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Abstract

This thesis is devoted to the optical properties of low-dimensional structures based

on such two-dimensional materials as graphene, silicene and phosphorene.

We investigate optical properties of a variety of quasi-one dimensional and quasi-

zero-dimensional structures, which are promising for future optoelectronics. Pri-

marily we focus on their low-energy optical properties and how these properties

are influenced by the structures’ geometry, external fields, intrinsic strain and edge

disorder.

As a consequence of this endeavor, we find several interesting effects such as

correlation between the optical properties of tubes and ribbons whose periodic

and ‘hard wall’ boundary conditions are matched and a universal value of matrix

element in narrow-gap tubes and ribbons characterizing probability of transitions

across the band gap opened up by intrinsic strain originating from the tube’s surface

curvature or ribbon’s edge relaxation. The analytical study of the gapped 2D

Dirac materials such as silicene and germanene, which have some similarity to

the aforementioned quasi-one-dimensional systems in terms of physical description,

reveals a valley- and polarization-dependent selection rules. It was also found that

absorption coefficient should change in gapped materials with increasing frequency

and become a half of its value for gap edge transitions when the spectrum is linear.

Our analysis of the electronic properties of flat clusters of silicene and phos-

phorene relates the emergence and the number of the peculiar edge states localized

at zero energy, so-called zero-energy states, which are know to be of topological

origin, to the cluster’s structural characteristics such as shape and size. This al-

lows to predict the presence and the number of such states avoiding complicated
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topological arguments and provides a recipes for design of metallic and dielectric

clusters. We show that zero-energy states are optically active and can be efficiently

manipulated by external electric field. However, the edge disorder is important to

take into account. We present a new fractal-based methodology to study the effects

of the edge disorder which can be applied also to modeling of composite materials.

These finding should be useful in design of optoelectronic devices such as tunable

emitters and detectors in a wide region of electromagnetic spectrum ranging form

the mid-infrared and THz to the optical frequencies.
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Chapter 1

Introduction

The last two decades have witnessed great progress in the synthesis of atomically-

thin two-dimensional (2D) systems such as graphene, silicene, germanene and phos-

phorene. In 2004 a group from the Manthcester Univesity, led by A. Geim, obtained

a monolayer of carbon atoms arranged in a honeycomb lattice – graphene – in a

free-standing form [2]. A continuous monolayer of silicon atoms termed silicene was

grown on a substrate by several groups in 2012 [3, 4, 5], which was followed by the

production of germanene [6] and monolayer of black phosphorous – phosphorene [7].

These materials are different by their physical and chemical properties. For

instance, in contrast to graphene, silicene and germanene can only be grown on

a metallic (Au, Ag) substrates and as such cannot be directly used for device

fabrication and electrical testing. At the same time they are not stable in a free

form which impedes their transfer to other substrates for further investigation. On

the other hand, it was demonstrated that phosphorene can be obtained in a stable

free form by liquid exfoliation or by the scotch-type peeling technique very much like

graphene. However, the yield of small size flakes with a few number of phosphorene

layers is high and there are an on-going efforts to produce larger size single-layer

phosphorene flakes [8]. Similar to graphene, silicene and germanene have a cone-like

linear dispersion for electrons, but with a small band gap of approximately 4 meV

predicted to be opened by the spin-orbit interaction [9]. This contrasts with a single

layer phosphorene having a significant band gap of about 2 eV [8, 10]. Despite these

18



CHAPTER 1. INTRODUCTION 19

differences all these materials have in common that they are well-described within

the single orbital tight-binding model.

The aforementioned 2D materials can be a base for a variety of nanostructures

of lower dimensions. The second and third chapters of this thesis deal with quasi-

one-dimentional structures based on graphene, the primary representative of the

2D materials family. Below we briefly present briefly a classification of graphene-

based quasi-one-dimensional structures – carbon nanotubes (CNTs) and graphene

nanoribbons (GNRs).

A single-walled carbon nanotube (CNT) is a quasi-one dimensional structure

formed from rolled graphene. The whole variety of such tubes can be described

by the chiral vector defining the crystallographic direction along which the rolling

is performed. This vector can be written in terms of graphene lattice primitive

translations a1 and a2 as [11]

Ch = na1 +ma2 . (1.1)

The vector Ch is usually presented by a pair of indexes (n,m) describing uniquely

any particular tube. Depending on their structural symmetry single-walled carbon

nanotubes can be classified as an achiral: armchair (n, n) and zigzag (n, 0), – and

chiral (n,m), where n 6= m. The three main types of tubes are presented in Fig. 1.1.

A graphene nanoribbon (GNR) is a nanometer size strip of graphene. Similar to

nanotube, it is quasi-one-dimensional. As one can see from Fig. 1.1 the strip can

be also classified as zigzag or armchair depending on its edge geometry. It is also

seen from Fig. 1.1 that any zigzag or armchair ribbon can be uniquely identified

by the integer number w counting the pairs of carbon atoms in their unit cells. All

zigzag graphene nanoribbons are metalic structures while only armchair ribbons

with w = 3p + 2, where p is an integer, are metallic. Various generalizations to

this basic ribbon classification are easily imagined. In particular, this classifica-

tion can be extended to encompass structures somewhat similar to chiral tubes or

with even more peculiar geometries [12, 13, 14, 15]. Interestingly, some of such

lower-dimensional structures were obtained even earlier than their 2D host mate-

rials. For instance, carbon nanotubes were synthesised in 1991 by the arc-dischage
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Figure 1.1: The classification of single-walled carbon nanotubes and single-layer

graphene nanoribbons.

evaporation method [16] almost a decade prior to graphene mechanical exfolia-

tion [2]. Another example is silicene nanoribbons which were grown on Ag(110) in

2010 [17, 18] two years before the realization of a continuous silicene monolayer.

The methods of synthesis of low-dimensional structures are developing fast, but

those that deals with graphene seems to be the most advanced in terms of quality,

yield and efficiency. For instance, recently carbon nanotubes growth at low temper-

atures (270◦C) has been demonstrated [19]. Their chirality sorting techniques such

as multicolumn gel chromotography [20] and DNA-tube recognition [21, 22] are

constantly improved. At the same time, various families of graphene nanoribbons

can be synthesised with atomically smooth edges [23, 24, 25, 26] in macroscopic

amounts and in solutions [27] so that they can be easily transferred to any sub-

strate. Graphene quantum dots have been also produced with well-defined shapes

by decomposition of C60 fullerene [28]. Structures with well-defined crystallographic

orientation or patterned edges can be also obtained by plasma etching [29, 30] and

nanolithography [31, 32]. However, not all methods used for synthesis of graphene
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nanostructures are suitable for silicene or phosphorene ones. Some of them, such as

self-assembling techniques [33, 23, 24, 25, 26] rely on organic molecular precursors,

and, therefore, cannot be transferred to other materials in a straightforward way.

Moving to lower dimensions is motivated by advantages this could provide.

Low-dimensional systems are very desirable in optical applications due to the in-

creased density of states which facilitates lasing by reducing threshold current and

therefore reducing devices’ power consumption [34]. A variety of such devices is

of great demand for different frequency ranges, especially for the THz frequency

range [35, 36, 37, 38]. A number of schemes for generating THz radiation based on

graphene have been considered [39, 40, 41, 42, 43, 44, 45]. One can single out an

interesting schemes based on Cerenkov synchronization [41, 42, 43, 44]. In general,

low-dimensional structures are anticipated to play an important role in future THz

technology [46]. Thus, it is evident that a good understanding of electronic and

optical properties of low-dimensional graphene, silicene and phosphorene structures

is required.

Nowadays the most trusted theoretical tools for optical properties investigation

are those based on so-called first principles calculations such as density functional

theory (DFT) or Hartree-Fock methods. However, despite being treated by many

as impeccable they also have their limitations. Firstly, they contain a number

of assumptions making them, strictly speaking, approximate [47]. For instance,

the exchange-correlation part of the energy functional in DFT is not known. The

simplest approximation to this functional based on the homogeneous electron gas

is referred to as local density approximation (LDA). The LDA approximation is

notorious by underestimation of the band gaps [48]. At the same time, a more

sophisticated approximations such as generalized gradient approximation (GGA)

are not always better. Secondly, the first principle methods require solving the

self-consistent problem, which is computationally costly. In the case of Hartree-

Fock method this issue is also exacerbated by the necessity to deal with Slater

determinants [49]. Although nowadays computers are becoming faster providing

researchers more freedom in this matter, the current limit of a structure size is about
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100 atoms (subjected to the complexity level of the theory and supercomputer

availability).

On one hand these methods are, of course, very useful and should be used in

the calculations because they are readily transferable between the structures made

of different elements. On the other hand, the large number of various effects taken

into account as well as a sophistication of the black-box-like commercial programs

in use often hides the main physics behind the results of the numerical experi-

ments. Therefore, one should not forget about simple tractable models such as

tight-binding one. There are a lot of examples when the phenomena predicted

within a simple nearest-neighbour tight-binding model later found experimental

confirmation. The one cannot but mention the history of graphene. The linear

electron dispersion and, therefore, relativistic nature of the electrons in this mate-

rials was predicted by Wallace in 1947 within the nearest-neighbour approximation

of the single pz-orbital tight-binding model [50]. Once graphene has become avail-

able for experimental study the measurements of the cyclotron mass confirmed

this prediction with high accuracy [51]. Another unusual and important effect

discovered in graphene in 2005 was the quantum Hall effect with the square root

dependence on the magnetic field strength and the number of the Landau level [52].

In graphene this effect can be observed even at room temperatures [53]. The pre-

diction of the unconventional quantum Hall effect for graphene was made within

the low-energy tight-binding model [54] two years before the Nobel prize winning

work of A. Geim and K. Novoselov on graphene exfoliation [2]. Graphene is an

excellent material for metrological applications. It has a universal absorption al-

most independent of the frequency [55, 56], which can be expressed in terms of

the fundamental physical constants only πe2/(~c) = 2.3%. This surprising result

can be easily restored by applying the Fermi’s golden rule within the low-energy

tight-binding model but was never predicted using DFT or any ab initio numerical

techniques.

The relativistic nature of the electrons in graphene lead to observation of such

phonomenon as Klein paradox [57]. In nonrelativistic quantum mechanics, tun-
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neling probability for a particle bumping a potential barrier decays exponentially

into a barrier. Thus, the probability to find the particle on the opposite side of

the barrier is always smaller than the probability for the particle to reflect from

the barrier. In relativistic quantum mechanics governed by the Dirac equation,

the probability of tunneling can achieve unity if the height of the barrier is ex-

ceeding the rest mass of the particle. In the low-energy tight-binding model with

the nearest-neighbour approximation graphene electrons are described by the ef-

fective massless Dirac equation [58, 59]. Thus, the conditions for the observation

of the Kein paradox is readily met. Indeed, this the tunneling probability for nor-

mal incidence of the electrons on the barrier has been observed experimentally in

graphene [60]. One more remarkable manifestation of the relativistic physics in

graphene which has been also observed on experiment is “atomic collapse” [61].

Thus, it is evident that the simple tight-bidning model allows to understand,

explain and even predict an essential physical phenomena, which can be observed

in a real or numerical experiment. This is a great advantage of a simple tractable

model along with saving the computational time and resources.

Graphene is not only an interesting system on its own but it is also a model

system for other structures such as carbon nanotubes. Therefore, the tight-binding

model can be also applied to single-walled carbon nanotubes. In fact, many predic-

tions of CNT electronic and optical properties have been made within this model.

One of the important things worth mentioning is the so-called Kataura plot. This

plot is basically a convenient way of presenting the dependence of low-energy in-

terband transitions on the tube diameter. This type of plot was proposed by

Hiromichi Kataura in 1999 [62]. The experimental version of the Kataura plot

obtained four years later showed a remarkable agreement with the numerical re-

sults obtained within the tight-binding model. Weisman et al. [63] reported the

results of optical transition frequency measurements of a striking number (more

than 100 semiconducting tubes of different chirality) of carbon nanotubes species

in aqueous surfactant suspensions. Although the agreement was not perfect be-

cause of the many-body effects such as electron-electron interaction the pattern
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was reproduced in detail. A more recent experimental research collected the data

of the optical transition measurements by Rayleigh spectroscopy in 206 different

single-walled nanotubes with diameter range 1.3-4.7 nm [64]. Fitting this data

with a limited number of parameters led to an empirical formula. The given for-

mula interpretation is based on picture provided by the tight-binding description.

This again shows an exceptional importance of the tight-binding model for carbon

nanotubes. Another example related to the narrow-gap single-walled carbon nan-

notubes can be given. These tubes are the subjects of investigation in Chaper 3 of

this thesis. In the early work based on a simple tight-binding model the curvature

effects were foreseen [65]. The first study specially dedicated to this effect was

performed by Kane and Mele with the effective massless Dirac equation [66]. The

existence of the small curvature induced band gaps in single-walled tubes predicted

by them were confirmed experimentally by scanning tunneling microscopy [67] and

transport [68] measurements. The band gaps values given by Ouyang et al. [67] for

CNT (9, 0), (12, 0) and (15, 0) were different from those arising in the tight-binding

model. At the same time the DFT calculations were as helpless as tight-binding

ones in providing quantitative agreement with the results of the experiment. The

agreement between the first principles calculations and the scanning tunneling mi-

croscopy measurements by Ouyang et al. had been reported only nine years later

by Matsuda et al. [69].

The tight-binding model has also proven to be of great importance in graphene

nanoribbons. Edge states in zigzag graphene nanoribbons where predicted by Fu-

jita and co-authors in their pioneering work [70] well before graphene exfoliation.

The subsequent investigation of their stability with respect to the edge disorder

based on tight-binding model followed shortly [70]. Recently, the room tempera-

ture edge magnetization resulting from these states in zigzag graphene nanoribbons

has been confirmed experimentally [32]. The existence of the edge states has also

been confirmed by scanning tunneling spectroscopy in highest quality samples pro-

duced by self-assembling technique [71, 25]. The systematic study of graphene

nanoribbons including curved ones, subjected to the external fields was carried out
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by group of Prof. M. F. Lin. The comprehensive review of their results can be

found in Ref. [72]. The studies based on the first principles approach are somewhat

less systematic and are dealing with very narrow graphene ribbons only.

The role of first principles studies increases when tight-binding model is to

be transferred to structures made of elements other than carbon. The fitting of

tight-binding results to those obtained form the first principles should be done if ex-

perimental data are not available. For instance, unlike carbon orbitals in graphene,

in phospherene phoshorous atomic orbitals are sp3 hybridized. Therefore phospho-

rene band structure is described by a mixture of s and p orbitals. However, the

largest contribution for the states near the Fermi energy comes from pz-orbitals (see

Fig. 1 in Ref. [73] and a discussion in the last paragraph in Sec. 2 of Ref. [74]). As

a result, the low-energy spectrum of single-layer phosphorene can be described by

an effective tight-binding model accounting for only pz-orbitals [10]. Within this

tight-binding model, it is sufficient to consider only five nearest-neighbour hopping

integrals for a correct description of the low-energy electronic properties of single-

and double-layer phosphorene [10]. The tight-binding formalism has been widely

used for the monolayer of black phosphorous [75, 75, 76], phosphorene nanorib-

bons [77, 78] and phosphorene quantum dots [79, 80]. This simple approach is

employed in Chapter 5 of this thesis for phosphorene quantum dots. Similar to

phosphorene, the fist principles calculations have been performed for low-buckled

silicene [1]. The tight-binding description encompassing the main low-energy fea-

tures of the silicene band structure has been provided by Liu et al. [9]. We also

use this simple tractable model for our silicene quantum dots study presented in

Chapter 4. Finally, we notice that the tight-binding model has been deployed

successfully for group IV 2D materials [81] and GaAs monolayers [82].

The above discussion reviews the success and abundant use of a simple tight-

binding description of flat-structured materials. This model can also be used for

flat quasi-one- and -zero-dimensional structures. Although moving from 2D mate-

rials to such structures reduces the structure’s size, it also inevitably increases the

number of atoms in the structure unit cell, soaring the demand for computational
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power in first principles calculations. Thus, it is reasonable to use semi-empirical

tight-binding model to create a roadmap for a more thorough investigation.

As we have seen, the general trends and the main insights about the optical

properties of the low-dimensional structures can be obtained within semi-empirical

methods such as the Huckel tight-binding model. In this approach the optical

properties can be efficiently evaluated, avoiding a computationally-consuming self-

consistent treatment. In many cases analytical results can be obtained, which is

ideal for identifying major trends and qualitative description. It also greatly con-

tributes to understanding of such materials and developing intuition with respect

to their properties. In systems well-described by a single orbital tight-binding

model, evaluation of optical matrix elements which usually requires knowledge of

the actual wave functions can be reduced to the matrix elements based on the

envelope wave functions and as such does not require information other than the

semi-empirical tight-binging Hamiltonian [83].

In this thesis we use the advantage of the semi-empirical single orbital tight-

binding model to gain a deeper understanding of optical properties of carbon nan-

otubes and graphene nanoribbons which have being intensively investigated by the

research community for some time and to investigate the optical properties of novel

structures such as silicene and phosphorene quantum dots, which we expect to be

produced in the future. Our particular focus is on low-energy optical properties

(mid-infrared and THz) and their tunabilily. Although some of the obtained results

are related to optical and even ultraviolet range.

This thesis is organized into two parts and four chapters. Part I is devoted

to carbon nanotubes and graphene nanoribbons (Chapter 2 and 3) and Part II

to silicene and phosphorene nanoclusters (Chapter 4 and 5). Each chapter starts

from introduction identifying problems to be solved within the outlined general

framework and finishes with detailed conclusions. Future directions of the research

are discussed in the concluding Chapter 6.

Chapter 2 is based on a paper published in Physical Review B [84] (see also

Refs. [85, 86]). In this chapter an analytical tight-binding theory of the optical
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properties of graphene nanoribbons with zigzag edges is developed. Applying the

transfer matrix technique to the nearest-neighbour tight-binding Hamiltonian, an-

alytical expressions are derived for electron wave functions and optical transition

matrix elements for incident light polarized along the structure axis. It follows

from the obtained resutls that optical selection rules result from the wave function

parity factor (−1)J , where J is the band number. These selection rules are that

∆J is odd for transitions between valence and conduction subbands and that ∆J

is even for transitions between only valence (conduction) subbands. Despite the

fact that these selection rules are different from those in armchair carbon nan-

otubes, it is shown in this chapter there is a hidden correlation between absorption

spectra of the two structures. This correlation implies that in some applications

these two types of quasi-one-dimensional structures can be used interchangeably.

The correlation originates from the fact that van Hove singularities in the tubes

are centered between those in the ribbons if the ribbon width is about a half of

the tube circumference. The analysis of the matrix elements dependence on the

electron wave vector for narrow ribbons shows a smooth non-singular behavior at

the Dirac points and the points where the bulk states meet the edge states. The

aforementioned results were obtained in collaboration with Dr. Mikhail Shuba.

The author of the current thesis acknowledges Dr. Shuba’s ideas to investigate the

doping dependent absorption spectra and optical transitions between the conduc-

tion (valence) subbands only. All the derivations were carried out by the author

of this thesis who also wrote the manuscript. All the authors participated in the

analysis of the obtained results and polishing the final version of the manuscript.

Chapter 3 of this thesis has not been published in any journal yet. Some result

of this chapter have been presented at various conferences during the PhD course,

therefore some of its ideas and preliminary results can be found in the extended

conference abstracts (see Refs. [87, 88]). In this chapter, the interband dipole tran-

sitions are calculated in quasi-metallic single-walled carbon nanotubes (zigzag and

chiral). The optical matrix elements in zigzag nanotubes for the incident radiation

polarized parallel to the axis of the translation symmetry are compared with the
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corresponding matrix elements in armchair graphene nanoribbons. It is shown that

the curvature effects for the tubes and the edge effects for the ribbons result not

only in a small band gap opening, corresponding to THz frequencies, but also in a

significant enhancement of the transition probability rate across the band gap. The

velocity matrix element characterizing the rate of transitions has a universal value

equal to the Fermi velocity of electrons in graphene. This makes these nanostruc-

tures perspective candidates for sources and detectors of THz radiation. A possible

THz generation scheme is presented and discussed. It is also shown that in gapped

honeycomb lattices, additionally to the strong transitions across the band gap and

momentum alignment for linearly polarized light, valley dependent selection rules

arise for circular polarized light.

Optical properties revealed in the Part I of this thesis pave the way to a num-

ber of possible device applications. Ideally, these devices would require frequency

tunability. An obvious way to tune the properties of the structures is to apply

external magnetic or electric fields. Although the application of external fields to

tune electronic and optical properties of single-walled carbon nanotubes and single

layer graphene nanoribbons is possible, this also impose high standards on fabri-

cation technology. For instance, the symmetry of the carbon nanotubes does not

allow using homogeneous electric fields [89], while application of the magnetic field

requires either alignment of the tubes in samples or measurements on individual

tubes [90]. In the case of graphene nanoribbons electronic properties can be tuned

by the in-plane electric field [91, 14, 15], which relies on a technology of side gates

deposition. The usage of the electric fields for flat quantum dots in the back gate

geometry, when the electric field vector is perpendicular to the surface of the struc-

ture, is seen as more compatible with the current planar technology. In terms of

optical properties reducing the dimension of the structures should also results in

the advantage of a discrete density of states. Therefore, in Part II of this thesis

I consider quasi-zero-dimensional structures – phosphorene and silicene quantum

dots. Unlike single-layer graphene, silicene and phosphorene quantum dots have

buckled and puckered structures allowing application of the electric field via the
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electrode deposited on the back side of the wafer holding the dots. It is also evident

that this geometry is less sensitive to the in-plane quantum dot disorientation.

Chapter 4 of this thesis is based on a collaboration with the colleagues from

the Department of Physics, Universite de Picardie Jules Vernes, Amiens, France.

My secondment to France was funded by the Marie Curie Initial Training Network

”NOTEDEV”, EU FP7 ITN NOTEDEV (Grant No. FP7-607521). The results

of this collaboration have been published in Journal of Applied Physics [92]. This

chapter is devoted to the numerical study of optical properties of low-buckled sil-

icene and AB-stacked bilayer graphene quantum dots subjected to an external

electric field. Within the tight-binding model, the optical absorption is calculated

for quantum dots of triangular and hexagonal shapes with zigzag and armchair

edge terminations. It is shown that in triangular silicene nanoclusters with zigzag

edges a rich and widely tunable infrared absorption peak structure originates from

transitions involving zero-energy states. The edge of absorption in silicene quan-

tum dots undergoes a red shift in the external electric field for triangular dots,

whereas a blue shift takes place for hexagonal ones. In bilayer graphene quantum

dots with zigzag edges the edge of absorption undergoes a blue(red) shift for tri-

angular(hexagonal) geometry. In armchair quantum dots of silicene a blue shift of

the absorption edge takes place for both dot shapes, while red shift is inherent for

both shapes of bilayer graphene quantum dots.

The problem investigated in this chapter was formulated and proposed by Prof.

Mikhail Portnoi and Prof. Igor Luckyanchuk to the author of this thesis and an-

other collaborating PhD student Hazem Abdelsalam form Universite de Picardie

Jules Vernes. During the secondment to the Universite de Picardie Jules Vernes the

author of this thesis learned the physics of silicene and developed the programme

in Wolframe Mathematica for optical absorption spectrum calculations. He also

helped Hazem Abdelsalam to extend his code based on MATLAB MathWorks for

treatment of optical properties of quantum dots. All the results were obtained in

the two software packages independently and verified by thorough comparison and

analysis. The manuscript was written in cooperation with Hazem Abdelsalam. The
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supervisors of Hazem Abdelsalam – M. H. Talaat in Egypt and I. A. Lukyanchuk

in France – and M. E. Portnoi helped in the interpretation of the numerical re-

sults. All the authors discussed and edited the final version of the manuscript and

helped responding to the referee comments. Both early stages researchers made

equal contribution to this work. The order of the authors in the published paper

reflects the funding conditions imposed on Hazem Abdelsalam by his fellowship.

To emphasise Vasil Saroka contribution and overall coordinating role in this work

he was offered the last author position, the place usually allocated for a supervisor.

Chapter 5 of this thesis is a continuation of the collaboration between the author

of this thesis and Hazem Abdelsalam. This chapter is based on the manuscript sub-

mitted to the Physical Review B. Prof. Mikhail Portnoi and Prof. Igor Luckyanchuk

helped with the result interpretation and editing the manuscript. In this chapter,

we study numerically electronic and optical properties of single layer black phos-

phorous – phosphorene – quantum dots with various shapes, sizes, and edge types

(including disordered edges) subjected to an external electric field normal to the

structure plane. Compared to graphene quantum dots, in phosphorene quantum

dots of similar shape and size there is a set of edge states with energies dispersed

at around the Fermi level due to a redistribution of the nearest-neighbour hop-

ping intergrals in the puckered structure of the phosphorene lattice. These states

make the majority of phosphorene quantum dots metallic and enrich the phospho-

rene absorption gap with low-energy absorption peaks tunable by the electric field.

The presence of edge states dispersed at around the Fermi level is a characteristic

feature that is independent of the edge morphology and roughness. This makes

phosphorene nanoclusters a good filler for electromagnetic shielding composites.

Combined with the tunability in an external field this paves the way to a variety

of practical applications. At the same time, we show that dielectric quantum dots

which are almost insensitive to the external field perturbation can be engineered

as well.

In summary, in this introductory chapter, I have presented an outline of the

research field and justified the research methodology for this thesis. This chapter
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also overviews the main results and explains my role in the collaborative research.

More detail and specific discussions are provided in the following chapters.



Part I

Optical and THz transitions in

quasi-one dimensional carbon

nanostructures
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Chapter 2

Energy spectra and interband

transitions in zigzag nanoribbons

and armchair nanotubes

2.1 Introduction

Graphene nanoribbons with zigzag edges are quasi-one dimensional nanostructures

based on graphene [2] that are famous for their edges states. These states were

theoretically predicted for ribbons with the zigzag edge geometry by Fujita [93]

and for a slightly modified zigzag geometry by Klein [94], although the history

could be dated back to the pioneering works on polymers [95, 96]. Since then edge

states in zigzag ribbons have been attracting much attention from the scientific

community [70, 97, 98, 99, 100, 101, 102, 91, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 72], because such peculiar localization of the states at the

edge of the ribbon should result in the edge magnetization due to the electron-

electron interaction. Although the effect was proved to be sound against an edge

disorder [70], such an edge magnetization had not been experimentally confirmed

until quite recently [32]. A fresh surge of interest to physics of zigzag nanoribbons

is expected due to the recent synthesis of zigzag ribbons with atomically smooth

edges [25] and a rapid development of the self-assembling technique [26].

