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Abstract

Convection in astrophysical systems must be maintained against dissipation. Although the effects of dissipation
are often assumed to be negligible, theory suggests that in strongly stratified convecting fluids, the dissipative
heating rate can exceed the luminosity carried by convection. Here, we explore this possibility using a series of
numerical simulations. We consider two-dimensional numerical models of hydrodynamic convection in a
Cartesian layer under the anelastic approximation and demonstrate that the dissipative heating rate can indeed
exceed the imposed luminosity. We establish a theoretical expression for the ratio of the dissipative heating rate
to the luminosity emerging at the upper boundary, in terms only of the depth of the layer and the thermal scale
height. In particular, we show that this ratio is independent of the diffusivities and confirm this with a series of
numerical simulations. Our results suggest that dissipative heating may significantly alter the internal dynamics
of stars and planets.
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1. Introduction

Convection occurs in the interiors of many astrophysical
bodies and must be sustained against viscous and ohmic
dissipation. This dissipation is often neglected in astrophysical
models, e.g., in standard stellar 1D evolution codes (e.g.,
Chabrier & Baraffe 1997; Paxton et al. 2011), though its effects
have lately been considered in a few specific contexts (e.g.,
Batygin & Stevenson 2010; Browning et al. 2016).

Astrophysical convection often occurs over many scale
heights. While for incompressible fluids the contribution of
dissipative heating to the internal energy budget is negligible
(Kundu 1990), Hewitt et al. (1975, hereafter HMW) showed
that in strongly stratified systems, it is theoretically possible for
the rate of dissipative heating to exceed the luminosity. This
was supported numerically by Jarvis & McKenzie (1980) for
the case of a compressible liquid with an infinite Prandtl
number, Pr (the ratio of viscous and thermal diffusivities),
appropriate for models of the Earth’s interior.

In this study, we aim to establish the magnitude of
dissipation for conditions more akin to those encountered in
stellar interiors. Specifically, we consider dissipation in a
stratified gas at finite Pr and examine how the total heating
changes as system parameters are varied. To begin, we briefly
review some relevant thermodynamic considerations that
underpin our work.

1.1. Thermodynamic Constraints on Dissipative Heating

For a volume V of convecting fluid enclosed by a surface S
with associated magnetic field B, in which the normal
component of the fluid velocity u vanishes on the surface
and either all components of u, or the tangential stress, also
vanish on the surface, local conservation of energy gives that
the rate of change of total energy is equal to the sum of the net
inward flux of energy and the rate of internal heat generation

(e.g., by radioactivity or nuclear reactions). This implies
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where ρ is the fluid density, e is the internal energy of the fluid,
Ψ is the gravitational potential that satisfies g = Y, P is the
pressure, ijt is the contribution to the total stress tensor from
irreversible processes, k is the thermal conductivity, T is the
temperature, H is the rate of internal heat generation, and E B

0m
´

is the Poynting flux (E is the electric field and 0m is the
permeability of free space). Integrating (1) over V gives the
global relation
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assuming both a steady state and that the electric current, j,
vanishes everywhere outside V. Equation (2) implies that the
net flux out of V is equal to the total rate of internal heating.
Viscous and ohmic heating do not contribute to the overall heat
flux: dissipative heating terms do not appear in Equation (2).
To examine dissipative heating, we consider the internal

energy equation:
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where σ is the conductivity of the fluid. Integrating over V, and
assuming a steady state, (3) becomes

u P dV 0. 4
Vò  + F =( · ) ( )
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is the total dissipative heating rate including viscous and ohmic
heating terms. Equation (4) implies that the global rate of
dissipative heating is canceled by the work done against the
pressure gradient. Equation (4) is only equivalent to HMW’s
Equation (22) when considering an ideal gas (so that T 1a = ,
where α is the coefficient of thermal expansion); however, in
arriving at (4), we made no assumption about the fluid being a
gas. Alboussiere & Ricard (2013, 2014) note that this
inconsistency arises because HMW assume cp to be constant
in their derivation, which is not valid when T 1a ¹ .

Alternatively, from the first law of thermodynamics, we have
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where s is the specific entropy, so (4) can also be written as

u uT s dV s T dV , 7
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where we have invoked mass continuity in a steady state
( u 0r =· ( ) ). Hence, the global dissipation rate can also be
thought of as being balanced by the work done against
buoyancy (Jones & Kuzanyan 2009).

