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ABSTRACT:  17	

Common understanding of human sex-linked behaviors is that proximal mechanisms of 18	

genetic and hormonal sex, ultimately shaped by the differential reproductive challenges of 19	

ancestral males and females, act on the brain to transfer sex-linked predispositions across 20	

generations. Here we extend the debate on the role of nature and nurture in the development 21	

of traits in the lifetime of an individual, to their role in the cross-generation transfer of traits. 22	

Advances in evolutionary theory that posit the environment as a source of trans-generational 23	

stability, and new understanding of sex effects on the brain, suggest that the cross-generation 24	

stability of sex-linked patterns of behavior are sometimes better explained in terms of 25	

inherited socio-environmental conditions, with biological sex fostering intra-generation 26	

variability.   27	
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SEX, BRAINS, AND EVOLUTION 1	

To many, including many scientists, to say that a sex/gender (see Glossary) difference in 2	

human brain and behavior reflects an evolved adaptation is to set limits on plausible future 3	

male/female patterns of behavior. Indeed, it is a tenet of the Evolutionary Psychology 4	

research approach that the dispositions to behavior presumed to have been differentially 5	

adaptive for women versus men in our ancestral past should persist in contemporary, modern 6	

humans (for overview, see [1]), with environmental and social factors only modifying their 7	

manifestation in behavior. For instance, it is often claimed that certain sex/gender differences, 8	

such as interest in casual sex, preferred partner characteristics, and willingness to compete for 9	

status and resources, reflect sex-linked adaptations for reproductive success that will always 10	

be observed to some degree at the population level, regardless of social and cultural context 11	

(e.g., [2-5]). This assumption is also common in public debates, evident in arguments that 12	

equality-promoting initiatives – such as gender-neutral toy marketing – are unlikely to be 13	

effective since girls’ and boys’ different preferences are due to sex-linked adaptive 14	

predispositions (for review, see [6]).  15	

Many criticisms have been leveled at such accounts (for major critiques, see [7, 8]) such as 16	

the overlooked importance of competition for female reproductive success [9], overstatement 17	

of both the benefits and prevalence of male promiscuity (e.g., [10, 11]), shifting 18	

conceptualizations of ‘male’ and ‘female’ sexuality [12]; and the methodological and 19	

empirical weaknesses and inconsistencies in purported evidence for prenatal hormonal 20	

influences on sex-linked predispositions [12-14]. 21	

Another major theme has been the role of nature and nurture in the development of sex-22	

linked behavioral traits (see [15]). Although the long-standing nature-nurture debate typically 23	

concerns the role of genes and environment in the development of behavioral traits in the 24	

lifetime of an individual (i.e., ontogeny), our focus here, however, is a discussion of the 25	

relative contributions of genes and environment to the development and transfer of traits 26	

across generations (i.e., phylogeny). Specifically, we focus on a common assumption not 27	

always made explicit: that sex-linked adaptive traits persist across time and culture because 28	

they are passed on via inherited biological sex. That is, proximal mechanisms of genetic and 29	

hormonal sex, ultimately shaped by the differential reproductive challenges of ancestral 30	

males and females, affect brain and behavior in ways that predispose even contemporary 31	

Western women and men – in very different conditions from their ancestors – to the same 32	
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sex-linked behaviors and roles. In other words, it is assumed implicitly or otherwise that the 1	

cross-generational transmission of traits is largely mediated by genetics, with the 2	

environment being a source of variability in the development – or ontogeny – of the 3	

behavioral phenotype in each individual, and a source of selective pressure on genes. Given 4	

sufficient time, this selective pressure can drive changes in sex-linked traits, but since 5	

stabilized evolutionary change is thought to require the fixation of changes to the genome, 6	

only very long periods of consistent environmental influence can achieve genuine 7	

evolutionary change. The different time scales of changes to the environment and to the 8	

genome imply that the genome is largely responsible for the stable and the evolved, while the 9	

effects of the environment give rise to opportunistic and transitory influences on ontogeny 10	