33
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The edge states in zigzag ribbons have been predicted to be important in trans-

port [113, 114, 115], electromagnetic [116] and optical properties [99, 91, 117].

Although considerable attention has been given to zigzag ribbons’ optical proper-

ties [99, 91, 117, 118, 119, 120, 121, 111, 122, 123, 124, 72], including many body

effects [125, 126, 121], the effect of external fields [91, 121], curvature [72], wave

function overlapping integrals [122, 123], the finite length effect [127] and the role

of unit cell symmetry [128], a number of problems have not been covered yet. In

particular, it is known that the optical matrix element of graphene is anisotropic

at the Dirac point [129, 130] due to the topological singularity inherited from the

wave functions [131, 132]. However, the fate of this singularity in the presence of

the edge states, i.e. in zigzag nanoribbons, has not been investigated. This requires

analysis of the optical transition matrix element dependence on the electron wave

vector, in contrast to the usual analysis limited solely to the selection rules.

It was obtained numerically by Hsu and Reichl that the optical selection rules

for zigzag ribbons are different from those in armchair carbon nanotubes [117]. By

matching the number of atoms in the unit cell of a zigzag ribbon and an armchair

tube, it was demonstrated that the optical absorption spectra of both structures are

qualitatively different [117]. However, a comparison of these structures based on

the matching of their boundary conditions, similar to what has been accomplished

for the band structures [133] and optical matrix elements [87] of armchair graphene

nanoribbons and zigzag carbon nanotubes, has not been reported yet.

The distinctive selection rules of zigzag graphene nanoribbons were noticed as

early as 2000 by Lin and Shyu [99]. This remarkable and counter-intuitive result,

especially when compared to the optical selection rules of carbon nanotubes [134,

129, 135, 136, 137, 138], was obtained numerically and followed by a few attempts

to provide an analytical explanation [111, 120].

Within the nearest-neighbour approximation of the π-orbital tight-binding model

the optical selection rules for graphene nanoribbons with zigzag edges is a result

of the wave function parity factor (−1)J , where J numbers conduction (valence)

subbands. This factor has been obtained numerically as a connector of wave func-
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tion components without explicit expressions for the wave functions being pre-

sented [111]. Concurrently, the factor (−1)J , responsible for the optical selection

rules, is missing in some papers providing explicit expressions for the electron wave

functions (see Appendix of Ref. [109]). Although it emerged occasionally in later

works dealing with the transport and magnetic properties of the ribbons [112, 114],

its important role was not emphasised and its origin remains somewhat obscure.

At the same time, Sasaki and co-workers obtained the optical matrix elements

which, although providing the same selections rules, are very different from those

in Ref. [111]. Moreover, despite being reduced to the low-energy limit around the

Dirac point the matrix elements in Ref. [120] remain strikingly cumbersome.

It is the purpose of the present chapter to demonstrate a simple way of obtain-

ing analytical expressions for optical transition matrix elements in the orthogonal

tight-binding model. The essence of this work is an analytical refinement of the

paper by Chung et al. [111], which provides an alternative explanation of the se-

lection rules to that given in terms of pseudospin [120]. However, we do not simply

derive analytically the results of the study [111] showing their relation to the zigzag

ribbon boundary condition and secular equation, but extend the approach to the

transitions between conduction (valence) subbands considered by Sasaki et al. [120].

Unlike both mentioned studies we go beyond a ‘single point’ consideration of the

optical matrix elements and analyse the matrix elements as functions of the elec-

tron wave vector. The presence of possible singularities in these dependencies at

k = 2π/3, corresponding to the Dirac point, and at the transition point kt, where

the edge states meet bulk states, is in the scope of our study. In this chapter we

shall also investigate relations between zigzag ribbons’ and armchair nanotubes’

optical properties by matching their boundary conditions in lieu of matching the

number of atoms in the unit cells as was done by Hsu and Reichl [117].

This chapter is organized as follows: in Section 2.2 we present the tight-binding

Hamiltonian and solve its eigenproblem by the transfer matrix method, following

the original paper by Klein [94], in this section many analogies can be drawn with

the treatment of finite length zigzag carbon nanotubes [139]; optical transition
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matrix elements are derived within so-called gradient (effective mass) approxima-

tion and optical selection rules are obtained. The analytical results are discussed

and supplemented by a numerical study in Section 2.3. Finally, the summary is

provided in Section 2.4. We relegate to the appendices some technical details on

ribbon wave functions and supplementary results on matching periodic and ‘hard

wall’ boundary conditions.

2.2 Analytical tight-binding model

2.2.1 Hamiltonian eigenproblem

Let us consider a zigzag ribbon within the tight-binding model, which is the orthog-

onal π-orbital model taking into account only nearest neighbour hopping integrals.

The atomic structure of a graphene nanoribbon with zigzag edges is presented in

Fig. 2.1. A ribbon with a particular width can be addressed by index w, number-

ing trans-polyacetylene chains – so-called “zigzag” chains. For such a ribbon the

tight-binding Hamiltonian can be constructed in the usual way by putting kx → 0,

where kx is the transverse component of the electron wave vector. We avoid the

procedure described by Klein [94], since it results in a Hamiltonian for which con-

cerns were raised by Gundra and Shukla [128]. Thus, for the ribbon with w = 2 it

reads

H =


0 γq 0 0

γq 0 γ 0

0 γ 0 γq

0 0 γq 0

 (2.1)

where γ is the hopping integral and q = 2 cos(k/2) with k = kya being the dimen-

sionless electron wave vector and a = |a1| = |a2| = 2.46 Å being the graphene

lattice constant. The Hamiltonian H has a tridiagonal structure, therefore its

eigenproblem can be solved by the transfer matrix method, which is a general

mathematical approach for analytical treatment of tridiagonal and tri-block diag-

onal matrix eigenproblems [140]. This approach was developed and widely used
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Figure 2.1: The atomic structure of zigzag ribbons consisting of w = 3 and 4

zigzag chains. The carbon atoms are numbered within the ribbon unit cells. The

two outermost sites, where the electron wave function vanishes, are labeled by

black numbers. The graphene lattice primitive translations a1 and a2 are shown

along with the two nonequivalent atoms from the A and B sublattices forming the

honeycomb lattice of graphene. The positions of zigzag chains, including auxiliary

ones, where the electron wave function vanishes, are marked by dashed lines. m

labels the dashed dotted line of the mirror symmetry for even w and the ribbon

center for odd w.
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for investigation of one-dimensional systems [141, 142, 143, 144]. An alternative

approach may be based on continuants, which also have been used for the investi-

gation of conjugated π-carbons such as polyenes and aromatic molecules [145, 146]

and carbon nanotubes [147], (see also Refs. [148, 149, 150]).

We use H to derive the relations between the eigenvector components presented

in the paper by Chung et al. [111]. In particular, we pay special attention to the

origin of the (−1)J factor and its relation to the eigenstate parity. In the rest of

this section we solve the eigenproblem for H.

Eigenvalues: proper energy

In this part of the section we find eigenvalues by the transfer matrix method [141,

142, 143, 144]. The eigenvalue problem for the Hamiltonian given by Eq. (2.1) can

be written as follows:

cj−1γ − cjE + cj+1γq = 0; j = 2p− 1 (2.2)

cj−1γq − cjE + cj+1γ = 0; j = 2p ,

where p = 1 . . . w, w = N/2, and N is the number of atoms in the ribbon unit cell.

Each of the equations above can be rewritten in the transfer matrix form [142]: cj

cj+1

 =

 0 1

−1

q

α

q


 cj−1

cj

 ; j = 2p− 1 , (2.3)

 cj

cj+1

 =

 0 1

−q α

 cj−1

cj

 ; j = 2p .

where α = E/γ. Introducing

T1 =

 0 1

−1

q

α

q

 ; T2 =

 0 1

−q α

 (2.4)



CHAPTER 2. ZIGZAG NANORIBBONS AND ARMCHAIR NANOTUBES 39

and substituting j into (2.3) yield c2p−1

c2p

 = T1

 c2p−2

c2p−1

 , (2.5)

 c2p

c2p+1

 = T2

 c2p−1

c2p

 ,

whence the following recursive relation can be readily noticed: c2p

c2p+1

 = T2T1

 c2p−2

c2p−1

 , (2.6)

and the following transfer matrix equation can be obtained:

C2p+1 =

 c2p

c2p+1

 = T pC1 . (2.7)

Thus, the transfer matrix in question is

T = T2 T1 =

 −
1

q

α

q

−α
q

α2 − q2

q

 . (2.8)

The characteristic equation for finding the eigenvalues of T , det (T − λI) = 0, is a

quadratic one:

λ2 +

(
1

q
+ q − α2

q

)
λ+ 1 = 0 . (2.9)

This equation has the following solution:

λ1,2 = A±
√
A2 − 1 , (2.10)

where

A =
α2 − q2 − 1

2q
= − cos θ . (2.11)

A new variable θ has been introduced above to reduce the eigenvalues λ1,2 to the

complex exponent form, which is favourable for further calculations:

λ1,2 = −e∓iθ , (2.12)

where the upper (lower) sign is used for λ1 (λ2). We must note that another choice

of variable θ, i.e. A = cos θ, is also possible, but it results in the inverse numbering
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of the proper energy branches. The minus sign is a better choice because it allows

one to avoid a change of the lowest (highest) conduction (valence) subband index

when the ribbon width increases.

Equation (2.11) allows one to express the proper energy in terms of θ and q:

α =
E

γ
= ±

√
q2 − 2q cos θ + 1 . (2.13)

Taking into account that q = 2 cos(k/2), for the proper energy we obtain

E = ±γ
√

4 cos2
k

2
− 4 cos

k

2
cos θ + 1 , (2.14)

where θ is to be found from the secular equation for the fixed ends boundary

condition as in the case of a finite atomic chain [142, 143, 144]. The physical

interpretation of the parameter θ is to be given later. We note that Eq. (2.14) has

similar form not only to the graphene energy band structure [50, 65, 11] but also

to the eigenenergies of the finite length zigzag carbon nanotubes [139] (cf. with

Eq. 32 therein).

Secular equation

For the fixed end boundary condition, which, in the context of the electronic prop-

erties being considered, is better referred to as the ‘hard wall’ boundary condition,

the general form of the secular equation is (Tw)22 = 0 [144]. This equation can

be obtained by imposing the constraint c0 = cN+1 = 0 on Eq. (2.7), where p = w,

which physically means the vanishing of the tight-binding electron wave functions

on sites 0 and N + 1, or equivalently on zigzag chains 0 and w + 1 as illustrated

in Fig. 2.1. Hence, for the secular equation the w-th power of the transfer matrix

T is needed. The simplest way of calculating Tw is Tw = SΛwS−1, where Λ is the

diagonal form of T and S is the matrix making the transformation to a new basis

in which T is diagonal. The eigenvalues of T are given by Eq. (2.12), therefore Λ

can be easily written down. Concurrently, the S matrix can be constructed from

eigenvectors of T written in columns. By setting the first components of the vectors
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to be equal to unity, one can reduce them to

V1 =

 1

ξ1

 ; V2 =

 1

ξ2

 , (2.15)

where the following notation is used:

ξ1,2 =
1 + qλ1,2

α
. (2.16)

Then the matrix S and its inverse matrix S−1 can be written as follows:

S =

 1 1

ξ1 ξ2

 ; S−1 =
1

ξ2 − ξ1

 ξ2 −1

−ξ1 1

 . (2.17)

Expressions (2.17) are of the same form as in the atomic ring problem [143]. Using

(2.17), the Tw calculation yields

Tw =
1

ξ2 − ξ1

 ξ2λ
w
1 − ξ1λw2 λw2 − λw1

ξ1ξ2 (λw1 − λw2 ) ξ2λ
w
2 − ξ1λw1

 . (2.18)

Now with the aid of (2.16) and (2.12) from (2.18) we can find the explicit form of

the secular equation for θ:

sinwθ − 2 cos
k

2
sin [(w + 1)θ] = 0 . (2.19)

The equation above is very much like that analysed by Klein [94] for so-called

“bearded” zigzag ribbons, therefore the same basic analysis can be carried out.

As can be seen from Fig. 2.2, all non-equivalent solutions of Eq. (2.19) reside

in the interval θ ∈ (0, π). When the slope of q sin[(w+ 1)θ] at θ = 0 is greater than

that of sinwθ , i.e. (q sin[(w + 1)θ])′θ=0 > (sinwθ)′θ=0 ⇒ 2 cos(k/2) > w/(w + 1),

there are w different solutions in the interval, which give 2w branches of the proper

energy (2.14). This is indicated in Fig. 2.2 (a) and (b). However, as seen from

Fig. 2.2 (c) and (d), when 2 cos(k/2) ≤ w/(w + 1), one solution is missing and

Eq. (2.14) defines only 2w − 2 branches. The missing solution can be restored by

analytical continuation θ = iβ, where β is a parameter to be found. In this case the

secular equation (2.19) and the proper energy (2.14) must be modified accordingly

by changing trigonometric functions to hyperbolic ones.
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Figure 2.2: Solutions of the secular equation (2.19) for zigzag graphene nanoribbon

with w = 6 and the following values of the parameter q = 2 cos(k/2): (a) 0; (b)

w/(w + 1); (c) 3w/2(w + 1); (d) 2. The light blue shading signifies the θ-intervals

to which the secular equation solutions are confined for q’s ranging from 0 to ∞.

The above introduced parameter θ (β) can be interpreted as a transverse com-

ponent of the electron wave vector and the secular equation (2.19) can be referred

to as its quantization condition.



CHAPTER 2. ZIGZAG NANORIBBONS AND ARMCHAIR NANOTUBES 43

Eigenvectors: wave functions

Let us now find eigenvectors of the Hamiltonian given by Eq. (2.1). To obtain the

eigenvector components we choose the initial vector C1 = (c0, c1) as a linear com-

bination of the transfer matrix eigenvectors that satisfies the ‘hard wall’ boundary

condition c0 = 0 : C1 = 1/(2i)(V1 − V2). It is to be mentioned here that the

opposite end boundary condition, cN+1 = 0, is ensured by Eq. (2.19). The chosen

C1 yields

C2p+1 = T pC1 =
1

2i
(λp1V1 − λ

p
2V2)

=
1

2i

 λp1 − λ
p
2

λp1ξ1 − λ
p
2ξ2

 (2.20)

or equivalently

c2p =
1

2i
(λp1 − λ

p
2) ; p = 1 . . . w (2.21)

c2p+1 =
1

2i
(λp1ξ1 − λ

p
2ξ2) ;

Substituting (2.12) and (2.16) into (2.21) and keeping in mind the definition of α,

one readily obtains,

c2p = (−1)p+1 sin pθ; p = 1 . . . w (2.22)

c2p+1 =
(−1)p+1γ

E

{
sin pθ − 2 cos

k

2
sin [(p+ 1)θ]

}
. (2.23)

It is worth pointing out that for the starting p = 1 from the equations above one

gets components c2 and c3. Although it may seem strange because of the missing

c1, this is how it should be for c1 has already been specified by the proper choice

of the initial vector C1.

Equation (2.23) can be further simplified (see Appendix A) so that for the

eigenvector components one has

c
(j)
2p = (−1)p+1 sin pθj; p = 1 . . . w (2.24)

c
(j)
2p+1 = ±(−1)p+1(−1)j−1 sin [(p− w)θj] . (2.25)

where we have introduced the index j to number various values of θ, which are

solutions of Eq. (2.19). As one may have noticed the above expressions still have
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one drawback: p = 1 defines components c2 and c3, while it would be much more

convenient if p = 1 would instead specify c1 and c2. To obtain desired depen-

dence of the eigenvector components on the variable index one needs to re-define

in Eq. (2.25) the index p→ n− 1:

c
(j)
2n−1 = ±(−1)n(−1)j sin [(w + 1− n)θj] ; n = 1 . . . w

c
(j)
2p = (−1)p+1 sin pθj . p = 1 . . . w

and then put n→ p. The latter is permissible since n is a dummy index that can

be denoted by any letter. Note that due to the change of the terms order in the

sine function one (−1) factor in the coefficient c
(j)
2p+1 above cancels therefore j − 1

in the exponent has been replaced by j. Thus, for the Hamiltonian (2.1) we end

up with the following eigenvectors:

c
(j)
2p−1 = ∓(−1)p(−1)j sin [(w + 1− p)θj] ; (2.26)

c
(j)
2p = (−1)p sin pθj , p = 1 . . . w ,

where we have got rid of (−1) in c
(j)
2p . Since the whole eigenvector

∣∣c(j)〉 =(
c
(j)
1 , c

(j)
2 , . . . , c

(j)
N

)
can be multiplied by any number, one can choose this num-

ber to be (−1). Having multiplied
∣∣c(j)〉 by (−1), one has to change ± to ∓ in the

coefficient c
(j)
2p+1, therefore in Eq. (2.26) the upper “−” stands now for the conduc-

tion band, while the lower “+” for the valence band. The (−1)p factor, however,

cannot be eliminated in a similar way because it determines the signs of various

components differently. Nevertheless, this factor is of no significance, too, for it

can be eliminated by a unitary transform U , which is a diagonal matrix with the

main diagonal defined as

{u2p−1,2p−1, u2p,2p} = {(−1)p, (−1)p}|p=1...w . (2.27)

For w = 2 it reads

U =


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 . (2.28)
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As follows from (2.27), U is both a unitary and an involutory matrix. It can

be straightforwardly checked that applying the unitary transform (2.27) to the

eigenvector of H given by Eq. (2.1), i.e.
∣∣c̃(j)〉 = U

∣∣c(j)〉, we obtain eigenvectors of

the Hamiltonian H̃ = UHU †. For w = 2 the explicit form of the new Hamiltonian

is

H̃ =


0 γq 0 0

γq 0 −γ 0

0 −γ 0 γq

0 0 γq 0

 . (2.29)

The general form of the eigenvectors of H̃ is the same as (2.26) but without (−1)p

factor:

c̃
(j)
2p−1 = ∓(−1)j sin [(w + 1− p)θj] ; (2.30)

c̃
(j)
2p = sin pθj , p = 1 . . . w .

Equations (2.30) and (2.26) present components of non-normalized eigenvec-

tors
∣∣c(j)〉. Normalization constant Nj for these vectors can be found from the

normalization condition N2
j

〈
c(j)

∣∣c(j)〉 = N2
j

∑w
p=1 c

(j)∗
2p−1c

(j)
2p−1 + c

(j)∗
2p c

(j)
2p = 1, which

yields

Nj =
1√

w − cos [(w + 1)θj]
sinwθj
sin θj

. (2.31)

We do not use “ ˜ ” two distinguish the two types of eigenvectors mentioned above

because, by definition, unitary transform preserves the dot product, therefore the

normalization constant is the same in both cases.

As in the case of the secular equation, eigenvectors and normalization constants

for the missing solution θ are obtained by the substitution θ → iβ, which results in

wave functions being exponentially decaying from the ribbon edges to its interior.

These wave functions describe the so-called edge states [94, 93, 70]. In contrast

to them the wave functions given by normal solutions θj extend over the whole

ribbon width, therefore they describe the so-called extended or bulk states. It can

be shown that normalized eigenvectors’ components for extended and edge states
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seamlessly match in the transition point kt defined by 2 cos(k/2) = w/(w+ 1) (see

Appendix B).

The matching of the bulk and edge state wave functions is shown in Figure 2.3,

where the wave functions of the zigzag ribbon with w = 15 are plotted as functions

of the atomic site positions x2p−1 = (
√

3a/2)(p − 1) and x2p = (a/2
√

3) + x2p−1

normalized by the ribbon width W = x2w. Figure 2.3 presents wave functions for

several energy branches J(s), where J is the energy branch number and s = c

or v refers to the conduction or valence branch, respectively. As one can see, a

bulk state wave function |1(v)〉, Fig. 2.3 (a), transforms into a wave function |1(v)〉

predominantly concentrated at the ribbon edges and decaying towards the ribbon

center, Fig. 2.3 (c), by becoming a linear function of xi/W at k = kt as shown

in Fig. 2.3 (b). One can also see that the parity factor can be associated with

the mirror or inversion symmetry of the electron wave function. For conduction

subbands if the parity factor (−1)J is positive then the wave function is symmetric

with respect to the inversion center denoted by the large black point as seen for

|2(c)〉 and |4(c)〉 in Fig. 2.3 (a) and (c). This means the wave function is odd.

However, if (−1)J is negative then the wave function is even, i.e. it is symmetric

with respect to the reflection in the the dashed dotted line signifying the ribbon

center. This happens for |3(c)〉 in Fig. 2.3 (b). For the valence subbands the

behaviour is opposite: if (−1)J is negative then the state wave function is odd,

as can be seen from Fig. 2.3 for the subband 1(v), but it is even for positive

parity factor (−1)J . Such behaviour is in agreement with the general properties of

motion in one dimension [151]. The parity factor attributed to the mirror symmetry

with respect to the line bisecting the ribbon longitudinally (see Fig. 2.1) has been

discussed in the literature [95, 117, 122, 123]. In this view, it should be noted

that the unit cells of ribbons with odd w do not have such a reflection symmetry

(see Fig. 2.1 for w = 3), nevertheless as we see from Fig. 2.3 for such ribbons the

wave functions can still be classified as even or odd in aforementioned sense. This

suggests that the symmetry argument developed in Ref. [128] as a criterion for the

usage of the gradient approximation, which is to be discussed in the next section, is
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Figure 2.3: The bulk-edge transformation and parity of a zigzag nanoribbon wave

function. The normalized wave functions |J(s)〉 of the zigzag nanoribbon with

w = 15 for various bands J(s) and the Brillouin zone points k = kt + δ: (a)

δ = −0.3; (b) δ = 0 (c) δ = 0.3. The solid lines are used for eye guidance, while

the dashed and dashed-dotted curves represent the envelopes of the 2p−1 (A) and

2p (B) sites. The horizontal axis is a normalized transverse coordinate xi/W , with

W being the ribbon width. The plots are shifted vertically by ±0.3 for clarity. The

dashed dotted vertical line and thick black points denote the line of the mirror and

centers of the inversion symmetry, respectively.
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not complete, since in that form it applies only to ribbons with even w. Finally, we

notice that the state wave functions can be classified by a number of twists of the

envelope functions presented in Fig. 2.3 by dashed and dashed dotted curves. The

number of such twists (nodes) is equal to J(c) and J(v)− 1 for the conduction and

valence subbands J(s), respectively. This behaviour is similar to what is expected

from the oscillation theorem [151].

2.2.2 Optical transition matrix elements

In this section we study the optical properties of graphene nanoribbons with zigzag

edges. Optical transition matrix elements are worked out in the gradient (effective

mass) approximation [152, 153, 154, 155] and optical selection rules are obtained.

However, before moving to the matrix elements of the ribbons we shall introduce

details of optical absorption spectra calculations where these matrix elements are

to be used.

Within the first order time-dependent perturbation theory the transition prob-

ability rate between two states, say |Ψf 〉 and |Ψi 〉 having energy Ef and Ei, re-

spectively, is given by the golden rule [156]:

Ai→f =
2π

~

∣∣∣〈Ψf

∣∣∣Ĥint (t)
∣∣∣Ψi

〉∣∣∣2 δ(Ef − Ei − ~ω) (2.32)

where δ(. . . ) is the Dirac delta-function, and Ĥint (t) is a time-dependent interaction

Hamiltonian coupling a system in question to that causing a perturbation, which is

periodic in time with frequency ω. Considering an incident plane electromagnetic

wave as a perturbation, one can show in the dipole approximation, eik·r ≈ 1, that〈
Ψf

∣∣∣Ĥint (t)
∣∣∣Ψi

〉
∼ E0

ω
〈Ψf |v̂ · ep|Ψi〉 ≡

E0

ω
Mf,i (2.33)

where v̂ is the velocity operator, E0 is the electric field strength amplitude and ep

is the vector of electromagnetic wave polarization. Thus, optical transition matrix

elements can be reduced to the velocity operator matrix elements (VMEs).

The total number of transitions per unit time in solids irradiated by electro-

magnetic wave at zero temperature is a sum of Ai→f over all initial (occupied)
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states in the valence band and final (unoccupied) states in the conduction band.

To account for losses such as impurity and electron-phonon scattering, the delta-

function in Eq. (2.32) is replaced by a Lorentzian. The difference in occupation

numbers of the initial and final states due to the finite temperature is introduced

by the Fermi-Dirac distribution. Then, for the absorption coefficient due to the

interband transitions one has

A(ω) ∼
∑

n,m,k,s,s′

Im

[
f(Em,s(k))− f(En,s′(k))

En,s′(k)− Em,s(k)− ω − iΓ

] ∣∣Mn(s),m(s′)(k)
∣∣2

ω
, (2.34)

where Em,s(k) is the dispersion of the electron in the m-th conduction (s = c)

or valence (s = v) subband, f(Em,s(k)) is the Fermi-Dirac distribution function,

Mn(s),m(s′)(k) is the optical transition matrix element being a function of the elec-

tron wave vector, Γ is the phenomenological broadening parameter (0.004 γ) [99].

Note that for non-zero temperature summation over initial states should also in-

clude states in the conduction band, therefore indices s, s′ have been introduced

above. The frequency of an incident wave, ω, as well as the electron energy, is

measured in units of the hoping integral γ.

Similar to Ref. [111] we follow the prescription of the gradient approxima-

tion [152, 154] to obtain the velocity operator right from the system Hamiltonian:

v̂ =
i

~

[
Ĥ, r̂

]
=

1

~
∂Ĥ

∂k
(2.35)

whence for a one dimensional case

v =
1

~
∂H

∂k
, (2.36)

with H being the Hamiltonian of the unperturbed system. Note that the derivative

∂H/∂k is different from ∂H/∂A mentioned in Ref. [120], where A is the vector

potential. The former has a clear relation to the minimal coupling k→ k+(e/~)A

via the expansion H(k+(e/~)A) = H(k)+(e/~)∇kH ·A+ . . ., where higher order

terms can be neglected for small A. Such an approach is equivalent to the effective

mass treatment since the commutator [. . .] in Eq. (2.35) implies that the crystal

momentum k is an operator:

k =
1

i

∂

∂x
i+

1

i

∂

∂y
j (2.37)
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which commutes with the position operator in the same way as real momentum p,

i.e. [x, kx] = i. Note, however, that there is no formal restriction to low-energies

around the Dirac point, k = 2π/3, as in the k · p theory with the effective mass

approximation for graphene [59, 157], carbon nanotubes [158, 159] or graphene

nanoribbons [101, 160].