HMW used the entropy equation to derive an upper bound
for the dissipative heating rate in a steadily convecting fluid
that is valid for any equation of state or stress–strain
relationship. For the case of convection in a plane layer, that
upper bound is
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where Lu is the luminosity at the upper boundary, Tmax is the
maximum temperature, and Tu is the temperature on the upper
boundary.

One consequence of this bound is that, for large enough
thermal gradients, the dissipative heating rate may exceed the
heat flux through the layer; this is perhaps counterintuitive, but
is thermodynamically permitted, essentially because the
dissipative heating remains in the system’s internal energy
(see, e.g., Backus 1975).

The above considerations should hold for both ohmic and
viscous dissipation. However, HMW further considered the
simple case of viscous heating in a liquid (neglecting
magnetism) and showed that the viscous dissipation rate is
not only bounded by (8), but that
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where d is the height of the convective layer, HT is the
(constant) thermal scale height, and 0 1 m is the fraction
of internal heat generation. Interestingly, the theoretical
expression (9) is dependent only on the ratio of the layer

depth to the thermal scale height and the fraction of internal
heat generation.
As expected, (9) implies that the dissipative heating rate is

negligible when compared with the heat flux in cases where the
Boussinesq approximation is valid (i.e., when the scale heights
of the system are large compared to the depth of the motion).
But it follows from (9) that Φ is significant compared to Lu if d
is comparable to HT, i.e., if the system has significant thermal
stratification. Stellar convection often lies in this regime, so it is
not clear that dissipative heating can be ignored.
This Letter explores these theoretical predictions using

simulations of stratified convection under conditions akin to
those encountered in stellar interiors. Previous numerical
simulations conducted by HMW considered only 2D Boussi-
nesq convection and neglected inertial forces (infinite Pr
approximation); later work by Jarvis & McKenzie (1980)
within the so-called anelastic liquid approximation considered
stronger stratifications but likewise assumed a liquid at infinite
Pr. We extend these by considering an ideal gas (so that

T 1a = ) at finite Pr, so inertial effects are important and
compressibility is not negligible.
In Section 2, we describe the model setup before presenting

results from numerical simulations. In Section 3, we offer a
discussion of the most significant results that emerge before
providing conclusions.

2. Simulations of Dissipative Convection

2.1. Model Setup

We consider a layer of convecting fluid lying between
impermeable boundaries at z=0 and z=d. We assume
thermodynamic quantities to be comprised of a background,
time-independent reference state, and perturbations to this
reference state. The reference state is taken to be a polytropic,
ideal gas with polytropic index m given by
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where g

c Tp,0 0
b = . Here, g is the acceleration due to gravity, cp is

the specific heat capacity at constant pressure,  is the ideal
gas constant, and a subscript 0 represents the value of that
quantity on the bottom boundary. β is equivalent to the inverse
temperature scale height and so is a measure of the stratification
of the layer, although we shall use the more conventional

N m dln 1 11b= - -r ( ) ( )

to quantify the stratification, with Nr the number of density
scale heights across the layer. We assume a polytropic,
monatomic, adiabatic, ideal gas; therefore, m=1.5. Here, we
consider only the hydrodynamic problem, i.e., all dissipation is
viscous.
We use anelastic equations under the Lantz–Braginsky–

Roberts (LBR) approximation (Lantz 1992; Braginsky &
Roberts 1995); these are valid when the reference state is
nearly adiabatic and when the flows are subsonic (Ogura &
Phillips 1962; Gough 1969; Lantz & Fan 1999), as they
are here.
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The governing equations are then
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where u is the fluid velocity, p p=
r

˜
¯
is a modified pressure, and

ν is the kinematic viscosity. The specific entropy, s, is related to
pressure and density by

s c p cln ln . 15v p r= - ( )

We assume the perturbation of the thermodynamic quantities to
be small compared with their reference state value. Therefore,
the entropy is obtained from

s c
p

p
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and the linearized equation of state is
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In (14), κ is the thermal diffusivity and
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is the viscous stress tensor ( ijd is the Kronecker delta). Here, we
only consider cases with H=0 (i.e., no internal heat
generation), and instead impose a flux (F) at the bottom
boundary. Note that the LBR approximation diffuses entropy
(not temperature); see Lecoanet et al. (2014) for a discussion of
the differences. We assume a constant ν and κ.

