et al. 2008), 

despite the constraint of a shared genome. Sexual conflict arises in two arenas – 

between different loci as the result of antagonistic male-female interactions 

(interlocus sexual conflict) (Chapman et al. 2003; Arnqvist & Rowe 2005), and over 

the same loci subject to sexually antagonistic selection (intralocus sexual conflict) 

(Rice & Chippindale 2001; Bonduriansky & Chenoweth 2009). Interlocus sexual 

conflict has been widely studied, and can result in antagonistic coevolution and the 

development of arms races between the sexes (Chapman et al. 2003; Arnqvist & 

Rowe 2005). It is often characterised by males employing coercive or harmful 

reproductive strategies and females evolving defensive morphology or behaviour to 

resist male coercion or reduce male-inflicted harm (Chapman et al. 2003; Arnqvist & 

Rowe 2005). Intralocus sexual conflict, on the other hand, can constrain independent 

evolution between the sexes until sex-specific genetic architecture evolves, and has 

received relatively less empirical investigation (Rice & Chippindale 2001; 

Bonduriansky & Chenoweth 2009). 

 

Intralocus sexual conflict (IASC) occurs when sexually antagonistic (SA) selection 

acts on a trait that shares the same underlying genetic architecture in both sexes 

(Chapman et al. 2003; Bonduriansky & Chenoweth 2009). A positive intersexual 
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genetic correlation (rMF) for traits subject to SA selection then constrains one or both 

sexes from reaching their sex-specific fitness optima (Bonduriansky & Chenoweth 

2009), resulting in a negative intersexual correlation for fitness such that males of a 

high trait fitness should sire females with a low trait fitness (and vice versa) (Rice & 

Chippindale 2001). Alleles subject to IASC can be maintained at stable equilibrium 

frequencies (Kidwell et al. 1977; Turelli 2004; Rostant et al. 2015), but can only 

reach fixation if there is a net selective advantage when averaged across all 

offspring (Rice 1984). IASC has many implications for a wide range of evolutionary 

processes; it can diminish the benefits of sexual selection (Fedorka & Mousseau 

2004; Pischedda & Chippindale 2006; Brommer et al. 2007), maintain additive 

genetic variation across the genome and partially explain the paradox of the lek 

(Foerster et al. 2007; Prasad et al. 2007; Dean et al. 2012; Rostant et al. 2015), may 

increase the risk of population extinction (Kokko & Brooks 2003), reinforce speciation 

(Parker & Partridge 1998), and can facilitate adaptation across fitness valleys 

(Bonduriansky & Chenoweth 2009).  

 

Bonduriansky & Chenoweth (2009) describe four stages of IASC that progress 

through (i) pre-IASC, where selection is sexually concordant and rMF for fitness and 

trait are positive; (ii) acute IASC, were selection is sexually antagonistic and rMF for 

fitness is negative but rMF for trait is positive; (iii) attenuated IASC, where selection is 

sexually antagonistic and rMF for fitness and trait are still negative and positive, 

respectively, but declining in magnitude; and (iv) resolved IASC, where selection is 

sexually antagonistic and rMF for fitness and trait are both non-negative (fitness at 

parity and trait values less than or equal to 1). The resolution of IASC requires the 

genetic architecture underlying traits subject to SA selection to evolve to allow sex-

linked gene expression and sexual dimorphism (but see Harano et al. 2010). This 

can occur via several process including sex-specific posttranscriptional splicing 

(McIntyrse et al. 2006), sexually antagonistic loci undergoing gene duplication 

allowing alternative sex-biased expression for the different gene copies (Partridge & 

Hurst 1998; Rice & Chippindale 2001; Bonduriansky & Chenoweth 2009), and 

modifier genes evolving elsewhere in the genome that result in sex-biased 

expression or altered fitness effects of the sexually antagonistic loci in one or both 

sexes (Rice & Chippindale 2001). While resolution of IASC is possible, networks of 
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genetic correlation between traits across the genome are likely to maintain some low 

level of conflict indefinitely (Bonduriansky & Chenoweth 2009; Harano et al. 2010; 

Hosken 2011).  

 

IASC has been detected across a range of species (Bedhomme & Chippindale 2007) 

but significant estimates of SA selection in wild populations are rare (Cox & 

Calsbeek 2009), and in general IASC is expected to be difficult to detect (Bedhomme 

& Chippindale 2007). Even rarer still are examples of IASC where the precise loci 

subject to conflict are known, though transcriptomic approaches have begun to 

propose many candidate genes (Innocenti & Morrow 2010; Griffin et al. 2013) – 

particularly in the fruit fly Drosophila melanogaster where IASC appears pervasive 

(Innocenti & Morrow 2010; Griffin et al. 2013; Ingleby et al. 2014). One recently 

characterised example is that of insecticide resistance in D. melanogaster, where 

upregulation of the cytochrome P450 gene Cyp6g1 appears to be deleterious for 

males but beneficial for females in certain genetic backgrounds (McCart et al. 2005; 

Smith et al. 2011; Rostant et al. 2015). Research into insecticide resistance has had 

great success in elucidating the molecular mechanisms and pleiotropic fitness costs 

of various forms of resistance, but has until relatively recently largely ignored how 

sex might complicate these estimates and overlooked the potential for IASC at 

resistance loci (Coustau et al. 2000; ffrench-Constant & Bass 2017). Insecticide 

resistance therefore offers unexplored opportunities to investigate IASC in traits 

where a specific trait can be linked to specific loci (and thus gene expression), and 

may have sexually antagonistic fitness effects. 

 

Insecticide resistance is a major problem in the management of agricultural pests 

and disease vectors (Hemingway et al. 2013; Gontijo et al. 2013), and has important 

social, economic, and human health implications (Grafius 1997; Hemingway & 

Ranson 2000; Greenwood & Mutabingwa 2002). Resistance typically evolves rapidly 

under strong directional selection (May 1985; Mallet 1989), and has become 

prevalent in both pest and non-pest insect populations worldwide as a result of the 

widespread introduction of organic and synthetic insecticides since the 1950s 

(Georghiou 1986; Catania et al. 2004). Not only is resistance present in a diverse 
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range of insect taxa (Mallet 1989), but individual species can evolve both multiple-

resistance and cross-resistance to many different types of xenobiotics (Alyokhin et 

al. 2008). In order to develop dynamic management programmes that remain flexible 

in response to the constantly evolving resistance profiles of wild insect populations 

(e.g. Dermauw et al. 2013) we must understand both the direct and indirect fitness 

effects of resistance. Specifically, understanding the pleiotropic fitness effects of 

resistance is key to understanding the spread and maintenance of resistance, and 

critically, can allow us to work towards reducing its prevalence (Brown et al. 2013; 

Tabashnik et al. 2013). 

 

Theory predicts that resistance should impose costs such that susceptible individuals 

are more fit than resistant individuals in the absence of insecticide (Crow 1957; 

Coustau et al. 2000; Hall et al. 2004). This is expected to be the case because wild 

populations are assumed to be near local fitness optima and any mutant resistance 

alleles would therefore disrupt a locally adapted and functionally integrated genome 

(Coustau et al. 2000). As the strong directional selection imposed by insecticides 

usually acts outside of the standing distribution of susceptible phenotypes, it initially 

favours single mutations of large effect which are more likely to fall further from any 

nearby local fitness optima than the wild-type allele (Fisher 1930; Orr 1998; 

Mccandlish 2013). In functional terms, the expression and maintenance of resistance 

may be metabolically expensive and trade-off against other fitness components 

(Carriere et al. 1994), or may reduce the efficiency of some physiological processes 

by altering their function (Coustau et al. 2000). Such costs associated with 

resistance could delay or prevent the fixation of resistance alleles, and reduce the 

frequency of resistance alleles in the absence of insecticide e.g. in resistance 

management programmes that employ refuges free from insecticide (Brown et al. 

2013; Tabashnik et al. 2013). 

 

The empirical evidence for the pleiotropic fitness effects of resistance is mixed, with 

some studies demonstrating costs (Carrière et al. 2001; Berticat & Boquien 2002; 

Smith et al. 2011), some demonstrating no costs (Bloch & Wool 1994; Tang et al. 

1999; Castañeda et al. 2011), some demonstrating fitness benefits to resistance 
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(Haubruge & Arnaud 2001; Arnaud & Haubruge 2002; McCart et al. 2005; Mason 

2009), and even simultaneous costs in some fitness measures but benefits in others 

(Brewer & Trumble 1991). There are a range of reasons why studies may fail to 

detect costs, or why we may not expect to see costs in the first place (Box 1). 

Cyp6g1 is just one striking example of variable costs where resistance has been 

found to incur antagonistic fitness effects between the sexes (Drnevich et al. 2004; 

McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015). 

 

Upregulation of the cytochrome P450 gene Cyp6g1 in D. melanogaster confers 

resistance to a range of insecticides including neonicotinoids and the organochloride 

DDT (dichlorodiphenyltrichloroethane) (Daborn et al. 2002; Daborn et al. 2007). 

Cytochrome P450 monooxygenases are a group of enzymes that confer insecticide 

resistance by metabolising xenobiotics through oxidation (Bergé et al. 1998). 

Upregulation of Cyp6g1 in D. melanogaster is achieved by the presence of cis-

regulatory sequences in the long terminal repeat (LTR) of a defective Accord 

transposable element (TE) inserted 291bp upstream of Cyp6g1 (Daborn et al. 2002; 

Chung et al. 2007). While Cyp6g1-conferred resistance in strains isolated from the 

wild is monogenic, resistant individuals in some strains experimentally selected for 

resistance also exhibit reduced cuticular penetration and increased excretion of DDT 

(Strychartz et al. 2013). The Cyp6g1-associated Accord insertion is near or at 

fixation in most populations outside of Eastern Africa, with low levels of microsatellite 

variation flanking Cyp6g1 consistent with a recent selective sweep (Catania et al. 

2004). The Accord insertion has recently been found to be a feature of an allelic 

series at the Cyp6g1 locus containing copy number variation and additional nested 

TE insertions (Schmidt et al. 2010). TE-induced insecticide resistance via novel cis-

regulatory sequences, as with Cyp6g1, is just one mechanism by which TE 

insertions can generate resistance. Additionally, TEs may (i) insert into the 3’ ends of 

genes, increasing the stability of mRNA transcripts, (ii) excise a gene during 

transposition and reinsert it beyond the reach of repressor elements, or (iii) insert 

into an exon and alter the sequence of resulting transcripts, potentially resulting in 

novel function (ffrench-Constant et al. 2006). TEs are now recognised as important 

facilitators of insecticide resistance evolution (Li et al. 2007) with particular 
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enrichment near xenobiotic-metabolising cytochrome P450 genes (Chen & Li 2007), 

and specific insertion site preferences (Linheiro & Bergman 2012). 

 

Insecticide resistance at the Cyp6g1 locus features at least 5 alleles conferring 

various levels of resistance (Schmidt et al. 2010; Figure 1). The alleles succeed as 

follows, with each a derivation of the preceding allele; (i) M, a susceptible allele with 

a single copy of Cyp6g1, (ii) AA, a duplication of Cyp6g1 into Cyp6g1-a and Cyp6g1-

b following the insertion of an Accord TE upstream of Cyp6g1, (iii) BA, the insertion 

of an HMS Beagle TE within the Accord TE upstream of Cyp6g1-a, (iv) BP, the 

insertion of a P-element TE within the Accord TE upstream of Cyp6g1-b, and (v) 

BP∆, a class of alleles with their P-elements in various stages of degeneration. 

Alleles across the series confer increasing levels of total resistance as well as 

increasing sexual dimorphism in resistance in the more derived alleles (Schmidt et 

al. 2010). Notably, the level of resistance conferred by AA and BA is similar, with 

only the resistance levels of males being significantly different, suggesting cost 

amelioration via replacement as well as increased resistance may explain evolution 

through the series (Box 1). Though there is evidence for a recent selective sweep at 

the Cyp6g1 locus, there is some evidence that the Accord insertion itself may be an 

old mutation pre-dating the migration of D. melanogaster out of Africa (Catania et al. 

2004), and previous work has shown that the BA allele can be maintained at a low 

frequency in the absence of insecticide (Rostant et al. 2015). If the Accord insertion 

is indeed an old mutation this has important implications for the expectation of any 

fitness costs associated with alleles in the series that are of a similar age due to the 

possibility of cost amelioration having evolved (Box 1). 

 

The pleiotropic fitness effects of the Cyp6g1 alleles are largely unknown, with 

previous work only investigating the BA allele. When BA was introgressed into the 

old laboratory strain Canton-S, which is naturally susceptible to insecticides 

(homozygous for the M allele), resistant males exhibited altered courtship and 

aggression behaviours, and suffered a fitness cost relative to susceptible males in 

the form of reduced mating success (Smith et al. 2011). However, Smith et al. (2011) 

did not find male fitness costs in a second, more recently established genetic 
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background, suggesting that epistasis has a role in mediating the costs of resistance 

in this system. In contrast, resistance in females increases fecundity, egg and larval 

viability of offspring, and decreases larval and pupal development time (McCart et al. 

2005). These maternal effects on the offspring are putatively thought to be the result 

of increased provisioning of Cyp6g1 mRNA to fertilised eggs (McCart & ffrench-

Constant 2008). The mechanism of the male fitness costs is currently unknown. The 

BA allele is thus an exceedingly rare case of IASC where the exact locus under 

sexually antagonistic selection is known. The presence of this sexual conflict - and 

the elucidation of its action across the allelic series - represents an important step in 

understanding the evolution of resistance, as the degree to which the costs of 

resistance differ between the sexes has been largely overlooked, with many studies 

preferring to focus on a single sex (e.g. female fecundity) or not explicitly separating 

the sexes at all (e.g. development time).  

 

The allelic series at the Cyp6g1 locus in D. melanogaster is an important system in 

which to explore the progression through an adaptive walk of insecticide resistance 

alleles (both in terms of adapting to novel xenobiotic challenges as well as 

ameliorating the costs borne as a result of that adaptation) and the dynamics of 

IASC. It allows us to ask questions about insecticide resistance where some alleles 

may predate modern insecticides, potentially challenging our expectations of costs 

associated with resistance assumed to be de novo mutations selected by insecticide 

use. It allows us to explore the relative importance of increased resistance versus 

cost amelioration by comparing the fitness costs and levels of resistance between 

alleles that differ in resistance, and between those that do not differ in resistance but 

may differ in cost. It allows us to elucidate the progression of IASC through a series 

of allelic replacement from alleles that do not result in sexual dimorphism for 

resistance to more derived alleles that do, suggesting that more derived alleles may 

be allowing sex-limited gene expression - perhaps resolving any IASC via cis-

regulatory sequences that are sex-limited in their activity (e.g. Abrahamsen et al. 

1993). Within the system, many questions also remain to explore the mechanistic 

basis of the pleiotropic fitness effects across the series.  
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While the majority of this thesis explores IASC at the Cyp6g1 insecticide resistance 

locus, we have also investigated the potential for IASC in a newly discovered sexual 

trait in Drosophila - wing colouration. The wings of most common Drosophila species 

are seemingly transparent in lab environments and this has led to wing colouration 

being largely ignored in studies of sexual selection and conflict except for those 

species that have conspicuous marked wings (e.g. the melanin spotted wings of 

Drosophia suzukii). However, it was recently discovered that Drosophila wings 

actually display striking structural colour patterns when viewed against backgrounds 

that contrast with the wing (most natural environments) that can be both species and 

sex-specific (Shevtsova et al. 2011). These patterns, named wing interference 

patterns (WIPs), are produced via thin-film interference where light striking the wing 

is refracted and reflected such that the wavelength of the reflected light (i.e. the 

colour) depends on the thickness of the chitinous membrane of the wing (Shevtsova 

et al. 2011). This process, along with some other structural features like venation 

and hair placement, results in vivid colour patterns across the wing. WIPs appear to 

be heritable and subject to sexual selection via female mate choice in D. 

melanogaster, and may be involved in species recognition (Shevtsova & Hansson 

2011), but generally we know very little about the evolutionary forces that shape 

them. Sexually selected traits are classic cases of traits with a history of IASC 

(Chapman et al. 2003; Arnqvist & Rowe 2005; Bonduriansky & Chenoweth 2009), 

and good candidates for traits that may retain some level of conflict (e.g. Harano et 

al. 2010). For example, sexual selection on male wing thickness as a result of female 

mate choice for WIPs may be orthogonal to natural selection on wing morphology for 

other purposes (e.g. flight) in females. Assuming these aspects of wing morphology 

are governed by the same loci, this sexually antagonistic selection could constrain 

the response of male WIPs to sexual selection. As human hips must be optimised for 

locomotion in males but for locomotion and childbirth in females, so too may 

Drosophila WIPs need to be optimised for flight in females but flight and mate choice 

in males. Given how recently WIPs were discovered, we know next to nothing about 

their potential role in sexual conflict. 

 

The research presented in this thesis is an investigation into the presence, 

dynamics, and consequences of intralocus sexual conflict over insecticide resistance 
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in Drosophila melanogaster, and wing colouration in Drosophila simulans. The first 

four data chapters describe work exploring sex-specific fitness, life-history, 

insecticide resistance, and gene-expression associated with an allelic series at the 

Cyp6g1 locus in D. melanogaster. The final data chapter is an initial investigation 

into the potential for sexual conflict over wing interference patterns, a recently 

discovered sexually selected trait in D. simulans. The chapters are presented as 

intended for publication. 

 

In Chapter 2 we investigate whether the Cyp6g1-BA allele is sexually antagonistic in 

a recently caught and genetically heterogenous population of D. melanogaster by 

estimating fitness components in males and females. Additionally, we estimate the 

degree of sexual dimorphism in DDT resistance and Cyp6g1 expression in order to 

explain our fitness component measures within a functional biological framework. 

We also use these fitness component measures to derive predictions of allele 

frequency dynamics from a population genetic mathematical model which we test 

using experimental evolution. A version of this chapter with some content removed to 

supplementary material was published in the Proceedings of the Royal Society: B 

(co-authors as stated in the Author’s Declarations). In Chapter 3 we explore 

alternative explanations that may explain balancing selection at the Cyp6g1 locus 

including overdominance, sex-specific patterns of dominance for the fitness effects 

of resistance, and indirect genetic effects from the parental origin of the resistance 

allele. In Chapter 4 we use isofemale lines to estimate quantitative genetic 

parameters that describe the intersexual genetic correlation for the fitness effects of 

the BA allele, and the genetic correlation between Cyp6g1 expression and male 

fitness components. In Chapter 5 we characterise the dynamics of the sex-specific 

fitness effects across three Cyp6g1 alleles back-crossed to a single genetic 

background to reveal the procession of any sexual conflict across the allelic series. 

In Chapter 6 we explore the potential for IASC in the wing interference patterns of D. 

simulans by testing whether the wing patterns of males and females are able to 

respond independently to sexual selection on males. 
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__________________________________________________________ 

 

Box 1 

 

There are three main reasons why studies may fail to detect pleiotropic fitness costs 

to resistance even if they should exist; (i) experimental design, (ii) cost variability, 

and (iii) cost amelioration.  

 

(i) Experimental design 

The two main approaches to quantifying the fitness effects of resistance are to 

compare specific fitness components between resistant and susceptible individuals, 

and to compete resistant and susceptible alleles against one another in populations. 

