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Abstract

Dynamical systems on graphs can show a wide range of behaviours be-
yond simple synchronization - even simple globally coupled structures can
exhibit attractors with intermittent and slow switching between patterns of
synchrony. Such attractors, called heteroclinic networks, can be well described
as networks in phase space and in this paper we review some results and exam-
ples of how these robust attractors can be characterised from the synchrony
properties as well how coupled systems can be designed to exhibit given but
arbitrary network attractors in phase space.

1 Introduction to dynamics of coupled networks
of systems

Many applications, especially in biology and theoretical physics, can be usefully
described in terms of coupled dynamic cells, where the coupling between the cells
describes a network of interconnections. This is especially the case for models of
neural systems where individual cells (neurons) behave in relatively simple ways,
but the system as a whole can have very complex dynamical, and indeed computa-
tional, behaviour: see for example the reviews [23, 8]. There is a large literature on
the emergent attracting dynamics of coupled systems: this examines in particular
the appearance of different types of synchrony, bifurcations, oscillatory behaviour,
thermodynamic properties of large systems and noise-induced phenomena; see for
example [62].

However, there is a relatively small literature that recognises that attracting
dynamics may robustly include attracting (nonchaotic) networks in phase space
that are quite curious in their structure and properties. These properties are par-
ticularly useful in describing intermittent behaviour of networks and in ascribing
some computational functions of networks to these attractors: see for example
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[64, 59, 75, 73, 16, 57, 66]. Going beyond cyclic networks in phase space one needs
to understand how a trajectory can approach the same “node” in the network
but then switch direction to follow different outgoing connections: see for example
[19, 5, 53, 13]. Our aim in this paper is to review some of the theory behind this
material, both for symmetric and non-symmetric coupled systems, and to provide
some extensions of examples in the literature.

The first, and arguably most famous, example of a robust heteroclinic network
consists of three equilibria and heteroclinic orbits connecting them (see Fig. 1):
this was first found and investigated by May and Leonard [55], in a Lotka-Volterra
model describing population dynamics, and later by Busse and Clever in the context
of Rayleigh-Benard convection [18]. Structural stability for such a system on an
invariant sphere was proved by dos Reis [24, Example (4.1d), p641] in the context
of equivariant vector fields on two-manifolds. Guckenheimer and Holmes brought
the example to the attention of a wider community by showing the appearance of
the cycle through a symmetry breaking bifurcation at a symmetric equilibrium [36].

These attracting heteroclinic networks are curious in a number of ways - although
they may be attractors in the sense of asymptotic stability, unlike chaotic or periodic
attractors they typically have no single trajectory that is dense within the attractor.
Hence they do not support a natural ergodic measure [32]. Worse than that, for
typical observables the time averages do not converge, so useful measures for chaotic
dynamics (e.g. Lyapunov exponents) cannot be used without extreme care, as they
simply do not converge [40, 10]. Such attractors can be robust (structurally stable)
in the context of coupled systems and so their existence cannot be ignored. Since
structural stability may not be familiar to a wide audience interested in coupled
dynamical systems, we review some relevant concepts within the paper.

Our paper is organized as follows: we start in section 2 by a discussion of prop-
erties of heteroclinic network attractors in phase space, in particular heteroclinic
networks and some contexts in which they may be robust. These contexts include
symmetric networks and nonsymmetric networks with specific coupling types, as
discussed in section 3, and coupled oscillators [37, 47, 59, 43], as reviewed in [10].
An obvious question is how the structure of a network attractor in phase space
relates to the structure of the network of coupled cells - so far progress has mostly
been by examples than by general constructions. As an alternative approach, sec-
tion 4 discusses how heteroclinic (and excitable) networks with arbitrary structure
in phase space can be designed for appropriate coupled systems. Finally section 5
highlights some open problems relating to network attractors in phase space.

2 Networks of states in phase space

Just as network dynamical systems consist of nodes (i.e. the systems that are
coupled together) and edges (representing the influence of one system on another)
one can think of invariant structures and in particular attractors in phase space as
having network structure if there are nodes (i.e. simple invariant sets) and edges
(representing trajectories that connect one node to another). To avoid confusion,
in the former context we will refer to cells and edges, and in the latter context to
nodes and connections.

In this work we restrict our discussion primarily to heteroclinic connections
between equilibria, and the extension to periodic orbits is relatively direct, but note
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Figure 1: (a) Coupled cell structure of the Guckenheimer-Holmes system, see Ex-
ample 2. (b) The Guckenheimer-Holmes heteroclinic cycle in phase space as the
limiting set of a trajectory between the saddle equilibria (x, y, z) = (ξ, 0, 0), (0, ξ, 0)
and (0, 0, ξ) for some ξ > 0, with active cells along the cycle indicated. Note that
this is part of a larger network of twelve connections between the six equilibria
(±ξ, 0, 0), (0,±ξ, 0) and (0, 0,±ξ); typical initial conditions limit to one of eight
possible cycles. (c) Corresponding time-series showing asymptotic slowing down as
the trajectory approaches the heteroclinic cycle.

that other types of networks have been considered, for example networks between
chaotic invariant sets [21, 26, 42, 73] or unstable attractors for semiflows [14, 45].

2.1 Heteroclinic networks and cycles

Assume throughout that M is a smooth finite dimensional connected manifold, and
(ϕt)t∈R a smooth flow of M , typically corresponding to the solution x(t) = ϕt(x0)
of an ordinary differential equation

d

dt
x = f(x)

for x ∈ M . Although many of the concepts discussed in this review apply to
discrete and hybrid dynamical systems or semiflows as well, we focus our attention
on smooth flows.