In what follows we proceed with the calculation and analysis of the velocity

operator matrix elements (VMEs) in the gradient (effective mass) approximation.

Introducing the following vector:

∣∣ζ(m)
〉

=
a

~
∂H(k)

∂k

∣∣c(m)
〉
, (2.38)

the VME is evaluated as

Mn(c),m(v) =
〈
c(n)c

∣∣ζ(m)
v

〉
=

w∑
p=1

c
(n)∗
2p−1
c

ζ
(m)
2p−1
v

+ c
(n)∗
2p
c

ζ
(m)
2p
v

, (2.39)

where indices “c” and “v” denote the conduction and valence band, respectively,

and the eigenvectors
∣∣c(n,m)

〉
are meant to be normalized. In equation (2.38), the

graphene lattice constant a emerged because, in contrast to the general expres-

sion (2.36), the electron wave vector k is now treated again as a dimensionless

quantity.

Let us calculate VMEs for the Hamiltonian H̃ of the form presented by Eq. (2.29).

Similar calculations for H results in the same final expression. Due to the nature of

unitary transforms it is not essential which of the Hamiltonians and corresponding

eigenvectors one uses. The components of vectors
∣∣∣ζ̃(j)〉 are

ζ̃
(j)
2p−1 = −γa

~
sin(

k

2
) sin pθj ; p = 1 . . . w

ζ̃
(j)
2p = ±γa

~
sin(

k

2
)(−1)j sin [(w + 1− p)θj] , (2.40)

with upper “+” ( lower “−”) being used for conduction (valence) subbands. Sub-

stituting Eqs. (2.30) and (2.40) into (2.39), one obtains

Mn(c),m(v) =
γa

~
sin(

k

2
)NnNm [(−1)n − (−1)m]Sn,m , (2.41)
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where Sn,m is a sum. A similar form of the matrix element was obtained in Ref. [111]

but explicit expressions for the sum Sn,m and normalization constants Nn(Nm) were

not provided and potential singularities in VME due to Nj and Sn,m dependence on

k were not analysed. Such an analysis has not been carried out elsewhere including

Ref. [120].

It is known that the topological singularity in the graphene wave functions [131,

132] leads to anisotropic optical matrix element and absorption in the vicinity of

the Dirac point [129, 130]. This anisotropy is eliminated in the matrix element of

carbon nanotubes [129, 135], but the matrix element can exhibit singular behavior

at the Dirac point of the tube’s Brillouin zone if a perturbation such as strain,

curvature [87] or external magnetic field [161, 162, 163] is applied. The sharp

dependence of the zigzag ribbon VME on the electron wave vector around k =

±2π/3 could be triggered by the presence of the edge states. This possibility,

however, has not been analysed yet. The VME behaviour at the transition point

kt has not been investigated either. Being of practical interest [87] this requires a

thorough analysis of possible singularities in the VME dependence on k. The Sn,m

sum is given by

Sn,m =
w∑
p=1

sin [(w + 1− p)θn] sin pθm ; (2.42)

=
sin θm sin [(w + 1)θn]− sin [(w + 1)θm] sin θn

2(cos θn − cos θm)
.

In equation (2.41) normalization constants have been added since the vectors given

by Eq. (2.30) and used for obtaining Eq. (2.40) are not normalized. It is important

to allow for normalization constants in the VMEs because otherwise due to their θj

and therefore k dependency the VME curve’s behaviour in the vicinity of the tran-

sition point kt is incorrect. It is also worth noting that for θn = θm, or equivalently

for Sn,n, there is an indeterminacy of 0
0
-type in the summation result of Eq. (2.42).

This indeterminacy can be easily resolved by L’Hospital’s rule, which yields

Sn,n =
(w + 2) sinwθn − w sin [(w + 2)θn]

4 sin θn
. (2.43)

In a similar fashion one can check that for θn → 0, Sn,n → 0. Note, however, that if

θn → 0, then the normalization constant Nn given by Eq. (2.31) becomes infinitely
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large, thereby introducing indeterminacy into the VME. For transitions between

the valence and conduction subbands this indeterminacy is not essential for it is

multiplied by an exact zero, originating from the square brackets in Eq. (2.41),

which ensures a zero final result.

As can be seen from Eq. (2.41), Mn(c),n(v) is zero, whereas

Mn(c),n+1(v) ∼ NnNmSn,m sin(k/2) .

Thus, optical selection rules are: if ∆J = n−m is an even integer, then transitions

are forbidden, whereas if ∆J = n−m is an odd integer, then transitions are allowed.

The influence of the factor Sn,m together with the normalization constants Nn and

Nm on the transition probability, omitted in Ref. [111], will be discussed in detail

in Sec. 2.3. In the remainder of this section, we consider transitions between only

conduction (valence) subbands which are considered in Ref. [120] but are beyond

the scope of Ref. [111].

If the temperature is not zero, then there is a non-zero probability to find an

electron in the conduction subband states. Therefore, an incident photon can be

absorbed due to transitions between conduction subbands. The same is true for

valence subbands, which are not fully occupied. That is why, as has been pointed

out above, the summation in Eq. (2.34) is to be carried out over transitions between

conduction (valence) subbands too. Thus, for the absorption coefficient calculation

one also needs VMEs for such transitions. Making use of Eqs. (2.30) and (2.40),

we obtain

Mn(s),m(s) =
〈
c(n)s

∣∣ζ(m)
s

〉
; (2.44)

= ±γa
~

sin(
k

2
)NnNm [(−1)n + (−1)m]Sn,m ,

where “+” and “−” are used for VME of transitions between conduction, s = c, and

valence, s = v, subbands. For the specified transitions the optical selection rules

are the following: transitions are allowed if ∆J is an even number and they are for-

bidden otherwise. These matrix elements and corresponding selection rules should

be important in spontaneous emission (photoluminescence) calculations [164].
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In the case of n = m, VME given by Eq. (2.44) is nothing else but the group

velocity of an electron in the n-th band. If n = m = 1, then θn = θm → 0 as k

approaches the transition point kt. As a result, in Eq. (2.44) the indeterminacy

arises in precisely the same manner as discussed above for Eq. (2.41). In the present

case, however, it is essential since the expression in square brackets of Eq. (2.44)

is not an exact zero. The indeterminacy can be resolved by the application of

L’Hospital’s rule twice. This burden, however, can be bypassed by calculating the

VME by the aid of simplified expressions for eigenvectors at the kt provided in

Appendix B. Such a calculation yields

M1(s),1(s) = ∓γa
~

sin(
kt
2

)
w + 2

2w + 1
, (2.45)

where the upper (lower) sign is used for the conduction (valence) subband. It is

easily seen from the expression above that in the limit of a wide ribbon the electron

group velocity at kt ≈ 2π/3, i.e. approaching to the Dirac point, is ∓vF/2.

Velocity matrix elements for transitions involving edge states can be easily

obtained from Eqs. (2.41) and (2.44) with Sn,m given by Eq. (2.42) after θ → iβ

replacement being applied. It should be noticed that the Eqs. (2.41) and (2.44)

obtained here are incomparably simpler than their analogues in Ref. [120] (cf.

with Eqs. (18) and (19) therein). In the next Sec. 2.3 we discuss and investigate

numerically the obtained results.

2.3 Numerical results and discussion

2.3.1 Electronic properties

The physical properties of graphene nanoribbons are often related to those of car-

bon nanotubes (CNTs). In particular, one usually compares the electronic proper-

ties of graphene nanoribbons with those of carbon nanotubes [117, 118]. In most

cases such a comparison is based merely on the fact that an unrolled carbon tube

transforms into a graphene ribbon. However, this approach is a crude one. Firstly,

because only zigzag (armchair) ribbons with even number of carbon atom pairs
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can be rolled up into armchair (zigzag) tubes. Secondly, because a more relevant

and subtle comparison requires the matching of boundary conditions. It has been

shown by White et al. [133] that periodic and ‘hard wall’ boundary conditions can

be matched for armchair ribbons and zigzag carbon nanotubes if the width of the

ribbons is approximately equal to half of the circumference of the tubes. In Fig-

ure 2.4 we demonstrate that a similar correspondence of the electronic properties

takes place for zigzag graphene nanoribbons with w zigzag chains, ZGNR(w), and

armchair carbon nanotubes, ACNT(w + 1, w + 1) and ACNT(w,w) depending on

which parts of the Brillouin zones are matched (see Appendix C). The impossibil-

ity of matching a zigzag ribbon with just one of the tubes arises from the secular

equation (2.19) linking transverse wave vector θ with the longitudinal wave vec-

tor k. For sure, due to the presence of the edge states one should not expect the

transport properties of undoped ribbons to be the same as those of tubes, but the

equivalence of the optical properties seems to be quite natural thing. However, this

is not the case. As was shown numerically [99, 117, 111, 72] and has been demon-

strated above analytically, the optical selection rules of zigzag ribbons are different

from those of armchair tubes [134, 165, 129, 135, 137] (see also Appendix D). This

leads to transitions between the edge states being forbidden, which should also

have important implications for zigzag ribbon based superlattices [13, 14, 12]. A

somewhat similar picture is observed in the bilayer graphene quantum dots of tri-

angular shape, where the edge states are dispersed in energy around the Fermi

level [92].

2.3.2 Optical properties

Optical transition matrix elements

To scrutinise the velocity operator matrix elements (VMEs) for allowed transitions

we focus on the zigzag ribbon with w = 10. In Figures 2.5 and 2.6 we plotted the

VMEs given by Eqs. (2.41) and (2.44) as functions of the electron wave vector in

the first Brillouin zone (BZ). Figure 2.5 includes results for an armchair tube for

the sake of comparison. All plots are normalized by the graphene Fermi velocity
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Figure 2.4: A zigzag nanoribbon and armchair nanotube band structure matching.

(a) The band structure of an armchair carbon nanotube, ACNT(7, 7), compared to

(b) that of a zigzag ribbon with w = 6, ZGNR(6). (c) and (d) The same as (a) and

(b) but for ACNT(6, 6). The dashed gray curves encompass light blue area, which

signifies the region of the graphene band structure. The vertical lines kt and k′t

mark positions of the transitions points defined by equation 2 cos(k/2) = w/(w+1)

in the vicinity of K and K′ points (i.e. k = ±2π/3), respectively. The inverse band

numbering for the ribbon used in Appendix C and direct band numbering for the

tube, i.e. for A = − cos θ, are shown. The corresponding atomic structures are

presented on both sides for clarity.



CHAPTER 2. ZIGZAG NANORIBBONS AND ARMCHAIR NANOTUBES 56

Figure 2.5: The velocity operator matrix elements of a zigzag nanoribbon and arm-

chair carbon nanotube with similar k-dependence. (a) The VMEs of ZGNR(10)

transitions v → c; ∆J = 1 within the first Brillouin zone in comparison with (b)

those of ACNT(11, 11) transitions v → c; ∆J = 0. The labels of the VME curves

correspond to those of vertical arrows presenting the transitions in the right panels.

The index J shows the direct band numbering resulting from Eq. (2.11) for the rib-

bon and inverse numbering for the tube (see Appendix C). The double degenerate

tube’s bands have two labels. Dashed arrows represent transitions between the

bands numbered in round brackets.
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Figure 2.6: The velocity operator matrix elements for transitions inherent to zigzag

ribbons. The VMEs of the allowed transitions of ZGNR(10) within the first Bril-

louin zone: (a) v → c; ∆J = 1, 3, 5, . . .; (b) v → v; c → c; ∆J = 0, 2, 4, . . .. The

VME curves and energy band labeling follows the same convention as in Fig. 2.5.
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vF =
√

3aγ/(2~). The arbitrary phase factor of the VMEs, which does not affect

their absolute values, was chosen such that it favours plots’ clarity. As in previous

sections, we follow the adopted two index notation for the ribbon bands: J(s),

where J = 1, . . . , w is the band number and s = c, v is the band type with ‘c’ and ‘v’

standing for conduction and valence band, respectively. With this notation in mind

one can see that the VME curves for transitions j(v)→ (j+1)(c) [(j+1)(v)→ j(c)],

where j = 1, . . . , w − 1 are shown in Fig. 2.5 (a). The VME curves for transitions

1(v)→ 2n(c) [2n(v)→ 1(c)], where n = 1, . . . , w/2 or (w−1)/2, and for transitions

between conduction (valence) subbands only, i.e. 1(s) → (2n − 1)(s), where n =

1, . . . , w/2 or (w − 1)/2 are presented in Fig. 2.6 (a) and (b), respectively. As one

can see, the VME curves deviate significantly from the previously reported sin(k/2)

behaviour [111, 120], according to which extrema are to be at k = π, i.e. at the edge

of the BZ. The deviation is due to the Sn,m and Nj given by Eq. (2.42) and (2.31)

(see also Eq. (B.4)), respectively. The shift of the VME curve extrema from the BZ

edge is larger for low-energy transitions. Interestingly enough, the positions of these

extrema in BZ do not coincide with those of the energy band extrema resulting

in the van Hove singularities in the density of states. The curves labeled by ‘1’

in Fig. 2.5 (a) and Fig. 2.6 (a) represent direct transitions from the edge states to

the closest in energy bulk states. These curves have the largest magnitudes among

the ribbons VMEs. However, even for them the maximum absolute values are well

below vF , in sharp contrast to what is seen in Fig. 2.5 (b) for ACNT(11, 11) (cf.

Refs. [135, 161]). Though it is difficult to ignore the fact that shapes of the VME

curves ‘2’ to ‘9’ in Fig. 2.5 (a) are very similar to those obtained for ACNT VMEs

in Fig. 2.5 (b). The most profound curves in Fig. 2.6 (b) are also labeled by ‘1’,

but they do not have corresponding transitions depicted in the panel to the right.

This is because these curves are, in fact, the electron group velocities in 1(v) and

1(c) subbands given by Eq. (2.44). As can be seen, at the transition points kt

and k′t marked by vertical lines the group velocity curves have magnitudes about

vF/2. This is in accordance with Eq. (2.45). Ignoring the group velocity curve,

one finds that the most prominent magnitudes of VME have transition 1(c)→ 3(c)
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[3(v) → 1(v)]. The probability rate described by VMEs of 1(s) → (2n − 1)(s),

where n = 3, . . . , transitions is comparable to that of transitions 1(v) → 2n(c)

[1(c)→ 2n(v)], where n = 2, . . . , labeled by ‘2’, ‘3’, ‘4’ etc., in Fig. 2.6 (a) and (b).

However, these transitions are less intense compared to 1(v)→ 2(c) [2(v)→ 1(c)],

or majority of the j(v) → (j + 1)(c) [(j + 1)(v) → j(c)], where j = 1, . . . , w − 1,

transitions presented in Fig. 2.5 (a). A regular smooth behavior of all matrix

elements at the K(K′) and kt (k′t) points is worth highlighting, especially for those

including 1(s) subbands. We noticed, however, that for increasing ribbon width

(up to w = 25) the VME curve peaks for transitions involving 1(s) subbands gain

a sharper form, therefore a singular VME behaviour may still be expected for

1(v)→ 2(c) [2(v)→ 1(c)] transitions in ribbons with w > 25.

Absorption

It follows from Figs. 2.5 and 2.6 (see also Appendix E) that the absorption spectra

of zigzag ribbons are mostly shaped by v → c transitions with ∆J = 1 presented

in Fig. 2.5 (a). However, other transitions may play an important role at certain

conditions created by interplay of the doping (or temperature) and ribbon width.

To check this we investigated optical absorption spectra given by Eq. (2.34) for

narrow ribbons with w = 2 . . . 10. In what follows we discuss ZGNR(6) for it has

the most prominent features and additionally it has been recently synthesised with

atomically smooth edges [25].

Figure 2.7 compares the absorption spectra of ZGNR(6) for various positions

of the Fermi level, EF . As one can see, depending on EF the absorption spectrum

has 4 or 5 pronounced peaks, which we label in ascending order of their frequency

as A, B, C, D, and E. Peaks D and E are not sensitive to the doping, whereas

peaks A, B, and C are. In contrast to peaks A and C undergoing suppression with

increasing EF , peak B significantly strengthens. Such different behaviour of the

three peaks is explained by their different nature.

Let us start with the most interesting case of the peak B at ω = 0.9γ, which

corresponds to the wavelength of about 400 nm if γ ≈ 3 eV. This peak stems from



CHAPTER 2. ZIGZAG NANORIBBONS AND ARMCHAIR NANOTUBES 60

Figure 2.7: The doping-dependent absorption peaks in zigzag graphene nanorib-

bons. (a) The absorption spectra of ZGNR(6) for various positions of the Fermi

level: EF = 0, 0.001γ, 0.004γ and 0.02γ for the curves 1©, 2©, 3© and 4©, re-

spectively. The frequency ω is measured in hopping integrals γ. The spectra are

shifted vertically for clarity. (b) The VMEs for transitions depicted in (c) the band

structure of ZGNR(6). The vertical lines labeled by encircled numbers mark the

positions of the points where the Fermi levels cross the 1(c) subband. The thick

black points signify subband and VME extrema. (d) The partial, i.e. for each sub-

band separately, and total density of states for ZGNR(6). The color and number

of the partial density of states curves correspond to those of the relevant subbands

presented in (c); these curves are also offset horizontally for clarity.
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transitions 1(c)→ 3(c). At T = 0 K valence subbands are fully occupied therefore

we can safely exclude from the consideration transition 3(v)→ 1(v), which must be

blocked due to the exclusion principle. The steep doping dependence of the peak

B observed in Fig. 2.7 (a) has two causes. Firstly, dispersion of subbands 1(c) and

3(c) and resulting density of states ∼ (∂Ej,s(k)/∂k)−1 presented in Fig. 2.7 (d).

Secondly, the non-zero VMEs for transition 1(c)→ 3(c) in the k-interval (2π/3, π),

as shown in Fig. 2.7 (b).

Without doping the peak B is absent in the absorption spectrum because both

subbands 1(c) and 3(c) are empty. The introduction of doping results in large

number of edge states in the almost flat subband 1(c) being occupied with electrons.

If the point of the Fermi level intersection with the subband 1(c) is denoted as kF ,

then one can say that kF rapidly shifts towards the K point upon ribbon doping.

In Figure 2.7 (b) and (c) the values of kF for EF = 0.001γ, 0.004γ, and 0.02γ

are marked by vertical lines labeled as 2©, 3©, and 4©, correspondingly. As seen in

Fig. 2.7 (b) at EF = 0.001γ, i.e. kF = 2©, VME of 1(c)→ 3(c) transition represented

by curve ‘2’ is close to the maximum magnitude, nevertheless the intensity of the

peak B in Fig. 2.7 (a) presented by curve 2© is not that large. The low intensity at

such a level of doping is related to the fact that the subband 3(c) has a dispersion

to the right of the vertical line 2© which leads to transitions although being strong

contribute into absorption at different frequencies. Upon further increase of the

EF up to 0.02γ, i.e. kF = 4©, the VME for 1(c) → 3(c) transition decreases in

magnitude to about vF/2. However, due to the flatness of subband 3(c) in the

vicinity of the band minimum (thick black point in Fig. 2.7 (c)), all the transitions

between lines 2© and 4© contribute into absorption nearly at the same frequency,

which corresponds to the van Hove singularity in the density of states shown in

Fig. 2.7 (d). This results in the sharp enhancement of the peak B.

The filling of the subband 1(c) with electrons affects all the transitions: 1(c)→

3(c), 5(c) etc. However, in ZGNR(6) the higher order transition 1(c) → 5(c) is

buried in the peak C for it has lower density of states compared to the subband

4(c). To observe higher order transitions one has to take a wider ribbon. Any of
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the ribbons w = 8, 9, 10 can be chosen but ribbon with w = 9 is the best choice for

there transitions 1(c)→ 5(c) results in a clear peak at ω ≈ γ.

According to our calculations, ZGNR(6) and ZGNR(7) are the best choices for

a detection of the tunable peak due to 1(c) → 3(c) transitions. The latter is in

agreement with the results of Sanders et al. [122, 123] based on the matrix elements

of the momentum and with the wave function overlapping taken into account. For

wider ribbons the peak broadens and loses intensity due to combined effect of the

VME and density of states reduction.

As for peaks A and C at ω = 0.65γ and γ in Fig. 2.7 (a), they arise from

interband transitions 1(v) → 2(c) [2(v) → 1(c)] and 1(v) → 4(c) [4(v) → 1(c)],

respectively. Strictly speaking, many subbands converge into E = ±γ at k = π,

therefore some other transitions also contribute into the peak C. By mentioning

only one type of transition we mean the dominant contribution in terms of density

of states as indicated in Fig. 2.7 (d). The intensity of the peak C decreases with

doping for it results in the subband 1(c) being filled with the electrons whereby

transitions 4(v)→ 1(c) are blocked due to the exclusion principle. The same Pauli

blocking also takes place for transitions 2(v) → 1(c), therefore intensity of the

peak A decreases too. A more gentle decrease of peak A intensity compared to

that of peak C is due to low doping. As one can see in Fig. 2.7 (c), for the chosen

values of the Fermi level the point kF does not reach position of the subband 2(c)

minimum. For larger doping A peak intensity decreases as it happens for peak C,

and it totally disappears if the doping is high enough to attain the 2(c) subband.

The effect of the finite temperature is similar to that of doping discussed above

(see Appedix E).

Finally, let us compare the zigzag nanoribbon absorption spectra with those of

armchair nanotubes. In Figure 2.8 (a) the absorption spectra of ZGNR(10) and

ACNT(11, 11) are presented together with that of ACNT(10, 10). For the sake of

comparison each spectrum is not normalized by the number of atoms in the unit cell.

The first peculiarity, which one can notice, is that in the ribbon all but the lowest in

energy absorption peaks lose approximately half of their intensity compared to the
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peaks in the tubes. The second peculiarity is that ZGNR(10) and ACNT(11, 11)

have the same pattern of absorption peaks in the high frequency range ω > γ, which

is highlighted in the light blue. Both features are not accidental, as follows from

the plots presented in Fig. 2.8 (b)-(d) for ribbons and tubes of larger transverse

size.

In order to explain the noticed difference and similarity we focus on ZGNR(10)

and ACNT(11, 11). Obviously, a large difference in peak intensities between the

tube and ribbon cannot be explained only by the velocity matrix elements being

higher in the tube than in the ribbon, as follows from Fig. 2.5, therefore the density

of states should be accounted for. Here we do not appeal to the suppression due

to the momentum conservation as in Ref. [120] for we regard all transitions, even

between subbands with different indices, as direct ones. At the same time, the

correlation of the absorption peaks’ positions is to be related to the van Hove

singularities in the density of states too. Thus, we need to have a closer look at

the band structures and density of states of ZGNR(10) and ACNT(11, 11). In

Figure 2.8 (e) the ZGNR(10) band structure (solid curve) is compared with that

of ACNT(11, 11) (dashed curve). Similar comparison is presented for the density

of states in Fig. 2.8 (f). The peaks numbered as ‘1’, ‘2’, ‘3’ and ‘4’ in Fig. 2.8

(a) result from the transitions between ACNT(11, 11) subband extrema marked by

numbered circles in Fig. 2.8 (e). The same peaks in ZGNR(10) originate from the

transitions involving the subband extrema marked in Fig. 2.8 (e) by the numbered

squares (triangles) for the conduction (valence) subbands. Selection rules in both

structures allow transitions between the markers of the same shape. Let us be more

specific and focus on the peak ‘1’. In ACNT(11, 11) this peak is due to transition

between two van Hove singularities in the density of states. Although the density

of states in the tube is nearly twice as high as than that in the ribbon due to

the double degeneracy of the tube’s subbands, this cannot explain the difference

in the intensities of the tube and ribbons absorption peaks, since, according to

the selection rules, two type of transitions with the same frequency are allowed

in the ribbon: 3(v) → 2(c)[2(v) → 3(c)]. The difference in intensities arises due
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Figure 2.8: The absorption peak correlation in zigzag nanoribbons and armchair

nanotubes. (a)-(d) The absorption spectra of ZGNR(w) compared to those of

ACNT(w + 1, w + 1) and ACNT(w,w) for various ribbon widths and EF = 0.

Absorption spectra are shifted vertically for clarity. (e), (f) The band structure

and the density of states for ZGNR(10) (solid) and ACNT(11, 11) (dashed). The

density of states curves are offset for clarity. The numbered circles denote the

positions of the van Hove singularities in the tube. The numbered squares and

triangles denote the van Hove singularities in the conduction and valence subbands

of the ribbon, respectively. Transitions v → c are possible only between the markers

of the same shape.
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the fact that positions of the band extrema for adjacent bands in the ribbon are

shifted in the k-space, thereby each of the specified in Fig. 2.8 (e) ribbon transitions

happens either ‘from’ or ‘to’ the band extrema and not ‘between’ them as happens

in the tube. In other words, each of these transitions involves only one van Hove

singularity. In this view, the extremely high intensity of the lowest in energy

absorption peak in ZGNR(10) arises due to the high density of states originating

from the flatness of the 1(c) band dispersion at E = 0.