A trait-based approach allows us to conclude whether resistance affects those 

measured characters, but critically, not whether it affects any unmeasured traits. This 

becomes more problematic when we consider that the fitness effects of resistance 

can be positive for some fitness measures but negative for others (Brewer & Trumble 

1991), meaning that trait-based approaches may result in errors of both degree and 

sign. Resistance, then, can carry a cost that trait-based approaches may overlook. In 

comparison, a population approach integrates the fitness effects of resistance across 

the whole phenotype in both sexes and is a more holistic measure of the composite 

selection acting on resistance alleles. It cannot, however, demonstrate the 

differences in phenotype between resistant and susceptible individuals that selection 

is acting on, nor tell whether these effects are sex-specific. To illustrate the disparity 

between these two approaches, a recent review of literature regarding the costs of 

resistance to Bacillus thurigiensis (Bt) toxins found costs were detected in 63% of 

population-based experiments but only 34% of trait-based experiments (Gassmann 

et al. 2009). Coustau et al. (2000) highlight a valuable distinction between the costs 

that resistance may impose in any particular trait or fitness measure, and the 

counterselection that resistance alleles may be under if they result in a net reduction 
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in fitness in the absence of insecticide. Ultimately, the two approaches are 

complementary and when used in combination can demonstrate the net fitness effect 

of resistance alleles as well as the specific phenotypic costs they impose.  

 

(ii) Cost variability 

The expectation of costs associated with resistance can vary with the mechanism of 

resistance (Coustau et al. 2000) as well as the degree of resistance (Gassmann et 

al. 2009), and epistatic interaction with standing genetic variation may also result in 

the fitness effects of novel mutations varying in degree and sign depending on the 

genetic background they appear in (Weinreich et al. 2005). Additionally, costs may 

vary due to gene-environment interactions whereby costs only become apparent 

under certain, often stressful, conditions (Martin & Lenormand 2006). This may be 

due to factors such as host plant type (which includes both nutritional quality and 

plant defence) (Carrière et al. 2004; Raymond et al. 2005; Raymond et al. 2011), 

density (Raymond et al. 2005), parasitism (Agnew et al. 2004), or Wolbachia 

infection (Duron et al. 2006). In general, costs can be condition dependent (Janmaat 

& Myers 2005) and studies that rear experimental animals in ideal conditions may 

allow for the compensation of these costs (Shikano & Cory 2014). 

 

(iii) Cost amelioration 

Fitness costs imposed by resistance are not immutable and can be ameliorated via 

subsequent adaptation. This can either be through the replacement of resistance 

alleles with new alleles that confer resistance at a lower cost (e.g. Chevillon et al. 

1997), or the evolution of genetic modifiers elsewhere in the genome that can 

compensate for the costs of any given resistance allele (e.g. McKenzie & Purvis 

1984) (Coustau et al. 2000). The potential for cost amelioration means that we may 

not expect to see costs for old resistance alleles that have had time to coevolve with 

a particular genetic background. This has far-reaching implications depending on 

whether resistance is usually conferred by de novo mutation or the selection of 

alleles already segregating at low frequencies. 

______________________________________________________________ 
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Tables and Figures 

 

Figure 1 The four primary Cyp6g1 alleles (adapted from Schmidt et al. 2010). M has 

a single copy of Cyp6g1. AA has a tandem duplication of the entire gene with Accord 

LTR transposable elements (TEs) inserted upstream of both copies of Cyp6g1. BA 

has an HMS Beagle TE inserted within the Accord upstream of Cyp6g1-a. BP has a 

P-element inserted within the Accord upstream of Cyp6g1-b. 

Cyp6g1

Cyp6g1-a Cyp6g1-b

Cyp6g1-a Cyp6g1-b

Cyp6g1-a Cyp6g1-b

Accord
HMS Beagle
P-element

M

AA

BA

BP



 31 

Chapter 2 
Intralocus sexual conflict and insecticide 
resistance 
 

 

Abstract 
The BA allele of the Drosophila cytochrome P450 gene Cyp6g1 confers 

resistance to a range of insecticides. It is also subject to intralocus sexual 

conflict (IASC) when introgressed into the Canton-S background, whose 

collection predates the widespread use of insecticides. In this genetic 

background the allele confers a pleiotropic fitness benefit to females but a 

cost to males, and exhibits little sexual dimorphism in conferred insecticide 

resistance. It is unclear whether these sexually antagonistic effects also exist 

in current populations that have naturally evolved with insecticides, where 

genetic modifiers that offset male costs might be expected to evolve. Here, we 

explore these issues using D. melanogaster caught recently from an 

Australian population in which the BA allele naturally segregates. While we 

find increased fecundity in insecticide-resistant BA females and no consistent 

evidence of fitness costs in males, experimental evolution indicates balancing 

selection at the locus. We suggest that this apparent discrepancy may be due 

to reduced investment in reproduction in resistant males. Our results at the 

population level are consistent with previous work, and suggest that 

individual-level fitness assays do not always capture sexually antagonistic 

fitness effects that emerge in a population context. 
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Introduction 
Explaining how genetic variation can be maintained in the face of selection is 

a major goal of evolutionary biology. One mechanism that can maintain 

variation is balancing selection through intralocus sexual conflict (IASC). IASC 

occurs when one or both sexes are constrained from reaching sex-specific 

phenotypic optima by a shared genetic architecture underlying traits subject to 

sexually antagonistic selection (Rice & Chippindale 2001; Chapman et al. 

2003; Bonduriansky & Chenoweth 2009). When such a constraint occurs, any 

improvement in the fitness of one sex will be counterbalanced by a fitness 

reduction in the other (Bonduriansky & Chenoweth 2009). The result is a ‘tug-

of-war’ (Harano et al. 2010) of allelic replacement between males and females 

driven by sexually antagonistic selection at the same loci, dragging the two 

sexes’ trait values to and fro between their sex-specific phenotypic optima 

(Rice & Chippindale 2001). Thus, in order to reach fixation, any sexually 

antagonistic allele must provide a net selective advantage when averaged 

across both sexes (Rice 1984). When this is not the case, sexually 

antagonistic alleles can be maintained at stable equilibrium frequencies by 

balancing selection (Kidwell et al. 1977; Dean et al. 2012; Rostant et al. 

2015). Cases in which precise loci currently or previously subject to IASC 

have been identified are exceedingly rare. One such case is insecticide 

resistance at the Cyp6g1 locus in the fruit fly Drosophila melanogaster 

(McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015).  

 

Upregulation of the cytochrome P450 gene Cyp6g1 in D. melanogaster can 

confer resistance to a broad range of insecticides including neonicotinoids 

and the organochloride dichlorodiphenyltrichloroethane (DDT) (Bergé et al. 

1998; Le Goff et al. 2003; Daborn et al. 2007; Jones et al. 2010). The Cyp6g1 

locus in D. melanogaster is the site of a series of at least 4 DDT resistance 

alleles (and an ancestral susceptible allele) featuring a tandem duplication of 

the gene and several transposable element (TE) insertions, where 

progressively higher levels of resistance are conferred across the evolutionary 

series (Schmidt et al. 2010). At least some of these TEs contain novel cis-

regulatory sequences responsible for upregulating Cyp6g1 expression, 

namely the long terminal repeat of a degenerate Accord TE inserted 291bp 
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upstream of Cyp6g1 (Daborn et al. 2002; Chung et al. 2007). The Cyp6g1-

associated Accord insertion is near or at fixation in most populations outside 

of Eastern Africa, with low levels of microsatellite variation flanking the gene 

consistent with a recent selective sweep – most likely due to the onset of DDT 

use in the mid-20th century (Catania et al. 2004). 

 

Recent work has shown that one of the alleles in the series, the BA allele, is 

subject to sexually antagonistic selection when introgressed into the Canton-S 

strain (relative to the susceptible M allele) in the absence of insecticide. 

Canton-S is a naturally DDT-susceptible stock (carrying the M allele) collected 

in the early 20th century before the widespread use of DDT began, and is thus 

naive to selection imposed by DDT. Resistant BACanton-S females are more 

fecund, have higher egg and larval viability, and shorter egg and larval 

development times than susceptible MCanton-S females (McCart et al. 2005). In 

contrast, resistant BACanton-S males have lower mating success when in direct 

competition with susceptible MCanton-S males (Smith et al. 2011), and 

insecticide resistance exhibits low levels of sexual dimorphism in Canton-S 

consistent with these sexually antagonistic fitness effects. This sexual conflict 

is able to explain frequencies of the BA allele during its recent evolutionary 

history, including the maintenance of variation at the locus (Rostant et al. 

2015). Thus, the BA allele is a rare case of IASC where the precise locus of 

conflict is known and the allele is segregating in wild populations.  

 

It remains to be seen whether conflict at the Cyp6g1 locus occurs in 

contemporary populations of D. melanogaster (i.e. those that carry the BA 

allele and have evolved with selection imposed by widespread insecticide 

use), as theory predicts genetic modifiers should emerge that offset any costs 

of resistance by allowing sex-specific trait expression (Kulathinal et al. 2004; 

Labbé et al. 2009; Assogba et al. 2015). However, the strong selection 

imposed by insecticides may mask sexual antagonism and weaken selection 

for these modifiers. Indeed, Smith et al. [10] found that the BA allele did not 

carry a cost to males when introgressed into a recently-caught isogenic line, 

demonstrating that the pleiotropic effects of the BA allele can be mediated by 

epistasis. Additionally, as previous work has investigated the BA allele in 



 34 

isogenic backgrounds we do not know how generalizable this sexual 

antagonism is. It may be the case that the particular genetic variation fixed in 

the Canton-S strain generates sexual antagonism that would not be seen in 

more genetically heterogeneous populations. 

 

Here, using homozygous resistant and susceptible populations of D. 

melanogaster produced from multiple isofemale lines caught recently from the 

wild, we assay fitness in both sexes and show that the previously detected 

female fitness benefit of the BA allele exists in a contemporary population, but 

the effect on males is less clear. Additionally, because IASC may be resolved 

by sex-limited gene expression, we quantify sex-specific relative Cyp6g1 

expression as well as resistance to DDT and find significant sexual 

dimorphism in both alleles. Nevertheless, when estimating the dynamics of 

the BA and M alleles in populations allowed to evolve experimentally, we find 

evidence of balancing selection that is not predicted by a mathematical model 

of IASC parameterized with fitness estimates we obtain in more simplistic 

settings. We suggest that this is due to emergent effects at the population 

level not being reflected by standard fitness assays, and present a hypothesis 

for a possible cause of this apparent discrepancy. 

 
Materials and methods 
Isofemale lines and populations 
Genetically heterogeneous populations homozygous for either the susceptible 

M allele or resistant BA allele were created from D. melanogaster isofemale 

lines (hereafter isolines, David et al. 2005) (n=15). These isolines were 

collected from Margaret River, Australia, in 2013 and were polymorphic at the 

Cyp6g1 locus with both the susceptible M and resistant BA allele segregating 

within them (diagnostic PCR as per Schmidt et al. 2010). Virgin adults were 

crossed within each isoline and genotyped, with offspring from homozygote 

crosses retained to produce a homozygous M and homozygous BA version of 

each isoline. 20 males and females from each resistant and susceptible 

isoline were then used to found homozygous BA and M populations, 

respectively. Isolines capture and maintain snapshots of the genetic variation 

and covariation segregating within a source population, and this procedure 
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maximises the genetic variation within our populations while minimising the 

genetic variation between them. While it is unlikely for Cyp6g1 to be the only 

locus to differ between the populations, this procedure affords a greater level 

of control over the genetic background than would using different isolines to 

establish each population. However, we cannot definitively rule out any effects 

we report being due to the contribution of segregating alleles in linkage with 

either Cyp6g1 allele. As the starting Ne was equal between the populations we 

do not expect differential inbreeding to influence the results presented here.  

 

Populations were maintained in 30 x 30 x 30 cm cages (Bioquip, Knutsford, 

UK) at densities of approximately 1000 individuals with overlapping 

generations. All flies were maintained on a cornmeal based medium (standard 

Jazz mix, Applied Scientific) and housed in incubators at 25°C on a 12:12h 

light:dark cycle unless otherwise specified.  
 

Experimental animals 
Focal experimental animals were collected from the homozygous BA or M 

populations described above as first instar larvae, and were all 3-5 day old 

virgin adults during experimentation. Where specified, sepia competitors and 

mates were collected from a population of D. melanogaster homozygous for 

the recessive sepia mutation (obtained from the Bloomington Drosophila 

Stock Center). 

 

Flies were not exposed to CO2 within 24 hours of any behavioural assays as 

recent exposure to CO2 is known to alter mating behaviour (Barron 2000). 

Wing size was measured as a proxy for body size using ImageJ (Schneider et 

al. 2012). In all assays females were housed in experimental vials for 24 

hours before experimentation to allow them to habituate. 

 

Male fitness assays 

Pre-copulatory competitive ability 
To test for effects of the BA allele on pre-copulatory male fitness we estimated 

the mating success of BA and M males in direct competition. One resistant 

and one susceptible male were simultaneously introduced into a vial 
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containing one sepia female. Males were marked with pink or blue powder 

paint to allow identification, with half of the males of each genotype marked 

with each colour (De Crespigny & Wedell 2007; Smith et al. 2011). Once 

either male successfully initiated copulation the unsuccessful male was 

removed from the vial. We recorded the latency to mate, copulation duration, 

and genotype of the successful male. Assaying mating success in a 

competitive trial integrates both success in male-male competition and female 

mate preference (Dougherty & Shuker 2014). Females were subsequently left 

to oviposit for 5 days. 17 days after the start of oviposition we counted the 

number of adult offspring that had eclosed. Vials in which neither male 

secured a mating were discarded (47% of trials, final n=160 in two 

experimental blocks). 

 

Post-copulatory competitive ability 

To test for effects of the BA allele on post-copulatory male fitness we 

estimated the fertilisation success of BA and M males in competition with a 

standardised sepia competitor. Sperm competition (Parker 1970; Hodgson & 

Hosken 2006) assays were performed for both sperm defence (P1) and 

sperm offence (P2). In the P1 assay, resistant and susceptible males were 

mated to sepia females as per the pre-copulatory competition assay with the 

exception that only one male was included in each trial (total n=70). Mated 

sepia females were then given the opportunity to remate with a virgin sepia 

male for 6 hours every 24 hours until remating occurred. Once remated, 

females were left to oviposit for 5 days as per the pre-copulatory competition 

assay. We assigned offspring to their sire based on phenotype (sepia or wild-

type). We recorded copulation duration for both the initial mating and 

remating, as well as relative male size and the number of offspring produced 

before remating. The P2 assay was conducted in the same manner other than 

the order of sepia and focal males was reversed (total n=66). 

 

Female fitness assays 
Offspring production 

To test for effects of the BA allele on female fitness we estimated the 

fecundity of both BA and M females. Half of each female genotype was mated 
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to resistant males and the other half to susceptible males in a fully factorial 

design to examine any effect of male genotype on offspring production. 

Females were allowed to oviposit for 5 days following a single mating, with 

offspring counted 17 days after the start of oviposition in each vial. This 

measure integrates egg viability, larval viability, and egg production. Females 

that produced no offspring were removed from analyses (n=25) as it was not 

possible to determine the source of the mating failure (Greenway et al. 2015), 

leaving a total sample size of n=147 in two experimental blocks.  

 

Egg production and offspring viability 

In order to determine whether differences in offspring production could be 

attributed directly to maternal fitness rather than indirectly through offspring 

fitness we estimated egg production, egg-larvae viability, and larvae-adult 

viability. Resistant and susceptible females were housed with either resistant 

or susceptible males and allowed to oviposit freely for 18 hours (before eggs 

would begin to hatch; Markow et al. 2009). Eggs were then counted, and a 

maximum of 10 eggs per female were haphazardly selected and transferred 

to fresh media at a density of 5 eggs per vial (2 females did not lay any eggs 

and were excluded from analyses). 24 hours later the number of unhatched 

eggs were counted, and 17 days after the start of oviposition the number of 

successfully eclosed offspring were counted. Females that laid fewer than 5 

eggs were excluded from egg to adult viability calculations (3% of females, 

final n=95). 

 

Mathematical model and experimental evolution 
To estimate the evolutionary dynamics of the BA and M alleles in a more 

realistic context, replicate populations were founded with the BA allele in 

competition with the M allele at either a low initial frequency (0.1, n=3) or a 

high initial frequency (0.9, n=3) and allowed to evolve for 7 non-overlapping 

generations. Populations were founded with 200 flies at an equal sex ratio 

within each genotype. Each generation, populations were given access to 

food for 72 hours to allow oviposition of the next generation. 96 individuals 

were haphazardly selected and genotyped to score allele frequencies in each 

generation (diagnostic PCR as per Schmidt et al. 2010). The next generation 
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was then founded by all offspring collected across 5 days from the date 

offspring began eclosing. To generate predictions at the population level from 

our individual-level fitness estimates, a single-locus non-linear recursion 

model of IASC presented in Rostant et al. (2015) was parameterized with data 

from the male and female fitness assays and used to predict allele 

frequencies which were then compared with the empirical allele frequency 

data. The model of Rostant et al. (2015) is a single-locus, two allele, nonlinear 

recursive model that calculates allele frequencies in each subsequent 

generation by taking the proportions of males and females of each genotype 

in the current generation, and then calculating the frequencies of each mating 

combination (RR x RR, RR x RS/SR, RS/SR x SS, SS x SS, where R is the 

resistant allele, and S is the susceptible allele). Here follows a brief summary 

of the model, but full details are available in Rostant et al. (2015). 

 

In each generation the proportion of sires of each genotype, y, is given by 

equations 1-3, where x is the frequency of the genotype, and m is the relative 

mating success of resistant males. 

  

𝑦𝑅𝑅 =  
𝑚𝑥𝑅𝑅

𝑚 (𝑥𝑅𝑅 +  𝑥𝑅𝑆) +  𝑥𝑠𝑠
 

 

(1) 

  

𝑦𝑅𝑆 =  
𝑚𝑥𝑅𝑆

𝑚 (𝑥𝑅𝑅 +  𝑥𝑅𝑆) +  𝑥𝑠𝑠
 

 

(2) 

  

𝑦𝑆𝑆 =  1 − 𝑦𝑅𝑅 + 𝑦𝑅𝑆 

 

(3) 

 

The relative mating frequencies of each genotype combination, λ, can then be 

calculated from the genotype frequencies, x, and the proportion of sires of 

each genotype, y, where i and j represent the male and female genotypes 

(equation 4). 

 

 𝜆𝑖𝑗 = 𝑥𝑖𝑦𝑗 (4) 
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The relative numbers of each genotype in the next generation, n, can then be 

calculated using equations 5-7, where F is the relative fecundity of resistant 

females including offspring viability effects, and P is the relative pupal viability 

of resistant offspring.  