A heteroclinic connection, formally defined below in Def. 2.1, is a solution tra-
jectory γ : R → M of a dynamical system that limits onto one flow-invariant set
A backwards in time, and another a flow-invariant set B forwards in time. Recall
that the ω-limit set and α-limit set of a point x ∈M are, respectively,

ω(x) =
⋂
t>0

{ϕs(x) : s > t}, α(x) =
⋂
t<0

{ϕs(x) : s < t}.

where A denotes the closure of A.
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The stable set W s(A) of a flow-invariant set A ⊂M is the set of all points with
ω-limit set contained in A:

W s(A) = {x ∈M : ω(x) ⊂ A},

and the unstable set Wu(A) of A is the set of all points with α-limit set contained
in A:

Wu(A) = {x ∈M : α(x) ⊂ A}.

If A is a hyperbolic invariant set, W s(x) and Wu(x) are manifolds for each x ∈ A,
called the stable and unstable manifolds of A at x, cf. [60] and [70, Chapter 6].
If A is a normally hyperbolic invariant manifold, e.g. a hyperbolic equilibrium or
periodic orbit, then W s(A) and Wu(A) are manifolds, that furthermore persist
under perturbations [38, 74].

With these concepts at hand, the definition of a heteroclinic connection can now
be phrased more precisely in terms of stable and unstable sets. A flow-invariant set
is called recurrent if it is the ω-limit of some trajectory within the set. Let γ be as
above, and let A and B be compact flow-invariant recurrent subsets of M .

Definition 2.1. The solution trajectory γ is a heteroclinic connection from A to

B, written A
γ−→ B, if A and B are disjoint and γ(R) ⊂Wu(A)∩W s(B). If A = B,

and γ(R) * A, then γ is said to be a homoclinic connection.

A heteroclinic network is a graph in phase space where the nodes are invariant
sets and the edges are heteroclinic connections. Such networks provide a mathe-
matical framework for dynamical transitions between different states of a system.
There are various definitions in the literature that vary somewhat depending on
purpose.

By node, we will mean a compact flow-invariant recurrent subset, as in the
definition above. The following definition is similar to [30, Definition 1.1], but
allows for more general nodes.

Definition 2.2. A heteroclinic network is a bounded set Σ = A∪Γ ⊂M consisting
of a finite set of pairwise disjoint nodes A and a set Γ of heteroclinic connections,
with γ ∈ Wu(A) ∩W s(B) for nodes A 6= B in A for all γ ∈ Γ, such that for all

ordered pairs of nodes A,B ∈ A, there is a sequence A = A0
γ1−→ A1

γ2−→ ...
γk−→

Ak = B of connections and nodes in Σ from A to B.

Definition 2.3. A heteroclinic cycle is a heteroclinic network where there is an

ordering of the nodes A = {A1, ..., An} such that there exists a connection Ai
γ−→ B

if and only if B = Ai+1 (subscripts considered modulo n).

Remark 1. This definition of a heteroclinic cycle allows arbitrarily many connec-
tions between Ai and Ai+1, and so differs from [30], but agrees with, for example,
[9, Definition 2.10]. Note that a cycle can contain a proper subset of all heteroclinic
connections from Ai to Ai+1, and need not contain all unstable sets of its nodes.

As the nodes are not limited to equilibria or periodic orbits, our definition in-
cludes a variety of networks between chaotic or other types of invariant sets: see for
example [21, 26, 42, 14, 45]. See also [9] for an intrinsic definition of heteroclinic
networks.

It follows from the definition that heteroclinic networks are flow-invariant. Fur-
thermore, they are transitive as graphs (in particular connected), and so every
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heteroclinic network is the union of heteroclinic cycles. Since we allow for a con-
tinuum of connections between nodes (as is possible for example if the network
contains a hyperbolic equilibrium with an unstable manifold of dimension greater
than one [6]) a heteroclinic network is not necessarily compact. However, if the
number of connections is finite, the network is compact. To distinguish from the
more complicated cases alluded to, a heteroclinic network is said to be simple if
all nodes are equilibria with one-dimensional unstable manifolds. Note that simple
heteroclinic networks are compact.

Remark 2. In equivariant dynamics, it is natural to regard symmetry related nodes
and connections as essentially the same, and to consider networks and cycles modulo
the group action. A heteroclinic cycle as defined above might therefore be called
homoclinic if all nodes are symmetry related [48]. Similarly, a heteroclinic network
may be a homoclinic or heteroclinic cycle in the symmetric sense, depending on
which nodes and connections are the same modulo the group action. If nothing else
is stated, we will use the terms in the usual, non-symmetric sense. See Example 2
for a brief discussion regarding the Guckenheimer-Holmes cycle.

2.2 Genericity, transversality and robustness

Let X be a topological space. A set Y ⊂ X is residual if it contains a countable
intersection of open and dense subsets of X, and X is a called a Baire space if all
residual sets are dense. A property P is called generic if it holds for all elements
in a residual set. In our setting, let X (M) denote the space of vector fields on M ,
equipped with the Whitney C∞-topology, and note that X (M) is a Baire space in
this topology [33]. We say a property P of vector fields is robust if for any F ∈ X
with the property, there is an open neighbourhood U ⊂ X of F such that P holds
on U . Of particular interest to us will be the case where P is the property of having
some given heteroclinic network in phase space.

A concept closely related to robustness is structural stability: a vector field
F ∈ X (M) is structurally stable if there exists a neighbourhood U of F in X (M)
such that any vector field G in U is topologically equivalent to F , i.e. there exists
a homeomorphism h : M → M sending the orbits of F to the orbits of G and
preserving the time orientation [60, Chapter 1].

The simplest example of a heteroclinic connection is that between hyperbolic
equilibria. In this case, the equilibria have global stable and unstable manifolds,
as noted above. A heteroclinic connection from p to q corresponds then to a non-
trivial intersection of the unstable manifold of p with the stable manifold of q. As
in most cases of interest, heteroclinic connections are trajectories contained in the
intersection of invariant manifolds, an understanding of such intersections is central
in the study of heteroclinic dynamics. In particular, for equilibria and periodic
orbits, the concept of transversality is of importance to understand if an intersection
is robust or not to perturbations.