We solve these equations using the Dedalus pseudo-spectral
code (K. J. Burns et al. 2017, in preparation) with fixed flux on
the lower boundary and fixed entropy on the upper boundary.
We assume these boundaries to be impermeable and stress-free.
We employ a sin/cosine decomposition in the horizontal,
ensuring there is no lateral heat flux. We employ the semi-
implicit Crank–Nicolson Adams–Bashforth numerical scheme
and typically use 192 grid points in each direction with
dealiasing (so that 128 modes are used). In some cases, 384
(256) grid points (modes) were used to ensure adequate
resolution of the solutions. For simplicity, and to compare our
results with those of HMW, we consider 2D solutions so that
u u w, 0,= ( ) and 0

y
º¶

¶
. This also allows us to reach higher

supercriticalities and Nr with relative ease.
As we neglect magnetism, the total dissipation rate, Φ, is

given by (5) with j 0= and ijt as given by (18).
An appropriate non-dimensionalization of the system allows

the parameter space to be collapsed such that the dimensionless
solutions (in particular E) are fully specified by m, Nr, Pr,

together with F Fd

c T0
p,0 0 0

=
k r

ˆ (a dimensionless measure of the

flux applied at the lower boundary), and a flux-based Rayleigh

number (e.g., Duarte et al. 2016)

gd F
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The parameters used in our simulations are given in Table 1.
In a steady state, an expression for the luminosity L at each

depth z z= ¢ can be obtained by integrating the internal energy
Equation (14) over the volume contained between the bottom
of the layer and the depth z z= ¢:
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where A is the surface area. The divergence theorem allows the
first two integrals to be transformed into surface integrals
giving
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where the surface integrals are over the surface at height z z= ¢.
The first and second terms define the horizontally averaged heat
fluxes associated with convection (Fconv) and conduction

Table 1
Simulation Parameters Used in Figures 1–5

Pr Nr Ra F0̂ E Figure

1 0.1050 3.83×105 3.26×10−4 0.0630 3
1 0.1050 3.83×106 3.26×10−3 0.0662 3
1 0.1050 2.63×107 2.24×10−2 0.0678 3
1 0.1050 6.13×107 5.22×10−2 0.0682 3
1 0.1050 3.83×108 3.26×10−1 0.0689 1, 3, 4
1 0.2776 6.58×107 5.60×10−2 0.1828 1
1 0.3828 8.77×107 7.47×10−2 0.2557 1
1 0.5819 8.01×107 1.07×10−3 0.4014 1
1 0.7060 6.65×104 3.62×10−3 0.4159 3
1 0.7060 6.65×105 3.62×10−2 0.4594 3
1 0.7060 9.36×106 1.24×10−4 0.4875 3
1 0.7060 1.05×108 2.64×10−3 0.5008 3
1 0.7060 2.72×108 3.62×10−3 0.5038 3
1 0.7060 4.88×108 4.40×10−3 0.5057 1, 3
1 0.7967 1.03×108 1.37×10−3 0.5770 1
1 0.9887 1.20×108 1.60×10−3 0.7533 1
1 1.3104 8.45×107 1.12×10−3 1.0908 1
1 2.0846 1.33×105 7.24×10−3 1.5830 3
1 2.0846 1.33×106 2.68×10−3 1.8726 3
1 2.0846 1.63×107 2.17×10−4 2.0882 3
1 2.0846 5.44×107 7.24×10−4 2.1656 1, 3–5
1 2.7938 1.23×108 1.63×10−3 3.5951 1
10 0.1050 2.63×107 1.43×10−1 0.0668 1
10 0.2776 1.15×108 9.78×10−3 0.1822 1
10 0.3828 3.25×106 1.59×10−1 0.2454 1
10 0.9887 1.37×109 4.66×10−1 0.7413 1
10 1.3104 4.13×108 1.40×10−1 1.0594 1, 2
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(Fcond), respectively, along with associated luminosities. The
third and fourth terms define additional sources of heating and
cooling (Qdiss and Qbuoy) associated with viscous dissipation
and with work done against the background stratification,
respectively. These two terms must cancel in a global sense,
i.e., when integrating from z=0 to z=d, but they do not
necessarily cancel at each layer depth.