[16].   11	

Drawing on a much expanded view of inheritance in recent evolutionary biology, and on 12	

contemporary understanding of sexual differentiation of brain and behavior, we question this 13	

division of labor between nature (genes) and nurture (environment) in the phylogeny of sex-14	

linked behaviors. Specifically, we argue the need to consider the possibility that, for some 15	

sex-linked behavioral traits, socio-environmental conditions provide the cross-generational 16	

inherited element while biological sex fosters inter-individual variability. 17	

 18	

THE ROLE OF THE ENVIRONMENT IN THE EVOLUTION OF BEHAVIORAL 19	

TRAITS 20	

According to the evolutionary perspective, the development and inheritance of adaptive 21	

behavioral traits depends on processes that allow both the creation of variation on which 22	

natural selection can act, and the stable cross-generation transfer of these traits. There has 23	

been growing recognition in recent years that genetic inheritance is not the only such process, 24	

and that epigenetic, behavioral, and symbolic systems can create phenotypic variation, and 25	

provide the means of reliable transfer of these traits [17].  26	

In parallel, there has been increasing criticism of mainstream evolutionary theory, the so-27	

called Modern Synthesis, for overlooking the importance of development, and for assuming, 28	

implicitly or explicitly, that developmental outcomes are predetermined by genes. The 29	

disregard of the exact processes by which developmental outcomes are achieved has been 30	

criticized from various directions, especially from evolutionary developmental biology [18, 31	

19], ecological evolutionary developmental biology [20], and developmental systems 32	
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theory [21, 22]. The latter two perspectives, in particular, point to an important, yet often 1	

neglected, factor in ensuring accurate transfer of traits across generations: the environmental 2	

aspects of the developmental system. Every organism inherits a rich, dynamic developmental 3	

system comprising both genetic and extra-genetic resources that contribute to developmental 4	

processes from conception to death. Environmental aspects of the developmental system 5	

include, for example, local ecology, other individuals, and social and cultural constructions 6	

(from bee hives and beaver dams, to schools, the law, and literature).  7	

Consider, for example, mallard ducks’ apparently ‘instinctual’ preference on hatching for 8	

vocalizations of their own species. Remarkably, this adaptive behavioral trait depends on 9	

auditory stimulation in the egg: mallard ducklings whose own pre-hatching vocalizations are 10	

muted, and are put in auditory isolation, do not show the usual robust preference for the 11	

maternal mallard call over the call of a chicken [23]. Likewise, the ‘typical’ adaptive 12	

behavioral responses of moose to the sounds and smells of their predators – vigilance, 13	

aggressive responses, and departure from a feeding site – are greatly reduced in populations 14	

in which those predators have recently disappeared, and appear to be rapidly acquired by 15	

mothers whose calves have been killed by a predator [24].  16	

These examples (for fuller descriptions of these and numerous others, see [25]) illustrate the 17	

important point that genetic material isn’t the only stable inherited resource for development: 18	

a mallard duck reliably inherits a pre-hatching environment that includes the vocalizations of 19	

itself, mother, and siblings; a moose reliably inherits an ecology replete with stimuli 20	

correlated with predators, as well as a mother who has learned to respond in particular ways 21	

to those cues.  22	

Thus, despite the widely assumed conceptual link between ‘inherited’ and ‘genetic’, the 23	

reliable development of adaptive behaviors can be contingent on specific environmental 24	

resources. Where the necessary environmental factors are stably reproduced, generation 25	

after generation, so too will be the (re-)production of the adaptive trait in 26	

each generation. The more nearly the environmental factors are sufficient for the 27	

development of a trait, the more what will be genetically selected for and inherited is the 28	

ability to quickly acquire or learn adaptive behaviors rather than the behaviors themselves 29	

[17].  30	

Another example of this principle is the rat reflex to right itself when dropped on its back into 31	

water. The development of this reflex, it turns out, is facilitated by experience in gravity. So, 32	
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one day old rats mostly gestated in space then brought down to Earth are half as likely to 1	

attempt to right themselves when placed in a water bath, although they do quickly learn to do 2	

so [26].  3	

This last example nicely illustrates Griffiths’ [27] point that (pp. 74-5): “Selection cannot 4	

favour a trait that compensates for the loss of a developmental input that is, as a matter of 5	

fact, reliably available. Evolution does not anticipate future contingencies.” As a result, 6	

stability of environmental factors over generations not only guarantees the reliable 7	

reproduction of a trait across generations, but also removes any selective pressure for the 8	

development of parallel stabilizing genetic factors. Only regular space travel would provide 9	

any selective pressure for rats to evolve genetic determination of the water reflex.  10	