Two submanifolds N1 and N2 of a manifold M are said to intersect transversely
if at any point p in their intersection, the tangent spaces of N1 and N2 span the
tangent space of M , i.e. TpN1 + TpN2 = TpM . Note that if the intersection is
empty, N1 and N2 are trivially transverse. A key feature of transversality is that
it is a generic property - any non-transverse intersection of submanifolds may be
made transverse by an arbitrarily small smooth perturbation. This is the content
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of Thom’s Transversality Theorem [33]. Furthermore, the Kupka-Smale Theorem
([60, Chapter 3], [61]) states that generically in X (M), equilibria and periodic
orbits are hyperbolic and their stable and unstable manifolds intersect transversely.
Consequently, only heteroclinic connections contained in a transverse intersection
of unstable and stable manifolds persist under perturbations in the class of general
smooth vector fields.

Using this, it is easy to see that heteroclinic cycles of equilibria are not robust
in X (M) [11]. Assume that Σ is a robust heteroclinic cycle in a phase space with
dimension n and nodes {x1, ..., xk} that are equilibria of the flow. A minimal re-
quirement for robustness in this context is hyperbolicity of the nodes of Σ, and so
the equilibria x1, ..., xk must be hyperbolic. The connections lie in intersections of
stable and unstable manifolds, and by the Kupka-Smale Theorem these are generi-
cally transverse. Hence, as generic properties are dense in X (M), the intersections
Wu(xi) ∩W s(xi+1) must all be transverse for Σ to be robust. This, together with
the fact that all Wu(xi) ∩W s(xi+1) by assumption contain a connection, and so
dim(Wu(xi) ∩W s(xi+1)) ≥ 1, yields

dim(Wu(xi)) + dim(W s(xi+1)) ≥ n+ 1.

It follows that

k∑
j=1

[dim(Wu(xi)) + dim(W s(xi+1))] ≥ k(n+ 1).

On the other hand, since dim(Wu(xi)) + dim(W s(xi)) = n for all hyperbolic equi-
libria xi, we have

k∑
j=1

[dim(Wu(xi)) + dim(W s(xi+1))] = kn.

This is clearly a contradiction, and so we have shown that heteroclinic cycles of
equilibria are not robust to general perturbations. Being unions of heteroclinic cy-
cles, the same applies to heteroclinic networks.

While heteroclinic networks cannot appear robustly for general vector fields, sys-
tems with additional structure may support robust heteroclinic networks. Typically,
this is due to the presence of invariant subspaces - an intersection of invariant man-
ifolds need not be generically transverse within a restricted class of vector fields
if it is contained in a subspace that is invariant for all vector fields in the class
[28, 24, 48].

To illustrate, let F be a vector field, in a class Y ⊂ X (M) with the property that
P ⊂M is an invariant subspace for all vector fields in Y. Let p and q be equilibria
of F lying in P , and assume p is a saddle for the restriction of F to P , and q a sink.
Now, saddle-sink connections are robust, so if there is a heteroclinic connection from
p to q, it will be robust to perturbations in the class Y. This depends ultimately
on the persistence of invariant manifolds of hyperbolic equilibria: if F ′ in Y is
sufficiently close to F , it will have hyperbolic equilibria p′ and q′ with invariant
manifolds in P arbitrarily close to those of p and q.

Historically, the two types of systems supporting heteroclinic networks given
the most attention are equivariant dynamical systems, and Lotka-Volterra systems
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in mathematical biology and game theory [48, 40, 39]. In the former, invariant
subspaces arise as fixed point spaces in phase space of the system symmetries [48,
26], and in the latter as extinction planes, i.e. subspaces with one or more variables
equal to zero [40]. Other contexts in which heteroclinic phenomena appear robustly
are Hamiltonian systems (e.g. [46]), reversible dynamical systems, and, as will be
our focus, network dynamical systems.

2.3 Stability of heteroclinic networks

Many heteroclinic networks can be attractors, in various senses. However, the
stability analysis is intricate, as they often display weaker forms of stability than
asymptotic stability, and we will only very briefly discuss the topic here, and mainly
give references. Note that these references concern heteroclinic networks of equilib-
ria (for stability conditions for cycles of chaotic sets, see [26, Chapter 7]).

Asymptotic stability of robust heteroclinic cycles in equivariant systems has been
systematically studied by Krupa and Melbourne in [49] and [50], where sufficient
(and in some cases, necessary) conditions in terms of eigenvalues of equilibria are
given. Intuitively, a cycle is asymptotically stable if the contracting eigenvalues
dominate the expanding and transverse eigenvalues of equilibria around the cycle.

Cycles and networks that do not contain all unstable manifolds of their nodes,
are not asymptotically stable, or even Lyapunov stable. Still, they may have other
rather strong stability properties, such as essential asymptotic stability, defined
by Melbourne [56], which corresponds to asymptotic stability up to a set of very
small measure: see [17, 52, 63, 20] for more details and examples. For heteroclinic
networks, one may study the stability of cycles within the network, or stability of
the network as a whole. For such investigations, see Kirk and Silber [44], Brannath
[17] and Castro and Lohse [20].

3 Networks in phase space for coupled cell systems

In the dynamics of coupled systems, there are two distinct but related mechanisms
through which invariant subspaces typically arise - network symmetry and cou-
pling structure, both giving rise to robust synchrony of groups of cells. As part of
the study of equivariant dynamical systems, symmetric coupled systems have thus
far received the most attention in the literature. Indeed, the existence of robust
synchrony through coupling structure in non-symmetric coupled systems was not
discovered until the seminal papers by Stewart, Golubitsky et al. [71, 34, 35].