As one can notice from Fig. 2.8 (e), the tube subband extrema take middle

positions in energy between extrema of adjacent ribbons subbands. This leads

to the tube’s and ribbon’s transition energies being very close as illustrated by a

parallelogram in Fig. 2.8 (e). As a result, a correlation between the absorption

peak positions arises. To understand the origin of this correlation we need to

analyse the positions of the van Hove singularities, which can be derived from the

analytical expression for the band structure. However, for a zigzag ribbon, such an

expression cannot be obtained in a closed-form from Eq. (2.14), since the secular

equation (2.19) does not allow expressing of its solution in such a form; though

closed-form solutions for two specific cases, k = 2π/3 and π, have been reported

for this type of equation [94, 139, 112]. On the other hand, since the armchair

nanotube band structure has a closed-form given by Eq. (C.6), the positions of the

van Hove singularities and, therefore, the absorptions peak positions can be easily

obtained for them. Then, a simple analytical expression for ACNT(w + 1, w + 1)

peak positions,

ω̃j = 2γ sin[πj/(w + 1)] , (2.46)

can be used as an estimation of the absorption peak positions in ZGNR(w), when

5/6 > j/(w + 1) > 1/6. In Figure 2.8 (a) the vertical dashed lines denote the

peak positions given by Eq. (2.46). As one can see, outside the light blue regions

peak positions do not necessarily coincide; the ribbon spectra also have additional

peaks outside these regions resulting from transitions involving 1(s) subbands and

the selection rule v → c ∆J = 1, 3, . . . etc. In contrast to this, within the regions

γ < ω < 2γ the above-mentioned correlation takes place for all ribbons with
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Table 2.1: The absorption peak positions of ZGNR(10) in the region ω > γ com-

pared to the estimate ω̃j given by Eq. (2.46) and transition energies between the

states j(v)→ (j+1)(c) denoted by �’s and4’s in Fig. 2.8 (e). The index i numbers

the peaks in Fig. 2.8 (a). The last column presents the energy differences between

the numbered subband extrema in Fig. 2.8 (a). All quantities are measured in the

hopping integral γ.

i j ωi ω̃j �v → �c 4v →4c �i −4i+1

1 2 1.074 1.081 1.089 1.076 1.058

2 3 1.509 1.511 1.527 1.518 1.491

3 4 1.821 1.819 1.839 1.833 1.799

4 5 1.983 1.980 2.000 1.998 1.959

w ≥ 5. To estimate the reliability of Eq. (2.46) in Table 2.1 we compared the

numerically calculated peaks positions in the ZGNR(10) with those resulting from

Eq. (2.46). We supplemented these results with numerically evaluated energies of

j(v) → (j + 1)(c), where j = 2, 3, 4, 5, transitions involving one band extremum

state, i.e. those which occur between the states denoted by square (�) and triangle

(4) markers in Fig. 2.8 (e). As seen from Table 2.1, a deviation of ω̃j from ωi does

not exceed 1% of the hopping integral, i.e. 30 meV for γ ≈ 3 eV. It also follows

from the Table 2.1 that the above presented picture is a simplified one. In reality

the absorption peaks are averages of all transitions taking place in between the two

subband extrema shifted in the k-space so that peak positions ωi and their estimates

ω̃j are squeezed between the j(v)→ (j + 1)(c); (�,4) transition energies and the

energy differences between the corresponding van Hove singularities, �i −4i+1.

The panels (b)-(d) in Fig. 2.8 show that the aforementioned correlation may

extend to the low-energy region ω < γ. This region of a ribbon’s spectrum is

dominated by the transitions originating from the edge states. It is evident that

the absorption peaks originating from these transitions cannot correlate with the

peaks in armchair tubes. In fact, they can only hide this feature. In order to

verify our assumption, in Fig. 2.9 we split the ZGNR(20) absorption spectrum
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into two parts: ‘part I’ containing only transitions involving the 1(s) subband, i.e.

edge states, and ‘part II’ containing the rest of the transitions. As can be seen

from Fig. 2.9, it is the latter that correlates with the tubes’ absorption spectrum.

Only the first absorption peak in ACNT(21, 21) does not have a counterpart in

the ribbon spectrum. Thus, equation (2.46) has a broader applicability and with

its help the hidden correlation could be verified even by absorption measurements

in the optical range. Equation (2.46) describes zigzag ribbon peak positions when

j = 2 . . . w/2 (even w) or (w − 1)/2 (odd w).

The revealed correlation of the absorption peak positions in armchair tubes

and zigzag ribbons may be affected by excitonic effects. Excitons are known to be

important in one dimensional systems due to the enhanced binding energy [166].

However, such effects rarely were a subject of investigation in the metallic families of

graphene nanoribbons [167, 168] and carbon nanotubes [169, 170, 171]. Moreover,

it seems that attention has never been paid to the high energy transitions, therefore

this problem requires a thorough study. Yet, a general qualitative picture says that

the positions of the presented peaks should be red-shifted by the amount of the

binding energies. These energies can be linked to the system’s transverse size by an

analytical phenomenological quasi-one dimensional exciton model, which has been

successfully applied to semiconducting quantum wires [172, 173, 174] and carbon

nanotubes [175]. Then, since the tubes and ribbons in question have comparable

widths and diameters, the binding energies and, therefore, shifts are expected to

be close for both structures (neglecting the different shapes of their cross-sections),

thereby preserving the unveiled correlation in the absorption spectra. Some exci-

tonic states may require a magnetic field for their brightening if they happen to be

dark ones [176]. We should also mention that the correlation reported here can be

additionally hidden by a landscape of absorption peaks originating from σ-orbitals.

2.4 Conclusions

In summary, we considered the optical properties of zigzag graphene nanoribbons

within the orthogonal π-orbital tight-binding model and effective mass approxi-
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Figure 2.9: The low-energy absorption peak correlation in zigzag nanoribbons and

armchair nanotubes. Absorption spectra are shifted vertically for clarity. The

roman numbers (I) and (II) label spectra with only the edge states contribution

and the part without it. The light blue region signifies the low-energy region where

the correlation is hidden by the edge states transitions.
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mation for polarization of the incident radiation parallel to the ribbon axis. It

was analytically confirmed that the selection rules between valence and conduction

subbands, ∆J = n −m is odd, and between conduction (valence) subbands only,

∆J = n−m is even, stem from the wave function parity factor, (−1)J , where J is

an integer numbering the energy bands. It was also shown that this parity factor

originates from the ribbon’s secular equation.

A comprehensive comparison of optical properties between carbon nanotubes

and zigzag nanoribbons shows significant differences. Most importantly, the con-

cept of cutting lines [177, 178], or even its generalization to ‘cutting curves’ [112,

179], being unable to explain selection rules fails with respect to optical prop-

erties of zigzag graphene nanoribbons, while it works well for armchair carbon

nanotubes. Nevertheless, a proper comparison reveals the absorption spectra of a

zigzag nanoribbon and an armchair carbon nanotube have a correlation between

the positions of the peaks originating from the v → c transitions between the bulk

states , if Nt = 2Nr + 4, where Nt,r is the number of atoms in the tube’s (rib-

bon’s) unit cell, i.e. when the ribbon width is about half of the tube circumference.

Putting it differently, for ZGNR(w) and ACNT(w + 1, w + 1) if w > 5.

The analysis of the velocity operator matrix element dependencies on the elec-

tron wave vector shows that they have a smooth regular behaviour at least up to

w = 25 in the whole Brillouin zone, including the Dirac (k = ±2π/3) and transition

(k = kt) points. However, the matrix element behaviour deviates significantly from

the previous estimation ∼ sin(k/2). For all types of transitions the magnitude of

the velocity operator matrix elements attain a maximum value for k ∈ ±(π/2, π).

A close examination of the absorption spectra of zigzag ribbons shows they

should have temperature and doping dependent absorption peaks originating from

transitions between only conduction (valence) subbands, ∆J = 2, 4, . . . etc., which

could be tuned, for instance, by a gate voltage. In particular, narrow zigzag rib-

bons with w = 6, 7 should have such prominent temperature and doping depen-

dent absorption peaks. Although beyond the single electron tight-binding model

the energy bands of zigzag ribbons are known to be modified by electron-electron
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interaction [32] and the effect of the substrate, we believe that experimental obser-

vation of the tunable absorption should be possible as the latter effect, for instance,

can be eliminated by system suspension.

Finally, we point out that the obtained velocity matrix elements of single elec-

tron transitions can be utilized in further study of excitonic effects via Elliot’s

formula for absorption [180, 181].



Chapter 3

Optical and THz transitions in

narrow-gap carbon nanotubes and

armchair nanoribbons

3.1 Introduction

Creating reliable, portable, tunable sources and detectors of terahertz radiation is

one of the most challenging tasks of contemporary applied physics. One of the re-

cent trends in bridging the so-called THz gap is the use of carbon-based nanostruc-

tures [46]. A number of schemes have been proposed so far [182, 43, 39, 183, 184, 45].

Several original schemes utilizing the unique electronic properties of graphene and

non-simply connected nanostructures such as carbon nanotubes (CNTs) for THz

application were brought forward by M. Portnoi group [185, 186, 187, 161, 188].

These schemes include THz generation by hot electrons in quasi-metallic CNTs, fre-

quency multiplication in chiral-nanotube-based superlattices controlled by a trans-

verse electric field, tunable THz radiation detection and optically-pumped emission

in metallic CNTs in a strong magnetic field and using graphene p-n junctions for

sub-wavelength polarization-sensitive THz detection. In this chapter we investi-

gate possibility of utilizing direct interband dipole transitions in narrow-gap CNTs,

graphene nanoribbons and gapped two-dimensional (2D) Dirac materials for THz

71
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devices.

3.2 Carbon nanotubes

Carbon nanotubes are cylindrical structures made from a single sheet of graphene

rolled along a particular direction specified by the chiral vector, which for a two

dimensional hexagonal lattice is described by two indices: n and m. Within the

frame of a simple tight-binding model CNTs can either be metallic or semiconduct-

ing. If n−m = 3p, where p is an integer, then the tube is predicted to be metallic

and have a linear energy dispersion with the conduction and valence bands touch

at the point called the Dirac point. For zigag CNTs, which obey the condition

n = 3p, m = 0, the Dirac point is positioned in the center of the Brillouin zone

(BZ).

However, this simple model does not take into account the effect of curvature,

which plays an important role for small diameter tubes (1 − 2 nm). It is now

well established that curvature effects encompass three main contributions: the

C-C bond contraction, π-orbital tilting and π- and σ-orbitals mixing [189]. All

three contributions can be treated within the tight-binding model if one introduces

corrections to the hopping integrals. With the exception of armchair nanotubes,

these corrections result in a small band gap opening at the Dirac point of metallic

CNTs. This means that these nanotubes are in fact quasimetallic and have band

gaps of about 50 meV [67, 69]. These small band gaps do not have much of an

affect on the nanotubes’ transport properties at room temperature because real

samples of CNTs are always spuriously doped by chemicals used in the sample’s

preparation. However, the situation changes drastically for the optical properties

of quasimetallic tubes. Neglecting the effect of curvature, the probability rate of

interband transitions between the closest valence and conduction subbands has a

linear dependence on the electron wave vector measured form the Dirac point. This

means that in the vicinity of the Dirac point interband transitions are suppressed.

In contrast, if curvature effects are taken into account, interband transitions within

a narrow region around the Dirac point become strongly allowed. As one can see
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from Fig. 3.1, there is a profound peak at the Dirac point for the magnitude of the

velocity operator matrix element (VME), vcv,T , as a function of the electron wave

vector k. Hereafter, we consider only transition polarized along the structure axis.

The peak has a characteristic height, which is independent of the tube’s chirality

and equal to the Fermi velocity of electrons in graphene (vF ≈ 106 m/s). The

shape of the peak is described by the Lorentzian-like term in the expression:

vcv,T (k) = vF

(
a0 cos(3θ)

4
k − ∆k√

∆k2 + k2

)
, (3.1)

where ∆k = Eg/(2~vF ), with Eg being the band gap, a0 = 0.142 nm is the distance

between the nearest carbon atoms and θ is the chiral angle. The chiral angle θ = 0

and π/6 for zigzag and armchair tubes, respectively.

In equation (3.1) ∆k has meaning of the shift of a cutting line [177] passing

through the K point in the reciprocal space of graphene with respect to the Dirac

point. Such lines are obtained by quantization of the electron momentum in the

circumference direction: kC = 2π`/Ch, where Ch is the tube circumference, ` is

an integer. Here we define the Dirac point as the point in which valence and con-

duction subbands touch, while K point is, as usual, a corner of the graphene first

Brillouin zone. When intrinsic strain induced by curvature is taken into account,

the Dirac and the K point no longer coincide and there is a shift between them.

Such an interpretation with a reference to the graphene reciprocal space implies

that Eq. (3.1) has a universal character in that sense that its second term describes

the peak shape for any quasi-metallic tube. This interpretation also allows one to

incorporate the effect of an external magnetic field. It has been shown that this

field results in a similar peak at the Dirac point upon application of the external

magnetic field along the tube axis [161, 162, 163]. Unlike the intrinsic stain, mag-

netic field shifts quantization line passing through the K point leaving the Dirac

point in its primary position. This change can be treated in a similar fashion. In

both instances, the quantity that matters is a shift of the cutting line with respect

to the Dirac point. Thus, both effects can be incorporated as follows:

∆k = ∆ks + ∆kf . (3.2)
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Figure 3.1: The absolute value of the velocity operator matrix element as a function

of electron wave vector, k, with (solid black) and without (dashed grey) curvature

effect for (a) CNT (9, 3); (b) CNT (12, 3); (c) CNT (12, 0) and (d) CNT (6, 3). The

conduction band in the vicinity of the Dirac point with (solid black) and without

(dashed grey) curvature effect taking into account is presented for each tube in the

inserts along with the atomic structure of the CNT unit cells. In all the cases only

curvature effect due to the change of C-C bond length was taken into account.

where ∆ks is the shift of the Dirac point from the K point due to the intrinsic strain,

and ∆kf is the shift of the cutting line induced by the magnetic field applied along

the tube axis. Contribution of the C-C bond length change into ∆ks can be written

in terms of the hopping integrals for the nearest-neighbours ti:

∆ks =
2 sin(θ)τ2 −

[√
3 cos(θ)− sin(θ)

]
τ3

a(t1 + t2 + t3)
(3.3)

where a =
√

3a0 is the graphene lattice translation constant; τ2 = (t1 − 2t2 + t3)

and τ3 = (t1 + t2 − 2t3). Concurrently, the shift due to the applied magnetic field
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is written as follows:

∆kf =
2π

Ch
f , (3.4)

where Ch is the tube circumference and f = Φ/Φ0, with Φ and Φ0 being magnetic

flux through the tube cross-section and magnetic flux quantum, respectively.

Equation (3.1) is an approximation because it was obtained from the velocity

matrix element of graphene under the assumption that it preserves its topology

in the vicinity of the Dirac point. Similar to the graphene band structure, the

matrix element as a function of electron wave vector, can be presented by a surface

above the 2D reciprocal space of graphene. At the Dirac point this surface has a

non-trivial shape described by the following expression:

kx√
k2x + k2y

, (3.5)

where kx,y are the electron wave vector projections onto corresponding axes. Equa-

tion (3.5) is an example of the topological phase singularity located at the origin.

This feature of the velocity matrix element at the Dirac point is inherited from

the graphene wave functions [132]. The topological singularity in the graphene

wavefunctions is also responsible for Berry’s phase equal to π, suppression of the

backscattering and other phenomena such as anisotropic momentum distribution of

excited electrons [190]. The topological singularity in the matrix element survives

under application of strain and magnetic field to graphene. In terms of this view

the second term of the Eq. (3.1) is a cross section of the surface given by Eq. (3.5)

which does not change much due to the intrinsic strain or magnetic field. This is

illustrated in Fig. 3.2. We verified this assumption comparing approximate VME

curve given by Eq. (3.1) with an exact one. According to our results the deviation

of the approximate VME curve from the exact one does not exceed 10% for intrin-

sic strains introducing up to 20% change into the hopping integrals. Concurrently,

Eq. (3.1) incredibly well describes the VME peak for all experimentally attainable

magnetic fluxes, i.e. produced by up to 30 T magnetic fields, through the 1−2 nm

diameter tube; the deviation is < 0.1%.

It is worth noting that Lorentzian has been proposed to describe modification

of the momentum matrix element in silicene due to the spin-orbit interaction [191].
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Figure 3.2: The relation of the velocity operator matrix element peak at the Dirac

point in tubes to the topological singularity in the velocity operator matrix element

in graphene. The top panel illustrates the application of the cutting lines concept to

the band structure, while the bottom one to the velocity operator matrix elements.

k‖ and k⊥ denote electron wave vectors parallel and perpendicular to axis of the

tube’s translation symmetry.

In equation (3.1), however, because of the presence of the square root in the second

term, one deals with a peak shape that is not Lorentzian.

As can be seen from Eq. (3.1), in a CNT Brillouin zone there is a point where

velocity matrix element is zero. Equating to zero right hand side of Eq. (3.1) , one

can find that the energy of a corresponding forbidden transition is

E
�l

= Eg

√√√√(1

4
+

(
8E0

Eg cos θ

)2
)1/2

− 1

2
, (3.6)
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where E0 = ~vFk0, with k0 = 1/a0. As E0 ≈ 4.64 eV, which is a huge quantity

compared to a typical band gap opened by curvature effect in tubes (≈ 30 meV),

without loosing generality exact Eq. (3.6) can be replace by the following approx-

imate one:

E
�l

=

√
8E0Eg
cos θ

. (3.7)

Using equation (3.7), it is easy to assess the energy of strictly forbidden transition.

For instance, for a zigzag tube with Eg = 30 meV, Eq. (3.7) yields E
�l
≈ 1 eV. In

reality this energy should be less than the estimate because of the deviation of the

electron dispersion from a linear pattern at higher energies.

3.3 Graphene nanoribbons

Graphene nanoribbons (GNRs) represents another type of quasi-one-dimensional

carbon nanostructures, which can be imagined as narrow stripes cut from a single

layer graphene sheet. The highest symmetry nanoribbons can be classified into the

two types – zigzag and armchair. Within each of these classes a ribbon is uniquely

specified by the number of carbon atom pairs w, or equivalently by the number of

“zigzag lines” for zigzag or “dimer lines” for armchair nanoribbons (see Fig. 1.1).

The most simple tight-binding model shows that all zigzag ribbons (ZGNR) are

metallic, whereas only armchair ribbons (AGNRs) with w = 3p+ 2, where p is an

integer, are gapless. The low-energy dispersion of electrons in metallic AGNRs is

linear and similar to that of metallic CNTs, while electron dispersion of ZGNRs

is dominated by edge states. However, in actuality, both types of the metallic

ribbons are quasimetallic. The electron dispersion of ZGNR edge states is strongly

modified by electron-electron interaction, whereas for AGNR the energy dispersion

is influenced by the change of C-C bonds at the edge of the ribbon compared to

bonds in the ribbon interior. In both cases the outcome is a small band gap opening

of up to 50 meV [103].

In what follows we consider only quasimetallic AGNRs, since as was shown

in the Chapter 2 the edge symmetry of ZGNRs results in optical selection rules
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that do not allow interband transitions of parallel polarization between the highest

valence and the lowest conduction subbands.

The band structure of AGNRs without edge effect can be obtained from that

of graphene by a technique similar to that used for CNTs if periodic boundary

condition applied to the tube, k⊥ · Ch = 2π`, is replaced with so-called ”hard

wall” or ”fixed ends” boundary condition, k⊥ ·W = π`, where W is the ribbons

width and k⊥ is the transverse momentum. As one can notice these two types of

boundary conditions match if W = Ch/2. It has been shown that such a situation

takes place for AGNR(w) and zigzag CNT(w + 1, 0) [192]. For such specifically

chosen structures electronic properties are almost identical. The band spectra of

the tube is almost a replica of that for the ribbon, the only difference is that the

tube bands are twice degenerate, while ribbon bands are not. It is worth noting

that the equivalence is not that perfect for the higher energy bands. The spectrum

of tubes contains some bands that are absent in the ribbon spectrum. In Fig. 3.3

(a), (c) we show that described equivalence of the electronic band spectra is held

throughout the whole band structure upon accounting for the edge effect in the

ribbons and curvature effect in the tubes. The edge effect in armchair ribbons

can be incorporated into the tight-binding model as a corrections to the hopping

integrals at the ribbon edges [193]. The major change in the band structure is, of

course, the opening of a small band gap that is invisible in the main plots and,

therefore, is clarified in the insets of Fig. 3.3 (a), (c).

In Fig. 3.3 (b), (d), we demonstrate that equivalence in electronic properties

extends to optical transitions selection rules in presence of the curvature for zigzag

CNTs and the edge effect for the AGNRs. In Fig. 3.3 (a), (c) some of the velocity

operator matrix element curves have negative values. This is because in general

matrix elements are complex numbers defined up to an arbitrary phase shift. This

uncertainty in the VME phase does not cause any harm since only VME absolute

value squared has physical meaning. Therefore, the separation onto negative and

positive values is somewhat artificial and here it is used merely for the sake of

more clear presentation of a bunch of VME curves. Similar to the situation with
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the energy bands, the majority of curves, plotted in Fig. 3.3 (d) for the VME of the

CNT(9, 0), are twice degenerate compared to the curves presented in Fig. 3.3 (d)

for the AGNR(8). The VME plot for the CNT contains also some curves, which

are absent in Fig. 3.3 (b) for the AGNR. These curves are related to transitions

between higher energy bands that are present only in the spectrum of the tube and

are absent in the energy spectrum of the ribbon. The most interesting feature of

both plots, however, is depicted by a thick black curve, which corresponds to the

VME for transitions between the lowest conduction and highest valence subbands.

This curve has a prominent negative dip, which being converted to the absolute

values, since only those have physical meaning, corresponds to the peak of the

transition probability. As one can see this peak is very similar in both structures.

For instance, the magnitudes are ≈ vF and shapes are essentially the same. The

only distinguishable difference between two peaks is their widths. For AGNR the

peak is wider because the value of the hopping integral edge correction is larger

than that for the tube due to the curvature effect. As in the case of Fig. 3.1 only

the C-C bond shortening was taken into account in Fig. 3.3 (d). In general, upon

increase of intrinsic strain, i.e. correction to the hopping integral, the shape of

the peak evolves towards black dashed curves representing VME, which attains the

greatest possible value in the structure ≈ 1.3vF , Fig. 3.3 (b), (d). However, for

any finite intrinsic strain the peak absolute value is ≥ vF . Since the variation of

the amount of the intrinsic strain results mainly in the peak broadening, one can

conclude that transitions across the curvature induced in CNTs and edge effect

induced in AGNRs band gaps should stay among the most probable ones in such

structures under variety of ambient conditions, such as exposure to different types

of the external strain: twisting, stretching etc.

It is worth emphasising that the equivalence of tubes and ribbons optical prop-

erties reported here is not at all trivial for although the curvature effect in the tube

and the edge effect in the ribbon both represent an intrinsic strain, the former is

a homogeneously distributed over the tube surface, while the latter is localised at

the ribbon edges.
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Finally, we would like to point out that the effect of band gap opening in metal-

lic AGNRs can be explained not only by the hopping integral edge correction but

also by the influence of the third order nearest neighbours (3NN) [192]. Using

analytical model proposed for electronic properties of AGNRs by Gunlucke [194],

we found that in quasimetallic AGNRs inclusion of the 3NN hoping integrals re-

sults in a similar to discussed above change of transition probability. However,

for Gunlycke model the correspondence between quasimetallic AGNR and zigzag

CNT VMEs preserves only for transitions between highest valence and the lowest

conduction subbands. This implies that although the Gunlycke model seems to be

more advanced for it comprises edge correction to the 1NN hoping integrals and

the 3NN hoping integrals all together, it may have some inner flaw compared to

the Zheng model [193]. The traces of the 3NN hopping integrals influence on the

low-energy absorption in quasimetallic AGNRs can also be found in some numerical

studies [127].

3.4 Discussion

In this section we discuss a possibility of experimental observation and practical

applications of the transitions across the curvature induced in CNTs and edge effect

induced in armchair GNRs band gaps.

The interband transition probability rate per unit volume is determined by the

golden rule:

I ∼ 2π

}
|vcv|2ρ , (3.8)

where ρ is the joint density of states and vcv is the velocity operator matrix element.

Thus, we see that intensity of the emitted radiation or the power of absorption

is proportional to the product of the VME extensively discussed in the previous

sections and the joint density of states. With respect to the joint density of states,

it is worth to emphasize the advantage of the band gap opening in 1D systems

such as CNTs and GNRs in question compared to 2D systems, such as patterned

graphene [195], bilayer [196, 197] and trilayer graphene [198]. The band gap opening
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Figure 3.3: The velocity operator matrix elements normalized by vF (a),(c) and

the band structures (b),(d) of AGNR(8) and zigzag CNT(9, 0), respectively. Tran-

sitions between the closest valence and conduction subbands (thick, black), the

lowest and highest subbands (dashed dotted, light gray), and for the subbands,

for which |vcv| attains the maximum possible value (dashed, gray), are highlighted

with respect to other bands and matrix elements curves (gray, dotted). Insets

zoom the region close to the Dirac point indicated by rectangle to show the band

gap opening in both cases. On the right atomic structures are presented. In both

cases hopping integral t = 3 eV, the edge correction for the ribbon is 0.1t and the

curvature correction for the tube is 0.01t.

transforms the linear electron dispersion to the parabolic one. In 2D systems

the density of states for parabolic spectrum is a constant, while in 1D systems

the density of states is ∼ 1/
√
E − E0. This divergence in density of states of

1D systems is usually referred to as the Van Hove singularity. Owing to this

singularity 1D systems effectively behave like quantum dots, where ρ ∼ δ(E−E0),

with δ being the Dirac δ-function, and therefore should benefit from their lower-

dimensionality like quantum dot device [34]. Thus, the high probability of the

discussed transitions ∼ vF ≈ 106 m/s in conjunction with the Van Hove singularity
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inherent for 1D structures at band edges should allow an experimental detection

of these transitions.

The two types of the experiments for the transitions detection can be proposed,

i.e. absorption and emission measurements. The principal difficulty which is char-

acteristic for both types of experiments is related to the fact that size of the band

gap corresponds to THz frequencies. On one hand this makes these transitions

difficult to detect, but on the other hand it allows us to propose them for THz

applications.

Let us consider the absorption experiments first. In this type of measurements

one usually faces two principal difficulties. Firstly, as has already been mentioned

in Sec. 3.2 in real samples structures are always dopped. For instance, the bot-

tom of the lowest conduction subband in CNTs can filled with electrons up to

∼ 120 meV [199], which means the low-energy transitions across the band gap

should be suppressed by the Pauli blocking. Secondly, there is another competing

and notoriously strong mechanism, whereby absorption occurs. This is absorption

on the free carriers or plasmonic absorption. It has been demonstrated that the

broad absorption peak in the region ∼ 1 − 2 THz for CNTs [200] is of plasmonic

origin [201, 202, 203]. Thus, we think it must be difficult to observe the interband

transitions in interest by doing absorption measurements.

In the emission type of experiment the sample’s response is measured after

pumping by laser at optical frequency. In our view, such pumping, if properly

adjusted, can be the tool for the transition detection. As schematically depicted in

Fig. 3.4, a valence subband electron can be excited above the Fermi level into the

conduction subband as schematically shown in Fig. 3.4 a). It is worth noting that

such excitation should be possible due to the first term in the Eq. (3.1) describ-

ing the linear increase of the transition probability with increasing electron wave

vector. The efficiency of excitation can be increased by using broad in frequency

beams. After such an optical excitation electrons and holes created in the conduc-

tion and valence band, respectively, will quickly thermalise with the lattice due to

the scattering on acoustic phonons (τph ∼ 3 ps [204]). As a result of this process the
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hole will flow up to the top of the valence band, thereby creating the inversion of

population. We track dynamic of the hole because the excited electron disappears

below the Fermi level in a sea of indistinguishable particles. As the probability of

transition is extremely high at the edge of the valence band, the final stage of the

process is emission of photon with a frequency of band gap size, as sketched in the

Fig. 3.4 (c).