 

 𝑛𝑅𝑅 = 𝐹𝑃𝜆𝑅𝑅𝑅𝑅 + 1
2⁄ 𝜆𝑅𝑅𝑅𝑆 + 1

2⁄ 𝜆𝑅𝑆𝑅𝑅 + 1
4⁄ 𝜆𝑅𝑆𝑅𝑆 (5) 

 𝑛𝑅𝑆 = 𝐹𝑃𝜆𝑅𝑅𝑆𝑆 + 1
2⁄ 𝜆𝑅𝑅𝑅𝑆 + 1

2⁄ 𝜆𝑅𝑆𝑅𝑅 + 1
2⁄ 𝜆𝑅𝑆𝑅𝑆 + 1

2⁄ 𝜆𝑅𝑆𝑆𝑆 + 𝑃𝜆𝑆𝑆𝑅𝑅 + 1
2⁄ 𝜆𝑆𝑆𝑅𝑆 (6) 

 𝑛𝑆𝑆 = 𝐹 1
4⁄ 𝜆𝑅𝑆𝑅𝑆 + 1

2⁄ 𝜆𝑅𝑆𝑆𝑆 + 1
2⁄ 𝜆𝑆𝑆𝑅𝑆 + 𝜆𝑆𝑆𝑆𝑆 (7) 

 

Genotype frequencies for the next generation can then be calculated using 

equation 8 where k is genotype. 

 

 𝑥𝑘
′ =

𝑛𝑘

Σ𝑛 (8) 

 

 

DDT resistance 

To test for the presence of sexual dimorphism in insecticide resistance we 

estimated the sex-specific LD50 (the concentration at which, on average, 50% 

of individuals die) of DDT for both alleles. The inside of glass vials was laced 

with DDT by pipetting 500μl of acetone-DDT solution into the vial and rolling 

the vial until all acetone had evaporated (vials were left for a further 24 hours 

to remove any residual acetone vapours). Adult flies were introduced to the 

DDT-laced vials (10 per vial) and mortality was scored after 24 hours. Each 

genotype and sex combination was exposed to a range of 12 concentrations 

of DDT (each replicated 3 times) that spanned the LD50 value, the extremes of 

which were as close to zero and total mortality as practical, and a pure 

acetone control.  

 

Cyp6g1 expression 

To test for the presence of sexual dimorphism in Cyp6g1 expression we 

estimated sex-specific relative Cyp6g1 transcript abundance for both alleles 

using qRT-PCR. RNA was extracted from pooled samples of 10 whole adult 
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individuals for both genotypes of both sexes homogenized in RNAlater 

(Fisher) using the Purelink RNA Mini Kit (Ambion) standard protocol (3 

biological replicates per genotype-sex combination). qRT-PCR was performed 

using Brilliant III Ultra-Fast SYBR kit (Agilent) on a Stratagene Mx3000P in 

technical triplicates. Cyp6g1 transcript abundance was quantified relative to a 

pooled master sample of all samples using the efficiency-calibrated method of 

Pfaffl [34], normalised by the reference gene Rpl32. Baseline fluorescence-

corrected efficiencies and Cq values were estimated using LinRegPCR 

version 2016.0 (Ruijter et al. 2009) (mean efficiencies±SD; Cyp6g1 

1.97±0.09, Rpl32 1.91±0.08). Relative Cyp6g1 expression was performed 

using the primers in Table 1, and the thermal profile in Table 2. 

 

Statistical analyses 

All statistical analyses were performed in R version 3.1.2 (R Core Team 

2012). General/Generalized Linear Mixed Models (GLMMs) were 

implemented in lme4 (Bates et al. 2015). Overdispersed models were fit with 

quasi-error structures in the case of General/Generalized Linear Models 

(GLMs) or fit with an observation level random effect in the case of GLMMs 

(Harrison 2014). Maximal models were fit with all explanatory variables and 

their interactions, and then simplified via stepwise term deletion (for brevity we 

report only significant interactions). Cyp6g1 genotype was always retained as 

a main effect as it is the primary variable under investigation. 

 

The proportion of trials won by resistant males was compared to 0.5 (the 

expected proportion under equal competitiveness) using a two-tailed Fisher’s 

exact binomial test. To examine the effect of male genotype on the remaining 

fitness measurements we implemented a multivariate analysis of covariance 

(MANCOVA) with log copulation latency, copulation duration, and number of 

offspring as response variables; successful male genotype as an explanatory 

variable; and relative male size and female size as covariates. 48 individuals 

were excluded from this analysis due to incomplete data (final n=112). 
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Male P1 and P2 were compared between genotypes using quasi-binomial 

GLMs with male genotype, relative copulation duration, and the number of 

offspring produced before remating as explanatory variables. 

 

Female offspring production was compared between genotypes using a 

Poisson GLMM. Egg production, egg-larvae viability, and larvae-adult viability 

were compared between genotypes using GLMs fit with quasi-Poisson (egg 

production) and quasi-binomial (both viability measures) error structures. Full 

models were fit with female genotype, male genotype, female size, with block 

and unique ID as random effects for offspring production. Interactions were 

omitted from the offspring production GLMM as their inclusion prevented 

model convergence. 

 

Changes in the frequency of the BA allele in the experimental evolution 

populations were assessed using GLMMs with BA frequency as the response 

variable, generation as a fixed effect, and replicate population as a random 

effect. 

 

Sex-specific LD50 values and associated 95% confidence intervals (CI) were 

estimated using drc (Ritz & Streibig 2005). LD50 values were considered 

significantly different when their 95% CIs did not overlap (Schenker & 

Gentleman 2001). 

 

Cyp6g1 expression was compared between genotypes and sexes using a 

GLM with log relative fold change (as per Pfaffl [34]) as the response variable 

with sex and genotype as explanatory variables. 

  

Results 

Male fitness assays 

Precopulatory competitive ability 

Overall, resistant and susceptible males did not differ in their proportion of 

obtained matings (exact binomial test, Bin0.5, number of resistant matings 86 

of 160 trials, p=0.38, Fig. 1). However, there was variation between the two 

experimental blocks with resistant males securing a significantly lower 
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proportion of matings than susceptible males in block 1 (exact binomial test, 

Bin0.5, number of resistant matings 13 of 43 trials, p=0.01, Fig. 1), but a 

significantly higher proportion of matings in block 2 (exact binomial test, Bin0.5, 

number of resistant matings 73 of 117 trials, p=0.009, Fig. 1). 

 

Female size had a significant effect on the multivariate combination of log 

copulation latency, copulation duration, and offspring number because of a 

large and positive significant univariate effect on copulation duration (Table 3). 

Univariate tests revealed that copulation duration was significantly shorter for 

resistant males than susceptible males, but this was not great enough to drive 

a significant effect in the multivariate test (Table 3). 

 

Sperm competitive ability 

P1 was not significantly influenced by male genotype (GLM, F1,67=0.08, 

p=0.77) or relative copulation duration (GLM, F1,66=3.54, p=0.06), but 

decreased significantly as the number of offspring produced before remating 

increased (GLM, F1,68=4.89, p=0.03). P2 was not significantly influenced by 

male genotype (GLM, F1,63=0.15, p=0.7), relative copulation duration (GLM, 

F1,64=0.75, p=0.39), or the number of offspring produced before remating 

(GLM, F1,62=0.22, p=0.64). 

 

Female fitness assays 
Offspring production 

Resistant females produced significantly more offspring than susceptible 

females (GLMM, 𝜒25=6.50, p=0.01) (Fig. 2). Larger females also produced 

significantly more offspring (GLMM, 𝜒25=7.97, p<0.01). Male genotype had no 

significant effect on offspring production (𝜒26=0.88, p=0.35). 

 

Egg production and offspring viability 
Resistant females produced significantly more eggs than susceptible females 

(GLM, F1,89=10.88, p<0.01) (Fig. 2), whereas male genotype (GLM, 

F1,88=0.51, p=0.48) and female size (GLM, F1,87=0.22, p=0.63) had no effect. 

Egg-larvae viability was not significantly influenced by female genotype (GLM, 



 43 

F1,88=0.16, p=0.69), male genotype (GLM, F1,87=2.89, p=0.09), or female size 

(GLM, F1,86=0.02, p=0.89) (Fig. 2). Larval-adult viability was not significantly 

influenced by female genotype (GLM, F1,86=0.01, p=0.34), male genotype 

(GLM, F1,84=0.04, p=0.85), or female size (GLM, F1,85=0.21, p=0.65) (Fig. 2). 

 

Mathematical model and experimental evolution 
The IASC model of Rostant et al. (2015) parameterized with our data (relative 

resistant male mating success, m = 1; relative resistant female fecundity, F = 

1.56) predicted that across 7 generations BA frequency should increase 

marginally to 0.908 from an initial frequency of 0.9, and increase to 0.26 in the 

from an initial frequency of 0.1 (Fig. 3). These predictions were not met in the 

experimental populations. The frequency of the BA allele decreased 

significantly across generations in populations where the allele was at the 

high initial frequency (GLMM, F1,3=18.56, p<0.001) and increased significantly 

across generations from the low initial frequency (GLMM, F1,3=17.68, 

p<0.001), both converging towards an intermediate frequency (Fig. 3).  

 

DDT resistance 
Resistant males had 8.2-fold higher DDT resistance than susceptible males 

and resistant females had 14.4-fold higher resistance than susceptible 

females (Fig. 4). Additionally, susceptible females had 5.5-fold higher 

resistance than susceptible males, and resistant females had 9.7-fold higher 

resistance than resistant males (Fig. 4). All differences were considered 

statistically significant as there were no CI overlaps (Bonferroni corrected t-

tests gave identical results). 

 

Cyp6g1 expression 
The relative expression of Cyp6g1 was significantly higher in females than 

males (GLM, F1,9=229.48, p<0.001), and significantly higher in resistant flies 

than susceptible flies (GLM, F1,9=186.99, p<0.001) (Fig. 5). 
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Discussion 
Recent work has shown that the DDT-resistant BA allele of the D. 

melanogaster Cyp6g1 gene is subject to sexually antagonistic selection in the 

absence of insecticide when introgressed into the Canton-S background 

(McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015). Here, we find that 

the previously detected female benefit of the BA allele (McCart et al. 2005) 

exists in a population recently sampled from the wild. In contrast, we find no 

overall cost of the BA allele in males in the relatively simple individual assay 

environment, but some evidence of variation in the BA allele effect on male 

fitness, as well as reduced reproductive investment by BA males. Additionally, 

we find sexual dimorphism in DDT resistance and Cyp6g1 expression that 

help explain the lack of a detectable male mating cost in individual-level 

assays. A mathematical model of IASC parameterized with our empirical 

fitness estimates predicted that the BA allele should go to fixation. However, 

using experimental evolution we find evidence of balancing selection as the 

BA allele was maintained at intermediate frequencies, which matches 

previous findings (Rostant et al. 2015).  

 

In order to assay the pleiotropic fitness effects of the BA allele, both McCart et 

al. (2005) and Smith et al. (2011) introgressed the allele into the naturally 

susceptible Canton-S strain. While introgressing a resistance allele into a 

common genetic background is a powerful approach to quantify its fitness 

effects relative to a susceptible allele, we know that epistatic interactions can 

influence the pleiotropic fitness effects of resistance (Smith et al. 2011). 

Indeed, intralocus sexual conflict is itself the result of sex-specific epistasis. 

As the experimental populations used in the present study were founded by 

15 isolines, each with higher between-line genetic variation than within-line 

genetic variation, our fitness measures include the contribution of within-

population epistatic interactions (albeit a subset of those that would be 

present in the wild) and are arguably more generalizable than assaying in any 

single genetic background. Additionally, even though quantifying the fitness 

effects of a resistance allele in naive genetic backgrounds may yield insight 

into the original effects of the allele before potential compensatory evolution 

could ameliorate any costs, it does not inform us of the effects present in a 
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contemporary population that has coevolved with the resistance allele. By 

using recently caught flies from a population where the BA allele is naturally 

segregating, our fitness measures also include the contribution of any cost-

ameliorating genetic architecture that has coevolved with the BA allele. 

 

Overall, we found no significant difference between resistant and susceptible 

males in their pre-copulatory or post-copulatory competitive ability when 

assayed in paired competitions (Fig. 1). This is consistent with the results of 

Smith et al. (2011), who introgressed the BA allele into another recently 

caught genetic background and found no cost to males in the same assay. 

While there was no significant overall effect, there was an interaction between 

male mating success and experimental block that demonstrated variation in 

pre-copulatory competitive ability. The ability to secure matings is a key 

determinant of male fitness (Powell 1997; Hosken & House 2011). This 

interaction could be epistatic or genotype-by-environment (Hunt & Hosken 

2014), or alternatively may simply be a statistical artefact of forcing 

competitions to have simple binomial outcomes as this potentially increases 

the standard error of the mean. 

 

We found that resistant females exhibited a qualitatively similar increase in 

fecundity to that seen in Canton-S by McCart et al. (2005) (Fig. 2). The 

increase in offspring production can be apportioned directly to increased egg 

production in resistant females and not greater egg or larval viability. This 

contrasts with McCart et al.’s (2005) findings where resistant offspring were 

more viable. Larger females were also significantly more fecund than smaller 

females – a general trend in insects (Honek 1993). Male genotype did not 

have any significant effect on female offspring production, which is consistent 

with previous evidence that the female benefit may be a maternal effect 

(McCart & ffrench-Constant 2008). 

 

The DDT resistance assay confirms that BA individuals of both sexes are 

indeed more resistant to DDT than their M counterparts. Additionally, there is 

significant sexual dimorphism in the relative level of resistance conferred by 

both alleles. Schmidt et al. (2010) introgressed the BA allele into the Canton-S 
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background and reported no sexual dimorphism in resistance conferred by the 

M allele and an approximately 1.3-fold increase in resistance conferred by the 

BA allele in females relative to males. Here, we show that M females are 5.5-

fold more resistant than M males, and resistant BA females are 9.7-fold more 

resistant than BA males. This level of sexual dimorphism hints at the 

presence of genetic modifiers that have coevolved with the Cyp6g1 locus 

allowing sex-specific gene expression in this population. Consistent with this, 

we found sexual dimorphism in relative Cyp6g1 expression across both 

alleles. This sexual dimorphism may explain the lack of a detectable mating 

disadvantage for resistant males compared to the Canton-S strain, in which 

sexual dimorphism in resistance is less pronounced. IASC can be resolved by 

the evolution of the genetic architecture underlying the conflict whereby the 

genetic constraints preventing sexual dimorphism are removed (e.g. Harano 

et al. 2010; Hosken 2011). However, as most (if not all) phenotypic traits are 

genetically correlated with other traits, it is likely that networks of genetic 

correlation may to some extent always retain a certain level of constraint and 

IASC (Harano et al. 2010). When modifiers do evolve that ameliorate the 

costs of IASC they are expected to have a greater effect on the sex under 

stronger sexual selection (Pischedda & Chippindale 2005), but it is impossible 

to tell from our data whether the sex-specific expression of Cyp6g1 we report 

here has any sex-linkage. 

 

Our individual-level fitness assays suggest that the BA allele is not sexually 

antagonistic in this recently sampled population, where it appears to be 

selectively neutral in males but beneficial in females. Consistent with this, 

phenotypic and qRT-PCR assays revealed sex-specific resistance regulation. 

These data support the hypothesis that genomic modifiers offset at least 

some of the male resistance costs that exist in this population. 

 

We sought to validate our individual-level fitness estimates in a more realistic 

context by measuring the frequency dynamics of the BA and M alleles in 

experimentally evolving populations that started at either an initially high or 

low frequency of the BA allele. We first parameterized the model of Rostant et 

al. (2015) with our fitness estimates to obtain quantitative predictions from our 



 47 

fitness estimates. The parameterised model predicted that the BA allele 

should rapidly increase in frequency from a low initial frequency and increase 

marginally from a high initial frequency after 7 generations (dashed black 

lines, Fig. 3). While the trajectory of our initially low frequency populations 

qualitatively fits this pattern, we found a decrease in frequency across 7 

generations in the initially high frequency populations that the model did not 

predict. These results indicate that there is balancing selection at the Cyp6g1 

locus. This is consistent with Rostant et al. (2015) who, when empirically 

testing the model parameterized with fitness estimates for Canton-S flies, also 

found that BA frequency converged to a stable intermediate value. As noted 

however, our population-level findings are inconsistent with the data from 

individual-level fitness assays.  

 

How can we explain this apparent discrepancy? One explanation is that 

individual-level assays do not fully reflect fitness in more natural population 

settings. In a review of the literature investigating costs of resistance to Bt 

toxins in insects, Gassmann et al. (2009) found that trait-based approaches 

detected costs in 34% of experiments. In contrast, population-based 

approaches (those that track the frequency of resistance alleles in a 

population over time) detected fitness costs in 62% of experiments. Thus, 

costs to resistance could emerge in a population context that would not be 

detected in individual-based fitness assays. This may in part be due to the 

fact that male mating success can be dependent on social context (Billeter et 

al. 2012). It may also be the case that other mechanisms (e.g. 

overdominance) are responsible for the maintenance of the M allele in our 

experimental evolution populations. However, since our findings at the 

population level mirror those of Rostant et al. (2015) IASC seems the more 

likely explanation. The presence of polymorphism at the Cyp6g1 locus in the 

original isolines themselves suggests this balancing selection may also be 

present in the source population. Our experimental evolution data are 

consistent with this idea, but further work is needed to clarify this possibility. 

 

One potential proximate explanation for the apparent discrepancy between 

our individual-level and population-level data is that mating pairs remained in 
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copula for longer when males carried the susceptible M allele. As copulation 

duration can be used as a proxy for reproductive investment in males 

(Bretman et al. 2009; Lüpold et al. 2010), the effect of male genotype on 

copulation duration could represent lower reproductive investment by resistant 

BA males. Sperm is transferred relatively rapidly in D. melanogaster, and 

extended copulation duration probably achieves increased semen transfer 

and associated accessory gland protein effects (e.g. reduced female remating 

rate) (Gilchrist & Partridge 2000; Chapman & Davies 2004). Shorter 

copulation duration in resistant males could thus reduce the ability of these 

males to delay female remating, which would decrease resistant male fitness, 

but would not be detectable in the design of our fitness assays. It may, 

however, help explain the balancing selection observed in our experimental 

evolution populations where females had the opportunity to remate constantly 

across several days.  

 

Conclusions 
Using recently sampled D. melanogaster we show that an insecticide 

resistance allele at the Cyp6g1 locus confers a pleiotropic fitness benefit to 

females in the form of increased reproductive output, and while having no 

direct detectable effect on male fitness, it does reduce male reproductive 

investment. Additionally, we find some sexual dimorphism in DDT resistance 

and relative Cyp6g1 expression that could explain the lack of detectable 

sexual antagonism at the individual level. These individual-level data suggest 

the presence of genetic modifiers that at least partially ameliorate previously 

reported male mating costs. Nonetheless, we find evidence of balancing 

selection at the Cyp6g1 locus in experimentally evolving populations that were 

not theoretically predicted. These population-level data suggest that, despite 

sexual dimorphism in resistance and gene expression, some sexual 

antagonism remains. Taken together, our results suggest that individual-level 

fitness assays may not capture sexually antagonistic fitness effects that 

emerge at the population level, and such effects can maintain resistance at 

the Cyp6g1 locus in the absence of insecticide. 
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Tables and figures 
 
Table 1. qRT-PCR primer sequences 

Transcript Direction Sequence 

Cyp6g1 F ACCCTTATGCAGGAGATTG 

Cyp6g1 R TAGGCTGTTAGCACGAATG 

Rpl32 F TAAGCTGTCGCACAAATGG 

Rpl32 R GGGCATCAGATACTGTCCC 

 

Table 2. qRT-PCR thermal profile 

Duration Temperature (°C) Cycle number 

10:00 50 1 

03:00 95 

00:20 95 40 

00:20 60 

01:00 95 1 

00:30 60 

00:30 95 
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Table 3 MANOVA and univariate ANOVA of male precopulatory competitive ability. Significant p values in bold. 