In this section we include a review of some literature on coupled cell systems
in general, and how this relates to the existence of heteroclinic networks in phase
space for such systems.

3.1 Formalisms for coupled cell systems

Dynamical systems on graphs or networks may be formalized as so called coupled
cell systems. These are systems of interacting dynamical units (cells), connected
according to an underlying network structure, with directed edges indicating dy-
namical influence of one cell on another. As two cells might respond differently to
the same input, and a cell might be influenced by two cells in different ways, it is
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Figure 2: A coupled cell network with two cell types and three edge types, graphi-
cally indicated by different box and arrow styles. As in 1. of Def. 3.1, edges of the
same type have equivalent sources and targets. Note also that the input sets I(c1)
and I(c2), and I(c3) and I(c4) respectively, consist of the same number of edges of
each type, as required by 2. of Def. 3.1.

natural to distinguish cells and edges of different types. Furthermore, it is useful to
require that cells of the same type receive in some sense the same input.

Denote by I(c) the input set of c, consisting of those edges targeting c, and
recall the standard definition of source and target functions s and t for directed
multigraphs, sending a directed edge to its source cell and target cell respectively.

Definition 3.1. (cf. [35, 34, 31, 58]). A coupled cell network N (hereafter simply
network if the context is clear) is a directed multigraph (C, E , s : E → C, t : E → C)
equipped with equivalence relations ∼C on the set of cells C, called cell type, and
∼E on the set of edges E , called edge type. We require the following, and refer to
Fig. 2 for an illustration.

1. If e ∼E f , then s(e) ∼C s(f) and t(e) ∼C t(f).

2. If c ∼C d, then there exists a bijection β : I(c) → I(d) that preserves edge
types, i.e. e ∼E β(e) for all e ∈ I(c), where I(c) = {e ∈ E : t(e) = c}.

The maps β are called input isomorphisms. They define an algebraic struc-
ture, similar to a group, called a groupoid. Referred to as the network symmetry
groupoid, it has been given much attention in the early literature on coupled cell
networks [71, 35, 34].

Next, we define coupled cell systems - dynamical systems defined through vector
fields, called admissible vector fields, compatible with a given coupled cell networks.
We will restrict attention to smooth flows and vector fields, and all phase spaces
will be smooth manifolds, typically finite-dimensional vector spaces.

Definition 3.2 (Coupled cell system). (cf. [35, 34, 31, 58]). A coupled cell system
F on a network N consists of:

1. A phase space Mc for each cell c ∈ C, with Mc = Md whenever c ∼C d. By
xc ∈Mc we will denote the state variable associated to cell c. The total phase
space of F is M =

∏
c∈C

Mc.

2. A cell component function

fc :
∏
e∈I(c)

Ms(e) → TMc
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for each cell c ∈ C, modelling the cells’ dynamical response to inputs, where
TMc is the tangent bundle of Mc. These functions are required to satisfy

fc ◦ β∗ = fd

for all input isomorphisms β : I(c)→ I(d), where

β∗ :
∏

e∈I(d)

Ms(e) →
∏
e∈I(c)

Ms(e)

is defined as (β∗x)s(e) = xs(β(e)).

3. An admissible vector field F : M → TM , defined component-wise as (Fx)c =

fc

(∏
e∈I(c) xs(e)

)
for cell component functions as above.

Remark 3. It will be assumed throughout that every cell effects its own state,
in the sense that fc depends on xc. This internal coupling will be represented
by always giving xc as the first argument in fc, and is suppressed in diagrams of
network architecture.

Remark 4. The input isomorphism requirement means in particular that cell com-
ponent functions are symmetric in inputs of the same edge type. In practice, it is
often convenient to put an order on the edge types, and then always give the ar-
guments of the component functions in this order. The requirement can then be
reduced to the statement that fc = fd whenever c ∼C d, with fc symmetric in
inputs corresponding to the same edge type.

Remark 5. Conventions differ between authors (and even between papers with the
same author). In contrast to the original definition of Stewart and Golubitsky et
al. (e.g. [35]), but in line with others ([3, 29, 58]), we require cells of the same type
to be input isomorphic.

Example 1. The admissible vector fields for the network of Fig. 2 are of the form

ẋ1 = f(x1, x3, x4) ẋ3 = g(x3, x1, x3)

ẋ2 = f(x2, x3, x4) ẋ4 = g(x4, x2, x3),

where xi is the state associated to cell ci, f and g are generically different functions.
Note the internal dynamical dependence of each cell on its own state, see Remark 3.
The notation x, y denotes symmetry in the variables x and y, see Remark 4.

Many of the networks studied in the literature are identical cell networks, mean-
ing that all cells are of the same type. Furthermore, the networks in our later
examples will have asymmetric inputs: there is at most one edge of each edge type
targeting a cell.

3.2 Heteroclinic networks in symmetric systems

A network symmetry, also called a global symmetry, is a permutation of the cells
that commutes with all admissible vector fields. As such, the fixed point space of
a network symmetry is flow-invariant. Note that there are other types of possible
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symmetries for a coupled cell system, such as input symmetries induced by mul-
tiple inputs being of same edge type, or other local symmetries of the component
functions such as in Example 2 below.

For networks with symmetries, methods of equivariant dynamical systems used
to study robust heteroclinic networks can be applied. This research has mostly fo-
cused on heteroclinic cycles, but there are exceptions, such as the network defined
and analysed by Kirk and Silber in [44]. Two phenomena in equivariant dynamics
have been shown to create robust heteroclinic cycles; symmetry breaking bifurca-
tions [36, 27, 41] and forced symmetry breaking [52, 51, 69]. For an early review of
the research on robust heteroclinic cycles in symmetric systems, see [48], and also
chapter 7 of [26] for a treatment of symmetrically coupled cell systems.

