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Abstract 9 

Social network analysis is now used widely to study social behaviour in humans and non-human 10 

animals, and missing individuals can represent a problem for network studies. This problem is 11 

becoming especially frequent in studies using bio-logging to collect interaction data, especially in 12 

animals. This therefore represents an important audience for Smith et al. (2017) who investigate 13 

how sub-sampling from networks impacts the outcome of subsequent analysis. Here I take 14 

advantage of the progress made by this paper to outline key issues that still require addressing to 15 

understand the effect of missing individuals on social network analysis. 16 

Keywords: network sampling, precision, bias, accuracy, statistical modelling  17 

  18 

Introduction 19 

 As a consequence of being relational data, the sampling of networks might inherently be 20 

expected to result in greater bias than other types of data (Alba, 1982; Silk et al., 2015; Smith et al., 21 

2017; Smith and Moody, 2013). This could apply both to missing individuals (nodes) and missing 22 

relationships (edges), but the former is easier to quantify and address. A number of studies have 23 

explored the impact of missing individuals on network analysis, the most recent of which is Smith et 24 
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al. (2017). The authors made substantial progress on a number of key issues, in particular in: a) 25 

assessing how non-random missingness of individuals might change the effect of sub-sampling from 26 

a network, and b) in providing a tool to allow researchers to determine the likely impact of missing 27 

individuals in a range of network structures and sizes.  28 

Smith et al. (2017) stated that “By looking at a wide range of networks, measures and types 29 

of missing data, we can offer recommendations and best practices for applied network 30 

practitioners”. A major application of network analysis away from the social sciences is in the study 31 

of animal behaviour (Croft et al., 2008; Krause et al., 2014). Missing individuals are a frequent 32 

problem in animal network studies, when it is often necessary to capture and mark individuals to 33 

gather data. However, as the use of bio-logging technology becomes more widespread to study 34 

human social networks (e.g. Isella et al., 2011; Kiti et al., 2016; Mastrandrea et al., 2015), similar 35 

problems often arise. I will provide a perspective as an applied network practitioner working on 36 

animal social behaviour as to the utility of their new findings, and then build on this to highlight 37 

important outstanding questions relating to missing individuals in networks. Finally, I will present 38 

some R code designed to test how missing individuals affect the calculation of network metrics in 39 

animal social networks that I hope will complement the java applet provided in that paper. 40 

 41 

An applied perspective on the implications of Smith et al. (2017) 42 

 Smith et al. (2017) built upon previous work by the same authors (Smith and Moody, 2013) 43 

in exploring the consequences of missing individuals on the calculation of a range of network 44 

metrics. Together, especially when taken alongside complementary findings in other fields (e.g. (Silk 45 

et al., 2015)), the results of this work have revealed a set of important considerations when 46 

analysing networks with missing data, of which the general rules are already very useful to applied 47 

network practitioners. In particular, knowledge of how network structure and size influence the 48 

impact of sub-sampling from a network is paramount, as is an understanding that more global 49 
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metrics (such as Betweenness) are less resilient to the presence of missing individuals. Finally, the 50 

exploration of biases in missing individuals addressed by Smith et al. (2017) is especially valuable 51 

from the perspective of animal behaviour research. This is partly as an aid in determining which 52 

individuals to collect data on when resources are limited, but also because methods of capture to 53 

make individual animals identifiable for network studies may place implicit biases on which 54 

individuals are most likely to remain unsampled. However, one opportunity that is missed here is the 55 

opportunity to discuss the importance of different types of “bias” caused by missing network data. I 56 

would like to highlight here the nomenclature/approach used by Silk et al. (2015) which looked at 57 

the effect of sub-sampling on three distinct properties of network metrics. In this paper the authors 58 

looked at precision, accuracy and bias of metric values in sub-sampled networks. As defined by these 59 

authors, precision is the correlation between values calculated in the partial (observed) network and 60 

those in the equivalent true network, accuracy is the value of the metric obtained from the observed 61 

partial network relative to its true value, and bias is systematic variation in the precision of metric 62 

values in the partial (observed) network. The impact of sub-sampling on each of these properties can 63 

depend on network structure and the type of network metric being investigated. Considering each 64 

independently is important in wider applications of network analysis, as these different properties 65 

can be used to address different questions. For example, in animal network studies it is the precision 66 

of metric values in sub-sampled networks that is important if a researcher asks a question about 67 

whether network position and a personality trait are linked, but it is accuracy that is important if a 68 

researcher seeks to compare the true values of network metrics between different contexts. 69 