Genetically determined traits may also be lost when some reliable feature of the environment 11	

makes them unnecessary. One such example, provided in [27], is the loss of the ability to 12	

synthesize vitamin C in primates, as this vitamin is readily available in their fruit-based diet.   13	

Whereas in some of the examples provided above, the stable environmental factor was a 14	

fixed aspect of the environment (e.g., gravity), in other examples the stable environmental 15	

factor consisted of aspects of the environment that are heavily dependent on the behavior of 16	

organisms (e.g., the vocalizations of mallard ducks; the behavior of the mother moose and its 17	

predators). In the latter case, the fact that the environment is (ontogenetically) crucial in the 18	

development of behavior and that relevant aspects of the environment can be reliably 19	

generated by the behavior of organisms, points to a phylogenetic pathway that is quite 20	

distinct from the familiar genetic one. Thus, as others have argued, we suggest that the 21	

currently dominant view, which focuses on genes as a source of cross-generation stability, 22	

should be extended to the view that many behavioral traits are stabilized by the interplay 23	

between intrinsic (e.g., genetic, epigenetic) and extrinsic environmental factors [17]. For 24	

some traits this balance leans more toward the genetic side, whereas for others it leans more 25	

toward the environment side. Note that also in the latter case, genetic inheritance is assumed 26	

to furnish critical neural capacity for acquisition of the trait [17]. The important aspect of our 27	

argument is that, to the extent that the “content” of the trait is provided by stabilizing 28	

environmental factors, there will not be parallel stabilizing genetic factors. In this we add to 29	

previous models, such as the biosocial construction model , the possibility that evolved 30	

environments do not necessarily augment genetic inheritance, but can sometimes obviate the 31	

necessity for the development of parallel genetic mechanisms.  32	
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 1	

 2	

WHAT ABOUT SEX-LINKED ADAPTIVE BEHAVIORS? 3	

Until recently, models of mammalian sexual differentiation of brain and behavior have 4	

focused on direct effects of the genetic and hormonal components of sex on brain and 5	

behavior in explaining the stability of neural and behavioral endpoints. In this traditional 6	

‘organizational-activational’ account (for review, see [28]), the chromosome composition 7	

(XX or XY) determines the form of the gonads (ovaries or testes, respectively), and the 8	

hormones secreted by the gonads permanently ‘organize’ distinct neural circuits relating to 9	

reproductive behavior in the brains of males and females. At sexual maturity (or in the 10	

breeding season), these sexually differentiated neural circuits are ‘activated’ by elevated 11	

levels of sex hormones (and, in females, also hormones triggered by pregnancy, birth, and 12	

lactation), facilitating sex-role behavior. In this traditional account, a genetic binary (XX 13	

versus XY), acting via gene-directed sex hormones, is a primary and stable source of 14	

sexually-differentiated brain circuits that underlie sex-linked adaptive behavior. Although the 15	

traditional ‘organizational-activational’ theory has been widely criticized on different 16	

grounds (e.g., [12, 28-30]), evidence from both in vitro and in vivo studies clearly 17	

demonstrates that the genetic and hormonal components of sex can affect the structure and 18	

function of brain cells in utero and throughout life (for review, see [31]). 19	

It has always been acknowledged, of course, that the biological components of sex interact 20	

with environmental factors. However, we think it reasonable to suggest that these sex-by-21	

environment interactions have implicitly or explicitly been understood to be either 22	

conservative or additive in nature. In conservative interaction [32], internal (biological sex) 23	

and external (environmental) causes interact, but in such a way that the internal causes tend to 24	

keep the phenotype to a “preferred” state, with strong external changes required to modify 25	

this (for an example of an expression of this view with regards to sex differences in brain and 26	