Furthermore, some of the qualitative results on heteroclinic dynamics developed
for equivariant dynamical systems, such as the stability results discussed in section
2.3, remain valid in systems without symmetry. More precisely, those results in the
equivariant theory of robust heteroclinic networks that depend only on the existence
of an invariant subspace structure do not crucially require symmetry, but rather use
symmetry as a natural setting in which such invariant subspaces arise.

Example 2. The Guckenheimer-Holmes system on M = R3 is the flow induced by

ẋ = x− ax3 − x(by2 + cz2)

ẏ = y − ay3 − y(bz2 + cx2)

ż = z − az3 − z(bx2 + cy2)

(1)

where a, b, c are real parameters. The system is symmetric under the maps x 7→ −x,
y 7→ −y and z 7→ −z (and cyclic permutations of the coordinates) and therefore the
coordinate planes are invariant under the flow of (1). For an open set of parameter
values, the system has an asymptotically stable heteroclinic cycle between equilibria
(±ξ, 0, 0), (0,±ξ, 0) and (0, 0,±ξ) [36, 26, 48]. In Fig. 1 (b,c), the robust cycle
is shown as the ω-limit set of the initial value (0.7, 0.6, 1.5), and parameter values
a = 0.32, b = 0.1, c = 0.58, giving ξ = 1.7677.

Strictly speaking, the cycle is only heteroclinic in the usual sense if we regard
just the part shown in Fig. 1 (b), and is asymptotically stable only if we restrict the
dynamics to this flow-invariant octant, but not in the whole phase space. However,
the cycle generates a heteroclinic network with twelve connections and six equilibria
(via the system symmetries) which is asymptotically stable in R3. Indeed, since all
nodes and all connections are symmetry related, it is a homoclinic cycle in the
symmetric sense.

The Guckenheimer-Holmes system can be interpreted as a system of three cou-
pled cells with internal dynamics given by a pitchfork bifurcation normal form and
cubic coupling. For a schematic picture, see Fig. 1 (a). With the same coupling,
but replacing the internal dynamics with a Chua circuit or a Lorenz attractor, it is
possible to get the same heteroclinic cycle but with chaotic sets instead of equilibria
[21]. Note that the cycle is robust to perturbations respecting the symmetries of
(1), but not to those only respecting the network structure.

3.3 Synchrony in non-symmetric coupled cell systems

There are various notions of synchrony and synchronization in nonlinear dynamics
[62, 23]. Here, we will say two cells are synchronous if their states have identical time
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evolutions. Such synchrony between cells may or may not depend on the specific
choice of vector field. The existence of robust synchrony, that depends only on
the network structure of a system and therefore persists under structure preserving
perturbations, has a significant impact on network dynamics.

A fully or partially synchronous state of a coupled cell system is described by
equalities of groups of cell states, and corresponds to a partition of the set of cells.
Note that the states of two cells may be compared only if their phase spaces are the
same. Any partition P of C corresponds to an equivalence relation ∼P , and P is
said to refine ∼C if c ∼P d implies c ∼C d [34]. Such a partition defines a subspace

∆(P ) = {x ∈M : xc = xd if c ∼P d}.

Definition 3.3. [34]. For a partition P as above, the subspace ∆(P ) is called a
synchrony subspace if it is flow-invariant for all admissible vector fields.

Remark 6. It is perhaps worth emphasizing that in the definition above, invariance
under all admissible vector fields means a synchrony subspace is invariant under any
vector field compatible with the network structure, including choice of phase space.

Network symmetries induce robust synchrony: the fixed point space of a network
symmetry is clearly a synchrony subspace. However, a coupled cell network can have
many more synchrony subspaces than those induced by symmetries. Indeed, there
are many networks with no symmetries that possess a rich synchrony subspace
structure.

A combinatorial and very useful characterization of synchrony subspaces is given
in terms of so called balanced partitions: A partition P is balanced if whenever
c ∼P d, there exists an input isomorphism β : I(c)→ I(d) such that s(e) ∼P s(β(e))
for every edge e ∈ I(c). In other words, every pair of synchronous cells must receive
the same number of inputs of each edge type, from all groups of synchronous cells.
As first proved in [71], ∆(P ) is a synchrony subspace if and only if P balanced.

Since synchrony subspaces are flow-invariant, restricting the dynamics of a cou-
pled cell system to a synchrony subspace gives a new dynamical system, which again
has the structure of a coupled cell system, called the quotient network with respect
to P .

Definition 3.4. For a balanced partition P = {P1, ..., Pr} of a network N , the
quotient network NP is the network with cells {P1, ..., Pr} and arrows inherited
from representatives of the equivalence classes Pi. More precisely, the arrows from
Pi to Pj of type k are identified with the arrows of type k from the cells in Pi to
a representative c ∈ Pj . Since P is balanced, this is independent of the choice of
c ∈ Pj .

Due to the presence of synchrony subspaces, surprisingly complicated dynamics
can occur even for small coupled cell networks. In terms of robust heteroclinic
dynamics in non-symmetric systems, the main focus has been to explore existence
of heteroclinic networks in coupled cell systems with few identical cells, without
global and local symmetries, and with asymmetric inputs. For several examples,
see [30].

As mentioned in section 3.2, symmetry breaking has been shown to create
heteroclinic networks in symmetric systems. The general problem of synchrony
breaking bifurcations in coupled cell systems has attracted attention in recent years,
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see for example [4], [68] and [67], but there are few examples of synchrony breaking
bifurcations to heteroclinic networks in non-symmetric systems in the literature.
For one example, see [43], where a synchrony-breaking bifurcation in a system of
four coupled oscillators is observed to create a heteroclinic ratchet - a heteroclinic
network with all connections winding in one direction on the torus.