The sample pumping should result in carrier excitation only between the lowest

conduction and the highest valence subbands. The pumping with higher frequen-

cies can result in cascade emissions which should make the sample response more

difficult to analyse. The pumping frequency should be low enough to exclude the

excitation of the semiconducting structures, for instance for semiconducting nan-

otubes 1 − 2 nm in diameter < 0.6 eV, as such structure can be source of THz

radiation due to the transient photocurrent [205]. Ideally samples should be en-

riched with quasimetallic structures, although the presence of the semiconducting

structures should not cause much harm as they are transparent for THz radia-

tion. However, the absorption on free carries cannot be avoided, therefore the

emitted THz photon before striking detector has a high probability to be absorbed

in the sample. This probability can be minimized by proper choice of the struc-

tures lengths since the plasmonic resonance is a geometrical one and, therefore, it

depends strongly on the structure longitudinal size [201, 202].

In view of possible applications, it is worth mentioning that the band gap

of the tubes and ribbons can be manipulated by external fields, thus providing

tunability of the emission frequency. For tubes magnetic field can be applied along

the tube axis, while for ribbons electric field can be applied in-plane geometry [91,

14]. Such tunability of the transition frequency may be employed as a criteria for

distinguishing of the THz radiation generated by interband transitions from that

resulting from the photocurrent in semiconducting structures.

Even though in the aforementioned scheme the sample is implied to be com-

posite material consisting of the polymer matrix and filler that is a mixture of the

quasimetallic and semiconducting tubes or ribbons, it is worth noting that the syn-
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Figure 3.4: A schematic illustration of (a) the high frequency optical excitation

(b) non-radiative electron relaxation due to the electron-phonon scattering and

(c) the inversion of population in n-doped quasimetallic CNT or GNR after many

iterations of the processes depicted in (a) and (b).

thesis techniques for these structures are developing fast. One of the achievements

in this field that deserves particular highlight is the recent synthesis of AGNRs of

the metallic family with atomically smooth edges [24].

The results presented in Sec. 3.2, 3.3 are based on a single electron picture. In

this respect it is make sense to comment on the validity of this picture. Although

excitonic effects are known to dominate the optical properties of semiconducting

structures [206], the are of less importance in quasimetallic CNTs and ANGRs

where the exciton binding energy is proportional to the bandgap [171] and dark

excitonic states become irrelevant.

Finally, we may speculate that the same strong transitions may be found in

a chemically functionalized graphene sheet with a periodic pattern of hydrogen,

oxygen or fluorine adatoms and narrow stripes of graphene intact. The electronic
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properties of the resulting graphene stripes are known to be similar to those of

GNRs [207]. The edge-like effects in the stripes arise from distortions caused by

sp3 hybridization of carbon atoms, which form chemical bonds with adatoms. The

low-energy electronic properties are still determined by π-orbitals; therefore, the

theoretical treatment of optical properties should be essentially the same as for

nanoribbons. An additional tunability of the absorption frequencies of different

stripes can be achieved by stretching the whole graphene sheet [208].

3.5 Spin-orbit coupling

In contrast to the two cases considered above where effectively a small perturbation

due to the rolling up or cutting of the graphene single layer open up a narrow-band

gap, one may have thought of a similar effect in a 2D system due to the spin-orbit

coupling. In graphene, however, the band gap due to such a coupling was estimated

to be of about 10−3 meV [209] and as such it is negligibly small. However, this

is different for other honeycomb-like two-dimensional structures made of silicon,

germanium or tin. Such materials termed, by analogy to graphene, as silicene

and germanene has been synthesised: silicene [3, 4, 5] in 2012, germanene [6] in

2015. Unlike graphene, where sp2 hybridization of carbon atom orbitals ensures

flat geometry, in silicene and germanene the silicon and germanium atoms have

sp3 hybridization of the orbitals resulting in so-called low-buckled geometry of

these structures. Nevertheless, the low-energy band structure of these materials is

still dominated by π-orbitals and tight-binding model is still applicable for their

description [1]. It has been shown that the band structures preserve the Dirac-like

dispersion, but in contrast to graphene in the low-buckled structures the spin-orbit

interaction is not negligibly small and it opens up a narrow-band gap of about

several meV [9]. This interaction can be treated within the tight-binding model

as an on-diagonal term in the Hamiltonian. In what follows we shall see how this

additional term influences the optical properties of the above-mentioned 2D Dirac

materials. In particular we shall calculate optical matrix elements.

Let us start the calculation from the finding the proper energies and eigenvectors
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of the Hamiltonian of the following form:

H =

 λSO f

f ∗ −λSO

 , (3.9)

where λSO is the spin-orbit coupling constant, f =
∑

i ti exp (ikRi). The secular

equation for this Hamiltonian has the following form:

−(λSO − E)(λSO + E)− |f |2 = 0 (3.10)

with the two following solutions:

E1,2 = ±
√
λ2SO + |f |2 , (3.11)

where 1 and 2 corresponds to plus and minus sign, respectively. Thus, the eigen-

vectors can be found to be

Ψ1,2 = C1,2

 − f
λSO−E1,2

1

 (3.12)

where C is a normalization constant. The normalization procedure,
√

Ψ∗1,2Ψ1,2 = 1,

yields

|C1,2| =
|λSO − E1,2|√

|f |2 + (λSO − E1,2)
2
. (3.13)

Using the gradient approximation one can find velocity operator matrix as fol-

lows:

V =
∂H

∂k
= ∇k

 λSO f

f ∗ −λSO

 =

 0 ∇kf

∇kf
∗ 0

 . (3.14)

Then with the help of Eqs. (3.11), (3.12) and (3.14), one obtains

v12 = 〈Ψ1 |V |Ψ2〉 (3.15)

=

√
λ2SO + |f |2 (f ∗∇kf − f∇kf

∗)

|f |2
+
λSO (f ∗∇kf + f∇kf

∗)

|f |2
.

In the above equation the normalization constants should be restored. Taking into

account that

C1C2 =
|f |

2
√
λ2SO + |f |2

, (3.16)
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for the velocity matrix elements we end up with

Vcv = C1C2v12 =
f ∗∇kf − f∇kf

∗

2|f |
+
f ∗∇kf + f∇kf

∗

2|f |
λSO√

λ2SO + |f |2
. (3.17)

As one can see in the case of small λSO, Eq. (3.17) restores the result for graphene,

see Appendix D. Thus, the effect of the spin-orbit coupling is contained in the

second term of Eq. (3.17). Let us next analyse the same problem in the limit

when f → 0.

3.6 Spin-orbit coupling in the low-energy limit

In this section we shall revise the results obtained in the previous section with

respect to the the low-energy limit. This time we shall pay particular attention to

the phenomenon of momentum alignment for linear polarization and to the optical

selection rules for circular polarization of the incident radiation. In what follows,

we restrict consideration to the vicinity of the Dirac points in the first Brillouin

zone.

The low-energy expansion of the Hamiltonian given by Eq. (3.9) in the vicinity

of the two non-equivalent Dirac points has the following form:

H = ~vF

 ∆ κx + i(−1)vκy

κx − i(−1)vκy −∆

 , (3.18)

where ∆ = λSO/~vF is again the parameter describing the spin-orbit coupling, v is

a valley parameter specifying the point where expansion was carried out, e.g. v =

1(v = 2) stands for the K(K′) point, κx,y are the components of the electron wave

vector measured from the Dirac point, i.e K or K′ point. The Hamiltonian (3.18)

has the following eigenvalues:

ε1,2 = ±
√

∆2 + κ2 (3.19)

where indices ‘1’ and ‘2’ correspond to plus and minus sign, respectively, κ2 =

κ2x + κ2y. Then, the normalized eigenvectors of the Hamiltonian (3.18) are

χ1,2 =


κ√

κ2 + (∆− ε1,2)2

− ∆− ε1,2√
κ2 + (∆− ε1,2)2

e−i(−1)
vϕκ

 (3.20)
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where for convenience of the further treatment we have introduced the notation

e−i(−1)
vϕκ = (κx − (−1)viκy)/κ. Substituting Eq. (3.19) into Eq. (3.20) yields

χ1,2 =
1√
2


κ(√

κ2 + ∆2
)1/2 [√

κ2 + ∆2 ∓∆
]1/2

±
[√
κ2 + ∆2 ∓∆

]1/2(√
κ2 + ∆2

)1/2 e−i(−1)
vϕκ

 (3.21)

where the upper (lower) sign must be taken for index ‘1’ (‘2’) corresponding to the

conduction (valence) band.

Let us now consider perturbation introduced into the Hamiltonian by an inci-

dent electromagnetic wave. The wave can be described by the vector potential as

follows:

A =
cE

2ω
(axex + ayey) e

iωt (3.22)

where c is the speed of light, ω is the wave frequency, E is a magnitude of the

electric field strength. The parameters ax and ay can be defined as

ax = cosφ ; ay = sinφ (3.23)

for the linear polarization and

ax = 1 ; ay = ∓i , (3.24)

for the circular polarization. The angle φ in Eq. (3.23) is the angle between the

vector of the electron quasi-momentum and the plane of the polarization, since we

fix x-axis along the quasi-momentum. In Eq. (3.24) the circularly polarized wave is

considered as a sum of two waves with x- and y-polarizations and a phase shift of

π/2, signs ‘+’ and ‘−’ are taken for the left- and right-handed circular polarizations,

respectively. Having defined the vector potential we can find perturbation via the

minimal coupling κ → κ + eA/~c, which sometimes is also referred to as Peierl’s

substitution. As was mentioned in Section 2.2.2, this is equivalent to the gradient

approximation. The substitution applied to the Hamiltonian (3.18) results in the

following perturbations:

Vlin. =
vF eE

2ω

 0 ei(−1)
vφ

e−i(−1)
vφ 0

 , (3.25)
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for linear polarization and similarly for the circular polarization

Vcir. =
vF eE

2ω

 0 1− (−1)v+p

1 + (−1)v+p 0

 (3.26)

where parameter p = 1(p = 2) defines right-(left-)handedness of the incident radi-

ation.

Using eigenvectors (3.21) one can calculate matrix elements for both perturba-

tions given by Eqs. (3.25) and (3.26). Let us start with the linear polarization.

Such a calculation yields

〈χ1 |Vlin.|χ2〉 =
vF eE

2ω

{
i sin [(−1)vθ]− ∆√

k2 + ∆2
cos θ

}
(3.27)

where we have introduced θ = ϕκ−φ as the angle between momentum of the excited

electron and the polarization of an incident light. The absolute value squared of

the matrix element above can be re-cast in the standard form with the alignment

parameter α:

F = |Vlin.12|2 =

(
vF eE

2ω

)2 [
sin2 θ +

∆2

κ2 + ∆2
cos2 θ

]
= F0(1− α cos 2θ) (3.28)

where

α =
κ2

κ2 + 2∆2
, (3.29)

F0 =

(
vF eE

2ω

)2
κ2 + 2∆2

2(κ2 + ∆2)
. (3.30)

The quantity F presented in Eq. (3.28) can be referred to as photoexcited carriers

distribution function [210] since it contains all the information about them. Such

characteristics as the number of excited carriers or the angle distribution of their

momentums can be obtained from this single function by means of integration.

It follows from Eq. (3.29) that for κ � ∆ there is no momentum alignment of

the photoexcited carriers in the gapped 2D Dirac systems and the optical matrix

element has a universal value independent of the gap and proportional to the Fermi

velocity. As one can see for a linear polarization the valley parameter does not have

much of an effect on physics for it is eliminated in the derivation. This, however,

will be different for the circular polarization which we are to consider next.
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The evaluation of matrix elements for perturbation given by Eq. (3.26) results in

rather cumbersome expression depending on valley index v. The general expression

can be divided into two part for analysis. Consider first only K point for which

v = 1, then for the right- and left-handed polarization we have

〈χ1 |Vcir.r.|χ2〉 =
vF eE

2ω

(
1− ∆√

κ2 + ∆2

)
e−iϕκ , (3.31)

〈χ1 |Vcir.l.|χ2〉 = −vF eE
2ω

(
1 +

∆√
κ2 + ∆2

)
eiϕκ . (3.32)

It is easy to see from the Eq. (3.31) that for κ→ 0 the perturbation matrix element

vanishes while in Eq. (3.32) it does not. Thus, in the K valley only left-handed

polarization can excite interband transitions. By contrast, for the K′ valley, i.e.

for v = 2, we obtain

〈χ1 |Vcir.r.|χ2〉 = −vF eE
2ω

(
1 +

∆√
κ2 + ∆2

)
e−iϕκ , (3.33)

〈χ1 |Vcir.l.|χ2〉 =
vF eE

2ω

(
1− ∆√

κ2 + ∆2

)
eiϕκ , (3.34)

whence by considering the same limit of small κ once can see that in the K′ valley

only transitions due to the right-handed polarization are allowed. These are valley

and polarization dependent optical selection rules for gapped honeycomb lattices

such as in low-buckled silicene, germanene and tinene. It is also worth noting

that the obtained selection rules are very much like those for a monolayer of a

transitional metal dichalcogenide such as MoS2 [211]. In general the band gap

parameter ∆ can be of other origin than the spin-orbit interaction. For instance,

it can model the different on-site energies for A and B atoms in graphene on a

substrate [212] such as boron nitride [213] or SiC [214, 215].

Finally, we would like to notice that similar to the treatment of carbon nan-

otubes and graphene nanoribbons in the case of gapped Dirac materials we obtained

universal value of the matrix element for linear polarization equal to the Fermi ve-

locity of electron in the structures. However, as follows from Eqs. (3.32) and (3.33)

and (3.27), this value of the matrix element at the K(K′) point for circular polariza-

tion is double of that for the linear polarization. For linear polarization, however,

the matrix element is the same in both valleys therefore the resulting absorption
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is the same, but valleys are populated differently by photoexcited carriers. It is

also seen from Eqs. (3.32) and (3.33) that for circular polarization the absorption

decreases with increasing frequency of excitation and attains a half of its value

at gap edge for high enough frequencies corresponding to the linear part of the

spectrum.

3.7 Conclusions

In summary, we found strong low-energy interband transitions, which are typically

in the THz range, in the quasi-one dimensional narrow-gap carbon nanostructures:

carbon nanotubes and armchair graphene nanoribbons. The obtained transition

velocity matrix element as function of the electron momentum comprises two parts:

the first depends linearly on the electron momentum, while the second has a sharp

spiky dependence with a universal value of the peak height equal to the Fermi veloc-

ity of electrons in graphene and the peak being positioned at the Dirac point. The

non-trivial sharp dependence of the velocity matrix element on the electron wave

vector originates form the topological singularity in the graphene’s wave functions.

The combination of the two parts suggests narrow-gap tubes and ribbons could be

used in design of a laser-type device. The high probability rate of the transitions

provided by the spiky part of the matrix element together with the van Hove singu-

larity at the band gap edge of the considered quasi-one-dimensional systems makes

them promising candidates for active elements in coherent THz radiation emitters.

We proposed to verify this feature in the emission rather than absorption type of

experiment.

The rolling up of the graphene sheet into tube or cutting it onto ribbons to

produce a small perturbation in a form of intrinsic strain which opens up a narrow

band gap is not required in 2D Dirac materials with a gap originating, for instance,

from the effect of the spin-orbit interaction. Having considered such materials

within the tight-binding model we demonstrated that the probability rate of the

interband transitions for linear polarization of incident radiation has also a universal

value at the Dirac point and it is equal to the Fermi velocity of electrons in the
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structure. Additionally to the peculiar valley dependent selection rules such that

each valley is responsive only to the specific handedness of the circular polarized

incident radiation, we obtained that the velocity matrix elements of the transitions

induced by the circular polarization at the Dirac point are double of those for

higher energies where the electronic spectrum is linear.



Part II

Energy spectra and electro-optical

properties of flat nanostructures
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Chapter 4

Electro-absorption of silicene and

bilayer graphene quantum dots

4.1 Introduction

Non-planar graphene-derivative materials have attracted considerable attention [216,

217, 218, 219, 220, 221, 222, 223] because of their tunable electronic properties, dif-

ferent from those of the single-layer graphene. Application of the electric field, E,

across the bilayer (multilayer) graphene system opens a gap between the conduc-

tion and valence bands [224, 196, 225, 198]. The same also happens with silicene

because of the buckling of its honeycomb lattice [217, 218, 219, 221]. The atoms of

the type A and B of the lattice are displaced alternatively in the vertical direction

and are subjected to a different, electric field producing, potential gradient. The

possibility of controlling the gap offers a wealth of new routes for the next genera-

tion of field effect transistors and optoelectronic devices [216, 217, 226]. However,

the on-chip nano-scale realization of such devices requires finite-size components

like nanoribbons and quantum dots (QDs) [227]. Therefore, a deeper understanding

of their individual electronic properties, which can be substantially different from

those in infinite systems because of the finite-size electronic confinement [228], is

needed.

The electronic properties of various graphene nanoribbon structures and the

94



CHAPTER 4. ELECTRO-ABSORPTION OF SILICENE ... 95

influence of the applied voltage is being studied both for the out-of-plane [229, 230,

231] and for the in-plane [232, 91, 12, 14] field directions. The optical and magnetic

properties of the single and multilayer graphene QDs of various shapes have also

been studied at zero field [233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244].

The distinctive property of these QDs is the opening of a finite-size energy gap due

to the electron confinement, that is different from the above mentioned field-induced

gap since it exists also at E = 0. In addition, the novel electronic states localized at

the sample boundary are formed [233, 234, 236]. In the energy spectrum these states

are located inside the gap in the vicinity of the zero energy. This corresponds to

the Dirac point, when size of the system tends to infinity, therefore they are usually

referred to as zero energy states (ZES). Unlike the ZES in single layer graphene

QDs, the ZES in silicene and bilayer graphene QDs can be easily manipulated by an

electric field applied normally to the graphene or silicene layers [245, 246, 247, 248].

In this chapter we explore this functionality for the design of the QD-based

optoelectronic devices. We discuss the effect of an electric field on the optical

absorption cross section in silicene and bilayer graphene QDs and how the applied

field can control the number and intensities of absorption peaks.

In what follows we introduce structure classification and provide details of our

tight-binding calculations. We shall present and discuss optical absorption spectra

in electric field for a range of QD types and, finally, summarise obtained results.

4.2 Structures and calculation model

Let us use a classification similar to that proposed for single layer graphene QDs [243].

The structures are classified based on their shape and edge type. As can be seen

from Fig. 4.1, four types of QD can be distinguished. Depending on their edge

geometry, QDs can be classified as the zigzag or armchair QDs that are presented

in Fig. 4.1 (a), (b) and (c), (d), correspondingly. A quantum dot of each of these

types can have triangular (TRI) or hexagonal (HEX) shape. The number of atoms

in the nanocluster varies depending on its shape and size. Table 4.1 summarizes

how different size characteristics are connected with the total number of atoms in
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(a) (b)

(c) (d)

Figure 4.1: The four main types of QD, based on the 2D hexagonal lattice: (a)

zigzag triangular, (b) zigzag hexagonal, (c) armchair triangular , (d) armchair

hexagonal, where R and L are the circumscribed circle radius and edge length,

respectively. Quantum dot indexing is presented by larger and smaller font num-

bering.
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the single layer structure, N , by means of the number of characteristic hexagonal

elements and the lattice parameter a0. The choice of a characteristic element for

the structure indexing is a matter of convention. As shown in Fig. 4.1 by larger

and smaller font numbering, one can count hexagons or, equivalently, edge atoms.

In the case of a QD with zigzag edges, shown in Fig. 4.1 (a), (b), edge atoms on a

single edge are counted, whereas for QDs with armchair edges, presented in Fig. 4.1

(c), (d), edge atom pairs are counted [249]. The lattice parameter a0 is the distance

between the nearest atoms, or their projections onto a horizontal plane as depicted

in Fig. 4.2 (d) and (b) for a flat and low-buckled structure, respectively. Obviously,

to obtain the total number of atoms in a bilayer (multilayer) structure the number

of atoms in the Table 4.1 should be multiplied by the number of layers.

Table 4.1: Relations between the number of atoms per layer, N , and quantum dot

size characteristics: circumscribed circle radius R, edge length L, and the number of

edge atoms Nz (or edge atom pairs Na). The parameter a0 is the distance between

the nearest atoms in 2D hexagonal lattice or their projection onto a horizontal

plane in case of the buckled structure (≈ 1.42 Å for graphene and ≈ 2.21 Å for

silicene [1]).

Quantum dot type

Zigzag Armchair

triangular hexagonal triangular hexagonal

R (Nz + 1) a0
√

3 (Nz − 1/3) a0
√

3Naa0 (3Na − 2) a0

L
√

3 (Nz + 1) a0
a
√

3 (Nz − 1/3) a0
a 3Naa0 (3Na − 2) a0

N N2
z + 4Nz + 1 b 6N2

z 3Na (Na + 1) b 6 (3N2
a − 3Na + 1)

Nz,a

√
N + 3− 2

√
N

6

√
12N + 9− 3

6

√
2N − 3 + 3

6

a Ref. [243]

b Ref. [249]

The electronic properties of presented nanoclusters in a transverse electric field
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(a) Top view (b) Top view

(c) Side view (d) Side view

Figure 4.2: The structure and tight-binding hopping parameters for silicene (a),

(c) and bilayer graphene (b), (d). In each case a black vertical arrow shows the

direction of the applied electric field.

can be calculated using the tight-binding Hamiltonian [224, 9, 250],

H =
∑
〈ij〉

tijc
†
icj +

∑
i

Vi (E) c†ici, (4.1)

where c†i and ci are the electron creation and annihilation operators, tij are the

inter-site hopping parameters and Vi is the on-site electron potential that depends

both on the local atomic environment and on the applied electric field. The hop-

ing parameters tij can be written in terms of the nearest-neighbor (NN) coupling

constants γi, as illustrated in Fig. 4.2. In the case of silicene we use the sim-

plified version appropriate for the low-energy states [250, 9]. According to this

approximation there is only one in-plane coupling parameter between sites A and
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B, γ0 ' 1.6 eV, that corresponds to the nearest-neighbor hopping between sites A

and B.

For graphene this parameter is γ0 ' 3 eV. The on-site potential, Vi(E) is

different for A and B sites and can be presented as Vi = ξi∆− ξilE where ξi = ±1

for the B and A type of atoms, ∆ ' 3.9 meV is the effective buckling-gap parameter

and lE is the field-induced electrostatic interaction, related to the up/down shift

of B and A atoms on l ' 0.22 Å with respect to the average plane.

For the bilayer graphene structure, along with the in-plane coupling γ0 '

3.16 eV, the inter-layer parameters γ1 ' 0.38 eV, γ3 ' 0.38eV and γ4 ' −0.14 eV

( see Fig. 4.2 (b)) should be also taken into account. The field-dependent on-site

potential can be written [224] as Vi = ηi∆ − ςilE where ηi = 0 for A1 and B2

atoms, ηi = 1 for A2 and B1 atoms and ςi = ±1 for the atoms located in the upper

(A2, B2) and lower (A1, B1) layers correspondingly (See Fig. 4.2). The on-site

potential due to the different local atomic environments is taken as ∆ ' 22meV

and the inter-layer distance as 2l ' 3.5 Å.

By numerically diagonalizing the Hamiltonian given by Eq. (4.1) one finds the

single-electron wave functions |Ψi〉 and their corresponding energy levels εi, which

can then be used to evaluate the optical absorption cross section given by the

following expression:

σ(ε) ∼
∑
i,f

S(εi,f )δ(ε− εi,f ) , (4.2)

where S(εi,f ) is the oscillator strength, and δ(ε− εi,f ) is the Dirac delta function.

The oscillator strength characterizing the rate of transitions between the initial,

|Ψi〉, and the final, |Ψf〉, states is defined as [251]

S(εi,f ) ∼ εi,f |〈Ψf |r̂|Ψi〉|2 . (4.3)

In Eq. (4.3) r̂ is the position operator and εi,f = εf − εi is the energy of a single-

electron transition between the states with energies εi and εf . The summation

in Eq. (4.2) is carried out over all possible transitions between the valence and

conduction states.

To mimic thermal level broadening, finite single electron excitation lifetimes,

nanocluster size inhomogeneity, etc., single electron absorption peaks in Eq. (4.2)
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are broadened by a Gaussian function with linewidth, α,

σ(ε) ∼
∑
i,f

S(εi,f ) exp

(
−(ε− εi,f )2

α2

)
, (4.4)

As follows from Eqs.(4.2) and (4.3), calculation of the absorption spectrum

is reduced to a calculation of the matrix elements of the position operator, i.e.,

〈Ψf |r̂|Ψi〉. Within the tight-binding model in its most general form this physical

quantity is given by [252, 253, 254]

〈Ψi |r̂|Ψj〉 =
∑
m,γ,γ′

C∗i,m,γCj,m,γ′rmδγ,γ′

+
∑
m,γ,γ′

C∗i,m,γCj,m,γ′ 〈φm,γ |r̂ − rm|φm,γ′〉 ,
(4.5)

where rm is the position of the m-th atom in the QD, φm,γ is the atomic orbital

γ of the m-th atom, Ci,m,γ are the coefficients of the expansion of the electron

wavefunction in terms of the atomic orbitals. The first sum in Eq. (4.5) is the

dipole moment associated with the positions of the atoms of the QD. Due to the

orthogonality of the electron wave functions of any two different states the value of

this sum does not depend upon the choice of the origin of the coordinate system.

Hence, only the relative atomic positions with respect to each other contribute

to this term and, therefore, it is usually referred to as the inter-atomic dipole

moment. The second sum of Eq. (4.5) represents the dipole moment of transitions

between orbitals γ and γ′ located on the same atomic site and it is usually referred

to as intra-atomic dipole moment. The intra-atomic dipole moment restores the

result for an isolated atom in the limit of non-interacting atoms of the QD. In

contrast to this, ZES arise due to the interaction between the atoms. Therefore,

the contribution of intra-atomic dipole moments to the resulting dipole moment of

transitions between low-energy states is assumed to be small. Taking into account

the fact that the low-energy electronic structure of silicene and bilayer graphene

QDs is formed by π-atomic orbitals, one can reduce Eq. (4.5) to the following form:

〈Ψi |r̂|Ψj〉 =
∑
m

C∗i,mCj,mrm , (4.6)
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where Ci,m are the coefficients of expansion of the electron wavefunction Ψi in the

basis of the π-orbitals φm,

Ψi =
∑
m

Ci,mφm(r − rm) . (4.7)

The unknown coefficients of Eq. (4.7), Ci,m, are the components of eigenvectors of

the Hamiltonian given by Eq. (4.1).

