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Abstract — Improving the reliability and survivability of wave 

and tidal energy converters, whilst minimising the perceived 

risks and reducing the deployment costs, are recognised as key 

priorities to further develop the marine energy market. 

Computational decision-making models for offshore renewables 

have demonstrated to be valuable tools in order to provide 

support in these strategic areas. 

In this paper, the authors propose an integrated approach of 

Monte Carlo simulation and Evolutionary Algorithms to address 

these challenges. A time-domain method based on the Monte 

Carlo technique, with specific consideration of marine renewable 

energy requirements, is used for the assessment of the devices 

and the characterization of the offshore farms. This permits the 

obtainment of energy predictions and indications on the 

reliability, availability, maintainability and profitability of the 

farm.  

A multi-objective search, by means of a specifically designed 

Genetic Algorithm, is then used to determine the ideal variation 

of inputs set for the improvement of the results. Suitable 

objective functions aiming at the minimization of the 

maintenance costs and the maximization of the reliability are 

considered for this purpose.  The outcomes obtainable for the 

assessment of an offshore farm, as well as suggested practices for 

the optimisation of the Operation and Maintenance (O&M) 

procedures, are introduced and discussed. Results on the ideal 

trade-off solutions between conflicting objectives are presented. 

 
Keywords - O&M, Reliability, Multi-Objective Optimisation, 
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I. INTRODUCTION 

Operational Expenditures (OpEx) have been recognised as 

major contributors to the final cost of the energy produced 

from offshore renewables, accounting for up to one third of 

the total amount [1]. Reduction of such costs, together with 

improvements on the reliability and survivability of ocean 

energy devices, are therefore fundamental in order to raise 

trust and investments on ocean energy devices. Under these 

circumstances, a number of computational models have been 

developed to support the strategic planning of the O&M 

activities for marine renewables. Even if the specific focus or 

type of outcome provided may vary from one tool to another, 

the main goal of such tools is to capture the mutual 

interactions between the internal components of the device, as 

well as between the device and the access systems selected for 

its maintenance. This, in turn, leads to improvements in the 

design choices, selection of the most appropriate O&M assets, 

planning of the ideal maintenance schedule and mitigation of 

the economic and technical risks. 

Due to the higher maturity of the offshore wind industry 

with respect to other marine renewables, specific O&M tools 

have so far been focused mainly on this sector. Being in a 

more advanced stage of development, the faster spread and 

growth of this technology has augmented the needs for 

methodical ways of managing the assets of the farm, 

providing at the same time greater possibilities of application 

to developers who wanted to generate and calibrate their 

models. A thorough review of available modelling tools for 

offshore wind turbines is provided in [2]. Most of these 

models permit to estimateallow for the estimation of different 

aspects of the offshore farm (e.g. lifetime costs, energy 

production, losses, etc.), and more generally in terms of 

reliability, availability and maintainability (RAM) analysis [3]. 

These, allow for the characterization of available assets and 

capabilities, permitting to identifythe identification of possible 

weaknesses of the management strategy andto consider 

alternatives. The eventual improvement of the O&M 

procedures is left to the decision maker, who uses the 

information acquired during the modelling phase to propose 

changes or variation to the current strategy. The effectiveness 

of the proposed improvements can then be assessed repeating 

the simulations, comparing the outputs with those previously 

obtained. Two considerations are important to note. Firstly  

this approach requires a deep understanding of the dynamics 

of the offshore farm, a strong knowledge of its practical 

aspects and some degree of experience with the computational 

tool. Secondly, effective solutions may still remain 

unexplored if for any reason not all the possible combinations 

of assets and strategies are considered. For this reason, in this 

work the use of multi-objective optimisation and genetic 

algorithms is proposed in order to automate the optimisation 

procedure and explore a wider range of possible solutions. 