3.4 Heteroclinic cycles in a three cell network

Aguiar et al. show in [3] that, up to dynamical equivalence of networks (see [1, 2, 22]
for definition and results), there are two identical cell networks with two asymmetric
inputs supporting robust simple heteroclinic networks. We concentrate on the case
N3 (notation from [3]) shown in Fig. 3. The admissible vector fields are of the
form

ẋ = f(x, y, z)

ẏ = f(y, x, z)

ż = f(z, y, x).

(2)

We will write ∆ for the fully synchronized diagonal {(x, ..., x) ∈ M}, the maximal
synchrony subspace. Note that in identical cell networks, ∆ is always a synchrony
subspace. As a demonstration of typical existence arguments for heteroclinic net-
works in coupled cell systems, we recount the arguments from [3] and [29] that
N3 supports a robust heteroclinic cycle between two equilibria on ∆. We assume
smooth vector fields, and that the cell dynamics of (2) are one-dimensional, i.e.
that Mc = R for all c ∈ C; for topological reasons this is the most difficult case.
Accordingly, let the cell phase spaces be R, and the total phase space be R3.

By the characterization of synchrony subspaces through balanced partitions, one
easily checks that N3 has non-maximal synchrony subspaces P2 = {(x, y, z) ∈ R3 :
x = z} and P3 = {(x, y, z) ∈ R3 : x = y} (here adopting the notation from [29]).
The argument splits into a local computation of eigenvalues, and a consideration of
global obstructions due to network structure.

Let p be a point on the fully synchronized diagonal. Setting α = ∂f
∂x (p), β =

∂f
∂y (p), γ = ∂f

∂z (p), the Jacobian of (2) at p is

J(p) =

α β γ
β α γ
γ β α

 ,

which has eigenvalues and eigenvectors

µ1 = α+ β + γ, v1 = (1, 1, 1),

µ2 = α− β, v2 = (1,−β + γ

β
, 1),

µ3 = α− γ, v3 = (1, 1,−β + γ

γ
),

as is easily verified. Observe that v1 ∈ ∆, v2 ∈ P2 and v3 ∈ P3. By choosing α, β
and γ, the eigenvalues µ1, µ2, µ3 can be given any prescribed values (the assumption
of asymmetric inputs is crucial: if, for example, f was symmetric in y and z, then
β = γ). Hence f can be chosen such that p, q ∈ ∆ are equilibria of (2), with one-
dimensional unstable manifolds contained in P2 and P3 respectively, with p a sink
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Figure 3: The three cell network architecture of N3 from [3]: note the presence of
two edge types.

in P3 and q a sink in P2. These are the local properties needed in order to ensure
that saddle-sink connections within the synchrony subspaces are possible.

Having checked that there are no local obstructions, we now turn our attention
to global obstructions. Assume (2) is defined locally in a tubular neighbourhood D
of ∆, with local properties as above. We wish to extend the vector field outside D.
Consider the restrictions to P2 and P3.

P2 : ẋ = f(x, y, x) =: H2(x, y), P3 : ẋ = f(x, x, z) =: H3(x, z)
ẏ = f(y, x, x) =: V (x, y) ż = f(z, x, x) = V (x, z).

(3)

As indicated, the “vertical components”, i.e. the component functions for ẏ and ż,
are forced by the network structure to be identical. Let ϕ : R → P2 be a smooth
curve from p to q that coincides with the unstable manifold of p in D. Then (re-
parametrizing ϕ if necessary) (2) can be extend to have ϕ as a solution trajectory.

Similarly, let ϕ̃ : R→ P3 be a curve from q to p that coincides with the unstable
manifold of q. Identifying points (u, v, u) ∈ P2 and (u, u, v) ∈ P3 with (u, v) ∈ R2, ϕ
and ϕ̃ may or may not “intersect” in the sense that ϕ(s) = ϕ̃(t) in R2 for some s, t ∈
R. There are now two cases, depending on the eigendirections at p and q: either ϕ̃
may be taken to not intersect ϕ, in which case there are no global obstructions to
extending (2) to have both desired connections, or ϕ̃ can be taken to intersect ϕ at
only one point. At the intersection point, (3) implies ϕ̃ and ϕ need to have the same
vertical component. This can be achieved by deforming and re-parametrizing ϕ̃ and
ϕ (see [29] for details), using that the horizontal components H2 and H3 can be
chosen independently. Thus in either case, there are no obstructions to extending
the vector field as above, showing (2) supports a robust heteroclinic cycle between
p and q with two connections.

Remark 7. By the same arguments as above, it is possible to have connections
from p to q and from q to p on both sides of ∆, thus giving a heteroclinic cycle with
four connections as in Example 4 and Fig. 4 below. The same method has also
been used by Field in [29] to construct arbitrary heteroclinic networks in a family
of coupled cell networks, of which N3 is the smallest member.

We mention briefly a method for finding more complex coupled cell networks
with support for heteroclinic dynamics. Starting from a small network N , one can
identify those networks having N as a quotient. Such networks have been called
inflations (for results and methods on enumerating and obtaining inflations of a
given network, see [3, 4]). Say N supports a heteroclinic network Σ, and let M
be an inflation of N . The dynamics on N is the restriction to some synchrony
subspace of M, so Σ “lifts” to the dynamics of M, i.e. M supports Σ. Note,
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however, that there is no guarantee that, for example, simple networks lift to simple
networks. It might be that eigenvalues transverse to the synchrony subspace into
which Σ embeds cannot be chosen independently, forcing some unstable manifolds
to have higher dimension. Typically, M will have additional synchrony subspaces,
apart from those directly associated with N , and hence may support more complex
heteroclinic phenomena.