 
MANOVA     

 

 
Pillai's trace F3,108 p 

 Male genotype 0.059 2.208 0.091 
 Male size difference 0.035 1.277 0.286 
 Female size 0.119 4.801 0.004 
 

     
     
 

Male genotype (mean ± SE) 
 

Univariate ANOVAs 
 

 
Resistant Susceptible F1,108 p 

Log copulation latency (min) 3.897 ± 0.123 3.819 ± 0.152 0.162 0.688 
Copulation duration (min) 17.646 ± 0.792 20.762 ± 0.967 6.349 0.013 
No. of offspring 65.484 ± 1.946 64.813 ± 3.138 0.034 0.854 

     

 
Relative male size β F1,108 p 

Log copulation latency (min) -0.324 0.079 0.78 
Copulation duration (min) -14.439 3.226 0.075 
No. of offspring 21.742 0.609 0.437 

       Female size β F1,108 p 

Log copulation latency (min) 2.239 0.608 0.437 
Copulation duration (min) 68.392 14.059 0.0003 
No. of offspring -29.268 0.295 0.588 
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Figure 1 Competitive performance (±SE) of resistant BA and susceptible M 

males in the (a) precopulatory competitive assay, (b) sperm defence assay, 

and (c) sperm offence assay. 
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Figure 2 Means (±SE) of resistant BA and susceptible M females for (a) 

offspring production, (b) egg production, (c) egg to larvae viability, and (d) 

larvae to adult viability. (** - p=0.01, *** - p<0.01) 
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Figure 3. Mean frequency (±SE) of the resistant BA allele across 7 

generations of experimental evolution from an initially high frequency (closed 

circles) and an initially low frequency (open circles). Black dashed lines 

indicate model predictions based on fitness assay data. 
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Figure 4. DDT resistance (LD50 ±95% CI) in males and females carrying the 

resistant BA allele (red bars) and the susceptible M allele (blue bars). 
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Figure 5. Relative Cyp6g1 expression (±SE) in males and females carrying 

the resistant BA allele (red bars) and the susceptible M allele (blue bars). 
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Chapter 3 

Overdominance does not explain balancing 
selection at the Cyp6g1 locus 

 

 

Abstract 
Balancing selection is a pervasive force in maintaining genetic variation in wild 

populations and can occur as a result of several mechanisms including intralocus 

sexual conflict, sex-specific dominance patterns, and overdominance. The Cyp6g1 

locus in Drosophila melanogaster is the site of a series of alleles that confer 

resistance to a range of insecticides. One of these, the BA allele, can have sexually 

antagonistic effects on fitness in certain genetic backgrounds. In a recently collected 

Australian population the BA allele is subject to balancing selection when in 

competition with the susceptible M allele, and is associated with increased fecundity 

in resistant females but reduced reproductive investment in males. However, the 

sex-specific dominance patterns of the fitness effects of the BA allele are unknown 

and it is unclear whether overdominance may also play a role in generating 

balancing selection at the locus. Here, we use flies from the same Australian 

population as previous work to demonstrate that the BA allele confers a dominant 

fitness benefit in females, but find no evidence of additional costs to resistance or 

any discernable dominance pattern in males. Additionally, we find no evidence of 

heterozygote advantage in either sex regardless of the parental origin of the BA 

allele. Our results suggest that neither overdominance nor sex-specific dominance 

patterns help explain the observed balancing selection at the Cyp6g1 locus in this 

population, and we suggest that quantitative genetic approaches may be required to 

uncover the force that maintains the polymorphism at this locus. 
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Introduction 
Balancing selection can produce stable polymorphisms across the genome and may 

help explain the maintenance of a significant proportion of quantitative genetic 

variation in wild populations (Barton & Keightley 2002). Two mechanisms that can 

generate balancing selection are intralocus sexual conflict (IASC) and 

overdominance (Connallon & Clark 2014). IASC occurs when traits that share a 

common genetic basis across the sexes are subject to sexually antagonistic 

selection (Rice & Chippindale 2001; Chapman et al. 2003; Bonduriansky & 

Chenoweth 2009). IASC can constrain the sexes from reaching their respective 

phenotypic optima and result in a tug-of-war of allelic replacement until sex-linked 

trait expression can evolve (Rice 1984; Bonduriansky & Chenoweth 2009; Harano et 

al. 2010; Hosken 2011). Overdominance can result in balancing selection at a locus 

when the fitness of heterozygotes is higher than that of either homozygote, 

maintaining an intermediate frequency of both alleles. Cases of IASC or 

overdominance that result in balancing selection at known loci are rare, but recent 

work has shown that the Cyp6g1 insecticide resistance locus in Drosophila 

melanogaster is subject to both IASC and balancing selection (McCart et al. 2005; 

Smith et al. 2011; Rostant et al. 2015; Hawkes et al. 2016; Chapter 2). 

 

The cytochrome P450 gene Cyp6g1 in D. melanogaster is the site of a series of at 

least four alleles that confer resistance to a broad range of insecticides (Bergé et al. 

1998; Daborn et al. 2002; Le Goff et al. 2003; Chung et al. 2007; Daborn et al. 2007; 

Jones et al. 2010; Schmidt et al. 2010). These alleles confer increasing levels of 

resistance across the series as a result of Cyp6g1 upregulation caused by a tandem 

duplication of the gene and cis-regulatory elements in several nested transposable 

element insertions (Daborn et al. 2002; Schmidt et al. 2010; Hawkes et al. 2016; 

Chapter 2). Notably, sexual dimorphism in resistance also increases across the 

series, consistent with a history of sexually antagonistic selection (Schmidt et al. 

2010). The most well characterised allele with respect to its sex-specific effects on 

fitness is the resistant BA allele (McCart et al. 2005; Smith et al. 2011; Rostant et al. 

2015; Hawkes et al. 2016; Chapter 2). 

 

The BA allele is known to be sexually antagonistic in the old lab strain Canton-S, and 

is under balancing selection that is suspected to be the result of IASC in a population 
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of flies recently collected from Australia. In Canton-S, resistant females produce 

larger numbers of faster developing and more viable offspring (McCart et al. 2005), 

whereas resistant males secure a smaller proportion of matings (Smith et al. 2011). 

In the Australian population, we have shown that resistant females are more fecund, 

while resistant males are similar to susceptible males in standard single-bout mating 

and fertilisation success trials despite seeming to invest less in reproduction via 

shorter copulations (Bretman et al. 2009; Lüpold et al. 2010; Hawkes et al. 2016; 

Chapter 2). However, these single-bout trials do not fully replicate the natural 

conditions of the D. melanogaster mating system where both sexes mate multiply 

and female remating behaviour can be influenced by male seminal compounds 

transferred during copulation (Chapman & Davies 2004). Concordantly, we observed 

balancing selection that was able to maintain the BA allele at an intermediate 

frequency in the more natural mating conditions of experimental populations (when 

in competition with the insecticide susceptible M allele) (Hawkes et al. 2016; Chapter 

2). If the reduced reproductive investment by resistant males is indeed indicative of a 

fitness cost of resistance related to competitive remating ability, we predict that it 

should translate to detectable fitness differences in assays where there is a more 

natural mating environment with the opportunity for competitive remating by both 

sexes. 

 

While it appears that the BA allele is sexually antagonistic in the Australian 

population and that it is this antagonism that results in balancing selection, it may be 

the case that overdominance can also explain the maintenance of variation at the 

locus if heterozygote resistant individuals have higher fitness than either 

homozygote. The potential for heterozygote advantage is perhaps complicated by 

evidence that the sexual antagonism of the BA allele may be a maternal effect 

(Schmidt et al. 2010), in which case the source of the allele in heterozygotes (i.e. 

maternally (BA/M) or paternally (M/BA) inherited) may be an important consideration. 

Moreover, the dominance of an allele’s fitness effect can alter its evolutionary 

trajectory (Paris et al. 2008), and sex-specific dominance alone can result in 

balancing selection (Barson et al. 2015). The insecticide resistance conferred by the 

BA allele itself is a dominant trait (Daborn et al. 2002), but this does not necessarily 

mean that the fitness effects are also dominant (Gassmann et al. 2009). The fitness 

effect of the BA allele in females appears to be dominant in Canton-S (McCart et al. 
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2005), but we do not know whether this result is generalisable to the contemporary 

Australian population. Additionally, there has been no investigation into the 

dominance patterns of male fitness effects of the BA allele. Knowing the dominance 

of the fitness effect of the BA allele in each sex would allow us to better understand 

the cause of balancing selection at the locus (Barson et al. 2015). 

  

Here, using D. melanogaster from the same recently collected Australian population 

as previous work, we show that both male and female resistant heterozygotes (BA/M 

and M/BA) are equally as fit as resistant homozygotes (BA/BA). In females, the 

fitness benefit is dominant and all three resistant genotypes are more fecund than 

the susceptible genotype (M/M). In males, we do not find evidence for a cost of 

resistance that was predicted by previous work. In neither sex do we find evidence 

that the fitness effects of the BA allele depend on maternal or paternal origin of the 

allele. Our data suggest that overdominance does not explain the balancing 

selection at the Cyp6g1 locus reported in this population, and we find no additional 

evidence that the counterselection against the BA allele is the result of a fitness cost 

in males. 

 

Materials and methods 

Experimental animals 

Populations homozygous for either the susceptible M allele or the resistant BA allele 

were created from heterozygous isofemale lines (David et al. 2005) (n=15) such that 

genetic variation within populations was maximised but genetic variation between 

populations was minimised in order to control for the effect of genetic background 

(Gassmann et al. 2009) (detailed protocol outlined in Hawkes et al. (2016) and 

Chapter 2). Virgin adult males and females from these populations were crossed 

reciprocally to produce experimental heterozygotes, while experimental 

homozygotes were bred from virgin adults within each population. Standardised 

competitors and mates were collected from a population of D. melanogaster 

homozygous for the sepia mutation (obtained from the Bloomington Drosophila 

Stock Center). All experimental animals were 3-5 day old virgin adults at the start of 

experimentation, and were not anaesthetised within 24 hours of experimentation to 

avoid any effects of CO2 on behaviour (Barron 2000). 
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Male fitness assays 

To test for effects of the overdominance at the Cyp6g1 locus in males we estimated 

reproductive success of homozygous and heterozygous males against a 

standardised competitor. One focal male (of genotype BA/BA, BA/M (maternally 

inherited BA), M/BA (paternally inherited BA), or M/M) and one sepia male were 

simultaneously introduced into a vial containing one sepia female and 

food/oviposition media. Experimental triplets were housed together for 7 days across 

3 vials (transferred by gentle aspiration). All offspring from each vial were counted 

and the proportion of offspring sired by each male was scored by the assignment of 

paternity by eye colour. Housing the triplets together allowed for repeated bouts of 

both pre- and post-copulatory competition across the experimental period 

incorporating both male-male competition and female preference(Dougherty & 

Shuker 2014). Triplets in which any individuals died across the experimental period 

were discarded (12.5% of triplets, final sample sizes BA/BA n=33, BA/M n=33, M/BA 

n=37, M/M n=37). 

 
Female fitness assays 

To test for the effects of overdominance on female fitness we estimated the fecundity 

of homozygous and heterozygous females. Females (of genotype BA/BA, BA/M 

(maternally inherited BA), M/BA (paternally inherited BA), or M/M) were mated once 

to a standardised sepia male and allowed to oviposit for 7 days across 3 vials 

(transferred by gentle aspiration). All offspring that eclosed within 9 days of the first 

eclosion in a vial were collected and counted. Females that produced no offspring 

were excluded from analyses (n=6) since the cause of mating failure could not be 

determined (Greenway et al. 2015), as were females that died during the 

experimental period (n=13) (final sample sizes BA/BA n=35, BA/M n=33, M/BA n=36, 

M/M n=37). 
 
Statistical analyses 
All statistical analyses were performed in R version 3.1.2 (R Core Team 2012). 

Maximal Generalised Linear Models (GLMs) were fit with all explanatory variables 

and then simplified via stepwise term deletion (Cyp6g1 genotype was always 
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retained as it is the primary variable under investigation). Models were fit with quasi- 

error structures when overdispersed. Pairwise comparisons of fitness measures 

across genotypes were implemented in multcomp (Hothorn et al. 2008). 

 

The effects of Cyp6g1 genotype on the proportion of offspring sired by males and 

female fecundity were estimated using GLMs fit with quasi-binomial and quasi-

Poisson error structures, respectively. Full models were fit with Cyp6g1 genotype, 

male size difference (focal male – competitor male), and female size as explanatory 

variables for males, and Cyp6g1 genotype and female size for females. Pairwise 

Tukey HSD contrasts adjusted for multiple comparisons were then estimated to 

compare fitness measures between genotypes. To test whether the source of the BA 

allele had any effect on fitness measures the minimal GLMs were refitted with 

maternal and paternal alleles as separate variables (including the interaction 

between the two). 

 

Results 

Male fitness assays 
Cyp6g1 genotype did not significantly influence the proportion of offspring sired by 

focal males (GLM, 𝜒2138=0.04, p=0.94) (Figure 1). Additionally, neither the difference 

in size between the two males (GLM, 𝜒2136=0.1, p=0.57) nor female size (GLM, 

𝜒2135=0.08, p=0.62) influenced the proportion of offspring sired. The BA allele had no 

significant effect on the proportion of offspring sired regardless of whether it was 

maternally inherited (GLM, 𝜒2138=0.09, p=0.58) or paternally inherited (GLM, 

𝜒2138=0.00004, p=0.99) (Figure 1). 

 
Female fitness assays 

Cyp6g1 genotype significantly influenced offspring production (GLM, F1,139=8.5, 

p<0.001) with susceptible females (M/M) producing significantly less offspring than 

resistant females of all genotypes (Tukey HSD, BA/BA, z=4.22, p<0.001; BA/M, 

z=4.31, p<0.001; M/BA, z=3.67, p<0.01) (Figure 2). Larger females produced 

significantly more offspring (GLM, F1,137=4.56, p<0.05). The BA allele was associated 

with significantly higher fecundity both when it was maternally inherited (GLM, 

F1,138=10.83, p<0.01) and paternally inherited (GLM, F1,138=5.54, p=0.02), with an 
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interaction between parental origins reflecting the fact that the fitness benefit was 

dominant (GLM, F1,137=7.87, p<0.01) (Figure 2). 

 

Discussion 

The insecticide-resistant BA allele of the cytochrome P450 gene Cyp6g1 is subject 

to balancing selection in a population of D. melanogaster collected recently from 

Australia (Hawkes et al. 2016; Chapter 2). The allele is associated with increased 

female fecundity and reduced male reproductive investment, suggesting that the 

balancing selection may be the result of IASC (Hawkes et al. 2016; Chapter 2). Here, 

we show that the BA allele is not associated with any heterozygote advantage or any 

sex-specific dominance patterns for fitness that might help explain the observed 

balancing selection. Additionally, we do not find any evidence of a cost to resistance 

in males that was predicted from previous work.  

 

The positive effect of the BA allele on female fecundity reported here is consistent 

with other work in Canton-S (McCart et al. 2005) as well as our previous work using 

this same Australian population (Hawkes et al. 2016; Chapter 2). The exact 

mechanism of the benefit to female fitness is unknown, but there is some evidence 

that it may be a maternal effect of provisioning extra Cyp6g1 mRNA to embryos 

(McCart et al. 2005; McCart & ffrench-Constant 2008). Consistent with this, we have 

previously shown that the Cyp6g1 genotype of male mates does not affect female 

fecundity in assays where BA females produce more offspring (Hawkes et al. 2016; 

Chapter 2). These new data show that heterozygous resistant females produce more 

offspring than susceptible females regardless of whether they inherited the BA allele 

maternally or paternally i.e. it is a benefit of resistance per se and any indirect 

genetic benefit from having a resistant mother does not persist into adulthood (a 

pattern common to maternal effects, McCart et al. 2005). 

 

We previously found indirect evidence of a male cost of resistance in the form of 

reduced reproductive investment, and hypothesised that the design of our fitness 

assays may have prevented such a cost from influencing our measures of male 
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competitive ability. Specifically, reduced reproductive investment by resistant males 

may reduce the magnitude of seminal fluid protein effects that delay female 

remating, which our single-bout assays of mating and fertilisation ability could not 

detect. In order to account for such potential effects, the male fitness assay reported 

here housed focal males with a female mate and a male competitor across several 

days before measuring the proportion of offspring sired by the focal male. This 

design allows the continual opportunity for pre- and post-copulatory sexual selection 

integrating both male-male competition and female preference, including female 

remating dynamics. Despite this, we did not find any direct evidence of an additional 

cost to resistance in males, consistent with our previous work (Hawkes et al. 2016; 

Chapter 2).  

 

The dominance of an allele’s fitness effect can influence its evolutionary trajectory 

and alter the parameter space in which a sexually antagonistic allele can be 

maintained at an intermediate frequency (Kidwell et al. 1977; Rice 1984; Fry 2010; 

Connallon & Clark 2014). This is particularly the case for sexually antagonistic loci 

when dominance patterns are sex-specific, for example when each allele is dominant 

in the sex for which it is beneficial (Fry 2010; Barson et al. 2015). We find no pattern 

of dominance in our male fitness measure while the fitness benefit of the BA allele in 

females is dominant. The dominance of the fitness effect in females should 

strengthen selection on the BA allele relative to a situation where heterozygotes 

have intermediate fitness or where the fitness effect is recessive. We also find no 

evidence of overdominance, instead male and female resistant heterozygotes have 

the same fitness as resistant homozygotes (and susceptible homozygotes in the 

case of males). This, too, should favour fixation of the BA allele and does not help 

explain the maintenance of variation at this locus in experimental populations. 

 

The data presented here suggest that overdominance does not help explain the 

previously observed balancing selection between the BA and M alleles in this 

population. Conversely, a dominant fitness benefit in females should theoretically 

encourage the fixation of the BA allele, and the lack of any detectable fitness effect 

in males should not act as a counterselective force in opposition to the positive 
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selection on the BA allele in females. The precise nature of the selective force 

counteracting the observed dominant fecundity benefit in females remains elusive. 

One possibility is that reduced reproductive investment is indeed a cost to resistance 

in males, but epistatic interactions between the BA allele and the genetic background 

in males in this population are variable and large in magnitude relative to the fitness 

effect. This could make any fitness effect in males difficult to detect when using an 

approach where unrelated individuals are sampled from a population and genetic 

background is not explicitly controlled. To test this possibility, a quantitative genetic 

approach employing isogenic lines could be used to estimate intersexual genetic 

correlations for the fitness effect of the BA allele, where a negative correlation would 

be expected if IASC can truly explain the observed balancing selection. Additionally, 

a more functional test of the relationship between the Cyp6g1 expression and male 

fitness across isogenic lines would also be instructive. 