In the next section II, the Monte Carlo tool developed for 

the characterisation of an offshore farm, together with 

examples of the information obtainable and possible use for 

improvement of the farm will be introduced. Similarly, in 

section III, the evolutionary algorithm techniques used to 

promote the automated optimisation of the O&M procedures 

will be presented, together with the outcomes of such 

implementation. Finally, in section IV, the achievements of 
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this combined approach as well as proposals for future 

developments of the procedure will be discussed. 

II. CHARACTERISATION – MONTE CARLO TOOL 

The O&M modelling tool developed by the authors has 

been conceived specifically for ocean energy devices, in such 

a way to deal exclusively with the information valuable to 

owners or operators for the effective management of an 

offshore renewable farm. The model is flexible regarding 

technologies, including most wave energy converters (WECs), 

tidal and marine current turbines (MCTs) and offshore wind 

turbines (OWTs). 

A. Methodology 

The main concept of this tool is hereinafter described. 

Starting from the relevant Metocean data of the offshore 

location where the devices will be deployed, it is possible to 

simulate the lifecycle of the offshore farm (or a different pre-

established amount of time) by adding the specifications of 

the project. These, are primarily intended as information on 

the structure of the device (subassemblies and components) 

and correspondent reliability data, as well as the device’s 

power performance (power curve or power matrix depending 

on the technology). In addition, specifics of the access 

systems that will be used for the maintenance of the farm can 

be exploited to analyse the effects of planned and unplanned 

interventions during the simulated period. Therefore, 

analysing the results obtained from the simulation it is 

possible to attain the complete characterisation of the 

operational aspects of the offshore farm. This permits the 

achievement of significant insights on the functioning of the 

devices, in particular in terms of generated yield, revenue, 

expenses, availability and reliability of the farm. As a 

consequence, the presence of eventual underlying problems, 

as well as cost drivers, can be directly identified. 

The tool can be divided in four main sub-modules. These, 

within the workflow of the whole model, are illustrated in 

Figure 1.  

 

 

Fig. 1 Workflow Diagram of the O&M characterisation tool. 

The first sub-module is the ‘Energy module’. This uses the 

Metocean information on wave, wind and water currents and 

the power characteristics of the devices, in order to provide an 

estimation of the energetic yield produced in ideal conditions, 

i.e. lack of failures and scheduled or unexpected disruptions. 

The length of the individual timestep in the timeseries, as well 

as the interval between two consecutive values of generated 

power in the power curve (or power matrix) of the device, is 

variable depending on the information available to the tool 

user. The second is the ‘Access module’. This exploits again 

the Metocean data available, but this time in conjunction with 

the capabilities of the access systems considered (vessels, 

workboats, helicopters, etc.) to assess the accessibility of the 

offshore farm. If available, this module relies on the use of 

Mojo Maritime’s proprietary offshore operations planning 

software Mermaid [4] in order to reduce the assumptions 

concerning the accessibility of the devices and obtain a 

detailed daily range for the time required for each offshore 

operation. A ‘Failure module’ is then used to generate a 

statistical distribution of unexpected failures or degradation of 

the devices according to the reliability data provided (failure 

rates, redundancies, criticalities, dependencies, etc.). These 

figures, together with procurement and repair time of each 

component, availability of eventual spare parts in stock and 

availability of the required access systems, are used to 

calculate the downtime of the farm and the consequent 

energetic (and economical) loss. The last sub-module is the 

‘O&M module’, which is used to manage both corrective and 

scheduled maintenance interventions. The former are verified 

by analysing and comparing the maintenance categories of 

components and access systems, allowing the intervention 

only if there is a match between these categories. The latter, 

besides being subject to the same check, account for all the 

pre-established and timetabled inspections, repairs and 

replacements. In addition, this module considers fault 

categories and consequence classes [5] to assess the 

consequences of each intervention in terms of required crew, 

extent of the operation and economic aspects. 

These four sub-modules interact in a single probabilistic 

model, which uses Monte Carlo simulation techniques [6] to 

calculate the empirical statistical distribution of results to 

characterise the key performance parameters of the offshore 

farm.  