Example 3. A polynomial coupled cell system on N3 with a robust heteroclinic
cycle between equilibria p, q ∈ ∆ is given in [3], to which we refer for further details.
The system is defined by (2) with component function

f(x, y, z) = x(1− x2 − y2 − z2) + 0.13x(y − z) + βx2(y + z)

+ 0.18x3(y − z) + γ(y2 − z2) + δ(y + z) + 0.25x2(y2 − z2),
(4)

where γ = 0.52, δ = 0.17 and β ∈ (0, 0.4987).
At both p and q, only one branch of the unstable manifold is contained in the

cycle. As noted in section 2.3, the cycle is thus not Lyapunov stable. We think of
it as being “one-sided”, in the sense that only one out of two “sides” of the unstable
manifolds are involved in the cycle. Instead, these other branches limit unto other
attracting equilibria. Nevertheless, numerical simulation suggests that the cycle is
attracting for portions of phase space.

3.5 Construction of a two-sided cycle for N3

Example 3 gives a network with only one-sided connections: it was an open question
in [3] as to whether this could be adapted to give two-sided connections. The next
example is new, and shows that it is possible to find a polynomial vector field that
answers this positively.

Example 4. Let

f(x, y, z) = αx(1− x2 − y2 − z2) + βx2(y + z) + γ(y2 − z2)

+ δ(y + z)− ε(y + z)(x− y)(x− z)− ζ(2x− y − z)
(5)

where the parameters are chosen to be α = 1.05, β = 0.8, γ = 0.8, δ = 0.25, ε =
0.7, ζ = 0.2. With this choice of cell dynamics for the network N3, and for an open
set of parameters, the coupled cell system (2) has two heteroclinic connections
in each synchrony subspace, one on each side of ∆, between equilibria p, q ∈ ∆.
For the parameter choice above, p = (−1,−1,−1) and q = (1, 1, 1). The resulting
heteroclinic cycle is shown in Fig. 4 (a). See Fig. 5 for nullclines and connections in
the synchrony subspace P2, and Fig. 4 (b) for time-series of a trajectory along the
cycle. Setting ε = ζ = 0 yields one-sided connections similar to those in Example
3.

The heteroclinic cycle is clearly compact. In contrast to the cycle in Example
3, it also contains all unstable manifolds of its nodes, and all intersections of stable
and unstable manifolds. Hence the cycle is clean, in the terminology of Field [30],
which is a necessary requirement for asymptotic stability. The contracting and
expanding eigenvalues are λc ≈ −2.15 and λe ≈ 1.05, respectively, at both p and q,
i.e. |λe| < |λc|. The condition in [49] shows the cycle is asymptotically stable.
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(a)

(b)

Figure 4: (a) The heteroclinic cycle of Example 4 seen in phase space, with two
nodes and four connections. (b) Time-series for a trajectory along the cycle in
(a) with added independent noise of amplitude 10−7 in all components and initial
condition (x, y, z) = (1, 1.001, 0.999). Observe heteroclinic switching between two
synchronized states x = y = z = ±1 but two types of switching owing to the two
branches of the unstable manifold shown in Fig. 5: calculations using xppaut [25].
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Figure 5: The system (2,5) in the synchrony subspace P2. Green lines show the
nullcline for the y-component and red lines show the nullcline for the x-component,
with parameters as in text. Blue curves are trajectories that approximate of the
unstable manifold of (x, y, z) = (−1,−1,−1): note that both branches of the un-
stable manifold are asymptotic to the sink at (1, 1, 1). The numerical integration of
(2,5) is performed using xppaut [25] and a Runge-Kutta integrator with time step
0.05.

4 Design of networks in phase space

The approaches outlined so far work from the premise that the coupled cell system
has a given structure, and investigate the range of robust heteroclinic network
structures that can arise from the global invariant structures (in particular the
synchrony subspaces) in phase space.

An alternative approach is investigated in [7, 12, 29] where some arbitrary struc-
ture is assumed for the network in phase space, and candidates for cell networks
that can realise this structure are presented. This may be a useful approach to
understand the complexity of coupling structures in physical space that are needed
to realise a given structure in phase space. Note that the constructions in [7, 12]
use several types of cell.

Such constructions are of course highly non-unique: given a directed graph
G = (V, E) with nv vertices V and ne edges E , [7] give two constructions: one is
a “simplex network” that gives a robust realization of G as a heteroclinic network
on nv cells, as long as G is one- and two-cycle free (i.e. G is such that all directed
cyclic subgraphs are have three or more nodes). The same paper gives a robust
realization of G as a heteroclinic network on ne + 1 cells, as long as G is one-cycle
free. More recently, [12] gives a construction on nv + ne cells of two types, while
[30] does this for ne + 1 cells of the same type.

As highlighted in [12], there are a number of open questions about the dynamics
of realization of arbitrary graphs as heteroclinic (or excitable) networks. Indeed,
there seems to be a contrast between questions relating to the following categories:

• The noise-free dynamics, where the realization of a given graph is typically
not asymptotically stable, if there is at least one node with a two-dimensional
unstable manifolds. Moreover a connected network may contain a number of
attractors that share common trajectories.
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• The noisy dynamics, which seems to be much simpler, and clearly typical
trajectories will explore the whole network even for arbitrarily small noise.
However, the reasons for much of the simplicity may have quite subtle rea-
sons [15]. Some specific conjectures about the behaviour of noisy network
attractors in the limits of low levels of noise are discussed in [13].