Another major step forward in Smith et al. (2017) is the development of a tool (a java 70 

applet) that can provide an idea of the impact of missing individuals (incorporating any biases in 71 

their centrality) according to network size for a range of network structures. For an applied network 72 

researcher that has worked on study systems with substantial proportions of missing individuals this 73 

is an exciting development, and has the potential to be useful as a guide to researchers designing 74 

network studies. However, from this perspective I also feel that it is essential to see a tool designed 75 
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in this way just as a starting point. The use of network analysis in animals is now highly question-76 

driven and such a fixed tool has only restricted possibilities for use. It would be great to see a more 77 

modular set of functions that were able to use pilot empirical data or researcher knowledge to 78 

simulate a realistic network structure, and then sample from this structure, before determining how 79 

it might affect the outcome of a range of network analytical perspective. Such a package of functions 80 

would be best developed as a community, preferably with researchers from a range of fields so that 81 

the generation of networks, and the types of metrics to calculate (or statistical models to assess) was 82 

relevant to as wide a range of studies as possible. The advantages of taking this approach is that as a 83 

user assesses a new sampling framework and/or question, the code they used can be added to the 84 

system and shared with researchers who might be faced with a similar problem in another field.    85 

   86 

Three outstanding missing network data problems 87 

In this section I will highlight some important gaps in our understanding on the impact of 88 

sub-sampling from social networks that simulation-modelling could easily test and greatly aid the 89 

design of empirical studies. While these ideas come from a background of employing network 90 

analysis to study animal behaviour, I feel all are widely applicable in the use of social networks more 91 

generally. 92 

 93 

What is the best way of sub-sampling social networks? 94 

 In many animal network studies time, cost and effort is required to capture individuals and 95 

make them individually identifiable for social network studies. This trade-off is now becoming more 96 

frequent for all types of network study, including in humans, as the use of bio-logging approaches to 97 

produce reality mining data on social behaviour is increasing (Barrat and Cattuto, 2015; Isella et al., 98 

2011). Often these approaches are costly, and it is possible to use only relatively small sample sizes. 99 
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Therefore, deciding how best to deploy bio-logging devices for network studies remains an open 100 

question. For example, is it best to intensively sample a small part of a network or sample a larger 101 

part of the network more sparsely? Or similarly, how would studying replicate networks in multiple 102 

populations trade-off against the intensity of collaring individuals within each population? It is likely 103 

that the type of question being asked is important to making this decision. For example, work 104 

focussing on fine-scale behavioural interactions, such as dominance behaviour in animals (e.g. Dey et 105 

al., 2015), is likely to benefit from intensively sampling particular groups. In contrast, for the study of 106 

population-level processes such as disease transmission, a more even distribution of identifiable 107 

individuals throughout a population may be beneficial, especially when attempting to record 108 

infrequent interactions.  109 

In order to assist empirical researchers making these decisions it will be important to move 110 

simulation models of non-random sampling beyond the missingness-centrality correlation 111 

investigated by Smith et al. (2017) to assess the impacts of the clustering of identifiable and 112 

unidentifiable individuals within sub-sampled networks. Exploring this in a range of social network 113 

structures will be an important step forward in aiding the study design of network studies in natural 114 

systems, especially for studies using bio-logging approaches. 115 

      116 

How do missing individuals affect individual-level hypothesis testing in networks? 117 

 The relationship between social network position and other individual traits has been a 118 

major cross-disciplinary research focus (e.g. Aplin et al., 2013; Bollen et al., 2011; Goodreau et al., 119 

2009; Rosenquist et al., 2011). The most popular methods to test these hypotheses has been 120 

different, for example the use of exponential random graph models (ERGMs; Lusher et al., 2013) and 121 

stochastic actor-oriented models (SAOMs; Snijders et al., 2010) in the social sciences, versus the 122 

development of randomisation-based generalised linear mixed model approaches in animal 123 

behaviour (Croft et al., 2011; Farine and Whitehead, 2015). Regardless, the impact of missing 124 
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individuals (and edges) on statistical inferences made using these all of these approaches remains an 125 

open and important question.  126 

Smith et al. (2017) made a step towards addressing this, by looking at the consequences of 127 

missing individuals for tests of behavioural homophily within a network (and finding that it was 128 

possible to detect patterns of behavioural homophily when there was both a high proportion of 129 

missing individuals and a bias in which individuals were missing). However, a notion of the 130 

preponderance of type I and type II errors when different modelling frameworks are used to analyse 131 

networks with missing individuals would represent a considerable step forward in our understanding 132 

of the consequences of sub-sampling social networks. For example, while Shalizi and Rinaldo (2013) 133 

have suggested that ERGMs estimated on a sampled network are unlikely to reflect population-level 134 

parameters (accuracy in the framework outlined previously), this may not affect their ability to test 135 