B. Outcomes 

The outputs produced at the end of the simulation analyse 

and compare the various options and access systems in terms 

of reliability, availability and maintainability of the farm. 

These include estimations of the yield generated and lost as a 

consequence of the failures, economic production and losses, 

reliability of the components, availability of the farm and 

probability distributions of the results obtained. Some 

examples of these results, shown below, have been extracted 

from previous works of the same authors [7,8]. 

In Figures 2 and 3 the power delivered to the grid and the 

availability (time-based and energy-based) of a WECs farm 

are compared for two different access systems (a workboat 

and a multicat vessel). These figures permit to assessallow for 

the assessment of which access system is the most effective in 

operating on the farm, as well as the relative differences in 

productivity due to higher or lower effectivity in the overall 



maintenance of the farm. However, final results must always 

be weighed against the direct and indirect costs (e.g. standby 

rate, mobilisation, crew, etc.) related to the choice of an 

individual access system, or a combination of these in an 

eventual mixed fleet. 

 

 

Fig. 2 Example of power delivered and power lost due to unexpected failures 

using a workboat (Windcat) and a multicat vessel (HF4) for a WECs farm [8]. 

 (© 2016 Taylor & Francis Group, London, UK. Used with permission) 

 

 

Fig. 3 Example of time-based and energy-based availability calculation using 
the two access systems for a WECs farm [8]. 

 (© 2016 Taylor & Francis Group, London, UK. Used with permission) 

 

An example of results on the reliability of the devices is 

illustrated in Figure 4. Here, each component of the device is 

analysed in terms of its percentage contribution to the total 

number of failures and to the respective downtime caused as a 

consequence of the failure. A component can be classified as 

any element of the device’s infrastructure (e.g. subassembly, 

subsystem or individual item). 

 

 

Fig. 4 Example of calculation of percentage contribution to total number of 
failures and total downtime caused for each component of the WEC [7]. 

This information permits not only to identifythe 

identification of the most sensitive components (those that fail 

more often), but also and especially those that cause the major 

amounts of downtime in the event of failure. This allows the 

decision-maker to focus the maintenance strategies on these 

components, or, if possible, replace them for more reliable or 

easier to repair products. Likewise, this information can be 

used to rank the components according to their failure 

occurrence and severity, in order to gain insights for the 

improvement of future designs of the same device and adopt 

appropriate risk mitigation measures. 

Other results include the analysis of the resource available 

(wind, wave or water current), the taxonomy of the device 

according to the Reliability Block Diagram (RBD) technique 

[9], and monthly and annual statistics, as well as  probability 

exceedances, on power produced, power lost, revenue and 

economic losses. 

III. OPTIMISATION – EVOLUTIONARY ALGORITHMS 

Once the characterisation is completed and a clearer picture 

of the operability of the farm has been obtained, a number of 

adjustments can be put in place in order to improve the 

productiveness and/or other aspects of the farm. Examples of 

possible improvements include, but are not limited to [7]: 

choice of a different access system with higher capabilities or 

lower running costs, introduction of preventive maintenance 

activities on the targeted components, replacement of sensitive 

components with more reliable counterparts, introduction of 

redundant elements. However, in order to explore the full 

range of possible alternatives for the optimisation of the 

maintenance assets, a systematic approach is required.  

The task of improving the O&M procedures of an offshore 

farm is not trivial, since various and often contradictory 

aspects, weighed on several parameters and decision variables, 

have to be optimised. For instance, a solution that maximizes 

the reliability or the availability of the farm, may not be the 

most cost effective if the maintenance efforts and the 

associated cost are too high. In other words, it is highly 

unlikely that a solution is optimal with respect to all of the 

objectives. Hence, a suitable trade-off according to the 

requirements of the farm or to the preferences of the decision-
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maker has to be sought. Generally, situations like this are 

known as multi-objective optimisation problems, defined as 

those circumstances in which the goals are generally 

conflicting preventing simultaneous optimization of each 

objective [10].  