4.1 A mixed heteroclinic/excitable network in phase space

The heteroclinic network of Kirk and Silber [44] consists of nv = 4 nodes joined
by two heteroclinic cycles of length 3, sharing a common edge and hence ne = 5
edges. A minor generalization of the method of [12, Section 3] gives a network that
is explicitly given in this case as

ṗ1 = p1(A6(1− p2) +A4(p21p
2 − p4)) +A5(y25p

2
4 − y21p2p1 − y22p3p1)

ṗ2 = p2(A6(1− p2) +A4(p22p
2 − p4)) +A5(y21p

2
1 − y23p4p2)

ṗ3 = p3(A6(1− p2) +A4(p23p
2 − p4)) +A5(y22p

2
1 − y24p4p3)

ṗ4 = p4(A6(1− p2) +A4(p24p
2 − p4)) +A5(y23p

2
2 + y24p

2
3 − y25p1p4)

ẏ1 = G(y1, A1 −A21p
2
1 +A3(y2 − y21)) (6)

ẏ2 = G(y2, A1 −A22p
2
1 +A3(y2 − y22))

ẏ3 = G(y3, A1 −A23p
2
2 +A3(y2 − y23))

ẏ4 = G(y4, A1 −A24p
2
3 +A3(y2 − y24))

ẏ5 = G(y5, A1 −A25p
2
4 +A3(y2 − y25))

where pi classify the nodes and yi are active only during a transition between
nodes. For (6) note that G(y, λ) := −y((y2 − 1)2 + λ), p2 := p21 + p22 + p23 + p24,
y2 = y21 + y22 + y23 + y24 , p4 := (p2)2. We include independent standard Wiener
additive noise processes of amplitudes ηp (resp. ηy) in each p (resp. y) directions.
Some time-series shown in Fig. 6 are calculated using xppaut [25] for this system
with parameters

A1 = 0.5, A2k = 1.5− νk, A3 = 2, (7)

A4 = 10, A5 = 4, A6 = 2, ηp = 0.001, ηy = 0.01.

Note that Pi, the ith state in this network, corresponds to the saddle equilibrium
for the noise-free systsme where pi = 1, pj = 0 for j 6= i and all yk = 0: the
itinerary consists of different pi turning “on” while others remain “off”, while the
yk become non-zero only during specific transitions. The small parameter νk governs
the excitability of the network: νk < 0 the kth connection is heteroclinic, while for
νk > 0 there is a threshold of size O(

√
νk) that must be overcome to make the

connection - the connection is excitable.
The full dynamical behaviour and attractor basin geometry for attractors of

the Kirk-Silber network are subtle [44, 17, 19, 54]. This is particularly because
this network has points with unstable manifolds of dimension greater than one,
and there is an issue of “connection selection” [6] for typical trajectories. Rather
than discussing these issues here, the inclusion of noise in (6) will regularise this
behaviour in a way that allows one to understand the dynamics as approximated
by a Markov chain on the network, with switching probabilities and waiting times
at the nodes determined by the local response of the system to noise [13].
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Figure 6 demonstrates that, in addition to the purely heteroclinic or purely ex-
citable realisations of a given network discussed in [12, Section 4], the connections
can be selectively set to be heteroclinic or excitable. More precisely, (a) shows
typical time-series for (6) with parameters (7) and νk = −0.01 for all k: all con-
nections are heteroclinic and the influence of noise is to cause apparently random
motion around the Kirk-Silber network. (b) of the same figure is the same except
ν2 = −0.04 (making the probability of escape from the node P1 to node P2 is less
likely) and ν4 = 0.01 (making the connection from node P3 to node P4 excitable
rather than heteroclinic: note that in this case there are fewer escapes into node
P3, but when it does occur, in this case the mean time of escape is longer and the
distribution of times has an exponential tail [13].

5 Discussion and open questions

In this paper we have reviewed some of the recent literature that discusses how
networks in the coupling of systems (which represents the topology of coupling in
physical space) can lead to the emergence of robust networks of connections within
phase space, in particular for heteroclinic connections. Because these networks in
phase space may be attractors as well as robust, they are in some sense just as
real as periodic, chaotic or quasiperiodic attractors. Although we do not discuss
applications in this paper, see for example [8, 64, 65, 72, 14, 16]. Note that these
applications are typically for idealizations of neural systems and application to
detailed spiking neuron models is the exception. It remains to be shown that these
ideas can be convincingly applied in such detailed models.

We close with a brief summary of some open problems in this area.

• How can one efficiently determine the set of heteroclinic networks that can
arise robustly in a given coupled system? [3] How does this depend on network
topology, on phase space dimension and any other structures imposed (e.g.
symmetries)?

• Can verifiable necessary and sufficient conditions for stability of such cycles
be extended to networks? [49, 50] Note that this will depend on the definition
of stability: for essential asymptotic stability this should be weaker than for
asymptotic stability.

• For networks that are not just cycles, what must be in the closure of the
simplest realization of an arbitrary graph? Under what, if any, circumstances
do these forced nodes appear with non-zero asymptotic proportion of time in
the limit of low noise? [7, 12, 13] What are the typical ω-limit sets in such
networks?

• What are the best design strategies (in terms of minimal structures and/or
minimal dimensions) to create robust networks in phase space? In particular,
for a given coupled cell setting, what is the minimal number of coupled cells
and/or connections between them that can be used to embed a given hetero-
clinic network in a robust manner? Probably the embeddings in [12, 30] are
far from optimal in this sense.

• How do the above answers change if we consider nodes in phase space that
are not just equilibria? [9]
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Figure 6: Time-series showing the pi components of trajectories exploring a realiza-
tion of the Kirk-Silber network using (6,7), with low amplitude noise. (a) shows a
typical time-series for a heteroclinic network realization - note that the system moves
around between four equilibria Pi, where pi = 1 and pj = 0 for j 6= i. The network
is the union of the two cycles P1 → P2 → P4 → P1 and P1 → P3 → P4 → P1. (b)
shows the case where one connection from P1 has been made more unstable and
in addition the connection from P3 has been made excitable rather than hetero-
clinic. In particular, the noise-induced escape times for the heteroclinic transitions
are fairly uniform while those for excitable transition are more widely distributed,
consistent with exponential distribution.
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