behavior, see [33]). Thus, in conservative interaction, biological sex is assumed to stabilize a 27	

particular sex-linked phenotype across a wide range of environmental conditions. In additive 28	

interaction, a particular environmental factor will have a similar effect on both sexual 29	

genotypes. For example, an environmental factor (like a predator attack or food shortage) 30	

would influence brain and behavior in both females and males to the same degree (e.g., 31	

reduce neuronal density), meaning that a similar relative sex difference (e.g., male > female) 32	
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will be observed across the entire range of stressful environments. In contrast to conservative 1	

interaction, additive interactions may result in overlap of phenotypes between females and 2	

males at the population level. This is because the phenotypes of some males under some 3	

environmental conditions may be similar to the phenotypes of some females under other 4	

environmental conditions (e.g., if the neuronal density in a specific nucleus is higher in males 5	

than in females, and is reduced by stress in both females and males, then neuronal density in 6	

stressed males may be similar to that found in non-stressed females).  7	

However, it is now apparent that some of the interactions between sex and the environment 8	

are what Barker describes as radical [32], that is, the effects of an environmental condition 9	

on the brain may be different and even opposite in females and males. As a result, what is 10	

typical of females under some environmental conditions may be typical of males under other 11	

environmental conditions (reviewed in [34]). Moreover, these complex interactions between 12	

sex and the environment are region-specific [35] thus giving rise to brains comprised of 13	

unique ‘mosaics’ of features, some in a form that, at the population level, is more common in 14	

males than in females (i.e., ‘masculine’ form) and some in a form that, at the population 15	

level, is more common in females than in males (i.e., ‘feminine’ form) [34, 35]. Such 16	

mosaicism was recently demonstrated in human brains: analysis of structural characteristics 17	

in over 1400 brains from four datasets revealed that mosaic brains were much more common 18	

than brains with only ‘feminine’ or only ‘masculine’ features [36]. Similarly, although at the 19	

population level there are differences between women and men in a variety of behavioral and 20	

psychological characteristics, most humans possess a mosaic of both feminine and masculine 21	

characteristics, rather than segregating into two categories, or aligning on a masculinity-22	

femininity continuum [36]. 23	

Conservative sex-by-environment interactions would be consistent with the implicitly 24	

assumed role for biological sex as a source of stability in brain structure and function. By 25	

contrast, the existence of radical interactions and of mosaic brains suggests biological sex as 26	

a source of inter-individual variability in brain structure and function. This may be seen as an 27	

extension of the hypothesized role of sexual reproduction in increasing inter-individual 28	

genetic variation ([37]) to the level of brain and behavior. 29	

That biological sex is a potential source of variability for at least some sex-linked neural and 30	

behavioral endpoints gives us even greater reason to consider the possibility that 31	

environmental factors are sometimes a source of stability for sex-linked behavioral traits, so 32	
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long as the necessary resources are reliably reproduced and inherited by each generation [38]. 1	

Differentiation of behavior by sex, whether complete or partial, would therefore require either 2	

a sex-differentiated predisposition to acquire or learn an adaptive trait, and/or a reliably sex-3	

differentiated environment. Evidence for a mechanism of the former kind may be provided by 4	

the recent finding that girls exposed to high levels of androgens in utero showed a lower 5	

tendency to mimic the behavior of older girls, compared with girls exposed to typical levels 6	

of androgens [39].  7	

With regards to the second potential mechanism, one set of reliably inherited factors that can 8	

lead to stable and reproducible sex-differentiated environments are phenotypic markers of 9	

biological sex, such as appearance, size, strength and smell. These are reliably inherited in 10	

ways that are largely, though by no means wholly, insensitive to environmental variables. 11	