 

Conclusions 

The BA allele of the D. melanogaster cytochrome P450 gene Cyp6g1 is sexually 

antagonistic in an old lab strain and subject to balancing selection with sex-specific 

fitness effects in a recently collected Australian population. Here, we use male and 

female fitness assays in homozygotes and heterozygotes carrying the insecticide 

resistant BA and susceptible M alleles to show that the reported balancing selection 

cannot be explained by overdominance. We show that resistance confers a 

dominant fecundity benefit to females, and that the parental origin of the BA allele 

does not influence the fitness effects in either sex. Thus, the observed balancing 

selection is not explained by sex-specific patterns of dominance. Additionally, we 

extend previous work with a more realistic male fitness assay design that should be 

able to detect differences in competitive ability related to female remating behaviour, 

and do not find direct evidence of additional male costs to resistance. Despite 

indirect evidence of a cost of resistance in males, the precise nature of the 

counterselective force that maintains genetic variation at the Cyp6g1 locus in this 

population remains elusive. 
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Tables and Figures 

 

 

Figure 1 The proportion of offspring sired by focal homozygote and heterozygote 

males in competition with a standard sepia competitor (±SE). 
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Figure 2 The number of offspring produced by homozygote and heterozygote 
females after a single mating (±SE). (* indicates significant difference where p<0.01) 
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Chapter 4 
Negative genetic correlations with female 
fitness and Cyp6g1 expression reveal a male 
fitness cost of insecticide resistance 
 

 

Abstract 
Balancing selection at the Cyp6g1 insecticide resistance locus is associated 

with sex-specific fitness effects of the resistant BA allele in a recently 

collected population of Drosophila melanogaster. While there is clear 

evidence of a fitness benefit to resistance in females, direct evidence for a 

fitness cost to resistance in males that would generate the observed 

balancing selection is lacking. Here we use isofemale lines and quantitative 

genetic analyses to directly test for sexually antagonistic fitness effects of the 

BA allele by estimating genetic fitness correlations between the sexes. 

Consistent with expectation we found a negative fitness association across 

the sexes, and a negative genetic correlation between Cyp6g1 expression 

and male fitness revealing that male fitness is indeed related to Cyp6g1 

expression in this population. We argue that these genetic correlations and 

fitness estimates demonstrate the operation of intralocus sexual conflict over 

insecticide resistance that can explain the previously observed balancing 

selection at the Cyp6g1 locus. 
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Introduction 
Intralocus sexual conflict occurs when sexually antagonistic selection acts on 

sexually homologous traits and one or both sexes are constrained from 

reaching their phenotypic fitness optima (Rice & Chippindale 2001; Chapman 

et al. 2003; Bonduriansky & Chenoweth 2009). This conflict is characterized 

by a negative intersexual genetic correlation for fitness, and can generate 

balancing selection capable of maintaining genetic variation across the 

genome (Kidwell et al. 1977; Dean et al. 2012; Rostant et al. 2015). This 

could help explain how additive genetic variation is maintained in the face of 

selection (Barton & Keightley 2002). While IASC is an important evolutionary 

mechanism influencing male-female coevolution and the maintenance of 

genetic variation, there are few well-characterised examples where the 

precise loci subject to sexually antagonistic selection are known (e.g. Lonn et 

al. 2017) (though recent work employing transcriptomic approaches has 

yielded many candidate genes; Innocenti & Morrow 2010; Griffin et al. 2013). 

One documented allele is that of the insecticide resistance gene Cyp6g1 in 

Drosophila melanogaster (McCart et al. 2005; Smith et al. 2011; Rostant et al. 

2015; Hawkes et al. 2016). 

 

The D. melanogaster cytochrome P450 gene Cyp6g1 confers resistance to a 

broad range of insecticides (Bergé et al. 1998; Daborn et al. 2002; Le Goff et 

al. 2003; Jones et al. 2010). It is the site of an ancestral susceptible allele and 

a series of at least 4 resistance alleles that confer resistance via the 

upregulation of Cyp6g1 expression as a result of gene duplication and cis-

regulatory elements in nested transposable elements inserted upstream of the 

gene (Schmidt et al. 2010). Recent work has shown that one of these alleles, 

the resistant BA allele, is subject to IASC in certain genetic backgrounds 

(McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015). 

 

When introgressed into the old lab strain Canton-S, females carrying the 

resistant BA allele have higher fitness than those carrying the susceptible M 

allele, while in males the reverse is true (McCart et al. 2005; Smith et al. 2011; 

Rostant et al. 2015). In a recently collected Australian population, we have 

shown that there is balancing selection between the BA and M alleles, where 
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BA females have higher fecundity than M females but BA males exhibit 

reduced reproductive investment relative to M males (Hawkes et al. 2016; 

Chapter 2). However, the reduced reproductive investment does not seem to 

be enough to explain the balancing selection observed at the locus (Hawkes 

et al. 2016; Chapter 2, Chapter 3). Alternative hypotheses such as 

overdominance and sex-specific patterns of dominance are likewise unable to 

account for the observed balancing selection (Chapter 3). It may be the case 

that epistatic interactions between the BA allele and the genetic background 

in males are too large in magnitude relative to the fitness effect of the BA 

allele to detect using an approach where unrelated individuals are sampled 

from a genetically heterogenous population. If so, explicitly controlling for 

relatedness and estimating quantitative genetic parameters for the sex-

specific fitness effects of the BA allele may stand a better chance of detecting 

IASC at the Cyp6g1 locus in this population. Additionally, our previous work 

on the Australian population only categorically partitioned males into resistant 

(homozygous for the BA allele) or susceptible (homozygous the M allele) 

groups, and has not considered continuous variation in Cyp6g1 expression 

that may better predict male fitness. 

 

Here, we use isofemale lines to estimate the sex-specific fitness effects of the 

BA allele relative to the M allele while explicitly controlling for genetic 

background. We also use standard quantitative genetic analyses to estimate 

the intersexual genetic correlation for the fitness effects of the BA allele and 

the heritabilities of these effects. Finally, we use qRT-PCR to estimate the 

genetic correlation between Cyp6g1 expression and fitness in resistant males 

relative to susceptible males. 

 
Materials and methods 
Experimental animals 
Isofemale lines (isolines; David et al., 2005) (n=37) were founded by single 

gravid females collected from Margaret River, Australia. Isolines were 

maintained for approximately 30 generations of full-sib mating before 

genotyping (diagnostic PCR as per Schmidt et al. 2010)  that revealed several 

isolines to be polymorphic at the Cyp6g1 locus with both the susceptible M 
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and resistant BA allele segregating within them (n=15). Virgin adults were 

crossed within each polymorphic isoline and genotyped, with the offspring 

from homozygote crosses retained to produce a homozygous M (susceptible) 

and homozygous BA (resistant) sub-line of each isoline that otherwise shared 

the same genetic background. These paired homozygous isolines (BA n=15; 

M n=15) were maintained for at least 5 generations of full-sib mating before 

experiments began. Hereafter, “isoline” will refer to both genotype versions of 

each original isoline i.e. there are n=15 isolines each with a BA sub-line and a 

M sub-line. 

 

All flies were maintained on a cornmeal based medium (standard Jazz mix, 

Applied Scientific) and housed in incubators at 25°C on a 12:12h light:dark 

cycle. Experimental animals were collected as first instar larvae, housed at a 

standard density, were all 3-5 day old virgin adults at the start of 

experimentation, and were not anaesthetised within 24 hours of 

experimentation to avoid any effects of CO2 on behaviour (Barron 2000). 

Where specified, sepia competitors and mates were collected from a 

population of D. melanogaster homozygous for the recessive sepia mutation 

(obtained from the Bloomington Drosophila Stock Center). 

 
Male fitness assays 
To test for the effect of the BA allele on male fitness we estimated male 

fitness for individual BA and M males from each isoline as the proportion of 

offspring sired when in competition with a standard competitor (a sepia male). 

There is evidence that the BA allele can lower male mating success (Smith et 

al. 2011) and reduce investment in post-copulatory components of 

reproduction (Hawkes et al., 2016; Chapter 2), and so our measure integrates 

both pre- and post-copulatory selection. Focal males and sepia competitors 

were simultaneously aspirated into vials containing a sepia female and 

housed together as triplets for 7 days of interaction and oviposition. Eggs laid 

during the interaction period were allowed to develop and offspring that 

eclosed successfully within 9 days of the first eclosion were counted and 

assigned to sires based on eye colour. 
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Female fitness assays 

To test for the effect of the BA allele on female fitness we estimated female 

fitness for individual BA and M females from each isoline as the number of 

offspring produced after a single mating to a standard mate (a sepia male). 

Individual sepia males were introduced to vials containing focal females and 

observed until mating occurred. Once mating had ended the sepia male was 

removed and females were allowed to oviposit for 7 days. All offspring that 

eclosed successfully within 9 days of the first eclosion were counted. 

 
Cyp6g1 expression 

In order to examine the relationship between Cyp6g1 expression and male 

fitness we estimated relative Cyp6g1 transcript abundance of BA compared to 

M males within isolines using qRT-PCR. RNA was extracted from pooled 

samples of 10 whole males of both genotypes from each isoline homogenised 

in RNAlater (Fisher) using the Purelink RNA Mini Kit (Ambion) standard 

protocol (3 biological replicates per genotype per isoline). qRT-PCR was 

performed using the Brilliant III Ultra-Fast SYBR kit (Agilent) on a Stratagene 

Mx3000P in technical triplicates. Cyp6g1 transcript abundance of BA males 

relative to M males was estimated within isolines using the efficiency-

calibrated method of Pfaffl (2001), normalised by the reference gene Rpl32. 

Baseline fluorescence-corrected efficiencies and Cq values were estimated 

using LinRegPCR version 2016.0 (Ruijter et al. 2009) (mean±SD efficiencies; 

Cyp6g1 1.89±0.01, Rpl32 1.91±0.02).  

 

Genetic correlations and heritabilities 

While all fitness data were estimated for both genotypes within each isoline, 

the intersexual genetic correlation of fitness (rMF) and the genetic correlation 

between relative Cyp6g1 expression and male fitness (rG) were estimated 

using a relative measure of the fitness effect of the BA allele. The mean 

within-isoline M fitness was subtracted from each individual BA fitness 

measure (proportion of offspring sired for males, fecundity for females) (Eq 1), 

yielding a relative measure of the fitness effect of the BA within each isoline.  
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𝜔𝑖,𝑗
𝑟𝑒𝑙 = 𝜔𝑖,𝑗

𝐵𝐴 − 𝜔̅𝑗𝑀    (1) 

 

Where 𝜔𝑖,𝑗
𝑟𝑒𝑙 is the new relative fitness measure of individual i in isoline j, 𝜔𝑖

𝐵𝐴 

is the original fitness measure for BA individual i in isoline j, and 𝜔̅𝑗𝑀 is the 

mean of the fitness measures of all M individuals in isoline j. Our qRT-PCR 

protocol yielded similarly relative measures for the effect of the BA allele on 

Cyp6g1 expression. These relative measures allow us to explicitly test how 

the BA allele influences fitness and Cyp6g1 expression within and across 

isolines.  

 

Genetic correlations were estimated using the delete-one jackknife method 

(Roff & Preziosi 1994) as estimates of quantitative genetic parameters can be 

sensitive to outliers when calculated from a low number of isolines. The 

jackknife procedure limits this risk by re-calculating the correlation estimate 

sequentially after removing each isoline in turn to account for isolines that 

contribute a disproportionate amount of variance. 

 

Broad-sense heritabilities (H2) of the effects of the BA allele relative to the M 

allele were estimated as the coefficient of intraclass correlation (Hoffmann & 

Parsons 1988, David et al. 2005). Standard errors were calculated according 

to Becker (1984).  

 
Statistical analysis 
All statistical analyses were performed in R version 3.1.2 (R Core Team 

2012). General Linear Mixed Models (GLMMs) were implemented in lme4 

(Bates et al. 2015). All fitness data were standardised by Z-transformation to 

allow formal comparison between variables on different scales. 

 

Male and female fitness Z-scores were analysed using GLMMs fit with isoline, 

genotype, and the interaction between the two as fixed effects, and a random 

effects structure that allows genotype-specific variance among isolines with a 

random intercept and slope. Main effects and their interactions were tested for 
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significance using the Anova function in the car package (Fox & Weisberg 

2011). 

Genetic correlations and heritabilities were considered statistically significant 

if the estimate divided by the standard error exceeded 1.96 (Gershman et al. 

2010) . 

 

Results 
Male fitness - proportion of offspring sired 

The resistant BA allele significantly reduced the proportion of offspring sired 

by males relative to the susceptible M allele (total n=225; mean±SE n per 

isoline=15±1.4; GLMM, 𝜒21=4.75, p=0.029; Figure 1A), and the proportion of 

offspring sired differed significantly among isolines (GLMM, 𝜒214=27.94, 

p=0.014; Figure 1A). The interaction between genotype and isoline did not 

significantly influence the proportion of offspring sired (GLMM, 𝜒214=13.96, 

p=0.45; Figure 1A). 

 
Female fitness – fecundity 

The resistant BA allele significantly increased female fecundity relative to the 

susceptible M allele (total n=459; mean±SE n per isoline=30.6±0.96; GLMM, 

𝜒21=20.90, p<0.001; Figure 1B), and fecundity differed significantly among 

isolines (GLMM, 𝜒214=139.38, p<0.001; Figure 1B). The interaction between 

genotype and isoline did not significantly influence fecundity (GLMM, 

𝜒214=16.36, p=0.29; Figure 1B). 

 
Intersexual genetic correlation of fitness 

The genetic correlation of the effect of the BA allele on fitness between the 

sexes was significantly negative (rMF=-0.29±0.05; Figure 2). The relative 

changes in fitness between resistant and susceptible individuals within-

isolines were significantly and highly heritable in both males (H2=0.44±0.12) 

and females (H2=0.47±0.10). 

 
Cyp6g1 expression and male fitness 



81 
 

The genetic correlation between Cyp6g1 expression and the proportion of 

offspring sired by resistant BA males relative to susceptible M males was also 

weakly but significantly negative (rG=-0.281±0.101; Figure 3). Relative 

Cyp6g1 expression was also highly heritable (h2=0.986±0.006). 

 
Discussion 
Here we present evidence for the operation of intralocus sexual conflict 

(IASC) at the Cyp6g1 locus in a recently collected Australian population of D. 

melanogaster. We find that when explicitly controlling for genetic background 

using isofemale lines (isolines), the resistant BA allele confers a fitness 

benefit to females but a fitness cost to males as evidenced by the negative 

intersexual fitness correlation. This direct evidence of a cost to fitness in 

males stands in contrast to previous work on this population that did not 

explicitly control for genetic background and found only indirect evidence of a 

male cost. The negative intersexual genetic correlation (rMF) for these sex-

specific fitness effects is a hallmark of IASC and importantly, the negative 

genetic correlation (rG) between relative Cyp6g1 expression and male fitness 

is consistent with the idea that it is insecticide resistance that is causative in 

generating the fitness effects. 

 

In this population we have previously reported balancing selection at the 

Cyp6g1 locus in experimental populations where flies were free to interact. 

This was associated with sex-specific fitness effects, with females carrying the 

resistant BA allele being more fecund than their susceptible M counterparts, 

but resistant BA males exhibit lower reproductive investment than susceptible 

M males (Hawkes et al. 2016; Chapter 2). While this reduction in reproductive 

investment is indirect evidence of a male fitness cost, it cannot fully explain 

the observed balancing selection in our population cages, nor can 

overdominance or sex-specific patterns of dominance (Hawkes et al. 2016; 

Chapter 2; Chapter 3). This previous work sampled flies from a genetically 

heterogenous population founded by the isolines used in the present study. 

As such, previously the genetic background was not explicitly controlled 

across both Cyp6g1 genotypes, increasing the potential for any fitness effects 

of the BA allele to be masked by epistasis. Here we explicitly control for 
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genetic background by comparing the fitness of BA individuals to M 

individuals within multiple isolines affording greater precision in estimating the 

fitness effects of the BA allele (Gassmann et al. 2009).  

 

Resistant BA females had relatively higher fitness than susceptible M females 

as measured by fecundity, consistent with previous work in Canton-S (McCart 

et al. 2005) and this same Australian population (Hawkes et al. 2016; Chapter 

2; Chapter 3). Female fecundity varied significantly among isolines as one 

might expect; isolines capture and maintain subsets of the genetic variation 

and covariation present in the source population within highly inbred lineages 

that generally exhibit much higher between-line than within-line genetic 

variance (David et al. 2005). Unlike females however, we found that resistant 

BA males were less fit, siring a lower proportion of offspring than susceptible 

M males against a standard competitor during sustained male-male 

competition. There is evidence that the BA allele reduces male mating 

success in Canton-S (Smith et al. 2011), and that it lowers post-copulatory 

reproductive investment in the Australian population we are investigating 

(Hawkes et al. 2016; Chapter 2). Here we use a measure of male fitness 

(proportion of offspring sired during sustained male-male competition) that 

includes both pre- and post-copulatory components of mating and fertilization 

success that are relevant to male fitness. We have previously used this 

measure to investigate the fitness effects of the BA allele in males without 

explicitly controlling for genetic background as we have here, and did not find 

an effect (Chapter 3). We suspect that this may have been due to significant 

epistasis making the modest fitness cost to males difficult to detect when 

sampling unrelated individuals from a genetically heterogenous population. As 

with female fecundity, the proportion of offspring sired varied significantly 

among isolines. When using these population average fitness component 

estimates to parameterise the mathematical model outlined in Chapter 2 

(relative resistant male fitness = 0.83, relative resistant female fitness = 1.22), 

the BA allele is predicted to be maintained at an equilibrium frequency of 0.47. 

 

Our quantitative genetic parameter estimates show that the fitness effect of 

the BA allele is negatively correlated between the sexes, and that the fitness 
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effect in both males and females is highly heritable. Using isolines to estimate 

genetic correlations tends to be biased towards positive estimates (Rose 

1984), and so our negative estimates are likely conservative. Conversely, 

using isolines can overestimate heritability (particularly more than a few 

generations after line establishment) and so our heritability estimates should 

be interpreted cautiously (Hoffmann & Parsons 1988). Taken together, these 

estimates suggest the presence of epistatic interactions between the BA allele 

and genetic background that allow for the operation of IASC at the Cyp6g1 

locus in this population. This contrasts with our non-relative fitness data where 

we did not directly detect a significant interaction between Cyp6g1 genotype 

and isoline influencing fitness component measures for either sex. A negative 

intersexual genetic correlation for fitness is characteristic of IASC, and the 

magnitude of our estimate suggests that the IASC we have detected is a case 

of attenuated conflict that is possibly in the process of resolution 

(Bonduriansky & Chenoweth 2009). This is consistent with our previous work 

showing relatively high levels of sexual dimorphism in Cyp6g1 expression in 

this population relative to Canton-S, where IASC is more pronounced 

(Hawkes et al. 2016; Chapter 2). Additionally, the presence of an allelic series 

itself featuring increasing sexual dimorphism in insecticide resistance across 

the series implies a history of sexually antagonistic selection (Schmidt et al. 

2010). These, combined with the fact that the structural mutations across the 

series involve gene duplication, are reasons to suggest that this resolution 

may at least partially be occurring via sex-limited gene expression 

(Bonduriansky & Chenoweth 2009; Schmidt et al. 2010; but see Hosken 

2011).  