An alternative view of the heat transport may be derived by
considering the total energy Equation (1), which includes both
internal and mechanical energy. In a steady state (with entropy
diffusion), the local balance gives

u u ue u p T s H
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which when integrated over the volume for an ideal gas gives
(see, e.g., Viallet et al. 2013)
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defining the horizontally averaged enthalpy flux (Fe), kinetic
energy flux (FKE), and viscous flux (Fvisc). Note that (21) and
(23) are equivalent; whether decomposed in the manner of (21)
or the complementary fashion of (23), the transport terms must
sum to the total luminosity L. Lvisc represents the total work
done by surface forces, whereas Ldiss represents only the
(negative-definite) portion of this that goes into deforming a
fluid parcel and hence into heating.

2.2. Relations Between Global Dissipation Rate
and Convective Flux

For the model described in Section 2.1, Equation (7)
becomes
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Often it is assumed that in the bulk of the convection zone, the
total heat flux is just equal to the convective flux as defined
above (i.e., F Fconv » ). We show later that this a poor
assumption in strongly stratified cases, but it is reasonable for
approximately Boussinesq systems. In the case of F Fconv » ,
(24) becomes

gAF
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However, in strongly stratified cases, F F Fconv other» + , where
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( ) from (21) or, alternatively,

F F F Fpother KE visc= + + from (23) (the conductive flux is

small in the bulk convection zone). Here, F wp dSp A S

1

z
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¢
is

the difference between the enthalpy flux Fe and the convective
flux Fconv. Physically, Fother is equivalent to the steady-state
transport associated with processes other than the convective
flux as defined above. In this case, (24) becomes
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where we note that in general Fother is a function of depth and

1 1F

F
other -( ) . A complete theory of convection would

specify Fother a priori, and thereby constrain the dissipative
heating everywhere. In the absence of such a theory, we turn to
numerical simulations to determine the magnitude of Φ for
strong stratifications.

2.3. Dissipation in Simulations: Determined by Stratification

We examine the steady-state magnitude of Φ for different
values of Nr and Ra. Figure 1 shows the ratio of the global

dissipation rate to the luminosity through the layer, E
Lu

= F , for
varying stratifications. First, we highlight the difference
between simulations in which the dissipative heating terms
were included (red squares) and those where they were
not (black circles). At weak stratification, there is not much
difference in the dissipative heating rate between these cases,
but differences become apparent as Nr is increased. Including
the heating terms in a self-consistent calculation leads to a
much larger value of E than if Φ is only calculated after the
simulation has run (i.e., if heating is not allowed to feedback on
the system). When heating terms are included, the global
dissipative heating rate exceeds the flux passing through the
system (i.e., E 1> ) when N 1.22>r .

Figure 1. E (global dissipative heating rate normalized by the luminosity)
against Nr for Pr=1 (red squares) and Pr=10 (orange triangles). Cases in
which the dissipative heating terms were not included in Equation (14) are
denoted by black circles. The dashed–dotted line shows the expression given
by (26), and the dotted line shows the leading order term of this expression.
The solid black line shows the upper bound given by (8) and the dashed red
line shows the expression given by (28). The cases with heating agree well with
the dashed red line, and the cases without heating agree with the dotted
black line.
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As expected, the expression for E, in the Boussinesq limit,
given by (26), is a good approximation to E for small Nr, but
vastly underestimates E at large Nr (see Figure 1, dashed–
dotted line). In the cases where the heating terms are not
included, E cannot exceed unity for all Nr. This might have
been expected, as in this case none of the dissipated heat is
returned to the internal energy of the system; instead, the
dissipated energy is simply lost (i.e., energy is not conserved).
This has the practical consequence of the flux emerging from
the top of the layer being less than that input at the bottom. In
these cases, E is very well described by the dashed line, which
is given by d

HT,0
, the leading order term from the expression for

E in (26).
The theoretical upper bound derived by HMW is shown in

Figure 1 by the solid black line. It is clear that all of our cases
fit well within this upper bound, even at strong stratifications.
This upper bound is equivalent to d

HT,u
in this system, where

HT,u is the value of HT on the upper boundary.
Cases in which the heating terms were included are well

described by

E
d

H
, 28

T
= ˜ ( )

where

H
H H

H
29T

T,0 T,u

zT, *

=˜ ( )

is a modified thermal scale height involving HT at the top,
bottom, and a height z*, defined such that half the fluid (by mass)
lies below z* and half sits above; for a uniform density fluid,
z d