(a) (b)

(c)

Figure 4.3: Optical absorption cross sections of triangular (TRI) quantum dots

with zigzag edges based on (a) graphene, (b) silicene and (c) bilayer graphene.

Insets show zoomed in regions of interest. Each nanocluster has 438 atoms per

layer.

4.3 Optical absorption of triangular quantum dots

Optical absorption cross sections per atom, σ(ε)/N , where N is the total number of

atoms, were obtained in arbitrary units for graphene, silicene, and bilayer graphene

nanoclusters with 438 atoms per layer (L ≈ 77 Å for silicene and L ≈ 49 Å for
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single layer and bilayer graphene) by the procedure described in Section 4.2. The

results are depicted in Fig. 4.3. The number of ZES in the selected triangular

nanoclusters is equal to 18 for graphene and silicene QDs, and to 36 in the bilayer

graphene QDs. This number can be expressed in terms of the size parameter Nz,

specified in Table 4.1, as Nz − 1 and it should be multiplied by the number of

layers for bilayer quantum dots. In the present calculations and thereafter the

optical absorption cross section is a result of transitions from states below to states

above the Fermi level. The linewidth for the main panels in Fig. 4.3 was selected

to be equal to α = 45 meV whereas, for the study of low-energy features (insets in

Fig. 4.3), parameter α was selected to be equal to 14 meV for graphene and bilayer

graphene, 2.5 meV for silicene QDs.

We consider first transitions at zero electric field. The dependence of the optical

absorption cross section for graphene quantum dots on the transition energy is

shown in Fig. 4.3 (a). The results are in good agreement with those of Yamamoto

et al. [249]. Figure 4.3 (b) presents the corresponding σ(ε)/N for silicene QDs. The

low-energy zoom at the inset to this figure reveals the shift of the 0.85 eV graphene

peak towards 0.45 eV in silicene as a result of the decrease in the hopping energy.

The more important difference, however, is the splitting of this peak in two peaks.

This effect is caused by the fact that ZES in silicene are no longer localized at

ε = 0 [246] and, therefore, the transition energy from the valence states to the ZES

is different from the transition energy from the ZES to the conduction states.

The situation with the low-energy peak changes even more for the case of the

triangular bilayer graphene QD where the ZES are smeared into the narrow energy

band by the inter-layer electron hopping [246]. This smearing creates the dispersion

of the optical absorption peaks in the region 0 − 1.0 eV as shown in the inset of

Fig. 4.3 (c). These peaks correspond to the possible transitions from the dispersed

ZES and valance states to the dispersed ZES in the conduction band. Such a

feature exists neither in graphene nor in silicene single layers where all the ZES are

degenerate.
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4.4 Electric field effect and optical absorption

In this section we focus on the influence of the external electric field applied to sil-

icenen and bilayer graphene quantum dots of various shapes and edge terminations.

Absorption spectra presented below were obtained with a broadening α = 20 meV

and zero temperature.

4.4.1 Silicene quantum dots with zigzag edges

Figure 4.4 illustrates the effect of the electric field, E, on the optical absorption

(a), (c), (e) and on the energy levels spectrum (b), (d), (f) of triangular silicene

QDs. As can be seen from Fig. 4.4 (a), there is only one absorption peak below the

energy ε = 0.5 eV when E = 0. This peak includes two types of transitions: from

the highest occupied energy level (HOEL) to the ZES and from the ZES to the

lowest unoccupied energy level (LUEL). In graphene these two types of transitions

have the same transition energy but in silicene they are not identical and the energy

difference between them, which is zero at E = 0, can be tuned by the electric field.

With increasing electric field two remarkable effects occur. Firstly, the two indi-

cated transitions become non-identical, which results in splitting the corresponding

peak in two peaks. The first peak lies below ε ' 0.5 eV at E = 1 V/Å, the first

peak in Fig. 4.4 (c), while the second peak is positioned at ε ' 0.7 eV. Secondly,

ZES become closer to the valence band states. Therefore transitions from some of

the valence band states to ZES appear at the energies ε < 0.5 eV. These transitions

are represented by the second peak in Fig. 4.4 (c). In the higher field, E = 2 V/Å,

the energy difference between ZES and valence band states becomes even smaller

which results in the appearance of the third peak below ε = 0.5 eV in Fig. 4.4

(c). For an opposite direction of the electric field the behaviour is similar but one

should note that the absorption peaks at ε ' 0.5 eV are now a result of transitions

from ZES to the conduction band states.

Hexagonal silicene QDs have no ZES. Therefore, the effect of the electric field is

just in the opening of a tunable energy gap [246]. This is clearly seen in the optical
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Figure 4.4: Optical absorption cross sections (a), (c), (e) and corresponding energy

levels (b), (d), (f) for a triangular zigzag silicene QD consisting of 438 atoms

(L ≈ 77 Å) at different electric fields.



CHAPTER 4. ELECTRO-ABSORPTION OF SILICENE ... 105

Figure 4.5: The same as Fig. 4.4, but for a hexagonal (HEX) silicene QD containing

864 atoms (L ≈ 45 Å) at different electric fields.
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absorption spectra as a shift of the edge of the absorption in Fig. 4.5 (a), (c), (e).

Without the electric field the absorption peaks are distributed almost uniformly in

the region of 0 – 1 eV. However, application of the field results in their shifting to

the higher energies and in the emergence of an energy region with zero absorption.

Thus, one can distinguish two regions with zero and non-zero absorption. Note

also that the intensity of the peak near the absorption edge depends on the field.

The increase of the electric field from 1 to 2 V/Å results in a gentle decrease of the

peak.

4.4.2 Silicene quantum dots with armchair edges

In order to present the effect of edge termination on the electronic and optical

properties of the silicene we extend our calculations to account for silicene quantum

dots with armchair edges. The optical absorption cross sections of triangular and

hexagonal silicene QDs with armchair edges are shown in Fig. 4.6. The total

numbers of atoms are: N = 468 and N = 762 atoms (L ≈ 80 Å and L ≈ 42 Å )

for triangular and hexagonal dots, respectively. At zero electric field, see Fig. 4.6

(a), the absorption spectrum for triangular armchair looks similar to the spectrum

of triangular zigzag, see Fig. 4.4 (a), with one absorption peak around ε = 0.5

eV. However, applying an electric field to triangular armchair quantum dots does

not shift the absorption edge to the lower energy as in zigzag quantum dots. It is

clearly seen in Fig. 4.6 (a), (c), and (e) that the absorption edge blue shifts with the

application of an electric field. The reason for such a behaviour is the absence of

ZES in armchair silicene quantum dots. The shifting of the ZES in zigzag quantum

dots closer to the conduction band or to the valance band decreases the energy

gap. Unlike zigzag hexagonal QDs, armchair hexagonal quantum dots at E = 0

have a significant energy gap of about 0.3 eV. As indicated by Fig. 4.6 (b), (d),

and (f), in an electric field this gap increases similar to that opened by the field in

the zigzag quantum dots.
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Figure 4.6: Optical absorption spectra for armchair silicene QDs of triangular (a),

(c), (e) and hexagonal (b), (d), (f) shapes, consisting of 468 and 762 atoms and

having edge length L ≈ 80 Å and L ≈ 42 Å, respectively.
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4.4.3 Bilayer graphene quantum dots with zigzag edges

In this section we shall consider the quantum dots of triangular and hexagonal

shapes based on bilayer graphene with number of atoms per layer N = 222 and

N = 216, respectively. Let us begin with the optical properties of the triangular

bilayer graphene QDs, whose energy levels are presented in Fig. 4.7 (b). At zero

Figure 4.7: Optical absorption spectra (a), (c), (e) and energy levels (b), (d), (f)

of a triangular bilayer graphene QD made of 222 atoms per layer (L ≈ 34 Å) at

different electric fields.

field, ZES can be divided into two groups. The first group represents ZES located

below the Fermi level, εF = 0 eV in Fig. 4.7 (b), at ε ' −0.1 eV. The second group

represents ZES located above the Fermi level at ε ' 0.1 eV. Consider next the

optical absorption peaks resulting from the transitions between these two groups

under the effect of electric field. In general, the smearing of ZES and the application

of an electric field affects all optical transitions from and to ZES but we focus here

only on the transitions between the two previously discussed groups of ZES. These
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transitions can be seen in Fig. 4.7 (a) in the energy range from 0 to 0.3 eV. Thus, we

can identify one group of optical transitions within the ZES. Figure 4.7 (a) shows a

series of absorption peaks in the energy range from 0 to 0.3 eV. These small intensity

peaks represent the above mentioned group of transitions. The application of the

electric field increases the tiny energy gap between the two groups of the ZES and

gathers the ZES groups into narrower energy ranges. This leads to the up-shift of

Figure 4.8: The same as Fig. 4.7, but for a hexagonal bilayer graphene QD con-

taining 216 atoms per layer (L ≈ 14 Å) at different electric fields.

the set of the low-energy absorption peaks to ε ' 0.3 − 0.45 eV for E = 0.1 V/Å

with the gathering of the small intensity peaks and increase in the peak intensity

as can be seen in Fig. 4.7 (c). Increasing the electric field to E = 0.2 V/Å results

in a further increase in the energy gap which in turn increases the intensity and

the up-shift of the absorption peak to ε ' 0.6 eV as can be seen in Fig. 4.7 (e).

The optical absorption cross section and energy levels for a hexagonal bilayer

graphene QD at different values of the electric field are shown in Fig. 4.8 (a),
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(c), (e) and Fig. 4.8 (b), (d), (f), respectively. In deep contrast to triangular

bilayer graphene QDs, the energy gap in hexagonal bilayer graphene between the

HOEL and LUEL, which is presented in Fig. 4.8 (b) at E = 0 V/Å, decreases

with increasing electric field. This results in emergence of the group of the low-

energy absorption peaks positioned at ε ' 0.4 and 0.2 eV in Fig. 4.8 (c) and

(e), respectively. Thus, in small bilayer graphene quantum dots the low-energy

absorption peaks exhibit blue/red shift for triangular/hexagonal dot’s shape.

Figure 4.9: the energy level dependence on the applied electric field in triangular

(a) L ≈ 7.4 Å, (c) L ≈ 34 Å, (e) L ≈ 64 Å and hexagonal (b) L ≈ 4.1 Å, (d)

L ≈ 14 Å, (f) L ≈ 26 Å bilayer graphene QDs.

In order to test this feature for different sizes of triangular and hexagonal bilayer

graphene QDs we plotted Fig. 4.9, which shows the dependence of the energy levels

on the electric field in quantum dots of different sizes. It can be seen from Fig. 4.9

(b), (d), (f) that the energy gap (light gray) in hexagonal dots decreases with the

application of electric field for small dots and starts to increase with the field for
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a dot size, where the total number of atoms is N = 726 per layer. The energy

gap for triangular quantum dots increases with the field for all the selected sizes as

seen from Fig. 4.9 (a), (c), (e). We can differentiate two energy gaps. The first one

is the size-energy gap shown in Fig. 4.9 (a), (c), (e) in light gray and the second

is the stacking induced energy gap which occurs between ZES, ZES-energy gap,

highlighted in gray. Due to the coupling parameters γ4 and the on-site potential

∆ in bilayer graphene, the ZES states split into two groups giving rise to the ZES-

energy gap which is directly proportional to the applied electric field. At the same

time the size-energy gap, highlighted in light gray in Fig. 4.9 (a), (c), (e), decreases

for an increasing electric field. Similar behaviour is observed for HEX bilayer small

QDs in Fig. 4.9 (b), (d). Also, one can notice that for high enough fields the

opposite trends can be achieved in all the cases. The critical field value, which

such a switch of the trend occurs at, decreases with the increase of the quantum

dot size.

4.4.4 Bilayer graphene quantum dots with armchair edges

As discussed above for zigzag bilayer quantum dots, the increase (decrease) in the

absorption gap can be obtained by applying an electric field to triangular (hexag-

onal) bilayer graphene QDs. Bilayer graphene QDs with armchair termination do

not support edge states, thus it is expected that armchair triangular and hexagonal

bilayer QDs will follow a similar trend to that obtained in hexagonal zigzag QDs.

Figure 4.10 illustrates the optical absorption cross section of triangular [Fig. 4.10

(a), (c), (e)] and hexagonal [Fig. 4.10 (b), (d), (f)] bilayer graphene QDs at different

values of electric field. We notice that for triangular and hexagonal quantum dots

the application of an electric field leads to increase in the number of absorption

peak in the energy range ε < 1 eV and a red-shift of the absorption edge.
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Figure 4.10: Optical absorption spectra for armchair bilayer graphene QDs of tri-

angular (a), (c), (e) and hexagonal (b), (d), (f) shapes with 720 (L ≈ 64 Å) and

762 (L ≈ 27 Å) atoms per layer, respectively.



CHAPTER 4. ELECTRO-ABSORPTION OF SILICENE ... 113

4.5 First principles calculations

Let us briefly compare semi-empirical tight-binding calculations with the first prin-

ciples ones performed by Quantum-Espresso package within the screened hybrid

density functional HSE06 for the triangular silicene quantum dot with N = 33.

These first principles calculations were carried out by Prof. Olivia Pulci on the

structures provided by the author of this thesis. The collaborative work took place

at the Institute for Nuclear Problems of the Belarusian State University in Minsk

(Belarus) within the frame of the EU H2020 RISE project CoExAN (Grant No.

H2020-644076). As one can see from Fig. 4.11 (a), in both cases the energy lev-

els follow the same pattern so that the difference between the tight-binding and

the density-functional theory (DFT) calculations is only quantitative: the tight-

binding energy levels are systematically shifted away from εF = 0 eV as compared

to the DFT energy levels. The same systematic shift is observed for the absorption

spectra in Fig. 4.11 (b). The more important difference, however, is that taking

into account the many-body effects results in a splitting of otherwise degenerate

zero-energy states leading to emergence of the low-energy absorption peaks and

splitting of the high energy ones.

Figure 4.11: The energy levels (a) and optical absorption cross-sections (b) obtained

by the DFT (red) and tight-binding (blue) calculations for the triangular silicene

quantum dot with zigzag edges and 33 atoms in the structure.
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4.6 Conclusions

The optical absorption spectra of silicene and bilayer graphene QDs have been in-

vestigated for triangular and hexagonal shapes and compared to the corresponding

quantum dots of monolayer graphene. In contrast to triangular graphene quantum

dots zero energy states in corresponding silicene dots are positioned slightly asym-

metrically with respect to the valence and conduction band states which results

in the doubling of the number of the low-energy absorption peaks. Without the

electric field, triangular bilayer graphene quantum dots have optical transitions

between zero-energy states due to the smearing and splitting of their zero-energy

states. These transitions do not exist in graphene or silicene QDs.

The introduction of an electric field into silicene triangular QDs displaces the

zero-energy states in the energy gap farther or closer to the conduction band states

depending on the direction of the normally applied field. This displacement in-

creases with increasing electric field, thereby increasing the number of absorption

peaks in the low-energy region of the optical absorption spectrum. By contrast,

hexagonal silicene QDs show a reduction in the number of optical absorption peaks

in the low-energy region with increasing electric field in either direction. In trian-

gular bilayer graphene QDs the small energy gap between the zero-energy states

increases with increasing electric field. As a result of these field-dependent en-

ergy gaps, the edge of absorption due to transitions between zero-energy states

undergoes blue shift in response to the applied field. For small quantum dots of

hexagonal bilayer graphene, the edge of absorption has a red shift with increasing

electric field.

Armchair quantum dots of silicene and bilayer graphene exhibit a significant

dependence of their optical properties with electric field. The blue (red) shift of the

absorption edge takes place for silicene (bilayer graphene) quantum dots for both

hexagonal and triangular shapes. The absence of zero-energy states in armchair

quantum dots removes the ability to switch the trend of energy gap dependence on

the electric field by changing the shape between triangular and hexagonal. There-

fore zero-energy states provide an advantage in silicene and bilayer graphene QDs
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with zigzag edges over those with armchair edges in controlling the electronic and

optical properties using different shapes.

The results of the presented in this chapter should be supplemented in the

future by more sophisticated models which take into account electron-electron in-

teraction. For instance, the low-energy absorption of the bilayer quantum dots in

conjunction with the magnetic phase transition [245], depending on the value of the

applied electric field, is worth special attention since in this case electron-electron

interaction may results in emergence of additional low-energy transitions. However,

our preliminary checks based on first principles calculations show that the revealed

general trends should not change.

The results obtained and discussed in this chapter suggest that optical spec-

troscopy in an external electric field may be, in principle, a tool for determining

the shape and size of the quantum dots of silicene and bilayer graphene. In addi-

tion, these results provide the basis for using small silicene and bilayer graphene

quantum dots as active elements of mid-infrared optoelectronic devices tunable by

an external electric field.



Chapter 5

Electro-optical properties of

phosphorene quantum dots

5.1 Introduction

Phosphorene is a single layer of black phosphorous that has been recently iso-

lated [255]. Unlike its predecessor – graphene [2] – it has a significant band gap

of about 2 eV. Such a large band gap, in conjuntion with the carrier mobility up

to 1000 cm2 V−1 s−1, is anticipated to be more practical, compared to graphene,

for digital electronics [256, 257]. However, any new material [258, 259] which is

put forward as a candidate to replace current silicon technology will have to catch

up with it. In other words, it has to start from the end of Moore’s law, to which

current technology is rapidly approaching. The critical size limit is predicted to be

5 nm; at this space scale quantum effects such as tunneling and carrier confinement

affect device performance [260]. In this view, the effects due to the device’s shape

and size gain essential importance, thereby making their study in systems with

edges such as ribbons and quantum dots a paramount priority. With respect to

the optical properties spatial carrier confinement brings not only new challenges

but also great advantages such as the decrease of the pumping threshold current

in quantum dot lasers [34].

Despite impressive recent achievements in the synthesis of nanostructures, such

116
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as the rise of self-assembling molecular engineering [33, 23, 28] and scanning tunnel-

ing microscope nanolithography [31, 261], the main problem with low dimensional

structures is a precise control of their geometry. Concurrently, techniques with the

best outcomes are not easily transferable between materials. Therefore, properties

and effects that are robust against disorder are of great importance for practical

applications. Here we present the results of our search for universal features in the

variety of phosphorene quantum dots.

The first attempts to synthesise phosphorene nanostructures have been un-

dertaken [262, 24, 263] and some theoretical results for regular shapes have been

reported [79, 264, 80]. However, the effects of the electric field applied normally to

the structure plane and edge disorder have not been investigated yet.

In this chapter we present a systematic comparative study of the electronic

and optical properties of phosphorene quantum dots with and without electric

field applied in the out-of-plane geometry. We report on the formation of so-

called quasi-zero energy states that are highly tunable and optically active. Unlike

the previously known zero energy states [233, 237, 243, 239, 241, 250, 246] in

silicene and graphene quantum dots they are, to a great extent, insensitive to

the dot morphology and edge roughness. The nature of this robustness is in the

puckered honeycomb structure of phosphorene, that leads to phosphorous atoms

being effectively distributed in two layers but, in contrast to systems such as bilayer

graphene, being more strongly bound with a counterpart atom in the opposite layer

rather than with neighbouring atoms within the layer. If a phosphorene quantum

dot has unpaired atoms in either of the layers then it has edge states positioned in

the energy spectrum close to the zero energy. This simple rule also holds true in

other phosphorene structures with edges [77, 265] and as such specify the route to

the design of the dielectric phosphorene nanoclusters.

In what follows, we introduce structures in Sec. 5.2, provide theoretical details

of calculations in Sec. 5.3, discuss the results in Sec. 5.4 and summarize discussion

in Sec. 5.5.
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5.2 Classification of structures

Phosphorene quantum dots (PQDs) are small crystal clusters of phosphorene. A

single dot can be imagined as a piece of phosphorene sheet enclosed within a closed

simple, i.e. without self-intersections, polygonal line. In the plane such a line can

be a boundary of a variety of polygons. This general approach is useful for many

structures, for instance, it can be used to define a unit cell of a superlattice based on

any two-dimensional material [12, 14, 13]. In crystals, however, boundaries tend

to be formed along directions specific to the crystal structure, therefore not all

polygons are suitable for the role of the small cluster boundary. The phosphorene

sheet has a puckered honeycomb lattice whose structure restricts the variety of

simple bounding polygons to triangles and hexagons. As shown in Fig. 5.1 each

of the bounding polygons used as a cutting mask admits isolation of clusters with

two different edge geometries. These two species correspond to graphene quantum

dots with zigzag and armchair edges [243], therefore, by analogy we refer to them

as zigzag and armchair ones. Thus, throughout this chapter we use the following

labeling convention for phosphorene quantum dots: 〈edge type〉 〈shape〉, where

〈edge type〉 is to be either “Z” or “A”, meaning zigzag or armchair edge geometry,

while 〈shape〉 – TRI or HEX means triangular or hexagonal shape.

Table 5.1 summarizes the information on the bounding polygon vertexes in

terms of primitive translations of the phosphorene lattice projected onto the plane:

a1 = a(cosφ, sinφ) , a2 = a(cosφ,− sinφ) , (5.1)

where a = |a1| = |a2| = 2.537 Å and φ = 40.11◦ is the angle between either

of the primitive vectors and Ox-axis. The vertex position vi can be conveniently

expressed as vi = s`i in terms of the size factor s and the vertex elementary vectors

`i given in Table 5.1. Note that to keep a precise correspondence with the graphene

quantum dots in the case of the ZTRI quantum dots the three phosphorene atoms

closest to the vertexes must be removed from the structure.

The synthesis of such structures by nanolithography or plasma etching in-

evitably faces a problem of edge roughness, therefore in general the polygon edges
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Figure 5.1: Classification of phosphorene quantum dots. Shaded and numbered

hexagonal elements are used for unique dot size identification. The phosphorous

atoms without “a pair” in the opposite layer are highlighted by a brighter color.
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Table 5.1: The vertex elementary vectors `i = (n,m) = na1 + ma2 in the basis

of the primitive translations a1 and a2 and size factors s for various phosphorene

quantum dots.

Quantum dot type

`i ZTRI ZHEX ATRI AHEX

1 (0, 0) (1, 0) (0, 1) (2,−1)

2 (1, 0) (0, 1) (−1, 0) (1, 1)

3 (0, 1) (−1, 1) (1,−1) (−1, 2)

4 – (−1, 0) – (−2, 1)

5 – (0,−1) – (−1,−1)

6 – (1,−1) – (1,−2)

s Nh + 1 Nh Nh + 1/2 Nh − 1/2

are not regular and possess some degree of disorder. To model this edge rough-

ness we adopt a fractal based approach that in comparison to some other ap-

proaches [239, 240] preserves the initial triangular or hexagonal morphology of the

dot. Each polygon edge was replaced by a Koch curve [266] generated after 5 itera-

tions with random parameters [267]. The Koch curve is a fractal structure that can

be obtained by replacing the central one third of the initial line with a triangular

notch and repeating this operation with each newly obtained edge. Thus, the edge

roughness is modeled by replacing the bounding polygon with the bounding fractal

line as shown in Fig. 5.2.

5.3 Theoretical model

In general the matrix form of the Hamiltonian is obtained by expanding electron

wave functions in an orthogonal basis set and calculating the matrix elements of

the Hamiltonian operator between the basis functions. The Hamiltonian, then, is
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Figure 5.2: The replacement of a polygon edge with the ideal and random Koch

curve shown for the regular triangle and hexagon.

an N ×N matrix

H =



h1 h12 h13 h14 · · · h1N

h21 h2 h23 h24 · · · h2N

h31 h32 h3 h43 · · · h3N

h41 h42 h43 h4 · · · h4N
...

...

hN1 · · · · · · · · · · · · hN


, (5.2)

where n is the number of functions in the basis set. Within the single orbital tight-

binding model the basis functions are atomic p-orbitals. Thus, the matrix element

hij =
∫
V
ψiĤψjd

3r, with basis functions ψi, is referred to as the hopping integral

between the i-th and j-th atomic sites. The hoping integral hii = hi is usually

referred to as the on-site energy. It has been shown that for correct description of

the low-energy electronic properties of phosphorene within the tight-binding model

it is sufficient to account for only a few nearest-neighbour hopping integrals and to

neglect the overlap integrals [10]. If the distance between the i-th and j-th atoms

is one of di presented in Table 5.2 then hij in matrix (5.2) is taken to be equal to
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the corresponding coupling parameter ti presented in the first column of Table 5.2

and depicted in Fig. 5.3. If the distance between the corresponding atoms does not

match any of di then we set hij = 0. The on-site energies are taken to be zero;

hi = 0.

Table 5.2: The tight-binding, ti, and structural, di, parameters used for phospho-

rene based quantum dots.

No. ti
a, eV di

b, Å

1 −1.220 2.164

2 3.665 2.207

3 −0.205 2.956

4 −0.105 3.322

5 −0.055 3.985

a Ref. [10]

b Obtained from Ref. [255]

Applying a static electric field to the considered system adds the following

potential to the on-site energy:

U = eE · r , (5.3)

where E is the electric field strength and r is the radius-vector of the given atomic

site. For the electric field applied perpendicular to the flat structure parallel to the

xOy plane the on-site energy is defined as

hj =

∫
V

ψiÛψid
3r = eEzj . (5.4)

For the phosphorene quantum dots in question zj = d2 cos (ϕ− π/2), where ϕ =

103.69◦, for atoms in the upper plane and it is zero for atoms in the lower plane.

The study of optical properties of a finite system requires evaluating of the

matrix elements of dipole moment or position operator. These matrix elements

are conventionally referred to as optical matrix elements. To calculate optical
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Figure 5.3: The tight-binding and structural parameters of the phosphorene lattice.

matrix elements we present the electric field of the incident electromagnetic wave

as E = E ep, where E is the magnitude of the electric field and ep is a unit vector

specifying the polarization of the incident wave. In what follows we consider a

linearly polarized optical excitation propagating normally to the xOy plane, but

our results can be easily generalized for an arbitrary incident angle and polarization.

Then ep is a constant vector and without losing generality it can be chosen to be

along the Ox-axis, i.e. ep = (1, 0). In this way the position operator r is reduced

to its projection onto the plane wave polarization vector, which for the given case

is just the x coordinate.