 

Our quantitative genetic parameter estimates also show that the relative male 

fitness of BA males compared M males is negatively genetically correlated 

with the relative expression of Cyp6g1 in BA males compared to M males i.e. 

higher upregulation of Cyp6g1 tends to result in lower male fitness. Cyp6g1 

upregulation has been negatively associated with competitive male 

reproductive success in D. melanogaster previously (Drnevich et al. 2004), 

and our genetic correlation shows that Cyp6g1 expression is indeed related to 

the observed male fitness cost in this population. In order to definitively 
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demonstrate IASC at the Cyp6g1 locus in this population we must now 

estimate the intersexual genetic correlation for Cyp6g1 expression and the 

genetic correlation between Cyp6g1 expression and female fitness directly. 

 

Conclusions 
Here we have used isofemale lines to demonstrate highly heritable and 

sexually antagonistic fitness effects of the Cyp6g1 BA allele that are 

negatively genetically correlated between the sexes in a recently collected 

population of Drosophila melanogaster. These data, along with a negative 

genetic correlation between Cyp6g1 expression and male fitness reveal a 

previously elusive male fitness cost of resistance, and suggest that intralocus 

sexual conflict over resistance may explain balancing selection at the Cyp6g1 

locus in this population. 
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Tables and Figures 

 
Figure 1 Interaction plot for the effects of isoline and genotype on  

standardised fitness means for individual isolines in (a) males (proportion of 

offspring sired), and (b) females (fecundity). Grey lines represent individual 

isoline means, and the red line represents the mean of all isolines. 
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Figure 2 Intersexual genetic correlation between standardised relative male 

fitness (proportion of offspring sired) and standardised female fitness 

(fecundity). Solid red line represents the intersexual genetic correlation (rMF) 

estimate, dashed blue lines represent 95% CI. 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 
Figure 3 Genetic correlation between standardised relative male Cyp6g1 

expression and standardised relative male fitness (proportion of offspring 

sired). Solid red line represents the genetic correlation (rG) estimate, dashed 

blue lines represent 95% CI. 
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Chapter 5 

Sex-specific fitness effects of resistance across an 
adaptive walk 

 

Abstract 
The cytochrome P450 gene Cyp6g1 is the locus of a series of insecticide resistance-

conferring alleles in the fruit fly Drosophila melanogaster, one of which has been 

associated with sexually antagonistic fitness effects in some genetic backgrounds. 

This allelic series features a tandem duplication of the Cyp6g1 gene and several 

nested transposable element insertions, and results in both increased resistance and 

increased sexual dimorphism in resistance across the series. It is therefore possible 

that the allelic replacement at the Cyp6g1 locus has been in part driven by selection 

on both (i) insecticide resistance, and (ii) the resolution of intralocus sexual conflict 

over resistance. However, the dynamics of the sex-specific fitness effects across the 

series are unknown. Here, we ask whether more derived Cyp6g1 alleles are less 

sexually antagonistic by back-crossing three Cyp6g1 alleles (AA, BA, and BP) to a 

single genetic background and assaying male and female fitness across the series. 

We find that resistance is costlier to females than males of all three genotypes, and 

that more derived alleles are costlier to both sexes. However, we do not find any 

evidence of sexual antagonism in this genetic background. These results conflict 

with most previous work in other genetic backgrounds that have broadly found that 

Cyp6g1 upregulation is deleterious or neutral for males but beneficial for females. 

While the explanation for these reversed sex-specific fitness effects is unclear, we 

suggest that the decreased fitness of resistant animals of both sexes across the 

series is the result of an increased metabolic cost of Cyp6g1 upregulation. 
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Introduction 
Insecticide resistance should theoretically be costly such that resistant individuals 

have lower fitness than susceptible individuals in the absence of insecticide (Crow 

1957; Coustau et al. 2000; Hall et al. 2004). While this expected cost varies with the 

mechanism of resistance (Coustau et al. 2000) and whether resistance is conferred 

by de novo mutation or selection on standing genetic variation (ffrench-Constant & 

Bass 2017), resistance conferred by the constitutive overexpression of metabolic 

enzymes is expected to incur energetic costs related to the production and 

maintenance of high levels of protein product (Carriere et al. 1994). However, costs 

are not immutable and can be ameliorated by the evolution of genomic modifiers 

elsewhere in the genome (e.g. McKenzie & Purvis 1984) or by the replacement of 

costly resistance alleles with less costly alleles (e.g. Chevillon et al. 1997) (Coustau 

et al. 2000). Recent work has highlighted that sex is a major factor that can 

complicate our expectation of resistance costs (McCart et al. 2005; Smith et al. 2011; 

Hawkes et al. 2016). Where insecticide resistance genes are associated with 

sexually antagonistic fitness effects (intralocus sexual conflict; IASC) both sexes can 

be constrained from reaching their respective phenotypic optima for resistance 

expression (Rice & Chippindale 2001; Bonduriansky & Chenoweth 2009), and 

balancing selection can maintain resistance in populations even in the absence of 

direct selection from insecticides (Kidwell et al. 1977; Dean et al. 2012; Rostant et al. 

2015; Hawkes et al. 2016). Any amelioration of the costs of resistance in one sex 

can thus be constrained by the fitness effects in the other until sex-limited expression 

evolves, leading to a ‘tug-of-war’ of allelic replacement (Rice & Chippindale 2001; 

Harano et al. 2010). The Cyp6g1 gene in the fruit fly Drosophila melanogaster is the 

locus of a series of insecticide resistance alleles that have been associated with sex-

specific (and in some cases, sexually antagonistic) fitness effects in several genetic 

backgrounds (McCart et al. 2005; Smith et al. 2011; Hawkes et al. 2016). However, it 

is unclear whether the adaptive walk at this locus has occurred solely due to direct 

selection imposed by insecticides, or whether the allelic series represents a process 

of cost amelioration and IASC resolution via allelic replacement. 

 

The cytochrome P450 gene Cyp6g1 confers resistance to a range of insecticides 

when upregulated including neonicotinoids and the organochloride DDT (Daborn et 

al. 2002; Daborn et al. 2007). The locus is the site of an allelic series consisting of an 
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ancestral insecticide susceptible allele (M), as well as at least 3 resistance-conferring 

alleles (AA, BA, BP) (Schmidt et al. 2010). The M allele is a single copy of the 

ancestral Cyp6g1 gene, and across the series an Accord transposable element (TE) 

has inserted in the Cyp6g1 promotor region followed by a tandem duplication of the 

entire gene (M->AA), a HMS Beagle TE has inserted within the first copy of the 

Accord insertion (AA->BA), and a P-element has inserted within the second copy of 

the Accord insertion (BA->BP) (Schmidt et al. 2010). There is also evidence for 

multiple BP-derived alleles with variably degenerate P-elements (collectively named 

BP∆) (Schmidt et al. 2010). Upregulation of Cyp6g1 expression in resistant 

individuals is achieved by cis-regulatory elements within these TE insertions (Daborn 

et al. 2002; Chung et al. 2007). The level of resistance conferred by each allele 

increases across the series, as does the degree of sexual dimorphism in resistance 

(Schmidt et al. 2010). This sexual dimorphism suggests that the elaboration of 

Cyp6g1 across the series may be related the resolution of IASC via allelic 

replacement including gene duplication and sex-limited gene expression. 

 

The Cyp6g1-BA allele is strongly sexually antagonistic when introgressed into the 

old lab strain Canton-S (McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015) 

and weakly sexually antagonistic in a population of flies caught recently in Australia 

(Hawkes et al. 2016; Chapter 4). In both cases, resistant females have higher 

fecundity than susceptible females, while resistant males have lower mating and/or 

fertilisation success than susceptible males. The female fitness benefit is dominant 

(Chapter 3) and appears to be a maternal effect of the result of increased Cyp6g1 

mRNA provisioning to the eggs of resistant females (McCart & ffrench-Constant 

2008). Epistasis can influence the fitness effects of the BA allele in both sexes 

(Weinreich et al. 2005; Smith et al. 2011; Chapter 4), but it is unknown how these 

fitness effects change across the allelic series when controlling for the genetic 

background. Generally, it is expected that the degree of resistance-associated 

fitness costs should be proportional to the ratio of resistance between resistant and 

susceptible individuals (Gassmann et al. 2009), but this should equally hold true for 

fitness benefits if they are positively genetically correlated with resistance 

expression. Thus, where fitness effects are sexually antagonistic (or sex-specific) 

and more derived alleles confer higher levels of resistance via constitutive 

overexpression (as is the case with Cyp6g1), we might expect the higher-fitness 
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resistant sex to exhibit increased benefits across the series while the lower-fitness 

resistant sex incurs increased costs. However, the increased sexual dimorphism in 

resistance across the allelic series at the Cyp6g1 locus may instead indicate that 

IASC is in the process of resolution, and any increase in resistant female fitness will 

occur at a faster rate than any decrease in resistant male fitness. The allelic series at 

the Cyp6g1 locus offers an opportunity to study the dynamics of both the sex-specific 

fitness effects of resistance, as well as the potential for sex-specific resistance cost 

amelioration across the series. Specifically, genetic backgrounds where Cyp6g1 

resistance is sexually antagonistic, such as Canton-S, offer an excellent opportunity 

to investigate the dynamics of IASC across the so-called ‘tug-of-war’ of allelic 

replacement. 

 

Here, we ask whether the more derived alleles of the Cyp6g1 allelic series 

ameliorate any potential fitness costs or resolve any sexual antagonism at the locus 

by assaying the sex-specific fitness effects of Cyp6g1-based resistance across the 

series. We had intended to perform these comparisons by back-crossing the AA, BA, 

and BP alleles to the Canton-S genetic background, where Cyp6g1 expression has 

sexually antagonistic effects on fitness. However, after experimentation concluded 

we were notified by the Bloomington Drosophila Stock Center that the Canton-S 

stock with which they had supplied us had been inadvertently crossed with a second, 

unknown strain of D. melanogaster also homozygous for the M allele. As a result of 

this crossing, the data presented here cannot be directly compared with other work 

using the Canton-S genetic background, and we do not have any prior evidence that 

the Cyp6g1-conferred resistance is sexually antagonistic in this new hybrid genetic 

background (which hereafter will be referred to as Canton-X). In the Canton-X 

genetic background we find that the relative fitness of resistant individuals declines 

across the series in both sexes, and that resistant females have lower relative fitness 

than resistant males across all alleles. While we find evidence of sex-specific fitness 

effects, none of the alleles appear to be sexually antagonistic and all were predicted 

to become either lost or fixed by selection in a single-locus recursive population 

genetic model allowing for sex-specific fitness effects. 
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Materials and methods 
Back-cross populations 

Three experimental populations were produced by back-crossing donor resistant 

strains homozygous for either the AA (isofemale line collected from Margaret River, 

Australia), BA (Hikone-R), or BP allele (isofemale line collected from Melbourne, 

Australia) to the naturally susceptible Canton-X (homozygous for the M allele; 

obtained from the Bloomington Drosophila Stock Center) for five generations after an 

initial reciprocal cross. In the initial cross and each subsequent generation of back-

crossing 50 virgin males or females from the back-cross population (or donor 

population in the initial cross) were housed reciprocally with 50 Canton-X virgin 

males or females in glass vials for 72 hours. After the interaction and oviposition 

period adults were removed and the vials were laced with 500uL of 80ug/mL-1 

DDT/acetone solution to ensure that only DDT-resistant offspring eclosed (DDT 

LD50±SE: Canton-X♂ 10.89±4.99ug/mL-1; Canton-X♀ 18.71±1.72ug/mL-1). Eclosing 

offspring were collected as virgin adults under light CO2 anaesthesia to be used for 

the next generation of back-crossing. After five generations of back-crossing virgin 

adults were crossed within each population and the offspring of homozygous crosses 

(diagonostic PCR as per Schmidt et al. 2010) were retained to produce a 

homozygous susceptible and resistant population for each back-cross population. 

The result was three populations of Canton-X homozygous for either the AA, BA, or 

BP allele, each with a paired population of Canton-X homozygous for the susceptible 

M allele. In this way we minimise the effect of differences in genetic background 

between resistant and susceptible populations by sourcing each susceptible 

population from the same back-cross lineage as their paired resistant population.  

 

Experimental animals 

Focal experimental insects were collected from the three resistant and three 

susceptible populations described above as first instar larvae, housed at a standard 

density, were all 3-5 day old virgin adults at the start of experimentation, and were 

not anaesthetised within 24 hours of experimentation to avoid CO2-related 

behavioural effects (Barron 2000). Where specified, sepia competitors and mates 

were collected from a population of D. melanogaster homozygous for the recessive 

sepia mutation (obtained from the Bloomington Drosophila Stock Center). All flies 
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were maintained on a cornmeal based medium (standard Jazz mix, Applied 

Scientific) and housed in incubators at 25°C on a 12:12h light:dark cycle. 

 

Male fitness assays 

To test the effect of the three resistant alleles on male fitness we measured the 

proportion of offspring sired by resistant and susceptible males against a standard 

competitor (sepia males) in paired competitions. Focal and competitor males were 

simultaneously aspirated into vials containing a single sepia female and housed 

together as triplets for 7 days of interaction and oviposition. All offspring that 

successfully eclosed within 9 days of the first eclosion in a vial were counted and 

assigned to their sire based on eye colour. 

 
Female fitness assays 

To test for the effect of the three resistant alleles on female fitness we measured 

offspring production for resistant ant susceptible females after a single mating to a 

standard mate (sepia males). Males were introduced to vials containing individual 

focal females and observed. Once mating had concluded the males were removed 

and the focal females allowed to oviposit across seven days. All offspring that 

successfully eclosed within 9 days of the first eclosion in a vial were counted. 

 

Statistical analyses 

All statistical analyses were performed in R version 3.1.2 (R Core Team 2012). 

Terms in General/Generalised Lienear Models (GLMs) were tested for significance 

using the Anova function in the car package (Fox & Weisberg 2011). Male and 

female fitness were compared between genotypes of each allele using Generalised 

Linear Models (GLMs) fit with quasi-binomial and quasi-Poisson error structures, 

respectively, to account for overdispersion. GLMs were fit with genotype as a main 

effect. To compare the effect of the resistant alleles on male and female fitness 

across the allelic series we converted the fitness values of resistant males and 

females into relative values by dividing them by the average fitness of their paired 

susceptible population. These relative values were then compared across sexes and 

alleles using GLMs fit with sex, allele, and the interaction between the two as main 

effects. Subsequent comparisons of the relative fitness between specific alleles 
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within each sex were tested with Tukey contrasts adjusted for multiple comparisons 

using the lsmeans package. 

 
Results 
Male fitness 
Resistant males sired a significantly higher proportion of offspring than susceptible 

males when carrying the AA allele (n=97, GLM: 𝜒21=4.623, p=0.031; Figure 1) but 

were not significantly different from susceptible males when carrying the BA allele 

(n=91, GLM: 𝜒21=0.046, p=0.829; Figure 1) or the BP allele (n=92, GLM: 𝜒21=0.041, 

p=0.839; Figure 1). 

 

Female fitness 

Resistant females produced significantly fewer offspring than susceptible females 

when carrying the BA (n=85, GLM: 𝜒21=4.908, p=0.0267; Figure 2) and BP (n=87, 

GLM: 𝜒21=4.266, p=0.039; Figure 2) alleles, but were not significantly different from 

susceptible females when carrying the the AA allele (n=86, GLM: 𝜒21=0.031, p=0.86; 

Figure 2). 

 

Relative fitness across the allelic series 

The relative fitness of resistant males was significantly higher than that of resistant 

females across the 3 alleles (n=538, GLM: 𝜒21=8.952, p=0.003; Figure 3). The 

relative fitness of resistant individuals of both sexes declined significantly across the 

series (GLM: 𝜒21=7.967, p=0.02; Figure 3). These effects of sex and allele did not 

interact (GLM: 𝜒21=0.094, p=0.954; Figure 3). The relative fitness of AA males and 

females was not significantly different to that of BA males and females (LSMeans: z-

ratio=2.059, p=0.099) but was significantly higher than that of BP males and females 

(LSMeans: z-ratio=2.669-, p=0.02), while the latter two alleles were not significantly 

different across both sexes (LSMeans: z-ratio=0.599, p=0.82). 

 
Discussion 
The Cyp6g1 locus of Drosophila melanogaster is the site of a series of several 

insecticide resistance-conferring alleles (Schmidt et al. 2010), one of which has been 

associated with sexually antagonistic fitness effects in some genetic backgrounds 
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(McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015; Hawkes et al. 2016). It is 

unknown how this intralocus sexual conflict (IASC) progresses across the allelic 

series, and whether the fitness costs observed in males may be ameliorated with 

more derived alleles. Here, we backcrossed the AA, BA, and BP alleles to a single 

genetic background naturally homozygous for the M allele, and assayed the sex-

specific fitness effects of resistance across the allelic series. We show that more 

derived alleles across the allelic series are costlier to carry for both males and 

females, and that all alleles are costlier for females than males. These effects are 

found in a hybrid genetic background resulting from a cross of the naturally 

susceptible Canton-S with an unknown but also naturally susceptible strain of D. 

melanogaster. 

 

Our male fitness measures showed that across the allelic series the relative fitness 

of resistant males declined in the more derived alleles. Males carrying the AA allele 

sire a significantly higher proportion of offspring than susceptible males, but there is 

no significant difference between resistant and susceptible males when carrying the 

BA and BP alleles. Previous work has found that resistant males carrying the BA 

allele have either lower or equal fitness relative to susceptible males depending on 

the genetic background (Smith et al. 2011; Hawkes et al. 2016), and our current 

results are consistent with this previous finding. However, our results reveal that in 

the Canton-X genetic background where homozygous BA and M males are equally 

fit, resistant males carrying the less derived AA allele have higher fitness than 

susceptible males. This suggests that the increased Cyp6g1 expression in BA males 

relative to the AA males (Schmidt et al. 2010) is accompanied by a reduction in the 

fitness of resistant males (despite not incurring an overall fitness cost). This is 

highlighted when comparing the relative fitness of resistant males to susceptible 

males across the series, where AA males have the highest relative fitness, BP males 

have the lowest, while BA males are intermediate. The functional mechanism that 

explains the fitness cost to males in terms of reduced mating success in the Canton-

S background is altered social behaviour typified by lower aggression and less 

intense courtship (Rostant et al. 2017). Considering the evidence that 

overexpression of Cyp6g1 per se lowers male mating success in genetic 

backgrounds where there is a fitness effect (Drnevich et al. 2004) (Chapter 3), it is 
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unclear what mechanism might explain a male fitness benefit to resistance in the 

absence of insecticide. 

 

The relative resistance of female fitness followed the same pattern across the allelic 

series as that of male fitness. While the pattern was the same, the relative fitness 

values themselves were not. Resistant females carrying the AA allele did not 

produce a significantly different number of offspring to susceptible females, but both 

BA and BP females produced significantly fewer offspring than susceptible females. 

This contrasts with all previous work that has consistently shown a fitness benefit to 

resistance in females carrying the BA alleles in all investigated genetic backgrounds 

(McCart et al. 2005; Hawkes et al. 2016) (Chapters 1, 2, and 3). Evidence suggests 

that the fecundity benefit conferred by the BA allele in other genetic backgrounds is a 

maternal effect of provisioning extra Cyp6g1 mRNA into eggs (McCart & ffrench-

Constant 2008). If this same maternal effect is present in this genetic background, it 

appears that other pleiotropic costs to resistance are greater in magnitude. As with 

males, the decreasing relative fitness of resistant females across the allelic series is 

consistent with the increased energetic cost of higher Cyp6g1 expression. 