2
* = . This expression resembles that originally proposed by

HMW, on heuristic grounds, for a gas (E d

HT
» ); in our case, HT

is not constant across the layer, and we find that the combination

HT˜ is the appropriate “scale height” instead. Like HMW’s
suggestion, it depends only on the layer depth and temperature
scale heights of the system.
For 2D convection, at Pr=1 and the Ra considered here,

the solutions are steady (time-independent; Vincent & Yuen
1999); the convection takes the form of a single stationary cell
occupying the layer. To assess if the same behavior occurs
for chaotic (time-dependent) solutions, we have included
some cases at Pr=10 (orange triangles), as then the flow is
unsteady. In the cases included here, this unsteady flow is
characterized by the breakup of the single coherent convection
cell (seen at Pr=1); these time-dependent solutions seem also
to be well described by the line given by (28). This behavior is
sampled in Figure 2 and the corresponding animation, which
shows the velocity and entropy fields in a simulation with
Pr=10, N 1.31=r , Ra 4.13 108= ´ , and F 0.140 =ˆ . At
higher Ra, the solutions transition to turbulence (see visualiza-
tions in, e.g., Rogers et al. 2003).

2.4. Dissipation in Simulations: Independent of Diffusivities

The results of Section 2.3, specifically Equation (28),
suggest that the amount of dissipative heating is determined
by the stratification, not by other parameters such as Ra.
To probe this further, we consider how/if E changes as Ra
is varied. Figure 3 shows the results for three different
stratifications. For N 0.1»r , the fluid is close to being
Boussinesq, and it is clear that E remains constant (and equal
to the value given by (28)) for many decades increase in Ra.
This result complements that of HMW obtained from
Boussinesq simulations at infinite Pr. For increasing Nr, we
find that for large enough Ra, E approaches the constant given
by (28). That E becomes independent of Ra at large enough Ra
for all Nr was also found by Jarvis & McKenzie (1980), albeit
for liquids at infinite Pr.

Figure 2. Snapshot of the statistically steady velocity components, u and w, and the entropy field s for a simulation with Pr = 10, N 1.31=r , Ra 4.13 108= ´ , and
F 0.140 =ˆ . The values of u and w are nondimensionalized using the box height as a typical length scale and t

gd
= n˜ as a characteristic timescale. s is given in units of cp.

(An animation of this figure is available.)
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Figure 3 indicates that the solutions have to be sufficiently
supercritical in order for the theory to be valid. It also suggests
that stronger stratifications require simulations to be more
supercritical in order to reach the asymptotic regime. (All the
simulations displayed in Figure 1 approach this asymptotic
regime, except possibly the uppermost point at N 2.8=r . That
simulation has Ra Ra 9 10c

5» ´ , but it is likely that still
higher Ra would yield somewhat greater values of E at this
stratification.)

3. Discussion and Conclusion

We have demonstrated explicitly that the amount of
dissipative heating in a convective gaseous layer can, for
strong stratifications, equal or exceed the luminosity through
the layer. A principal conclusion is that the ratio of the global
viscous heating rate to the emergent luminosity is approxi-
mated by a theoretical expression dependent only on the depth
of the layer and its thermal scale heights. This ratio, akin to one
originally derived for a simpler system by HMW, is given (for
the cases studied here) by (28). Interestingly, this relation does
not depend on other parameters such as the Rayleigh number.
Our simulations confirm that this expression holds for 2D
convection in an anelastic gas, provided the convection is
sufficiently supercritical. This regime is attainable in our 2D
simulations and is surely reached in real astrophysical objects,
but may be more challenging to obtain in (for example) 3D
global calculations (e.g., Featherstone & Hindman 2016;
Aubert et al. 2017).

The dissipative heating appears in the local internal energy
(or entropy) equation, in the same way as heating by fusion or
radioactive decay. Where it is large, we therefore expect it will
modify the thermal structure, just as including a new source of
heating or cooling would have done. It must be reiterated,
though, that in a global sense this heating is balanced by

equivalent cooling terms, i.e., Ldiss and Lbuoy in Equation (21)
cancel in a global sense; no additional flux emerges from the
upper boundary. Stars are not brighter because of viscous
dissipation. Locally, however, these terms do not necessarily
cancel, as explored in Figure 4. There we show the net heating
and cooling at each depth in two simulations; in Figure 4(a),
the fluid is weakly stratified, and in Figure 4(b) it has a
stratification given by N 2.08=r . In both cases, the sum of the
terms must be zero at the top and bottom of the layer, but not in
between. Furthermore, in (a) the terms are small compared to
the flux through the layer (typically a few percent), but in the
strongly stratified case, the local heating and cooling become
comparable to the overall luminosity. In general, stronger
stratifications lead to stronger local heating and cooling in
the fluid.
In a steady state, the imbalance between this local heating