hypotheses related to individual differences.  136 

It would seem fairly simple to build on previous simulation-modelling work to examine how 137 

hypothesis testing using any of the statistical models mentioned above might be affected by the sub-138 

sampling of networks. For example, the addition of a response variable that depended on network 139 

structure to the R function outlined in the next section would enable the impact on inference from 140 

generalised linear models to be addressed. In the case of models relating individual traits to 141 

individual-level network models, such as those suggested above, there are two main considerations 142 

to make. Firstly, the structure of the network, specifically the distribution of metrics used as an 143 

explanatory variable, is likely to influence the problems generated by sub-sampling. As a case in 144 

point, networks with higher modularity will have highly-skewed distributions for some metrics and 145 

missing individuals may reduce power considerably, especially if missingness is non-random. 146 

Secondly, the distribution of the response variable will also be an important consideration. High 147 

levels of overdispersion or zero-inflation in the response variable may exacerbate any problems 148 

associated with missing individuals. For example, individual traits with a negative binomial 149 



7 
 

distribution (such as parasite infection load) are likely to be problematic. Again, there might be a 150 

particularly large impact on statistical power if there is a correlation between trait values and 151 

missingness. 152 

  153 

How do missing individuals affect estimates of transmission processes? 154 

 A further major application of network analysis is to study transmission through populations; 155 

for example of information (Allen et al., 2013; Bakshy et al., 2012) and disease (Reynolds et al., 2015; 156 

Rohani et al., 2010; Stehlé et al., 2011). A case study is the application of network-based diffusion 157 

analysis (NBDA) as a powerful approach to detect social transmission in animal populations (Allen et 158 

al., 2013; Aplin et al., 2015; Franz and Nunn, 2009). Sub-sampled networks would also be expected 159 

to reduce the power of these approaches and/or lead to systematic biases in the inferences made 160 

about transmission (Ghani et al., 1998). Further type II error may result if non-random missingness 161 

means that more central individuals, which may spread information to more new individuals on 162 

average, are not identifiable. This effect of this might be particularly substantial in networks with 163 

higher modularity in which certain individuals are likely to have high brokerage between 164 

communities. 165 

 Smith et al. (2017) investigated the effect of missingness on measures of network topology 166 

that will have important implications for transmission - component size, bicomponent size and 167 

distance.  All measures were highly sensitive to missing individuals (in the majority of the networks 168 

they investigated) when there was a positive missingness-centrality correlation, and even a relatively 169 

small proportion of missing nodes in this case had a substantial impact on these measures of 170 

network topology. The authors highlighted that the impact of the missingness-centrality correlation 171 

was expected in this case as more central individuals are more likely to be important to the cohesion 172 

of the network. They also suggested implications for diffusion or transmission within the network, 173 

although stopped short of using simulations to test this. 174 
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There are important applications of studying spreading processes in networks, including in 175 

systems prone to missing individuals such as animal populations (e.g. Hamede et al., 2012; Reynolds 176 

et al., 2015). As a result, simulation-studies that explore the impact of sub-sampling networks on 177 

conclusions drawn about transmission represent an important area of future work. It would not be 178 

too great an extension to simulate the spread of a trait across a static network and then 179 

progressively remove individuals (either at random or in a biased manner) and monitor the change 180 

in power of NBDA or similar approaches. In many cases, especially for disease transmission, the 181 

acquisition of a trait can result in potentially important changes to social network position (Ezenwa 182 

et al. 2016, Silk et al. 2017). Therefore, a further more complex extension would be to extend 183 

simulation-modelling approaches to test the impact of missing data in situations where both the 184 

network and trait were dynamic.  185 

 186 

A tool for generating and sampling from varying network structures 187 

 In the supplementary information I present R functions for generating and sub-sampling 188 

from weighted, undirected social networks in a range of structures. Similarly to java applet provided 189 

by Smith et al. (2017) this is intended to encourage researchers to consider the potential impacts of 190 

missing nodes on their analyses (and in many situations this tool will be sufficient). However, unlike 191 

the java applet the code enables readers to generate user-defined networks and sample from them.  192 

An added advantage is that the code is designed in such a way that researchers familiar with R could 193 

add their own functions to address sampling-related problems of interest to them. 194 