 

Our data reveal sex-specific fitness effects of all three alleles where the AA allele is 

beneficial in males but neutral in females, the BA allele is neutral in males but 

deleterious in females, and the BP allele is neutral in males but deleterious in 

females. When the sex-specific mean relative fitness values of each allele are used 

to parameterise the mathematical model outlined in Chapter 1, the AA allele is 

predicted to go to fixation while both the BA and BP alleles are predicted to be lost 

from the population. While these fitness effects could explain the near global fixation 

of the Accord insertion, they are less able to explain the prevalence of the BA allele 

in wild populations. However, our lack of knowledge regarding the provenance of the 

Canton-X genetic background limits the conclusions we can draw from comparisons 

with wild populations.  

 

The lack of sexual antagonism in our fitness measures combined with the lack of any 

sex differences in the reduction in relative fitness across the allelic series suggests 

that the genetic elaboration at the Cyp6g1 locus would be primarily favoured by the 

selection imposed by insecticide use rather than as part of a process of IASC 
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resolution in the Canton-X background. While the decreasing fitness effect across 

the series can then be explained simply by an increasing energetic cost of 

resistance, the explanation for the sex differences in relative fitness for each allele is 

less clear. If any cost amelioration or IASC resolution occurs across the series in the 

genetic backgrounds where such costs and conflict are present, it is likely to be the 

result of epistatic interactions with genetic modifiers elsewhere in the genome that 

evolved to offset potential costs and promote sex-linked resistance. This suggestion 

is supported by previous work showing that epistatic effects play an important role in 

determining the magnitude of the BA allele’s fitness effects (Smith et al. 2011) 

(Chapter 3). 

 
Conclusions 
The cytochrome P450 gene Cyp6g1 is the locus of an allelic series where one allele 

has been associated with sexually antagonistic fitness effects in certain genetic 

backgrounds. Here, we back-cross three of the alleles from the series into a single 

genetic background to determine the dynamics of the sex-specific fitness effects 

across the series, and whether selection to resolve the previously reported intralocus 

sexual conflict can in part explain the replacement of these alleles in the wild. While 

we find no evidence of sexual conflict in this genetic background, we do find sex-

specific fitness effects where resistant females have consistently lower relative 

fitness than resistant males across all three alleles, and both sexes experience lower 

relative fitness when carrying more derived alleles. These fitness effects are 

consistent with an increased energetic cost of resistance as a result of 

overexpression of Cyp6g1. The decreased fitness of the resistant insects of both 

sexes across the allelic series suggests that the resolution of any sexual conflict 

observed in other genetic backgrounds may be dependent on epistasis. 
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Tables and Figures 

 
Figure 1 Proportion of offspring sired by resistant and susceptible males across the 

three allele back-cross populations (±SE) (* denotes significance at p<0.05). 

 

 
Figure 2 Offspring production by resistant and susceptible females across the three 

allele back-cross populations (±SE) (* denotes significance at p<0.05). 
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Figure 3 Relative fitness of resistant males and females across the three allele back-

cross populations (±SE). 
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Chapter 6 
Sexual selection drives the independent 
evolution of wing interference patterns between 
the sexes 
 

Abstract 
The seemingly transparent wings of many small wasps and flies have recently 

been found to display dramatic structural coloration. These structural colours 

(wing interference patterns: WIPs) may be involved in species recognition and 

mate choice, but as yet little is known about the evolutionary processes that 

shape them. As WIP colour is determined by wing structure they may also be 

subject to contrasting natural and sexual selection between the sexes (e.g. 

flight capability vs. attractive colouration), making them a potential candidate 

for intralocus sexual conflict. Additionally, existing research has been 

restricted by analysing WIPs without due consideration of how they are 

actually perceived by the species under study and how to best measure 

colour. Here, we use calibrated digital imaging and a model of Drosophila 

vision to compare WIPs of male and female Drosophila simulans from 

replicate populations forced to evolve with elevated or relaxed sexual 

selection for 68 generations. We show for the first time that WIPs modeled in 

Drosophila vision evolve in response to sexual selection differently between 

the sexes, suggesting that they are not subject to acute intralocus sexual 

conflict.  
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Introduction 
Animal colour patterns are important sources of information used in a range of 

signalling contexts including species recognition (Barraclough et al. 1995), 

intrasexual competition (Siefferman & Hill 2005), and mate choice (Houde 

1997). When colour patterns are subject to mate choice, colouration covaries 

with sexual fitness components, and can be part of multi-modal courtship 

behaviours that expose the patterns to the target of the display (Candolin 

2003). Wing interference patterns (WIPs) are a newly discovered visual 

component of many insect wings that are thought to act as visual displays. 

They have been recorded in several Drosophila species (Shevtsova et al. 

2011) and possibly represent previously unrecognised sexual signals in 

otherwise well-described Drosophila courtship displays, which also involve 

species-specific movement, song, olfaction, and taste (Greenspan & Ferveur 

2000; Shevtsova et al. 2011; Katayama et al. 2014). WIPs are a form of 

structural colouration produced by thin-film interference where light striking 

the wing is refracted and reflected in such a way that the wavelength of the 

reflected light is dependent on the thickness of the chitinous membrane of the 

wing (Shevtsova et al. 2011). As a result, variation in wing thickness, along 

with other structural variation including hair placement and venation, 

determines variation in reflected colour (Shevtsova et al. 2011).  

 

Recent work shows that WIPs within the human-visible spectrum are heritable 

and subject to sexual selection via female mate choice in D. melanogaster 

(Katayama et al. 2014), but generally little is known about the selective forces 

that shape WIPs and how they might respond to any such selection. Despite 

evidence that WIPs can be sexual signals, all work to date has used 

uncalibrated digital images where pixel colour values do not correspond 

linearly with radiance, making objective colour measurement extremely 

problematic (Stevens et al. 2007). Additionally, no work has yet investigated 

WIPs explicitly within the spectral sensitivities of the photoreceptors in the 

Drosophila visual system (including UV light), and so drawing clear biological 

conclusions about which WIP elements are under selection and how they 

might evolve is currently not possible. 
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The Drosophila eye contains five main types of photoreceptor, each 

expressing a single opsin gene; rhodopsins 1 and 3 through 6 (Rh1 and Rh3 

through Rh6) (Schnaitmann et al. 2013). One is thought to be achromatic with 

broadband spectral sensitivity to both human-visible and UV light (Rh1), 

although this may also be used in colour processing (Schnaitmann et al. 

2013), two have narrow peak sensitivities in the human-visible spectrum 

roughly corresponding to green (Rh6) and blue (Rh5) light, and two have 

narrow peak sensitivities in the UV spectrum at shorter (Rh3) and longer 

(Rh4) wavelengths (Rister et al. 2013; Schnaitmann et al. 2013). These 

photoreceptors are arranged into bundles of cells called ommatidia, consisting 

of a central column of two narrow peak photoreceptors (Rh6 and Rh4, or Rh5 

and Rh3) encircled by six Rh1 photoreceptors. Almost all ommatidia are 

defined as being either ‘pale’ (expressing Rh3 and Rh6) or ‘yellow’ 

(expressing Rh4 and Rh6) (Hardie 1979; Salcedo et al. 1999; Wernet et al. 

2007; Rister et al. 2013).  Any investigation of Drosophila WIPs needs to take 

into account these attributes of the visual system if we are to understand any 

potential signalling roles they might have. 

 

Mating signals and sexual selection have been extensively investigated in D. 

simulans (Spieth 1974; Markow et al. 2009; Taylor et al. 2007; Taylor et al. 

2008; Sharma et al. 2010; Taylor et al. 2010; Ingleby et al. 2012; Sharma et 

al. 2012; Fiona C. Ingleby et al. 2013; F. C. Ingleby et al. 2013), but WIPs 

have not yet been incorporated into this framework. Female D. simulans are 

polyandrous, have a strong preference for certain male genotypes, but do not 

show clear mate-preference based on male size, and largely determine 

whether copulation occurs (Spieth 1974; Taylor et al. 2007; Taylor et al. 2008; 

Sharma et al. 2010; Taylor et al. 2010; Ingleby et al. 2012; Sharma et al. 

2012; F. C. Ingleby et al. 2013). Here we investigated the impacts of sexual 

selection on WIPs in D. simulans, and whether any response to selection was 

correlated between the sexes. Calibrated digital imaging with Drosophila 

colour-vision modelling was used to capture WIP colour data as per-pixel 

'cone-catch quanta' that describe the degree to which the photoreceptors of 

the Drosophila eye are expected to respond to the light reflected from each 

wing (Figure 1). WIP colours can vary dramatically within and between wings, 
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however the exact nature of Drosophila colour processing is poorly 

understood. We therefore measured WIP brightness and colour using a range 

of methods that make few assumptions concerning the nature of visual 

processing (i.e. about the luminance (perceived brightness) of the wings, their 

contrast and so on: see methods). Using male and female wings from 

experimental populations that had evolved with and without sexual selection 

(polyandrous and monogamous populations respectively), we provide the first 

direct evidence that sexual selection can drive the evolution of WIPs within 

wavelengths of light visible to the Drosophila visual system. 

 
Results  
The effect of sexual selection on the brightness of wings (luminance 

measured by the mean cone-catch values of the broadband photoreceptor 

Rh1) was dependent on sex (GLMM, 𝜒21=9.63, p=0.002). The WIPs of males 

evolving with sexual selection had significantly higher mean luminance values 

than the WIPs of males evolving without sexual selection (LSMeans, t 

ratio=3.93, p<0.001; Figure 2). In contrast, there was no difference in mean 

luminance between the WIPs of females evolving with or without sexual 

selection (LSMeans, t ratio=0.44, p=0.97). 

 

The effect of sexual selection on the brightness contrast (luminance contrast 

measured by the standard deviation of the cone-catch values of the 

broadband receptor Rh1) was also dependent on sex (GLMM, 𝜒21=6.84, 

p=0.009). The WIPs of males evolving with sexual selection had significantly 

higher luminance contrast than those of males evolving without sexual 

selection (LSMeans, t ratio=4.69, p<0.001; Figure 3), but there was no 

difference between the WIPs of females evolving with or without sexual 

selection (LSMeans, t ratio=1.02, p=0.74; Figure 2). 

 

While there were clear differences in luminosity between the WIPs of males 

from populations that had evolved with and without sexual selection, 

comparing individual photoreceptor stimulation does not accurately reflect the 

neurological processes involved in colour vision. Colour discrimination in 

Drosophila vision is best explained by a system of opponent colour 
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processing, where neurons receive antagonistic input from two or more 

photoreceptors and the contrast between these inputs is used to process 

colour information (Schnaitmann et al. 2013). To better represent this process 

we calculated four ‘opponent channels’ that have been empirically validated to 

accurately describe Drosophila colour discrimination (Rh5-Rh3, Rh6-Rh4, 

Rh6-Rh1, and Rh1-Rh4; Schnaitmann et al. 2013) by dividing the cone-catch 

quanta values of a focal photoreceptor by the sum of the cone-catch quanta 

values of that photoreceptor and a second comparator photoreceptor (e.g. 

Rh5/(Rh3+Rh5)) (Kelber et al. 2003). We generated images of these 

opponent channels from cone-catch data and measured the mean hue 

(average opponent channel pixel values across the wing) and colour contrast 

(standard deviation in opponent channel pixel values across the entire wing). 

Due to the high correlation between these four opponent channels (see 

methods), we used principal component analyses to extract one significant 

principal component that explained 90.82% of the variation in the average hue 

opponent channel values (Table 1), and one significant principle component 

that explained 79.94% of the variation in colour contrast values (Table 2).  

 

The principal component for average hue described variation in the 

opponency of long versus short wavelength photoreceptors (Rh5 versus Rh3, 

and Rh6 versus Rh4), and opponency of narrowband photoreceptors in yellow 

ommatidia versus broadband photoreceptors (Rh6 against Rh1, and Rh1 

against Rh4). The Rh1-Rh4 channel was significantly negatively loaded to this 

principal component while the remaining 3 channels were significantly 

positively loaded (Table 1). Thus, higher principal component scores indicate 

higher reflectance of longer wavelength light (measured by Rh5 and Rh6) 

relative to shorter wavelength (measured by Rh3 and Rh4), and this 

relationship becomes stronger as wing luminosity (measured by Rh1) 

increases. Again, we found that the effect of sexual selection on WIPs was 

different for males and females (GLMM, 𝜒21=7.51, p=0.006). The WIPs of 

males evolving with sexual selection differ significantly from those of males 

evolving without (LSMeans, t ratio=3.79, p=0.001), showing stronger biases 

towards longer wavelength light (i.e. human-visible spectrum), and towards 

Rh6 and Rh1 in opponency to Rh1 and Rh4, respectively (Figure 4). In 
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contrast, the average hues of female WIPs from either evolution treatment 

were indistinguishable (LSMeans, t ratio=0.06, p=0.99) (Figure 4). 

 

The principal component for colour contrast describes variation in the same 

opponency channels as the component for average hue. All four opponent 

channels were significantly and positively loaded to this principal component 

(Table 2), and higher principal component scores therefore indicate higher 

colour contrast levels in all opponent channels. Once again, we found that the 

effect of sexual selection on WIPs was different for males and females 

(GLMM, 𝜒21=19.257, p<0.0001). The WIPs of males evolving with sexual 

selection have significantly higher levels of colour contrast than those of 

males without (LSMeans, t ratio=5.419, p<0.0001). In contrast, the colour 

contrast of female WIPs from both selection regimes were indistinguishable 

(LSMeans, t ratio=0.307, p=0.99) (Figure 4). 

 

Discussion 

Here we have used calibrated digital images of D. simulans wings in both 

visible and UV spectra and a model of Drosophila vision to reveal that male 

WIPs evolve in response to sexual selection within wavelengths of light visible 

to the Drosophila visual system. These results also indicate significant 

additive genetic variation for WIPs and confirm findings of heritable male 

attractiveness (Taylor et al. 2007). While these findings are consistent with 

those for D. melanogaster (Katayama et al. 2014) where evidence was found 

for sexual selection on WIP hue and saturation, that study did not use the 

explicit model of fly vision or the precise colour measurement we employed 

here. Studies of sexual colouration in other systems show that failure to 

consider the appropriate visual system and colour measurement can lead to 

erroneous conclusions about sexual selection (Bennett et al. 1997).   

 

By employing experimental evolution we have explicitly shown that WIPs 

evolve via sexual selection as males evolving with mate choice and 

competition have significantly different aspects of wing colouration than males 

evolving without sexual selection. Sexual selection resulted in male wings 

eliciting a stronger mean response in green and blue-sensitive fly 
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photoreceptors relative to the UV-sensitive photoreceptors than the wings of 

males evolving without sexual selection. The wings of males evolving under 

sexual selection were also more luminous (were brighter) in general, yielding 

higher mean cone-catch values for the photoreceptor rhodopsin (Rh) 1 which 

has broadband spectral sensitivity to both visible and UV light, and also had 

higher luminance contrast. Sexual selection therefore seems to favour male 

wings that reflect more light in the human-visible green and blue wavelength 

regions, perceived as longer wavelength by the Drosophila visual system. 

However, interpretation of the bias of the evolutionary response away from 

the UV spectrum must be tempered by the low levels of UV light emitted in the 

controlled environment chambers that housed our populations - this may have 

constrained evolutionary responses towards the visible spectrum.  Despite 

this, using a standard measure of male attractiveness, males evolving with 

sexual selection were more attractive to females after 55 generations (Duffy et 

al. 2016) – they mated faster, and because females determine whether 

copulation occurs or not (Spieth 1974), mating should be faster with more 

attractive males (Taylor et al. 2007; Taylor et al. 2010; Sharma et al. 2012). 

 

Higher luminance and colour contrast (i.e. variation of WIP luminance and 

hues) in males evolving with sexual selection can potentially be explained by 

trade-offs with other sexually and naturally selected phenotypic optima for 

wing morphology (e.g. flight performance, or acoustic attractiveness in 

courtship displays) (Radwan 2008; Radwan et al. 2016). If selection on wing 

thickness (which affects WIPs; Shevtsova et al. 2011; Katayama et al. 2014) 

in these other contexts is to some degree orthogonal to selection on WIP 

colouration from sexual selection, then relaxing sexual selection on WIP 

colouration could allow these other sources of selection to erode variation in 

WIP hues that is only relevant in a sexual context. That males from non-

sexual selection populations evolve to be more like females - see the principle 

component analyses - implies that WIPs are costly, which is typical for many 

sexual traits (Kotiaho 2001).  Furthermore, because the mating environment 

from which our experimental populations were derived includes sexual 

selection (Taylor et al. 2008), the evolution we detect is probably best 



111 
 

explained by the relaxing of sexual selection on males in the monogamous 

populations. 

 

In contrast to males, female wings have the same mean colouration and 

colour contrast regardless of the selective regime under which they evolved. 

This is perhaps unsurprising as sexual selection is typically stronger on males 

(Shuster & Wade 2003; Hosken & House 2011) and our selection protocol 

only manipulated the opportunity for sexual selection on them. Furthermore, 

similar sex-specific responses to sexual selection have been found in other D. 

simulans studies (Sharma et al. 2012). 

 

Taken together, our data suggest that sexual selection drives the evolution of 

a suite of WIP elements in male D. simulans. Specifically, sexual selection 

favours bright, high contrast, longwave-shifted male WIPs. This finding is 

further supported by converting raw colour data into empirically validated 

opponency channels that reflect the neurological processing of colour 

discrimination in Drosophila (Schnaitmann et al. 2013). These data suggest 

that differences between treatments and sexes are indeed an evolutionary 

response to sexual selection (and its relaxation) on males, and that any 

intersexual genetic correlation underlying WIPs does not appear to be strong 

enough to prevent detectably independent sexual evolution.  Intralocus sexual 

conflict is a frequent constraint preventing the sexes from reaching sex-

specific fitness optima (Rice & Chippindale 2001), but in the D simulans we 

study, its effects generally seem to be limited (Taylor et al. 2010; Sharma et 

al. 2012) consistent with the sex-specific WIP findings.   

 

Despite the caveats discussed above, we provide strong evidence for the 

evolution of WIPs through sexual selection, and we are confident that effects 

are from female mate choice because males from sexual selection lines were 

more attractive to females. In any case WIPs are a novel sexual signal that 

has until very recently been overlooked in sexual selection research, even in 

well-studied taxa like Drosophila. Our results therefore provide direct evidence 

that WIPs can evolve in response to sexual selection, and additionally 
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underline the importance of considering the visual sensitivities of intended 

targets when investigating sexual signals.  

 

Materials and methods 

Experimental populations 

To investigate the ability of sexual selection to drive the evolution of WIPs, we 

established replicate experimental populations of D. simulans that evolved 

under either enforced monogamy (1♂:1♀, relaxed sexual selection on males) 

(n=4), or under enforced polyandry (4♂:1♀, elevated sexual selection on 

males) (n=4) for 68 non-overlapping generations. This is a standard technique 

for manipulating the opportunity for sexual selection and allows the action of 

both pre- and post-copulatory selection (Holland & Rice 1999; Hosken et al. 

2001; Crudgington et al. 2005; Ilszer et al. 2006; Sharma et al. 2012).  