Next we have to convert the x coordinate matrix element,

xlm =

∫
V

Ψ∗l xΨm d
3r , (5.5)

to that of the tight-binding model. For this purpose we expand the electron wave

function Ψi over a set of functions {ψj}j=1...N forming a complete orthonormal

basis:

Ψi =
N∑
j=1

cij ψj . (5.6)
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Substituting this expansion into Eq. (5.5) yields

xlm =
∑
i,j

c∗ljcmi

∫
V

ψ∗j xψi d
3r . (5.7)

Within the orthogonal nearest-neighbor tight-binding approximation∫
V

ψ∗j xψi d
3r = xiδij = Xij (5.8)

or equivalently the matrix form of the x coordinate operator in the tight-binding

model is

X =



x1 0 0 0 · · · 0

0 x2 0 0 · · · 0

0 0 x3 0 · · · 0

0 0 0 x4 · · · 0
...

...

0 · · · · · · · · · · · · xN


, (5.9)

where xi are the x-coordinates of the atomic positions in the structure. In fact, the

coefficients, cmi, introduced in Eq. (5.6) are the components of the eigenvectors C̃m

of the matrix Hamiltonian given by Eq. (5.2). Thus, the matrix form of Eq. (5.7)

is

xlm = C̃†lXC̃m =
N∑
j=1

c∗ljcmjxj , (5.10)

where “†” denotes the Hermitian conjugate.

Utilizing the matrix elements given by Eq. (5.10), we calculate the oscillator

strength of a dipole oscillator [268] as

Sx(εi,f ) =
2m

~2
|xif |2 εi,f , (5.11)

where m is the free electron mass, εi,f = εf − εi is the energy of a single-electron

transition between the initial and final states with energies εi and εf , respectively.

The knowledge of the oscillator strength allows one to calculate the optical absorp-

tion cross-section [251, 249]:

σx(ε) ∼
∑
i,f

Sx(εi,f )δ(ε− εi,f ) , (5.12)
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where summation is carried out over all possible transitions between the valence and

conduction states; δ(ε−εi,f ) is the Dirac delta-function. The losses due to scattering

on phonons, inhomogenuities etc. can be taken into account phenomenologically

by replacing the Dirac delta-function by a Gaussian with a broadening parameter

α:

σx(ε) ∼
∑
i,f

S(εi,f ) exp

[
−(ε− εi,f )2

α2

]
. (5.13)

5.4 Results and discussion

The calculations are carried out for zigzag triangular (ZTRI), zigzag hexagonal

(ZHEX), armchair triangular (ATRI), and armchair hexagonal (AHEX) quantum

dots (QDs). For the model study we choose ZTRI, ZHEX, ATRI and AHEX

phosphorene QDs with N = 222, 384, 216 and 366, characterized by the edge

length L = |v2 − v1| ≈ 35.5 Å, 26.2 Å, 33 Å and 23.7 Å, respectively.

5.4.1 Energy spectra

We start with the comparison of the phosphorene quantum dots’ (PQDs) energy

levels with those of graphene quantum dots (GQDs) as presented in Fig. 5.4. A

peculiar group of energy states is observed in the low-energy (close to ε = 0 eV)

part of the spectrum in all the selected nanocluster shapes. These states do not

exist in most of their counterparts – graphene quantum dots. As one can see,

they completely modify the electronic properties of PQDs compared to GQDs. For

instance, the group of states in ATRI phosphorene QDs totally fills the energy

gap, providing conducting armchair phosphorene QDs (Fig. 5.4 (c)) in contrast to

ATRI graphene QDs, where the energy gap ensures the semiconducting behaviour.

The states dispersed near the Fermi level of an undoped dot, i.e. εF = 0 eV, are

localized at the structure edges. In what follows we refer to these edge states in

PQDs as quasi-zero energy states (QZES) and denote the number of such states

by NQZES. From Figure 5.4 (a) we see that there are 12 ZES in GQD with n = 222

and there are 14 edge states smeared asymmetrically around the Fermi level in the
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PQD.

(a) (b)

(c) (d)

Figure 5.4: Energy levels of phosphorene QDs (red squares) versus graphene QDs

(blue filled circles) for triangular and hexagonal shapes with both zigzag and arm-

chair termination.

The origin of the QZES in ZTRI PQDs can be found by setting the coupling

parameters t3 = t4 = t5 = 0 and varying t2 with respect to t1 [269, 270, 77]. Ob-

viously, when t1 = t2, the total number of edge states (ZES and QZES) is equal
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for graphene and phosphorene ZTRI QDs. At t1 = −1.22 eV and t2 = 2 eV, the

number of ZES is still the same as in graphene but the conduction and valance

states in PQD move towards the ZES. With the continuous increase of t2, the two

energy states, one from the valence band and the other from conduction band,

become well separated from their bands and move towards ZES which decreases

the energy gaps between ZES and valence and conduction bands. As t2 increases

to 3.665 eV [10] the number of edge states increases to 14 states symmetrically sep-

arated from conduction and valence by εg ' 1.5 eV. We found that independently

of the quantum dot size it is always two state that split-off from the bulk states.

Adding t3 and t5 decreases the energy gap between the edge states and bulk states

from 1.5 eV to 1.2 eV with no change to the distribution of the QZES.

In Figure 5.4 (b), the energy levels of the hexagonal graphene QD with zigzag

termination and N = 384 are compared with those of the corresponding phospho-

rene QD. We note that for this small size (N = 384) the ZHEX graphene QD

has no edge states, whereas for the same size ZHEX phosphorene QD there are 16

edge states smeared around the Fermi energy. To investigate the origin of QZES

in hexagonal zigzag phosphorene we apply the same strategy as used in triangular

phosphorene quantum dots. At t1 = t2 it has the same energy spectrum as for

hexagonal graphene quantum dots. However, at t2 = 2 eV a new set of energy

states (16 energy levels for N = 384 atoms) fills the energy gap. Increasing t2 to

3.665 eV leads to gathering of the 16 states with a very small dispersion forming

edge states isolated from the bulk bands by ε ' 1.4 eV. The effect of t3 and t5

is the same as in triangular quantum dots, i.e. the decreasing of the energy gap

between edge states and bulk states. Introducing t4 = −0.105 eV generates the

antisymmetric displacement of the edge states with respect to the bulk states and

a small increase in their dispersion. The number of new edge states, NQZES, in

ZHEX-phosphorene dots increases with the dot size. It is given by NQZES = 2Nh,

where Nh is the number of hexagons at the edge.

Figure 5.4 (c) shows a comparison between the energy levels of armchair tri-

angular quantum dots of graphene and phosphorene with N = 216. In the ATRI
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graphene QD there is a noticeable energy gap εg ' 1.3 eV due to the size effect,

while in the ATRI phosphorene QD the energy gap disappears. QZES in triangular

armchair phosphorene QDs are dispersed inside the energy gap (Fig. 5.4 (c) red

squares) giving rise to a quantum dot with zero energy gap. The total number

of edge states is 2Nh, similar to the case of ZHEX phosphorene QDs. Figure 5.4

(d) compares the QZES in hexagonal armchair phosphorene QDs to hexagonal

graphene QDs with N = 366. The total number of QZES in an AHEX phos-

phorene quantum dot is NQZES = 2(2Nh − 1). Thus, we conclude that the origin

of QZES is the distribution of the phosphorene atoms in two layers and t2 > t1.

Table 5.3 summarizes the relations between the number of QZES, NQZES, and the

structure size for various types of phosphorene QDs. A general rule valid for all

Table 5.3: The number of quasi-zero energy states as a function of the quantum dot

size for various dot shapes. NQZES = |N2 − N1|, where N1,2 are the total number

of atoms in the top and bottom layers of the phosphorene dot, respectively. Nh is

the number of hexagonal elements at the edge as shown in Fig. 5.1.

Quantum dot type

ZTRI ZHEX ATRI AHEX

NQZES Nh + 1 2Nh 2Nh 2(2Nh − 1)

Nh

√
N + 3− 2

√
N

6

√
12N + 9− 3

6

√
2N − 3 + 3

6

PQD types can be formulated as follows: the number of QZES is equal to the total

number of atoms, which are not connected to nearest neighbour atoms by t2.

5.4.2 Electric field effect

Let us discuss the effect of an electric field applied normally to the structure plane

on optical absorption of triangular and hexagonal phosphorene QDs with zigzag

and armchair terminations. As in Section 5.4.1, we choose the electric field strength

used in Ref. [265], E = 0.4 V/Å, as the upper limit and supplement the obtained

results with calculations for E = 0.2 V/Å. Throughout this chapter the quantum
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dot orientation with respect to the coordinate system is fixed to be as presented

in Fig. 5.1, Gaussian broadening α = 0.02 eV, and temperature T = 0 K. In

the case of graphene it was found that σx and σy are almost the same, whereas

σz = 0 [249]. In contrast, the absorption cross-sections due to x- and y-polarizations

are considerably different in phosphorene QDs. Optical absorption due to a z-

polarized incident wave is very small compared to that of x- or y-polarizations;

thus, it is neglected in the discussion.

Zigzag edges

Optical absorption cross-sections of ZTRI phosphorene QDs for different values of

the electric field are shown in Fig. 5.5. It is seen from Fig. 5.5 (b), (d) that the

electric field increases the QZES dispersion and shifts QZES and conduction band

states towards each other. As can be seen from Fig. 5.5 (f), at E > 0.2 V/Å only

one QZES moves towards the valance band while the rest of them shifts towards

conduction bands. In order to discuss the effect of shifting QZES and conduction

band states towards each other on the optical transitions, let us consider the three

intense peaks around ε = 1 eV, at E = 0 V/Å in Fig. 5.5 (a). These peaks are due

to transitions from the HOEL to the group of QZES above the Fermi level (peak

at ε ≈ 1.2 eV) and from the QZES below the Fermi level to the LUEL (peaks at

ε ≈ 0.8 eV and ε ≈ 1 eV ). At E = 0.4 V/Å the optical transition at ε ≈ 1.2 eV

disappears from the low energy absorption and shifts towards higher energies, the

positions of the other two peaks at ε ≈ 0.8 eV and 1 eV stay almost the same as

shown in Fig 5.5 (e). Such a behaviour suggests that the transitions occur from the

bottom of the QZES band so that the increase of the QZES dispersion eliminates

the effect of the approaching of the conduction bands states towards the QZES as

a group.

It can be seen from Fig. 5.5 (a), (c), and (e) that with increasing field there is a

noticeable decrease in the intensities of absorption peaks at ε > 0.8 eV compared to

the prominent low-energy y-polarized peak. This can be attributed to the decrease

of transition matrix elements because the positions of the peaks stay nearly the
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Figure 5.5: The effect of a perpendicular electric field on the optical absorption

cross-section (a), (c), (e) and the corresponding energy levels (b), (d), (f) of zigzag

triangular phosphorene QDs.
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same. It is aslo worth noting that the red absorption peak for an incident y-

polarized electromagnetic wave at ε ' 0.05 eV, (Fig. 5.6 (a)), experiences a blue

shift with increasing electric field which can be attributed to the increased smearing

of the QZES as a function of the applied field.

The absorption cross-section of hexagonal zigzag phosphorene QDs in Fig. 5.6

shows a totally different behavior under the influence of electric field. The strong

absorption peak, see Fig 5.6 (a), around ε = 0.9 eV occurs due to transitions from

the group of edge states to the LUEL. At E = 0.2 V/Å the intensity of this peak

decreases and vanishes at E = 0.4 V/Å, as can be seen in Fig. 5.6 (c) and 5.6

(e). The red absorption peak at ε ≈ 0.05 eV, corresponding to an upper edge of

the highly topical terahertz frequency range, shown in Fig. 5.6 (a) experiences a

decrease in intensity at E = 0.2 V/Å and disappears at E = 0.4 V/Å. This effect

results from the energy gap opening between QZES shown in Fig. 5.6 (f).

Armchair edges

Let us next consider the energy levels and absorption cross-sections of triangular

(Fig. 5.7) and hexagonal (Fig. 5.8) phosphorene quantum dots with armchair edges

under the effect of an electric field applied perpendicular to the structure plane:

N = 216 for the triangular and N = 366 for the hexagonal case.

Figure 5.7 (b), (d), and (f) shows that the ATRI edge states split into two

groups with an energy gap between them that increases with increasing the applied

electric field. The result of this new energy gap is a blue shift in the edge of the

optical absorption cross-section, as shown in Fig. 5.7 (a), (c), and (e). Moreover,

the absorption peaks due to transitions between edge states with a photon energies

ε ranging from 0 to 0.5 eV shown in Fig. 5.7 (a), have a comparable intensity

with the peaks corresponding to the transitions from edge states to conduction

(valance) band states. These transitions between edge states are very weak in

bilayer graphene QDs [92]. By increasing the electric field these transitions shift to

a higher energy due to the opening of energy gap, Fig. 5.7 (d), (f), and the number

of transition peaks decreases as a result of the reduction in smearing of the edge
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Figure 5.6: The optical absorption cross-section (a), (c), (e) and energy levels (b),

(d), (f) of zigzag hexagonal phosphorene QDs at different values of electric field.
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Figure 5.7: The optical absorption cross-section (a), (c), (e) and the corresponding

energy levels (b), (d), (f) of triangular armchair phosphorene QDs under the effect

of an electric field.
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states (see Fig. 5.7 (f)).

Figure 5.8 shows the electronic states and optical absorption cross-sections of

hexagonal phosphorene QDs with armchair termination. In this case, the smearing

of the edge states is small, Fig. 5.8 (b), (d), and (f), and the transitions between

them are given by two strong absorption peaks (shown in red and green) at ε ≈

0.05 eV. By varying the electric field we can control the position of these two peaks

in the absorption spectrum. For instance, at E = 0.2 V/Å they are situated at

ε ≈ 0.25 eV, therefore it is possible to tune efficiently optical transitions within

the energy gap of the hexagonal phosphorene QDs with armchair terminations.

Moreover, it can be seen that at E = 0 V/Å, Fig. 5.8 (a), the red absorption peak

for incident y-polarized electromagnetic wave has a higher intensity than the green

peak for x-polarized incident wave. However, by increasing the electric field the

situation is inverted: the green peak becomes more intense than the red peak. At

zero field the energy gap is almost zero, see Fig. 5.8 (b), which promotes a strong

y-absorption peak. At high values of the electric field the energy gap increases

leading to decrease in the intensity of the y-absorption peak (red peak in Fig.

5.8 (e)) and increase in the x-absorption (green peak at ε ≈ 0.5 eV in Fig. 5.8

(e)). Therefore, we conclude that the intensity of the x-absorption peak is directly

proportional to the opening of the energy gap between QZES and y-absorption

peak intensity is inversely proportional to the energy gap.

5.4.3 Edge roughness

In this section, we study the effect of edge disorder on the electronic and optical

spectra of phosphorene QDs. The edge disorder was modeled as described at the

end of Section 5.2 for all types of quantum dots considered in Section 5.4.2; this

means that the edges of the initial bounding polygons were replaced with random

Koch curves. We consider replacement for AHEX, ATRI, ZHEX and ZTRI types

of phosphorene dots with the number of atoms N = 366, 216, 384, and 222, respec-

tively. For random structures we keep the same notations as for the original regular

structure with ‘(r)’ appended at the end, e.g. AHEX is changed to AHEX(r). We
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Figure 5.8: The effect of a perpendicular electric field on the optical absorption

cross-section (a), (c), (e) and corresponding energy levels (b), (d), (f) of hexagonal

armchair phosphorene QDs.
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also clearly indicate for each structure the new number of atoms N . The random

structures have edges of neither armchair nor zigzag type but their initial shape

and crystallographic orientation are preserved.

(a) (b)

(c) (d)

Figure 5.9: The effect of the electric field on the energy levels and optical absorption

of disordered PQDs based on those with armchair edges. (a), (c) The energy

levels and (b), (d) normalized absorption cross-sections of hexagonal and triangular

quantum dots, respectively.

In Figure 5.9 we present the energy levels and absorption spectra with and

without a normal electric field for quantum dots with rough edges based on those
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with armchair edges – AHEX(r) with N = 352 and ATRI(r) with N = 215. For

clarity, in this picture, the energy levels for E = 0.2 V/Å are vertically shifted

by 0.05 with respect to those at E = 0 V/Å. A vertical shift of 1 is used for

corresponding normalized absorption spectra of both x- and y-polarization. The

similar plots for irregular phosphorene dots based on QDs with zigzag edges are

shown in Fig. 5.10.

In all cases the quasi-zero energy states within the bulk gap, i.e. between con-

duction and valence band states, survive but become more dispersed forming wider

energy band around the Fermi level. The number of QZES in random structures

is changed compared to the regular ones but it correlates with the number of un-

paired phosphorous atoms highlighted in Fig. 5.1 as discussed for regular QDs.

The deviation from the rule was found in the cases when two atoms without a

t2 hopping were linked by t1 hopping. We did not obtain dielectric structures,

e.g. without QZES, in 10 random seeds for each type of the irregular PQDs but

we checked that the QZES disappear if all phosphorous atoms are paired, by t2

hopping, by purposely engineering such a PQD with a round shape and N = 412

(see Appendix F). The effect of the electric field is further broadening of the zero

energy band. Unlike the case of regular ATRI and AHEX PQDs the splitting is

not that clear for the corresponding QDs with irregular edges and the two groups

of the QZES are less distinctive.

One can also see from Figs. 5.9 and 5.10 that edge disorder can suppress QZES-

associated transitions in the case of hexagonal structures, whereas transitions be-

tween the QZES or from QZES to HOEL and LUEL usually stay strong for trian-

gular shapes of the dots.

5.5 Conclusions

In summary, we investigated the electronic and optical properties of phosphorene

quantum dots of triangular and hexagonal shapes with regular and irregular edges

and with armchair and zigzag crystallographic orientations. All studied types of

PQDs are metallic due to a new, in comparison to majority of graphene dots, set
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(a) (b)

(c) (d)

Figure 5.10: The same as Fig. 5.9 but for disordered PQDs based on those with

zigzag edges. (a), (c) Energy levels and (b), (d) absorption cross-section of hexag-

onal and triangular quantum dots, respectively.
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of electronic energy states formed around the Fermi level. These states emerge

because of the puckering structure of phosphorene effectively presented by phos-

phorous atoms distributed between the two layers. Similar states exist only in

triangular graphene and silicene counterparts with zigzag edges [246, 92]. We

found that for each type of phosphorene dot with regular edges the number of

these peculiar states is related to the dot size indexed by the number of hexagonal

elements at one edge, see Table 5.3. A more general rule, which also works for

structures with disordered edges, is that the number of these states is equal to

the number of phosphorous atoms which do not have a counterpart atom in the

opposite layer. At the same time, unpaired atoms connected by the t1 hopping pa-

rameter do not contribute into the number of new states. Thus, the engineering of

dielectric phosphorene quantum dots should be a more technologically challenging

problem compared to that of the metallic dots.

The absorption spectra due to the in-plane x- and y-polarizations of the inci-

dent light are very different in phosphorene QDs, whereas such two spectra have

similar shapes in the graphene dots. The y-polarization mostly contributes to the

transitions within the new set of quasi-zero energy states. These new states play

a decisive role in optical properties of PQDs, increasing the number of absorption

peaks in the low-energy region (< 2 eV) of phosphorene quantum dots compared

to graphene ones.

Applying an external electric field to the structure in the out-of-plane geome-

try greatly influences these absorption peaks by blue-shifting and splitting them,

thereby modifying absorption gaps. Due to the quasi-zero energy states robust-

ness against edge disorder and due to their optical activity in the infrared range of

the electromagnetic spectrum, nanoclusters of phosphorene may be used as a filler

material for producing composites for electromagnetic shielding. A strong linear

dichroism makes small phosphorene quantum dots a promising material for infrared

polarizers and tunable polarization-sensitive detectors. In particular, hexagonal

dots with armchair edges demonstrate the most appealing behaviour having an

extremely strong, well-isolated absorption peak tunable in a wide frequency range.
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A natural extension of our calculations is to use the first principles meth-

ods [271], since many-body effects are known to cause a redistribution of energy

levels shifting the positions of some absorption peaks. Taking into account deeper

σ-orbitals should result in additional peaks. However, this should not affect the

main conclusions of our work.



Chapter 6

Conclusions and future work

In this thesis the optical properties of various low-dimensional nanostructures based

on 2D materials have been systematically investigated. The particular focus of this

study was on interband transitions in THz and infrared regions of the electromag-

netic spectrum where novel types of emitters and absorbers are in great demand.

In particular we have considered main types of graphene nanoribbons, carbon nan-

otubes, silicene and phosphorene quantum dots. The effect of intrinsic strain has

been considered for tubes and ribbons, while the tunability by means of an exter-

nal electric field has been a focus for quantum dot investigation. For phosphorene

quantum dots the model of the edge disorder has been proposed and applied. In all

the cases the research was based on the tight-binding model though with varying

degree of complexity making it sensitive enough for catching essential physics of

the structures. This study has delivered a number of interesting results disclosing

new possible directions of the future research.

In the Part I of this thesis the equivalence of optical properties between single-

walled carbon nanotubes and monolayer graphene nanoribbons was revealed and

examined in detail. These results, however, were obtained for the regular and

highly symmetric structures of zigzag and armchair type, therefore the question

if this equivalence maintains for less symmetric chiral tubes and ribbons should

be a subject of the future research. In the present study the primary focus has

been on the linear polarization of the incident light parallel to the axis of the

141
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translation symmetry in the tubes and ribbons. The next logical step would be

the consideration of the incident light polarized perpendicular to the translation

symmetry axis. Such a calculation can be done by considering matrix elements

of the position operator in a unit cell of the structure. An alternative approach

to the problem is to consider both polarizations for the tubes and ribbons within

the tight-binding model cluster approximation. In this approximation the infinitely

long tube or ribbon should be replaced with a long enough but finite structure (tube

or ribbon). Then the dipole transitions probabilities for both polarizations can be

calculated as described in Chapters 4 and 5. However, it should be noticed that

convergence of the cluster approach to the results based on just one unit cell is slow.

The cluster based method also requires solving eigenproblem for a larger matrix

Hamiltonian. This is partially explains our choice of the model with a periodic

boundary condition in the direction of the structure translation invariance. The

aforementioned slow convergence might be faster for some fist principles methods

functionals. This should be definitely the subject of the later research.

Another interesting and important question which, however, in contrast to the

aforementioned one is not that demanding to the computational power is the in-

fluence of the higher order nearest-neighbours. It would be interesting to check if

the ribbon-tube equivalence holds true upon accounting for hoppings between the

higher order nearest-neighbours. If this is true then the found equivalence may

have even broader significance. Since the tight-binding model employed in Chap-

ter 2 differ from that in Chapter 5 essentially by the number of nearest neighbours,

the correlation of absorption spectra can take place for phosphornene nanoribbons

and nanotubes too. Similar to graphene, phosphorene is stable under the ambient

conditions without a substrate [8] and it can also form tubular structures. The

stability of amrchair phosphorene nanotubes up to T = 600 K has been recently

reported [272, 273]. It is also worth pointing out that boron nitride nanotubes [274]

are analogous to carbon nanotubes, therefore the above drawn conclusion may be

also applicable to the tubes and ribbons made of this material.

One of the main achievements of Chapter 2 is the derivation of the analytic
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expressions for the velocity matrix elements. These expressions allowed us to in-

vestigate the matrix element dependence on the electron wave vector in the whole

Brillouin zone. The found smooth behaviour at the Dirac point (k = 2π/3) implies

the absence of the relation to the topological singularity in graphene [132] in con-

trasts to the armchair ribbons or all quasi-metallic narrow-gap carbon nanotubes

considered in Chapter 3. However, in the present work rather narrow ribbons

were considered with the width up to 25 zigzag chains. This was done on purpose

to scrutinize the velocity matrix element dependence on the electron wave vector

for various type of the allowed transitions. Since now this dependence has been

examined in detail, wider zigzag ribbons can be inspected next paying particular

attention to the velocity matrix element relation in zigzag ribbons to the topological

singularity in the velocity matrix element in graphene (see, Fig. 3.2 in Chapter 3).

The investigation of the zigzag ribbon matrix elements in Chapter 2 has been

carried out with the future device application in mind very much like it is done

in Chapter 3. However, the electron-electron interaction resulting in a small band

gap in zigzag ribbons has been neglected to proceed with the analytical treatment

of the problem. In the tight-binding description the band gap due to the electron-

electron interaction can be modeled by the non-zero on-site energy term in the

matrix Hamiltonian. The same modeling is applicable for the effect of the in-

plane electric field. Therefore, the next step could be to extend the treatment

presented in Chapter 2 to include the external field. This would allow not only

to investigate the effect of the band gap opening but also to investigate tunability

so desirable for the device applications. Similar to the quantum dots zero-energy

edge states considered in Chapter 4 the zigzag ribbon edge states are tunable in the

external electric field applied in-plane [91, 15, 14]. This geometry of the field, of

course, requires fabrication of the side gates instead of the back ones. The current

technological challenges for side gates fabrication may be resolved in the future

therefore this gate geometry should not be ruled out from consideration.

Another direction of future research in relations to the problem considered in

Chapter 2 is to study the role of excitonic effects. Indeed, these effects have been
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a rare subject of the study in armchair carbon nanotubes and zigzag ribbons. Al-

though some theoretical [275, 167] and experimental [276] works can be found in

the literature for both tubes and ribbons, they are all dealing with the transi-

tions in the optical frequency range for narrow tubes and ribbons. For instance,

in Ref. [276] the absorption spectrum of (21, 21) armchair single-walled nanotube

was measured. This tube is the one for which correlation of absorption peaks with

the corresponding zigzag ribbon is presented in Fig. 2.9. However, only the first

absorption peak, which does not have a counterpart in the corresponding zigzag

ribbon, is investigated in the aforementioned research. Another theoretical study

has reported that the exciton binding energies for the third and fourth energy tran-

sitions (above 3 eV) in (10, 10) armchair nanotube are about 50 meV [275]. This

implies that the role of the excitonic effect decreases for higher energy transitions

in metallic tubes. At the same time, to the best of our knowledge the excitonic

effects for transitions above 3 eV have not been considered in zigzag ribbons. The

consideration of the excitonic effects for larger diameter armchair tubes and wider

zigzag ribbons is needed to reveal how they affect the discovered correlation of

absorption peaks.

In Chapters 2 and 3, the resutls using periodic (tubes) and hard wall (rib-

bons) boundary conditions have been matched. It is quite natural to imagine that

similar matching could be investigated between Mobius boundary condition and

the two above-mentioned ones. The Mobius rings made of graphene nanoribbons

have already been a subject of an intensive theoretical study in the tight-binding

model [277, 278], the density functional theory [279, 280], the hybrid density func-

tional tight-binding model [281]. An experimental realization of the molecular

Mobius strips was reported in 1982 [282], but Mobius graphene nanorings are yet

to be demonstrated.