A. Methodology 

Evolutionary algorithms, so named because of their 

adaptation from biological evolution processes, are 

traditionally recognised as well-suited to solve both single-

objective and multi-objective optimisation problems. Within 

this class of optimisation methods, Genetic Algorithms (GAs) 

[11] are the most popular, thanks to their remarkable 

applicability to the most varied types of problem. GAs are 

based on a direct analogy with the process of natural selection 

and evolution, and work according to the scheme showed in 

Figure 5. A population, intended as a group of individuals, is 

created at random. In this, each individual represents a 

candidate solution to the problem, and it is encoded using 

binary code or other representations. The individuals are 

evaluated according to their fitness with respect to a pre-

defined objective, and then selected and crossovered 

proportionally to their fitness score. Finally, each new 

generated individual is randomly mutated to preserve diversity 

in the population. This process is repeated until certain 

conditions are met or the maximum number of generations is 

reached. In this way, over successive generations, the 

population is evolved toward a range of optimal solutions. 

 

 

Fig. 5 Workflow of a Genetic Algorithm. 

 

To address the challenges in planning a reliable and cost 

effective management procedure for a marine farm, the 

objectives considered in this work were the minimisation of 

the maintenance costs and the maximisation of the reliability 

of the devices. The binary representation has been chosen to 

encode the individuals, due to its high adaptability to the 

functions and operators implemented in the GA. Each 

individual is represented by its chromosome, which contains 

the information about the available assets of the offshore farm 

and their respective utilisation in binary digits of 0 and 1. 

These values encase the number, type and respective 

properties of the access systems of the farm, as well as 

information and reliability properties of the components of the 

device. Thus, the information contained in each chromosome 

represents the decision variables of the stated problem. An 

example of this representation is illustrated in Figure 6. A 

population containing different combinations of these values 

is generated at the beginning of the optimisations procedure. 

Appropriate relationships between parameters, decision 

variables and fitness scores are then needed to evaluate each 

candidate solution and establish a ranking of the best 

individuals. Such relationships have been established thanks 

to the modelling experiences gained with the O&M 

characterisation tool described in the previous section, and 

provide a direct link between the digits of the chromosome 

and the values of maintenance costs and reliability of the farm. 

 

Fig. 6 Example of representation in binary code for individuals (candidate 

solutions) in the GA. 

 

The selection of the individuals is operated using the 

roulette wheel method [12], which gives to each individual a 

probability of being selected for crossover proportionally to its 

fitness score. A crossover rate is specified, and  compared 

against a randomly generated number to establish whether the 

generation of a new individual using two selected parent 

solutions should occur or not. In the first case the ‘child’ 

chromosome is generated by mixing two different parts of the 

selected parents, otherwise two new individuals are selected 

for crossover. Similarly, each new generated individual is 

altered through the mutation operator, meaning that a certain 

number of bits are randomly ‘flipped’ from 0 to 1 or vice 

versa. Analogously to crossover, a mutation rate has to be 

specified for this operator to establish whether the alteration 

will happen or not. In addition, in order to avoid that the best 

solutions disappear between one generation and the next one, 

a certain number of individuals among those that have 

obtained the highest score during the evaluation are preserved 

as they are through the process. In this way, their genetic 

heritage is not lost in case they are not selected for crossover. 

This mechanism is called elitism, and those automatically 

preserved are called elite individuals. Finally, once that the 

best individuals have been found, these can be re-converted in 

terms of offshore assets and properties of the device through 

decoding functions expressly implemented for this purpose. 



B. Outcomes 

1) Single-objective optimisation: At first, only one 

objective is considered: the minimisation of the maintenance 

costs. This allows for the calibration of the parameters and 

confirmation of the effective functioning of the GA, 

permitting to verifythe verification of the evolution of the 

population,if generation by generation, the population evolves 

towards those solutions that satisfy the objective, i.e. provide 

lower maintenance costs. The main parameters for the 

execution of the implemented GA, adjusted from [13] in order 

to effectively explore candidate solutions, are given in next 

Table I. 