These phenotypic markers can influence both the individual’s behavior and others’ responses 12	

to them, and these effects can in turn affect the development of brain and behavior. Consider, 13	

for example, evidence that mother rats are attracted to the higher level of testosterone in the 14	

urine of their male, compared with female, rat pups. This stimulates higher intensity 15	

anogenital licking, which, in turn, contributes to sexual differentiation of specific brain 16	

regions and of sexual behavior [40, 41]. Recognition of such indirect effects of sex on 17	

development, via sex-differentiated experiences, is now growing [42, 43].  18	

Recognition of the role of stable experiential factors in the inheritance of adaptive behavioral 19	

traits helps to explain examples in which sex-linked traits fail to develop when environmental 20	

conditions change. Take, for instance, the finding that cross-species-fostered sheep and goat 21	

newborn males develop robust and persistent sexual preferences for mates of the cross-22	

fostered species [44]. Likewise, contrary to the notion of a ‘maternal instinct’, adequate care 23	

of a firstborn by female Rhesus monkeys depends on early social experience [45]. Or 24	

consider a study that found that, when put in close contact with pups, male Charles River 25	

strain rats showed ‘maternal’ behavior within a week [46]. 26	

As these examples illustrate, the typical sex-linked outcome for individuals at a particular 27	

stage in the life-cycle depends in part on deceptively unexceptional aspects of the 28	

environmental developmental system, such as early social experience. Moreover, the 29	

different examples demonstrate Griffiths’ point above that when the environmental 30	

conditions are reliably reproduced generation after generation, we should not assume that 31	

there must be additional endogenous (e.g., genetic) factors that support the stability of the 32	
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neural or behavioral endpoint [47], beyond those necessary for learning or acquiring the 1	

traits. As a consequence, ‘sexual nature’ can be eliminated or even reversed, when relevant 2	

features of the external developmental context change [48, 49].  3	

We of course make no claim that the examples we cite generalize across species or 4	

behavioral traits: this is a matter for empirical investigation (see Outstanding Questions). 5	

Nonetheless, these examples add to the conventional understanding of sex the realization that 6	

the genetic and hormonal components of sex sometimes act, along with some socio-7	

environmental factors, to increase inter-individual and intra-generation variability of neural 8	

and behavioral endpoints, while other socio-environmental factors can provide cross-9	

generation stability.  10	

 11	

CONCLUDING REMARKS 12	

As we’ve seen in the foregoing, stable environmental conditions can play a crucial role in the 13	

ontogenetic development and phylogenetic inheritance of adaptive behavioral traits. In 14	

addition, in the interplay between internal and external factors that stabilize selectively 15	

advantageous behavioral traits, in some cases what is genetically selected for and inherited is 16	

the ability to quickly acquire or learn adaptive behaviors, whereas the actual content of the 17	

behavior thus acquired may depend on sex-differentiated environmental processes.  18	

What does all this mean for the claims that, in humans, adaptive sex-linked predispositions 19	

are directly and stably mediated by biological sex, and will therefore manifest at the 20	

population level over a wide-range of socio-environmental conditions? Several important 21	

features of humans deserve consideration in light of these insights. 22	

The inheritance of a rich, cumulative culture and an unprecedented capacity for social 23	

learning, has been taken to explain how human populations have been able to successfully 24	

thrive and reproduce in such a wide range of vastly different environments [50]. We expand 25	

on this to note that humans reliably inherit physical markers of their biological sex and, 26	

notably, some socialization practices which are related to marking and emphasizing sex 27	

categories with gender labels, such as clothing, hair-style, pronouns, and name (gender 28	

presentation). From an early age these gender categories affect children’s social learning, for 29	

example, in the form of preferences for novel items modeled by children of the same gender 30	

[39, 51]. Our offspring also undergo the most extensive and elaborate period of childhood 31	
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socialization of any species. This takes place in the context of a cultural inheritance that 1	

reliably includes gender constructions: stereotypes, norms, expectations, values, laws, 2	

customs, rituals, role models, and practices relating to maleness and femaleness (an 3	

elaborated documentation of the many socio-cultural processes involved is provided in the 4	

biosocial construction model [52]). These multiple sources of gender socialization create 5	

stability through redundancy. 6	

Together, all these sociocultural factors result in both short- and long-term effects of sex 7	

categorization on the development of skills, attitudes, experiences, and, of course, the brain, 8	

mediated by gender socialization, including self-socialization [52, 53]. Notably, some of 9	

these sociocultural factors affect components of biological sex, which may, in turn, affect the 10	