In Chapter 3 of this thesis the high probability rate of transitions across the

curvature induced band gap in tubes and edge-effect induced band gap in armchair

ribbons has been discovered and investigated. The high probability rate of the

transitions can be a basis for the novel types of THz radiation sources. In Chap-
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ter 3, we propose a lasing scheme for generating THz radiation. This scheme takes

into account the position of the Fermi level, whereas it neglects the effect of temper-

ature. Our preliminary estimate shows the finite temperatures should decrease the

efficiency of generation. The proposed scheme also neglects non-radiative processes

such as impact recombination of the electrons and holes. The impact recombination

which is also referred to as Auger recombination is famous for preventing efficient

THz lasing in conventional semiconductor nanocrystals [283, 284, 285, 286]. Wang

et al. report that for semiconducting single-walled carbon nanotubes the role of

the Auger recombination increases with the increasing exciton binding energy [287].

Also, it is known that the exciton binding energy scales with the band gap and

cannot exceed it [288, 289]. Similar behaviour is reported theoretically for narrow-

gap nanotubes [171], which suggests the Auger processes may be of less importance

in these structures. However, it is evident that more research is needed to be car-

ried out in this direction. Thence, a careful consideration of the Auger effects in

conjunction with the proposed generation scheme is required to reveal if a prac-

tical device application is achievable. Nevertheless, it should be stressed that the

reported giant enhancement of the interband transitions across the band gaps in-

duced by intrinsic strain in tubes and ribbons is universal. In other words, this

probability is independent of the curvature effect strength in the tube or edge-effect

strength in the ribbon.

Another way to extend the study presented in Chapter 3 is to consider an array

of tubes or ribbons. For an array, the resulting emission is proportional to the N2,

where N is the number of coherent emitters in the array. This effect is often referred

to as Dicke effect [290]. Concurrently, to enhance photolumenescence, the array

structure of tubes or ribbons can be embedded into a microcavity [291, 292, 293].

The strong coupling regime for some semiconducting nannotubes has been recently

investigated experimentally [294].

As for the optical properties of the gapped graphene systems, one should note

that the analytic expressions for the optical transition matrix elements are derived

for linear and circular polarizations. The next step could be the synthesis of these
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expressions in a single one allowing application to the elliptic polarization.

In Chapter 4 of this thesis the comparative analysis of silicene and bilayer

graphene quantum dots has been carried out. The hexagonal and triangular shapes

of these dots were considered for both zigzag and armchair edge geometries. Ac-

cording to the obtained results, only quantum dots with triangular shape and

zigzag edge geometry support the peculiar group of degenerate edge states dubbed

zero-energy states. This group of states is tunable by the external electric field

applied in the out-of-plane geometry, e.g. via the back gate. The tight-binding

model employed for the investigation does not take into account many-body and

excitonic effects. The preliminary check by means of first principles calculations

shows that the degenerary of zero-energy states can be lifted up and additional low-

energy transitions can arise in the systems. A more thorough study of this subject

is necessary in the future. Also, the structures studied in Chapter 4 have an ideal

geometry. The relaxation of the chemical bond at the edges of the structure was

omitted for the sake of simplicity. This effect can be included into the tight-binding

model by parameterization of the hopping integrals with the chemical bond length.

In Chapter 5 phosphorene quantum dots of triangular and hexagonal shapes

with zigzag and armchair crystallographic orientation of the edges have been stud-

ied. If follows form the obtained results that in terms of tunability the most promis-

ing quantum dots are those with hexagonal shape and armchair edges. However,

the edge irregularity smears the two distinctive groups of quasi-zero-energy states

in such dots suppressing transitions between them. The consideration of the ir-

regular edges of the phosphorene quantum dots revealed a simple empirical rule

for determining the number of quasi-zero-energy states in all the major types of

phosprorene quantum dots. This rule provides a recipe for designing phosphorene

quantum dots with dielectric properties. An example of such a dot is given in

Appednix F.

The fractal-based methodology of modeling the edge roughness in phosphorene

quantum dots described in Chapter 5 is intended to imitate the result of various

uncontrolled fluctuations in the conditions of quantum dot synthesis. To reveal
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the pure effect of the edge roughness, we neglected the structure relaxation at the

edges and assumed that all the atoms has the same coordinates as they would have

within the 2D phosphorene. The next natural step is to supplement this model

with the edge relaxation via geometry optimization procedure, as has been done

for graphene quantum dots [295, 296]. The random fractal-based modeling of the

edge roughness proposed in Chapter 5 results in an inhomogeneous distribution

of the hopping integrals at the edges of the structure. We note that this type of

disorder is different from previously studied, for instance, for graphene quantum

dots, where the on-site energies were varied either throughout the whole structure

or its edges [297], or in 2D phosphorene [298], where vacancies and impurity atoms

were distributed randomly throughout the whole structure. Unlike the theoretical

studies, in real systems all types of the edge disorder are hardly separable, therefore

the next step could be combining these types together to find out which of them

is a leading one.

In Chapters 4 and 5 optical properties of individual quantum dots have been

considered. Although the absorption spectra of such objects can be, in principle,

tested by the spatial-modulation spectroscopy [299, 300], the future research could

switch the focus to the modeling the composite materials where these dots are used

as a filler material.



Appendix A

Wave function parity factor

In order to clarify the origin of the wave function parity factor, we present in detail

the simplification of the eigenvector component (2.23).

Equation (2.23) can be further simplified if one expresses 2 cos(k/2) in terms of

the quantized momentum θ from the quantization condition (2.19) as

2 cos
k

2
=

sinwθ

sin [(w + 1)θ]
(A.1)

and then substitutes the result into the square brackets of Eq. (2.23):

sin pθ − 2 cos
k

2
sin [(p+ 1)θ] =

sin θ sin [(p− w)θ]

sin [(w + 1)θ]
. (A.2)

Note that the proper energy E entering Eq. (2.23) can also be re-casted only in

terms of θ by substituting (A.1) into Eq. (2.14):

E(θ) = ± γ| sin θ|
|sin [(w + 1)θ]|

. (A.3)

Now making use of Eqs. (A.2) and (A.3), one readily obtains that

c2p+1 = ±(−1)p+1 sin θ

|sin θ|
|sin [(w + 1)θ]|
sin [(w + 1)θ]

sin [(p− w)θ] , (A.4)

where the upper (lower) sign is applied for the conduction (valence) band state.

The first ratio in the expression above is a trivial one, sin θ
|sin θ| = 1 for θ ∈ (0, π).

However, the second ratio deserves special attention because, as we will see next,

it is a clue to the optical properties of zigzag ribbons.

148



APPENDIX A. WAVE FUNCTION PARITY FACTOR 149

The magnitude of the second ratio is, of course, unity, but its sign depends

upon θ. To determine the sign of the ratio |sin[(w+1)θ]|
sin[(w+1)θ]

one needs to analyse it along

with the quantization condition (2.19). Since absolute value is always positive the

sign of the ratio is determined by the sign of its denominator defined by the secular

equation solutions.

Let us investigate how secular equation solutions, θj, are spread in the range

(0, π). For this purpose one can continuously change the parameter q from 0 to ∞

similar to what is presented in Fig. 2.2. Varying q between the above mentioned

limits, one finds that the two values of q determine the left and right ends of the

intervals in each of which one θj is confined. By putting the parameter q = 0

into Eq. (2.19) we get sinwθj = 0 with θj,min = π(j − 1)/w being solutions, while

q =∞ yields sin [(w + 1)θ] = 0 with θj,max = πj/(w+1) as solutions; in both cases

j = 1 . . . w enumerates solutions. It is worth noting that although the upper value

of q = 2 cos(k/2) is limited to 2, we can take a greater value for an estimation

because an increase of q above 2 shifts the initial interval right boundaries so that

the original intervals are contained within the new θ-intervals depicted in Fig. 2.2.

The left boundaries of the intervals can also be pushed further left to put all the

new intervals within even wider ones:

π(j − 1)/(w + 1) < θj < πj/(w + 1) . (A.5)

With inequalities (A.5) at hand it is easy to analyse the argument of sin [(w + 1)θj]

for it is evident that for all θj satisfying inequalities (A.5) the sine function argu-

ment (w + 1)θj is squeezed between π(j − 1) and πj. This leads to positive and

negative signs of sin [(w + 1)θj] for odd and even j, respectively. Therefore, the

second ratio in Eq. (A.4) can be written as

|sin [(w + 1)θj]|
sin [(w + 1)θj]

= (−1)j−1 , (A.6)

where j is an integer being interpreted as the band number.



Appendix B

Edge and bulk state eigenvectors

at the transition point

Let us obtain the wave functions of the edge states in the explicit form and show

how it reduces at the transition point kt defined as a solution of the equation

2 cos(k/2) = w/(w+ 1). As has been mentioned above, to do this one needs to use

substitution θ → iβ, which upon application to (2.30) yieldsc̃(j)2p−1

c̃
(j)
2p

 =

±i sinh [(w + 1− p)βj]

i sinh pβj

 , (B.1)

with p = 1 . . . w. Note that j = 1 for bands containing edge states, therefore the

parity factor has been ruled out and ∓ in (2.30) has been replaced with ± in (B.1).

The same substitution applied to the normalization constant (2.31) leads to

Nj =
1√

w − cosh [(w + 1)βj]
sinhwβj
sinh βj

. (B.2)

As one can notice, the expression under the square root of (B.2) is negative, there-

fore the imaginary unit resulting form it must cancel with that in (B.1). Hence,

for normalized eigenvector components it can be writtenc̃(j)2p−1

c̃
(j)
2p

 = Nj

± sinh [(w + 1− p)βj]

sinh pβj

 , (B.3)
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where p = 1 . . . w and

Nj =
1√

cosh [(w + 1)βj]
sinhwβj
sinh βj

− w
. (B.4)

Note that the eigenvector (B.3) does not contain (−1)J factor like Eq. 34 in

work [112]. Even for inverse band enumeration this factor would be (−1)w not

(−1)J . At the transition point βj → 0, which results in divergence in (B.4) if all

hyperbolic functions are expanded to the first order. However, using the original

definition of the constant:

Nj =
1√

2
∑w

p=1 sinh2 pβj
, (B.5)

where the factor of 2 is due to the fact that
∑w

p=1 sinh pβj =
∑w

p=1 sinh [(w + 1− p)βj],

the same first order expansion results in

Nj =
1

βj
√

2
∑w

p=1 p
2
. (B.6)

Thus, for normalized eigenvectors in the vicinity of the transition point one hasc̃(j)2p−1

c̃
(j)
2p

 =
1√
2Nc

±(w + 1− p)

p

 , (B.7)

where

Nc =
w∑
p=1

p2 =
w(w + 1)(1 + 2w)

6
(B.8)

The same result can be obtained starting from the eigenvectors (2.30) and their nor-

malization constant specified as Nj = 1/
√

2
∑w

p=1 sin2 pθj, therefore wave functions

approaching kt from the left and from the right attain the same value. As a result

of this seamless transition of one type of functions into another, the VMEs can be

obtained as smooth functions of electron wave vector k for the lowest conduction

(higherst valence) subbands, i.e. for j = 1.

It is to be mentioned here that the edge states can be also obtained in zigzag

carbon nanotubes with finite length [139]. Unlike the case of the infinite ribbon

the number of such states is finite in tubes. Recently, it has been shown that
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this number is related to the winding number [301, 178]. However, the state at

the transition point, the charge density of which decays quadratically towards the

structure center, seems to be less likely in the finite tubes.



Appendix C

Periodic boundary conditions

In this appendix, we demonstrate how the fixed end (‘hard wall’) boundary condi-

tion employed in this paper for zigzag ribbon investigation is related to the periodic

boundary condition that is used for carbon nanotubes. A carbon nanotube of the

armchair type (see Ref. [11] for tubes classification) is unrolled into a graphene

nanoribbon with zigzag edges. The tight-binding Hamiltonian of the armchair

nanotube differs from that of the zigzag ribbon by the upper right and lower left

non-zero elements. For instance, for the ribbon Hamiltonian given by Eq. (2.1) an

equivalent tube Hamiltonian is

H =


0 γq 0 γ

γq 0 γ 0

0 γ 0 γq

γ 0 γq 0

 . (C.1)

Despite these differences the eigenproblem of such a Hamiltonian reduces to the

same transfer matrix equation as Eq. (2.7). The periodic boundary condition,

however, requires CN+1 = C1, whence it follows that the secular equation is

det(Tw − I) = 0. To obtain the explicit form of the secular equation, one can

use (2.18), but there is a faster way if one uses the following relation [141]:

det (Tw − I) = detTw + det I − Tr (Tw) . (C.2)
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Using the above relation and taking into account that detT = 1, the secular

equation can be recasted as

Tr (Tw) = 2 . (C.3)

The cyclic property of the trace operation allows further simplification of the secular

equation:

Tr
(
S−1ΛwS

)
= Tr

(
ΛwSS−1

)
= Tr (Λw) = 2 , (C.4)

where Λ is a diagonal form of the transfer matrix T with the diagonal elements

given by λ1,2 = e±iθ, i.e. a new variable θ is defined as A = cos θ (cf. with

Eq. (2.11)), S, S−1 are given by Eqs. (2.17). Such treatment is equivalent to that

with λ1,2 given by Eq. (2.11), the difference is in subband enumeration similar to

that mentioned for the ‘hard wall’ boundary condition. In Figure 2.4, the tube’s

band enumeration, we refer to as direct one, corresponds to A = − cos θ. The above

chosen inverse enumeration, A = cos θ, is shown in the right panel of Fig. 2.5. It

was chosen to obtain the tube’s energy bands in a form close to graphene energy

bands [50, 65, 11]. Thus, for an armchair tube secular equation we end up with

λw1 + λw2 = 2 cos(wθ) = 2;⇔ cos(wθ) = 1 , (C.5)

whence it is evident that θj = 2πj/w with j being an integer numbering solutions

and w = N/2 with N being the number of carbon atoms in the tube’s unit cell. To

obtain the tube energy bands θj should be substituted into ±γ
√
q2 + 2q cos θ + 1,

which yields:

Ej(k) = ±γ
√

4 cos2
k

2
+ 4 cos

k

2
cos

2πj

w
+ 1 . (C.6)

where we use j for the band numbering.

In the case of the ‘hard wall’ boundary condition and variable θ introduced as

above, i.e. with the reverse enumeration of the ribbon bands, the secular equation

has the form:

sinwθ + 2 cos
k

2
sin [(w + 1)θ] = 0 . (C.7)

The proper energy is obtained by substituting solutions of this equation into

±γ
√
q2 + 2q cos θ + 1. Solutions of (C.7) can be found in the zero approxima-

tion by setting k = 0; ideally, one should set q = 2 cos(k/2) → ∞. This leads to
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sin [(w + 1)θ] = 0 with θj = πj/(w+ 1) being solution. Equating θj obtained for a

tube and ribbon, one gets:
2πj

Nt/2
=

πj

Nr/2 + 1
, (C.8)

where Nt,r is the number of atoms in the unit cell of the tube and ribbon, respec-

tively. As follows from (C.8) if

Nt = 2Nr + 4 (C.9)

then the proper energies are approximately equal at k = 0. It is also possible to

consider the opposite limit when k = π, which leads to θj = πj/w in the case

of the ribbon. The usage of this θj results in a better match of the ribbon and

tube energies close to the edge of the Brillouin zone, i.e. at k = π, if the following

relation holds between the number of atoms in the structures: Nt = 2Nr.



Appendix D

Armchair nanotube selection rules

In this section, we derive selection rules for transitions in armchair carbon nan-

otubes (ACNTs). In spite of being known for a long time [134, 129, 135, 136,

137, 138] they have not been derived from the full tight-binding Hamiltonian. The

purpose of this exercise is to provide deeper understanding of the difference in the

optical properties of zigzag graphene nanoribbons and ACNTs and also to show

their relation to the graphene single layer sheet.

To calculate velocity operator matrix elements one needs the wave functions.

Substitution of Eq. (C.5) solution θj = 2πj
w

into Tw− I gives a zero matrix. Hence,

the boundary condition CN+1 = C1;→ (Tw − I)C1 = 0 is fulfilled for any compo-

nents of the initial vector C1. We see that for the periodic boundary condition the

initial vector C1 can be an arbitrary one. The most reasonable choice of C1 is one

of the eigenvectors (2.15). Let it be V2. Then, with λ1,2 = e±iθ the wave function

components can be found from Eq. (2.7) as follows:

c
(j)
2p−1 = ±e−iθj(p−1) fj

|fj|
; c

(j)
2p = e−iθjp , (D.1)

where p = 1 . . . w, fj = 1 + qe−iθj , and we have changed the order of the com-

ponents as it was done for Eq. (2.25). Introducing new function f̃j = eiθj/3fj

into Eq. (D.1) and applying the unitary transform Uj = {u2p−1,2p−1, u2p,2p} =

{eiθj(p−2/3), eiθjp}|p=1...w to the vector
∣∣c(j)〉, we obtain

c̃
(j)
2p−1 = ± f̃j

|f̃j|
; c̃

(j)
2p = 1 , (D.2)
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where p = 1 . . . w. The normalization constant Nj = 1/
√

2w for
∣∣c̃(j)〉 and it is

independent of θj.

As one can see, the unitary matrix Uj depends on the band index j, therefore

the new Hamiltonian that preserves the matrix element upon the transfromation

of the
∣∣c(n,m)

〉
vectors is H̃ = UnHU

†
m. However, such a Hamiltonian satisfies the

time independent Schrodinger equation only if n = m. This is the selection rule

for ACNT optical transitions, which also means all transitions c → c and v → v

are forbidden.

For H̃ = UjHU
†
j the components of the vectors

∣∣∣ζ̃(j)〉 are

ζ̃
(j)
2p−1 = −γa

~
sin(

k

2
)e−2iθj/3 ; p = 1 . . . w

ζ̃
(j)
2p = ∓γa

~
sin(

k

2
)e−2iθj/3

f̃j

|f̃j|
, (D.3)

with the upper “−” ( lower “+”) being used for the conduction (valence) sub-

bands. By putting Eqs. (D.2) and (D.3) into Eq. (2.39), and accounting for the

normalization constant Nj, for allowed transitions we have

Mn(c),n(v) = −γa
~

sin(
k

2
)
f̃ ∗ne

−2iθj/3 − f̃ne2iθn/3

2|f̃n|
,

=
γa

~
f̃ ∗n(df̃n/dk)− f̃n(df̃ ∗n/dk)

2|f̃n|
. (D.4)

Similarly, calculations for the group velocity yield

Mn(s),n(s) = ±γa
~
f̃ ∗n(df̃n/dk) + f̃n(df̃ ∗n/dk)

2|f̃n|
(D.5)

where “+” (“−”) refers to the conduction (valence) subbands.

The same result is obtained from the graphene Hamiltonian and eigenvectors:

〈cc| ∂H/∂ky |cv〉 with H11 = H22 = 0,

H12 = H∗21 = γ
(
eikxa/

√
3 + 2e−ikxa/2

√
3 cos(kya/2)

)
(D.6)

and kx = 2πj/Ch, where Ch is the tube circumference and a = 2.46 Å is the

graphene lattice constant. If θj =
√

3kxa/2, k = kya, and the tube chiral index

is w/2, then kx = 4πj/(
√

3aw) = 2πj/Ch. Hence, Eq. (D.4) can be restored by
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cutting graphene’s optical transition matrix elements along the lines specified by

the quantization of kx. Finally, we note that a calculation of the matrix elements

with the eigenvectors (D.1) and the Hamiltonian (C.1) also provides straightforward

justification of the selection rules for it results in zero matrix elements when n 6= m.



Appendix E

Supplementary results

For the sake of completeness, in Fig. E.1 we present VME curves obtained for tran-

sitions between the lower (higher) energy valence (conduction) subbands. These

Figure E.1: The same as Fig. 2.6 (b) but for transitions between valence (con-

duction) subbands of lower (higher) energy: v → v; c → c; ∆J = 2. As the plot

is symmetric with respect to k = 0, only half of the BZ is presented. The part

of the plot denoted by a rectangle is zoomed in the right panel followed by the

transition scheme. The VME curves correspond to the transitions labeled with the

same number in the scheme.

transitions can be referred to as j(s)→ (j+2)(s), where j = 1, . . . , w−2. Noticing
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that the curve labeled by ‘1’ in Fig. E.1 is the same as the curve labeled by ‘2’ in

Fig. 2.6 (b), one easily sees that the transitions labeled from ‘2’ to ‘7’ are much

weaker compared to the transitions in Fig. 2.6. Unlike the VME curves in Fig. 2.5

(a) and Fig. 2.6, all curves of j(s)→ (j + 2)(s) transitions converge to zero at the

edge of the BZ and have extrema decreasing in magnitude and shifting from the

K(K′) point towards the BZ edge for greater j’s.

Figure E.2 shows that temperature has a similar influence on the absorption

spectra to doping. The observed changes are explained in the same way as presented

for Fig. 2.7. The peak due to the transitions 1(c)→ 3(c) is weaker and broader for

ZGNR(9) compared to that in ZGNR(6). At the same time the peak at ω = γ due

to transitions 1(c)→ 5(c) is quite intense.

Figure E.2: The absorption spectra of zigzag ribbons with (a) w = 6 and (b) w = 9

for different temperatures: T = 0, 4, 77 and 300 K/γ for curves 1©, 2©, 3© and 4©,

respectively. Absorption spectra are shifted vertically for clarity.



Appendix F

A dielectric phosphorene

quantum dot

In this appendix we demonstrate that dielectric phosphorene quantum dots with-

out quasi-zero energy states (QZES) are possible though they are to be much more

rare compared to those with QZES. Figure F.1 shows the energy levels and absorp-

tion spectrum of a dielectric phosphorene cluster of round shape with N = 412.

Note that it is not the shape but rather the phosphorous atoms pairing with t2

hopping that defines the absence of the QZES. The round phosphorene clusters

with different size have QZES in their electronic spectra. The inset of Fig. F.1(a)

demonstrates that the above mentioned condition for dielectric cluster existence is

fulfilled leading to the empty energy gap of about 2 eV. This gap is also present in

the absorption spectrum in Fig. F.1(b). As one can see, in this case the spectrum

is entirely defined by the x-polarized transitions between valence and conduction

band states, and y-polarized absorption, which is strong for transitions involving

QZES, is negligible. According to our calculations the application of an electric

field normal to the structure plane up to E = 0.4 V/Å, does not noticeably change

the presented energy levels and optical spectrum.
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Figure F.1: The energy levels (a) and optical absorption cross-section (b) for a

dielectric phosphorene quantum dot. The inset in (a) shows how the coordinate

system is oriented with respect to the cluster.
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[245] A. D. Güçlü, P. Potasz, and P. Hawrylak, Phys. Rev. B 84, 035425 (2011),

1104.3108.

[246] H. Abdelsalam, T. Espinosa-Ortega, and I. Lukyanchuk, Superlattices Mi-

crostruct. 87, 137 (2015).

[247] D. R. da Costa, M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters,

Phys. Rev. B 92, 115437 (2015).

[248] D. R. da Costa, M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters,

Phys. Rev. B 93, 085401 (2016).

[249] T. Yamamoto, T. Noguchi, and K. Watanabe, Phys. Rev. B 74, 121409

(2006).

[250] M. Ezawa, New J. Phys. 14, 033003 (2012), 1201.3687.

[251] S. Lee et al., Phys. Rev. B 66, 235307 (2002).

[252] K. Leung and K. B. Whaley, Phys. Rev. B 56, 7455 (1997).

[253] K. Leung, S. Pokrant, and K. B. Whaley, Phys. Rev. B 57, 12291 (1998).

[254] S. Schulz, S. Schumacher, and G. Czycholl, Phys. Rev. B 73, 245327 (2006).

[255] A. Castellanos-Gomez et al., 2D Mater. 1, 025001 (2014).

[256] Y. Y. Li, M. X. Chen, M. Weinert, and L. Li, Nat. Commun. 5, 4311 (2014).



BIBLIOGRAPHY 179

[257] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475

(2014).
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[269] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B

80, 153412 (2009).

[270] V. Pereira and A. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009).

[271] L. Matthes, O. Pulci, and F. Bechstedt, Phys. Rev. B 94, 205408 (2016).



BIBLIOGRAPHY 180

[272] H. Guo, N. Lu, J. Dai, X. Wu, and X. C. Zeng, J. Phys. Chem. C 118, 14051

(2014).

[273] V. Sorkin, Y. Cai, Z. Ong, G. Zhang, and Y. W. Zhang, Crit. Rev. Solid

State Mater. Sci. 42, 1 (2017).

[274] D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Adv. Mater. 19, 2413

(2007).

[275] J. Deslippe, C. D. Spataru, D. Prendergast, and S. G. Louie, Nano Lett. 7,

1626 (2007).

[276] F. Wang et al., Phys. Rev. Lett. 99, 227401 (2007).

[277] K. Wakabayashi and K. Harigaya, J. Phys. Soc. Japan 72, 998 (2003),

0210685.

[278] Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B 80, 195310

(2009), 0906.1634.

[279] E. W. S. Caetano, V. N. Freire, S. G. Dos Santos, D. S. Galvão, and F. Sato,

J. Chem. Phys. 128, 164719 (2008), 0903.2080.

[280] E. W. S. Caetano et al., Langmuir 25, 4751 (2009).

[281] T. Korhonen and P. Koskinen, Comput. Mater. Sci. 81, 264 (2014).

[282] D. M. Walba, R. M. Richards, and R. C. Haltiwanger, J. Am. Chem. Soc.

104, 3219 (1982).

[283] R. Vaxenburg, A. Rodina, A. Shabaev, E. Lifshitz, and A. L. Efros, Nano

Lett. 15, 2092 (2015).

[284] M. Achermann, A. P. Bartko, J. A. Hollingsworth, and V. I. Klimov, Nat.

Phys. 2, 557 (2006).

[285] V. Kharchenko and M. Rosen, J. Lumin. 70, 158 (1996).

[286] P. Roussignol et al., Appl. Phys. Lett. 51, 1882 (1987).



BIBLIOGRAPHY 181

[287] F. Wang, Y. Wu, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. B 73, 245424

(2006).

[288] K. Bulashevich, R. Suris, and S. Rotkin, Int. J. . . . (2003).

[289] T. Pedersen, Phys. Rev. B 67, 2 (2003).

[290] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[291] F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, Nat. Nanotechnol. 3, 609

(2008).

[292] D. Legrand et al., Appl. Phys. Lett. 102, 153102 (2013).

[293] R. Miura et al., Nat. Commun. 5, 5580 (2014).

[294] A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, Nat. Com-

mun. 7, 13078 (2016).
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