 

TABLE I 

INPUT VALUES FOR THE GA 

Parameter Value 

Generations 40 

Population size 30 

Elite individuals 3 

Crossover rate 0.7 

Mutation rate 0.01 

 

In Figure 7 the values of the maintenance cost associated to 

the best individual and the average of the population are 

shown for each generation. The best individual is considered 

the one providing the minimum maintenance costs in the 

population. Despite acceptable fluctuations in the mean value 

of the cost functions for each population, it can be seen how 

both the value of the best individual and population average 

improve (get lower) over successive generations. In order to 

verify if there are more solutions providing the same value of 

the cost function, as well as to vet the diversity of the 

population, the distribution of the maintenance costs for all the 

individuals of the final population is plotted in Figure 8. Here, 

a certain variety within the pool of individuals can be 

observed, confirming the effective search of the implemented 

algorithm in the objective space containing all the possible 

solutions for this first problem. 

 

 

Fig. 7 Trend of best (lowest) and mean cost function values over the 

generations. 

 

 

Fig. 8 Distribution of the cost function over all the individuals of the last 

generation. 

 

2) Multi-objective optimisation: When also the second 

objective, the maximisation of the reliability of the farm, is 

included, the problem becomes a multi-objective optimisation 

of the inputs set. Each solution is now evaluated according to 

two different criteria (minimisation of the costs and 

maximisation of the reliability). While a number of suitable 

methods exist to solve multi-objective optimisation problems 

[10], the approach proposed in this work consists of 

combining the individual optimisations (and corresponding 

searches) of three separate objectives: minimisation of the 

costs, maximisation of the reliability, minimisation of the 

cost/reliability ratio. Figure A1 in the appendix shows the 

result of the first optimisation. The individuals of all the 

generations are plotted in function of their values of reliability 

and maintenance cost. The individuals of the last generation 

are highlighted to prove that the search moves towards those 

solutions that satisfy the objective, in this case minimise the 



cost. Analogously, in Figures A2 and A3Fig.  the same plots 

are reproduced for the other two objectives, the maximisation 

of the reliability and the minimisation of the cost / reliability 

ration respectively. Also in this case the individuals of the last 

generation are highlighted to check the correct directionality 

of the search, which varies moving towards different areas of 

the plot depending on the objective considered. This can be 

inferred also looking at the density of the solutions for the 

distinct objectives. The three separate optimisations identify a 

large set of possible solutions to the proposed problem, 

providing the corresponding values of cost and reliability for 

each. The complete range of such possibilities can be 

visualised when the results of the different searches are 

merged into a single plot. Figure 9 shows how the full 

objective space explored in this way is much larger with 

respect to that explored in each individual optimisation, 

providing a comprehensive assortment of solutions to define 

the best arrangements for the offshore farm. In all these 

figures both the cost and reliability functions are represented 

in arbitrary units in order to compare the different solutions 

relatively to each other. 

 

 

 

Fig. 9 Reliability / Cost scatter plot for the three objectives combined: 

minimisation of the costs, maximisation of the reliability and minimisation of 
the cost / reliability ratio. 

 

Further information can be extracted from the merged 

objective space by isolating those solutions that cannot be 

improved without worsening at least one of the objectives, as 

shown in Figure 10. These solutions constitute a frontier 

known as Pareto optimal, and represent the ideal set of trade-

offs for the defined constraints. In this case, moving from one 

solution in the Pareto front to its neighbouring one would 

mean either to achieve a higher reliability at a higher cost, or 

reduce the maintenance costs at a lower reliability. This 

allows the decision-maker to get a complete picture of the 

different options available, and select the solution that 

satisfies the needed requirements or preferences. In other 

words, the wanted input set of assets and properties of the 

farm, which guarantees the desired balance between reliability 

and costs, can be found immediately without the need of 

repeating the simulation for many different combinations. 

 



 

Fig. 10 Pareto frontier showing the best trade-off solutions for the three 
objectives combined. 