development of behavioral and neural endpoints [42, 52, 54]. Recent research in social 11	

endocrinology, for instance, demonstrates the effects of gendered experiences and roles on 12	

testosterone level ([55-57]; and see Outstanding Questions).   13	

In short, human developmental systems thus provide extensive cultural, behavioral, and 14	

environmental mechanisms for the transmission of sex-linked adaptive traits, and to a much 15	

higher degree than any other species. This transmission, in turn, (re-)produces to a more or 16	

less faithful degree the cultural conditions to enable transfer to the next generation. This view 17	

can thus account for both the considerable inter-individual variability in sex-linked behaviors 18	

and the remarkable stability of gender as a social system. The wealth of environmental 19	

mechanisms should challenge a priori assumptions that, for any particular trait, it is biological 20	

sex, via direct effects on the brain, that does the heavy lifting when it comes to cross-21	

generation transfer. Moreover, the extensive nature of the environmental factors involved in 22	

the development of sex-linked patterns of behavior means that many relevant aspects of the 23	

environment have to change in order for these patterns to significantly shift at the population 24	

level. However, a final important point of difference between ourselves and other species is 25	

our capacity to transform our material and cultural developmental systems. And as history 26	

has shown, sufficient cultural change can produce remarkable changes in sex-linked patterns.  27	

 28	

  29	
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GLOSSARY 1	

 2	

Androgen receptors: These are present in many body tissues, including the brain. 3	

Androgens (a class of steroid hormones that includes testosterone) can bind to a 4	

receptor, enabling the regulation of androgen-responsive genes. 5	

 6	

Autosomes: Referring to chromosomes other than the X and Y chromosomes. 7	

 8	

Biological sex: The genetic and hormonal components of sex that bring about sexual 9	

differentiation of the reproductive system. 10	

 11	

Developmental systems theory (DST): A theoretical lens on development, heredity, 12	

and evolution based on a number of themes that try to transcend oppositional 13	

conceptualizations in biological thinking, including the importance of “extended 14	

inheritance” beyond the genetic, and an emphasis on traits as constructed through 15	

development. 16	

 17	

Ecological evolutionary developmental biology (eco-evo-devo): This research 18	

program additionally incorporates consideration of environmental factors in the 19	

creation of genetic and phenotypic variability and evolutionary processes.   20	

 21	

Epigenetic / Epigenetic modification: Potentially heritable changes in gene 22	

expression and activity that don’t involve changes to the DNA sequence itself.  23	

 24	

Evolutionary developmental biology (evo-devo): Traditionally, evolutionary 25	

biologists have been concerned with explaining why (ultimate cause) a particular trait 26	

exists, while developmental biologists explain the how (proximate causes). Evo-devo 27	

research is located at the intersection of the two questions, exploring for instance the 28	

evolution of developmental processes, and the role of developmental processes in 29	

evolutionary ones.   30	

 31	

Gene expression: The process by which a section of genomic DNA sequence is 32	

transcribed into an RNA molecule.  The RNA molecule may then undergo further 33	

processing and guide the synthesis of all or part of a protein.  Many RNA transcripts 34	
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are not translated into proteins and may have other functions, though the proportion 1	

that do remains controversial. Not all genes are expressed in all cells or at all times. 2	

 3	

Sex/gender: An alternative term for either “sex” or “gender” intended to emphasize 4	

that comparisons of males and females capture contributions of both biological sex, 5	

social gender constructions, and their interaction (e.g., [58]). Note that, also captured 6	

in such comparisons and interactions, are the effects of variables that correlate with 7	

sex, such as size or muscle mass. 8	

 9	

Sex-linked: Referring to traits for which average differences are observed between 10	

the sexes. Given the overlap between the sexes in behavior, this is a more accurate 11	

term than “sex-specific” or “sexually dimorphic”, which imply distinct categories. 12	

 13	

Symbolic system: Referring to information sent or received that derives its meaning 14	

from socially shared conventions or understandings. The word ‘evolution’, the symbol 15	

“=”, and pink packaging on a toy are all examples of symbolic information.   16	

 17	

 18	

   19	

 20	

  21	
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