The code draws tie strengths from a zero-inflated negative binomial distribution. In its most 195 

basic form, this negative binomial distribution is equivalent for all individuals. However, I present it 196 

with two possible extensions, which will be of general interest to many network researchers. First, 197 

the tool includes code that enables generated networks to be “spatially structured” by placing 198 

individuals in 2d space and basing the parameters of the negative binomial distribution on the 199 
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distance matrix of their locations. Many social network studies take place in populations where 200 

social interactions are structured by space use, and in these contexts being able to develop 201 

simulated networks that account for this is important. Second the tool includes the ability to assign 202 

individuals into social groups of fixed or varying sizes. Different distributions of tie strengths can be 203 

set for within-group and out-of-group ties in the network allowing the generation of networks with 204 

the strong social group structure frequently found in many human and animal populations. It also 205 

provides a highly tractable way to test network sub-sampling questions in networks differing in 206 

modularity. The capability of this tool to produce a whole range of potentially realistic network 207 

structures is demonstrated in Figure 1. If preferred then networks could alternatively be generated 208 

by using an exponential random graph model to create networks with a set of desired target 209 

statistics, and the networks generated using this method could be used in the subsequent R 210 

functions in the same manner. 211 

 The supplementary information also includes code that is able to sub-sample from these 212 

networks, as a simple illustration of how it can be used to address some of the issues discussed in 213 

this paper. This calculates and outputs the precision, accuracy and bias of four centrality metrics 214 

(degree, strength, betweenness and eigenvector centrality) in partial networks of pre-defined size 215 

(i.e. the proportion of the population made identifiable). The precision, accuracy and bias of these 216 

metrics calculated in the networks depicted in Fig. 1 is provided in the supplementary material. In 217 

this example networks of 50 nodes were generated using the three models specified in the legend of 218 

Figure 1. Network a) contained no (imposed) modular and limited spatial structure, network b) 219 

contained strong spatial structure and no additionally imposed modular structure, and network c) 220 

consisted of 10 modules of five nodes with strong spatial structure between groups. Therefore, the 221 

examples provide a clear indication of a range of sensible parameter values. The second R function 222 

was then used to randomly sub-sample these networks to contain 60% and 80% of the original 223 

nodes once (it could be applied multiple times to generate repeat sampling events and facilitate 224 
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statistical comparisons). Finally, the third R function calculated the precision, accuracy and bias (as 225 

defined above) of metric values in the sub-sampled networks (Table S1).  226 

Currently the code is limited to random sub-sampling of nodes, and to tests of the precision, 227 

bias and accuracy of centrality metrics. However, it provides a valuable basis for developing 228 

simulation models to address some of the outstanding issues highlighted above. For example, the 229 

ability to have both spatial and modular distribution of the nodes in the network facilitates 230 

adjustments to the sampling regime that would easily enable the impact of clustered versus random 231 

sampling at different scales to be tested. Similarly, the replacement of the final R function (which 232 

currently calculates the precision, accuracy and bias of sampled networks) with an alternative 233 

function that fits statistical models (e.g. ERGMs) and compares parameter estimates at different 234 

levels of sampling would make it easily possible to determine how sub-sampling nodes affects 235 

statistical inference and hypothesis testing. 236 

 Together these R functions provide a tool to estimate the impact of sub-sampling networks 237 

in a whole-range of user-defined biologically realistic network structures. By providing modular code 238 

in GNU software I hope to provide a toll that other researchers can use in a system-specific manner 239 

according to their needs, thus complementing the java applet provided by Smith et al. (2017) which 240 

is predominantly targeted as an easy-to-use and quick guide applicable to general types of network 241 

structure. Together, with the developments in that paper, I anticipate that these R functions will 242 

trigger further work towards addressing some of the outstanding questions about sub-sampling 243 

networks highlighted previously. 244 

 245 

Conclusions 246 

 The publication of Smith et al. (2017) advances our understanding of the impact of missing 247 

individuals on network analysis, and offers great potential to applied network practitioners outside 248 
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of the social sciences. However, I advocate the use of approaches that move beyond calculating 249 

biases in descriptive network metrics. In particular, a move towards determining how sub-sampling 250 

networks in empirical systems affects our power to use statistical models of network structure and 251 

individual behaviour will be especially beneficial. This will be facilitated by more modular and 252 

adaptable approaches to examining the effects of missingness in network data that can be shared 253 

among researchers and will be applicable to networks in a range of fields. 254 

 255 

  256 
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Figures 257 

258 
Figure 1. Three networks generated using the network.generator() R function provided in the 259 

supplementary material. For a) groups=50, mean.group.size=max.group.size=1, d.eff=2, o.dens=0.7 260 

and i.dens=6 (not that this parameter is used in this case). For b) groups=50, 261 

mean.group.size=max.group.size=1, d.eff=10, o.dens=0.7 and i.dens=6 (not that this parameter is 262 

used in this case).  For c) groups=10, mean.group.size=max.group.size=5, d.eff=10, o.dens=1 and 263 

i.dens=6. 264 

  265 
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