 

In each generation, males and females were housed in mating vials at their 

treatment-specific sex ratio for six days (SS+ n=60 per replicate; SS- n=64 

per replicate). More mating vials were included in the SS- treatment to 

equalise the effective population size (Ne) between the treatments (Sharma et 

al. 2012). Females were then haphazardly selected to be transferred to 

treatment- and replicate-specific oviposition vials and housed at a 

standardised density for 48 hours. Virgin adults were collected from 

oviposition vials after eclosion under light CO2 anaesthesia and separated by 

sex before being haphazardly assigned into new mating vials for the next 

generation. Before wings were dissected and photographed all experimental 

populations were reared for a single generation in mating vials at a standard 

density (2♂:2♀) to reduce the likelihood of environmental or maternal effects 

confounding the results (Magalhães et al. 2011). 

 

Experimental populations were derived from a stock population of D. simulans 

established from flies originally collected in Australia in 2004 (supplied by the 

Centre of Environmental Stress and Adaptation Research, La Trobe 

University, Australia) after screening with tetracycline to eliminate Wolbachia 

infection. Wolbachia infection has been associated with several deleterious 

effects on fitness in D. simulans (Snook et al. 2000; Champion de Crespigny 
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& Wedell 2006), and can induce cytoplasmic incompatibility in crosses with 

differences in infection status or strain (Werren 1997; Werren et al. 2008). All 

flies were housed at a temperature of 25°C under a 12:12hr light:dark cycle 

on an oatmeal based food media. 

 

We dissected and photographed a total of 480 pairs of wings from 240 

individuals. 36 wings were excluded from analyses due to objects obscuring 

the wing (e.g. fibres) or wing damage. Final sample sizes were: males 

evolving with sexual selection n=55; males without sexual selection n=58; 

females with sexual selection n=57; and females without sexual selection 

n=56 (all groups consisted of individuals sampled from 4 replicate 

populations). 

 

Wing interference pattern imaging 
Wings were photographed in a custom-built assembly using a calibrated 

Canon 7D camera that had been converted to full-spectrum sensitivity by 

replacing the sensor’s visible-band pass filter with a quartz sheet (conversion 

by Advanced Camera Systems, Norfolk, UK). The camera was fitted with a 

Novoflex Noflexar 35mm lens that transmits in the visible and ultraviolet (UV) 

range, reverse-mounted on a helicoid to achieve a suitable magnification. 

Photographs were taken through a Baader UV/IR cut filter that transmits in the 

human visible range (400-700 nm), and then through a Baader Venus-U filter 

that only transmits in the UV (UV, 310-390 nm) range.  

 

Wing interference patterns change dramatically as the angle of the wing, light 

source and viewing angle change under direct (e.g. point source) illumination. 

We therefore used a custom-built lighting system that provided uniform, 

diffuse lighting to create standardised illumination and viewing conditions. The 

lighting assembly used an Iwasaki eyeColor metal halide arc lamp modified to 

emit UV light by removal of its UV/IR filter. This bulb is designed to match the 

Commission on Illumination (CIE) standard D65 illuminant, so recreates 

natural illumination. The bulb was positioned inside a stainless-steel spherical 

reflector directly below the sample that focussed light onto a ring of raw white 

polytetrafluoroethylene plastic sheet around the lens, simulating a ring-flash. 
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Critically, this light source created standardised and uniformly diffuse 

illumination that matches natural conditions. The dorsal surfaces of wings 

were photographed in pairs on a dark, spectrally flat polymethyl methacrylate 

background that contained a scale-bar. 

 

Image processing 
Most imaging systems create photographs for viewing on non-linear, low 

dynamic range displays using 8-bits per channel colour spaces. However, 

such images are also non-linear, meaning the pixel values do not correspond 

linearly with radiance, which in turn makes them unsuitable for objective 

colour measurement (Stevens et al. 2007). Standard Red-Green-Blue (RGB) 

systems are also unsuitable for modelling Drosophila vision because they do 

not capture the UV portion of the spectrum to which Drosophila are sensitive, 

and previous analyses have included the red portion of the spectrum, which 

they are unable to detect (Briscoe & Chittka 2001). We therefore processed 

our whole-wing images using our Multispectral Image Analysis and Calibration 

Toolbox for ImageJ (Schneider et al. 2012), which enables image calibration, 

first controlling for lighting conditions and then converting images to animal 

cone-catch quanta  (Troscianko & Stevens 2015).  

 

We used the toolbox to combine the visible and ultraviolet whole-wing images 

into aligned, normalised multispectral stacks, and then used a cone-mapping 

approach to convert these images to “Drosophila vision” (i.e. Drosophila cone-

catch quanta). Images were normalised (i.e. converted to relative reflectance 

images that control for lighting conditions) by measuring the background grey 

in each image, which was in turn calibrated against a Spectralon 99% 

reflectance standard (Labsphere). Briefly, the cone-mapping process uses the 

known spectral sensitivities of the camera to estimate the camera’s response 

to a database of thousands of natural reflectance spectra illuminated using 

the CIE standard D65 illuminant following the von Kries correction. In addition, 

the Drosophila cone-catch quanta were calculated for the same illuminant 

using Drosophila spectral sensitivities (Salcedo et al. 1999; Schnaitmann et 

al. 2013). A polynomial model was then fitted between camera and Drosophila 
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vision. The model reported R2 values >0.993 for all five receptor classes. For 

more information on the methodology see Troscianko & Stevens (2015).  

 

Mean hue values were calculated for each wing that described the overall 

wing hue, and in addition the standard deviation in hue values for each wing 

was calculated in each hue channel to measure the colour complexity present 

in each wing display (e.g. wings of a single shade of grey would have a low 

variation in hue, while wings containing multiple shades of grey would have a 

high variation in hue). Cone-catch quanta were converted to opponent hue 

channels by dividing the values of a primary hue channel by the sum of that 

primary channel and a second opponent hue channel (e.g. the green-blue 

opponent channel was calculated as: Rh6/(Rh6+Rh5)) (Kelber et al. 2003). 

 

Statistical analyses 
All statistical analyses were performed in R version 3.1.2 (R Core Team 

2012). General Linear Mixed Models (GLMM) were implemented in lme4 

(Bates et al. 2015).  

 

Cone-catch quanta means and standard deviations were compared between 

sexes and treatments with GLMMs fit with sex, treatment, and their interaction 

as fixed effects, and population replicate and individual fly ID as random 

effects. Fixed effects were tested for significance using the Anova function in 

the car package (Fox & Weisberg 2011). Where a significant sex by treatment 

interaction was present, Tukey contrasts adjusted for multiple comparisons 

were obtained from the GLMMs using the lsmeans package (Lenth 2016). 

Where no significant interaction between sex and treatment was found, 

significant GLMM terms explaining differences in WIP traits are reported. We 

present cone-catch quanta as proportional luminance values that describe the 

proportion of light reflected by the wing (i.e. the cone catch).  

 

Principal component analyses (PCA) were conducted on opponent channel 

data to reduce the dimensionality of the dataset and account for high levels of 

correlation between the cone-catch values across opponent channels. 

Principal components (PCs) derived from the PCAs were considered 
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biologically significant if their associated eigenvalue was greater than 1.0 

(Norman & Streiner 2008), and the loading of PCs to each CHC peak was 

considered significant if greater than 0.35 (Tabachnick & Fidell 2013). 

Statistical testing of the principal component data was conducted in the same 

manner as for the cone-catch quanta data. 
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Tables and Figures 

 
Table 1 Principal component loadings and eigenvalues for mean hue. Significant 
values in bold (see methods). 

 
PC1 PC2 PC3 PC4 

Eigenvalue 1.906 0.55036 0.25385 0.003604 
% variance explained 90.82 7.572 1.611 0 

Opponent channel loadings 
Rh5-Rh3 0.4612392 -0.8602175 -0.2174468 0.001113033 
Rh6-Rh4 0.5198955 0.2029763 0.2958405 -0.775233978 
Rh6-Rh1 0.4992545 0.4496475 -0.7188915 0.178205136 
Rh1-Rh4 -0.517409 -0.1290101 -0.590246 -0.606014826 

 
 
Table 2 Principal component loadings and eigenvalues for colour contrast. 
Significant values in bold (see methods). 

 
PC1 PC2 PC3 PC4 

Eigenvalue 3.19747867 0.57029664 0.21800001 0.01422468 
% variance explained 79.94 14.26 5.45 0.356 

Opponent channel loadings 
Rh5-Rh3 0.4337565 0.79945583 -0.392925 -0.135409 
Rh6-Rh4 0.5393147 -0.19742944 0.4330702 -0.6947024 
Rh6-Rh1 0.4749943 -0.56499812 -0.6647992 0.1148894 
Rh1-Rh4 0.5434845 0.05166349 -0.4648679 0.6970318 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



121 
 

 
Figure 1 Examples of Drosophila wing interference patterns (WIPs) 

photographed in this study. The figure shows false-colour where Drosophila 

Rh6 is shown in red, Rh5 is shown in green, and Rh4 is shown in blue. 

Therefore any blue colours show ultraviolet peaks, while red and green show 

green and blue peaks respectively. 

 

 
Figure 2 Mean luminance of WIPs as measured by average stimulation of the 

broadband Rh1 photoreceptor in the Drosophila visual system. Boxes 

represent the interquartile range, black bars are medians, white diamonds are 

means. Differences in letter annotation denote significance at p<0.05. 
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Figure 3 Luminance contrast of WIPs as measured by the standard deviation 

of the average stimulation the broadband Rh1 photoreceptor in the Drosophila 

visual system. Boxes represent the interquartile range, black bars are 

medians, white diamonds are means. Differences in letter annotation denote 

significance at p<0.05. 
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Figure 4 Principal component (PC1) means and standard errors explaining 

variation in the opponent channels Rh5-Rh3, Rh6-Rh4, Rh6-Rh4, and Rh1-

Rh4 for both mean hue (left) and colour contrast (right). Differences in letter 

annotation denote significance at p<0.05. 
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Chapter 7 

General discussion 

 

Intralocus sexual conflict (IASC) occurs as a consequence of males and females 

being shaped by natural selection to pursue divergent life histories and reproductive 

strategies while still sharing a genome (Parker 1979). IASC has implications for a 

range of fundamental evolutionary processes, ultimately playing a large role in both 

the evolution of sexual dimorphism and in maintaining additive genetic variation in 

wild populations (Rice & Chippindale 2001; Chapman et al. 2003; Arnqvist & Rowe 

2005; Bonduriansky & Chenoweth 2009). Despite this, there is little empirical 

evidence of the operation and resolution of IASC that simultaneously captures 

information about (i) the traits subject to sexually antagonistic selection, (ii) the 

genetic architecture underlying these traits, and (iii) the dynamics of the conflict 

across mutational steps. In this thesis I have presented research in which we 

investigated a trait that is subject to sexually antagonistic selection in certain genetic 

backgrounds where the genetic architecture underlying the conflict is known, and 

there are multiple mutational steps across which to track the progress of any sexual 

conflict. Additionally, we have explored the potential for IASC in wing interference 

patterns, a newly discovered trait subject to mate choice in Drosophila (Shevtsova & 

Hansson 2011). Sexual signals are classic examples of traits with a history of 

sexually antagonistic selection and IASC (Chippindale et al. 2001; Chapman et al. 

2003; Arnqvist & Rowe 2005; Bonduriansky & Chenoweth 2009), but we know very 

little about wing interference patterns, their underlying genetic architecture, or the 

evolutionary forces that shape them.  

 

Chapter 2 explores the presence of intralocus sexual conflict over the Cyp6g1-BA 

allele in a genetically heterogeneous and recently collected genetic background 

using a combination of trait- and population-based approaches. The BA allele is 

sexually antagonistic when back-crossed to the old isogenic lab strain Canton-S 

(McCart et al. 2005; Smith et al. 2011; Rostant et al. 2015) whose collection 
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predates the widespread use of insecticides, and so is naïve to both the selection 

imposed by insecticides and any genetic modifiers that might have since evolved to 

offset costs to resistance. It was not known if this sexual antagonism is present in 

modern genomes that have been exposed to the selection imposed by insecticides. 

Smith et al. (2011) back-crossed the BA allele to a recently collected isogenic 

background and did not detect a male cost to resistance, but it is unclear if this would 

be true in genetically heterogenous populations where epistasis may alter the degree 

or sign of any fitness effects. We found that the BA allele confers a fecundity benefit 

to females as a result of increased egg production, and found indirect evidence of a 

cost of resistance to males in the form of reduced reproductive investment. However, 

we found no differences in pre- or post-copulatory competitive ability in resistant and 

susceptible males in paired competitive bouts. We suspect that the design of our 

male fitness assays may have prevented the reduction in reproductive investment 

from having any impact on fertilisation success as males were only exposed to single 

bouts of postcopulatory competition. Where decreased reproductive investment 

alters seminal protein effects on female remating behaviour, repeated bouts or 

constant exposure to competition would be required to detect these effects. We 

detected significant sexual dimorphism in both resistance to DDT and Cyp6g1 

expression for both the BA and M allele. A mathematical model parameterised with 

our fitness estimates predicted that the BA allele should go to fixation, but 

experimental evolution revealed that the BA allele was subject to balancing 

selection. This balancing selection, combined with the indirect evidence of a male 

cost and significant sexual dimorphism, suggests that attenuated IASC may be 

operating over the BA allele in this population. However, there are several alternative 

explanations that could also produce this balancing selection, and these were the 

focus of Chapter 3. 

 

In Chapter 3 we test the possibility that the balancing selection detected in Chapter 2 

could be explained by overdominance or patterns of sex-specific dominance for the 

fitness effects of the BA allele. To do this we assayed sex-specific fitness measures 

for both homozygotes (BA/BA, M/M) and heterozygotes of both parental origin 

(BA/M, and M/BA). Due to possible limitations with the male fitness measures used 

in Chapter 2, we used a modified male fitness assay that integrates constant 
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exposure to both pre- and post-copulatory sexual selection to test for fitness effects 

that the assay design in Chapter 2 may have overlooked. We found no additional 

evidence for a male cost of resistance, and revealed that neither overdominance nor 

sex-specific patterns of dominance could explain the balancing selection we 

previously detected at the Cyp6g1 locus. This data rules out all the major alternative 

explanations for the observed balancing selection at the Cyp6g1 locus but also fails 

to provide additional evidence for the operation of IASC despite an experimental 

design that should be more sensitive to detecting male costs. As the data from 

Chapter 2 suggests that any IASC in this genetic background is likely to be 

attenuated, where the male costs are relatively small in magnitude, it may have been 

necessary to more stringently control for the genetic background between resistant 

and susceptible individuals in order to detect any effect. Alternatively, it may be that 

the average level of Cyp6g1 expression in this population does not result in an 

average cost at the population level, but there still exists a negative intersexual 

genetic correlation for the fitness effect of the BA allele such that the most resistant 

males are the least fit. To test both of these possibilities we opted to employ 

isofemale lines to estimate these quantitative genetic parameters in Chapter 4. 

 

Chapter 4 explores whether explicitly controlling for the genetic background using 

isofemale lines from the same population as Chapters 2 and 3 would allow us to 

detect IASC over the Cyp6g1-BA allele and explain the balancing selection we 

observed in Chapter 2. We estimate a negative genetic correlation between the 

fitness effect of the BA allele between the sexes, as well as a negative genetic 

correlation between relative Cyp6g1 expression and relative male fitness between 

resistant and susceptible males. We again detect an overall fecundity benefit to 

resistant females, but in this instance we also find direct evidence for an overall cost 

to resistance in males. When used to parameterise the mathematical model from 

Chapter 2, the magnitudes of these sexually antagonistic fitness effects are 

predicted to maintain the BA allele at an intermediate frequency.  

 

Taken together, the data from Chapters 2-4 reveal that even after decades of strong 

directional selection imposed by insecticides (that likely mask any sexual antagonism 
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in the wild) an attenuated level of IASC still operates over the BA allele and the 

expression of Cyp6g1. One factor that we have not investigated but which can 

influence the costs of resistance is the presence of any gene by environment 

interactions (Janmaat & Myers 2005). As all our insecticide resistance experiments 

have been conducted in the relative luxury of the lab, experimental animals are likely 

to be in good condition and not facing any significant challenges in terms of viability 

or survival. It may be the case that the cost of the BA allele in males is more 

apparent when males are in poorer condition or competing in a more wild-like 

environment, and indeed this may help explain the discrepancy between our trait- 

and population-level experiments in Chapter 2. In the future it would also be 

interesting to investigate the sex-specific fitness effects of the other Cyp6g1 alleles in 

this and other recently collected genetic backgrounds to examine whether more 

derived alleles (i.e. the recently evolved de novo mutations) exhibit less attenuated 

IASC. To a similar end, we then chose to examine this question in a genetic 

background in which strong IASC over the BA allele had already been documented. 

 

Chapter 5 attempts to characterise the dynamics of IASC as it progresses across the 

Cyp6g1 series using the AA, BA, and BP alleles back-crossed for five generations to 

a single genetic background. We had intended this genetic background to be 

Canton-S, in which the BA allele is strongly sexually antagonistic (McCart et al. 

2005; Smith et al. 2011; Rostant et al. 2015), but after experimentation had 

concluded we were informed by the Bloomington Drosophila Stock Center that the 

Canton-S stock with which they had supplied us had been inadvertently crossed with 

a second, unknown susceptible strain. In this new hybrid genetic background 

(Canton-X), we found no evidence of sexual antagonism across the series, but 

observe that resistance becomes costlier across the series for both sexes, and that 

the resistance conferred by all three alleles is more costly for females than males. 

While the reduction in fitness across the series in both sexes can be simply 

explained as an energetic cost of expressing higher levels of Cyp6g1, females 

experiencing higher costs across all the alleles is more difficult to explain in the 

context of previous work. In all previous work where sex-specific fitness effects have 

been assayed, Cyp6g1 alleles tend to be beneficial for females and deleterious or 

neutral for males. The reversal of this trend in this hybrid genetic background is 
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puzzling, and our lack of knowledge about the provenance of the genetic background 

makes it even more difficult to interpret. However, if females are resource limited for 

fitness in the Canton-X genetic background while males are female limited, the 

energetic costs of resistance would be more acutely costly to females. The existence 

of these sex-specific fitness effects, while not sexually antagonistic, highlights the 

importance of considering sex when investigating the fitness effects of insecticide 

resistance. 

 

Chapter 6 investigates the potential for IASC in wing interference patterns (WIPs) by 

testing whether WIPs can evolve independently between the sexes in Drosophila 

simulans. Using calibrated digital images and a model of Drosophila vision we 

compared the the WIPs of male and female Drosophila simulans from replicate 

populations forced to evolve with elevated or relaxed sexual selection on males for 

68 generations. We found that male WIPs evolved to be brighter, higher contrast, 

and longwave-shifted in response to sexual selection, whereas female WIPs showed 

no associated response. This is the first direct evidence that WIPs can evolve in 

response to sexual selection in Drosophila, that WIPs are sexually selected in D. 

simulans, and that WIPs do not appear to be constrained from detectable 

independent evolution by acute IASC. WIPs are structural colouration based on wing 

thickness and as such they are subject to both sexual selection (mate choice on 

males) and natural selection (for flight performance in both sexes). As WIPs and 

flight capability are both mediated by wing morphology they are likely governed by 

the same underlying genetic architecture. This positive genetic correlation, combined 

with the need to maintain flight capability, likely places an upper limit on the 

resolution of any sexual conflict that makes WIPs an exciting new avenue to 

investigate IASC. 
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