IV. DISCUSSION AND CONCLUSIONS 

Due to their high unpredictability, O&M expenses still 

constitute a substantial portion of the total costs of a marine 

renewable project. As a consequence, an effective O&M 

planning prior to the deployment of the devices could deliver 

high value to offshore farm owners and, in the long term, be 

one of the most effective approaches to foster and consolidate 

the marine energy market. In order to achieve this result 

innovative, specific and adaptable computational tools are 

required for the characterisation and optimisation of the O&M 

procedures for marine renewable farms. In fact, although the 

relatively restricted availability of real data limits the 

verification and validation of these tools against real cases, 

computational simulation remains the preferable approach to 

mitigate the risks of offshore renewables. In this work, a 

combined approach based on Monte Carlo simulation and 

multi-objective optimisation via evolutionary algorithms, is 

proposed to face this challenge and offer new methodologies 

for the sensible management of the maintenance assets of an 

offshore farm. On one hand, the Monte Carlo tool permits the 

characterisation of all the reliability, availability and 

maintainability related aspects of the farm, allowing for the 

identification of major weaknesses and ideas of improvement 

in these areas. Figures on energy production, generated 

revenue, maintenance expenses, repair and replacement costs, 

access systems accessibility and other reliability related 

parameters can be immediately estimated to get a 

comprehensive overview of the farm viability. In addition, 

different choices, planning strategies and maintenance 

schedules can be directly evaluated using the comparison tools 

integrated in the model. A major shortcoming of this approach 

is that the results obtained strongly depend on the quality of 

the inputs provided, i.e. are more accurate if the data on 

reliability of the devices and capabilities of the access systems 

are specific for the analysed offshore farm. These, especially 

for wave and tidal devices, often rely on data approximated or 

adjusted from other sectors, due to the limited experience with 

these technologies and the restricted availability of 

information due to commercial confidentiality reasons. As 

more data will become available the computational tools may 

be adapted in response. Besides, the alternatives and 

variations to the original input set which defines farm assets 

and maintenance strategy, is limited to the user proposals, 

hence subject to his/her personal experience and engineering 

judgment. On the other hand, the multi-objective optimisation 

by means of evolutionary algorithms permits the exploration 

of a large range of suitable alternatives in a short time, 

providing valuable, timely support at the moment of taking the 

most adequate decisions for the management of the farm. The 

process of proposing corrective measures for the previously 

identified areas of amelioration is thus systematic, automated 

and improved.  

The drawback of this method is that direct relationships 

between the decision variables of the problem (the input set 

representing both the assets of the farm and the reliability 

adjustments of the devices) and the value of the objective 

functions, have to be established in order to evaluate the 

individuals during the GA. These, despite being useful 

shortcuts when limited information on the expected outcomes 

of a problem is available, are still educated guesses, which, 

according to the definition of heuristics,  narrows the search in 

a domain that it is not well defined and understood but do not 

guarantee optimal solutions if poorly implemented. Although 

many objectives can be proposed to improve the O&M 

aspects of the farm, the minimisation of the costs and the 

maximisation of the reliability are proposed in this work as 

they cover two of the most important aspects of the farm 

administration. Depending on the preferences of the farm 

stakeholders, or as an input for future work, other aspects, like 

availability, maintainability, profit and others, could be 

included among the objectives to consider for the optimisation 

of the farm logistics. As advised above, additional functions, 

appropriate to establish a direct link between the parameters 

of the candidate solutions and the assets of the farm, should be 

determined for this scope. Similarly, other evolutionary 

formulations, that exploit different search techniques and 

optimisation methods [14], can be implemented with the aim 

of extending the investigated space and find previously 

unexplored solutions.  
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APPENDIX 

 

 

Fig. A1 Reliability / Cost scatter plot for the first objective: minimisation of 

the costs. 



 

 

Fig. A2 Reliability / Cost scatter plot for the second objective: maximisation 

of the reliability. 

 

 

Fig. A3 Reliability / Cost scatter plot for the third objective: minimisation of 

the cost / reliability ratio. 

 