and cooling is equivalent to certain transport terms as discussed
in Section 2.1; these are assessed for our simulations in
Figure 5 where the terms are plotted as luminosities and labeled
correspondingly. Turning first to Figure 5(a), we show the
components of the total flux of thermal energy (as described by
(21)), namely, Lconv, Lcond, Lbuoy, and Ldiss. The conductive flux
is small throughout the domain, except in thin boundary layers,
and the dissipative heating (Ldiss) is comparable to the
convective flux (Lconv) throughout the domain. The sum of
the four transport terms is shown as the black line (L) and is
constant across the layer depth, indicating thermal balance.
Figure 5(b) assesses the total energy transport using the
complementary analysis of (23), using LKE, Lcond, Le, and Lvisc.
The primary balance is between the positive Le and the
negative LKE. Viewed in this way, the viscous flux (Lvisc) is
small except near the lower boundary, but (as discussed in
Section 2.1) this does not necessarily mean the effect of viscous
dissipation is also small. In Figure 5(c), we highlight the
equivalence of some transport terms by showing the term
AFother together with its different constituent terms from either
the total or thermal energy equations. As expected, AFother is
the same in both cases; it is the sum of Ldiss and Lbuoy, or
equivalently, it is the sum of Lp, LKE, and Lvisc. That is, changes

Figure 3. E as a function of Ra

Rac
(where Rac is the value of Ra at which

convection onsets) for N 0.105=r (circles), N 0.706=r (triangles), and
N 2.085=r (squares). In each case, for large enough Ra the value of E
asymptotes to the value given by (28), indicated for each Nr by the horizontal
lines. The level of stratification (given by Nr), rather than the diffusion,
determines the magnitude of the dissipative heating rate compared to the flux
through the layer.

Figure 4. Local heating and cooling. Fother as a fraction of the total flux
through the layer as a function of layer depth for N 0.1=r in (a) and N 2.08=r
in (b). In (a), the local heating and cooling are only a few percent of the total
flux, whereas in (b) the local heating and cooling are comparable to the flux
through the layer in some parts.
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in the dissipative heating are reflected not just in Qdiss (if
analyzing internal energy) or Fvisc (if analyzing total energy);
the other transport terms (FKE, Fp, Fe, Fconv, and Qbuoy) also
change in response. To emphasize the importance of dissipative
heating in modifying the transport terms, we include in
Figure 5(d) LKE

nh , Le
nh , Lcond

nh , and Lvisc
nh , i.e., the kinetic energy,

enthalpy, and conductive and viscous fluxes (expressed as
luminosities), respectively, in the case where heating terms
were not included. It is clear that these are much smaller
than in the equivalent simulation with heating (Figure 5(b)),
demonstrating explicitly that the inclusion of dissipative
heating influences the other transport terms. In particular, the
maximum value of the kinetic energy flux is 3.2 times larger
when the heating terms are included. The black line in
Figure 5(d) shows that when heating is not included the flux
emerging at the upper boundary is smaller than the flux
imposed at the lower boundary; in this case, it is approximately
27% of L.

The local heating and cooling (or, equivalently, the transport
term Fother that must arise from this in a steady state) described
above are not included in standard 1D stellar evolution models,
and we do not yet know what effects (if any) would arise from
its inclusion. In some contexts they may be negligible; the
total internal energy of a star is enormously greater than its
luminosity L, so even internal heating that exceeds L may
not have a noticeable effect on the gross structure. If, however,
this heating is concentrated in certain regions (e.g., because of
spatially varying conductivity) or occurs in places with lower
heat capacity, its impact may be more significant. If the
results explored here also apply to the full 3D problem with
rotation and magnetism—which clearly must be checked by
future calculations—then the total dissipative heating is
determined non-locally, dependent as it is on the total layer
depth. Simple modifications to the mixing-length theory (which
is determined locally) may not then suffice to capture it.
We have begun to explore these issues by modification of a
suitable 1D stellar evolution code, and will report on this in
future work.
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