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The Green’s functions for studying electromagnetic in-
teractions in free space have been discussed in detail in
many past works. In this supplementary section, we de-
rive the Green’s functions of a rectangular waveguide. In
the Lorentz gauge, the scalar and the vector potentials of
the electromagnetic field satisfy the Helmholtz equation

[
∇2 + k20

]
φ = −ρ(r)

ε0[
∇2 + k20

]
A = −µ0J(r)

(1)

The corresponding free-space scalar and tensor Green’s
functions are

g(r, r′) =
eik0|r−r′|

4π|r− r′|

G(r, r′) =
eik0|r−r′|

4π|r− r′|
I

(2)

where the boundary is set at ∞, I is the unit tensor and
k0 = ω

c . Since the wave is confined inside a rectangu-
lar waveguide in our experiment, we want to deform the
boundary from infinity to the walls of the rectangular
waveguide. Let us set the origin at one of the corners of
the waveguide’s cross-section. The radiation is confined
to 0 < x < a, 0 < y < b and is infinitely extended in the
z direction. The walls of the waveguide are modelled as
Perfect Electric Conductors (PEC), so the continuity of
the tangential component of the electric field across the
boundary may be written as

n×E = 0 on the boundaries (3)

In terms of the vector potential in the Lorentz gauge

n× (k20A +∇(∇ ·A)) = 0 on the boundaries (4)

As a result of the isotropy of the dielectric and the
rectangular geometry of the waveguide, the Green’s ten-
sor will be diagonal in Cartesian coordinates. Hence (4)

∗ email: ss693@exeter.ac.uk

leads to the following boundary conditions at the waveg-
uide walls

Gxx |y=0,b = 0

∂

∂x
Gxx |x=0,a = 0

Gyy |x=0,a = 0

∂

∂y
Gyy |y=0,b = 0

Gzz |x=0,a = 0

Gzz |y=0,b = 0

g |x=0,a = 0

g |y=0,b = 0

(5)

Such boundary value problems admit unique solutions.
Therefore, since g satisfies the same Helmholtz equation
and the same boundary conditions as Gzz, they will be
the same, g = Gzz.

Applying these boundary conditions to the Helmholtz
equation of the Green’s tensor[

∇2 + k20
]
Griri(r, r

′) = −δ(r− r′) (6)

we can readily obtain the final Green’s tensor components
as

Gxx =

∞∑
m=0

∞∑
n=1

i
εmεn
2abkI

cos

(
mπx′

a

)
sin

(
nπy′

b

)
·

cos
(mπx

a

)
sin
(nπy

b

)
eikI |z−z′|

Gyy =

∞∑
m=1

∞∑
n=0

i
εmεn
2abkI

sin

(
mπx′

a

)
cos

(
nπy′

b

)
·

sin
(mπx

a

)
cos
(nπy

b

)
eikI |z−z′|

Gzz =

∞∑
m=1

∞∑
n=1

i
εmεn
2abkI

sin

(
mπx′

a

)
sin

(
nπy′

b

)
·

sin
(mπx

a

)
sin
(nπy

b

)
eikI |z−z′|

(7)

where

εm =

{
1 m = 0

2 m > 0
(8)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/132262938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

and kI is the propagating component of the wave-vector
given by

k2I = k20 −
(mπ
a

)2
−
(nπ
b

)2
(9)

and m and n are non-negative integers that describe the
different modes that could be accommodated inside the
waveguide.


