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Abstract 14 

The hydrodynamic model was developed to describe microbial growth kinetics within heap 15 

bioleaching systems. Microbial partitioning between the bulk flowing pregnant leach solution (PLS) 16 

and ore-associated phases that exist within the low-grade chalcopyrite ore bed, as a function of 17 

microbial transport between these identified phases, was investigated. Microbial transport between the 18 

bulk flowing PLS and ore-associated phases was postulated to be driven by the microbial 19 

concentration gradient between the phases, with advection and dispersion forces facilitating microbial 20 

colonisation of, and transport through, the ore bed. The population balance model (PBM) was 21 

incorporated into the hydrodynamic model to estimate mineral dissolution rates as a function of 22 

available surface area appropriately. Temporal and spatial variations in microbial concentration in the 23 

PLS and ore-associated phases are presented together with model predictions for overall ferrous and 24 

ferric iron concentrations, which account for iron concentrations in the bulk flowing PLS and that in 25 

the vicinity of the mineral surface. The model predictions for PLS and ore-associated microbial 26 

concentrations are validated with experimental data, demonstrating the improvement of this model 27 

over the previously presented ‘biomass model’. Based on Michaelis-Menten type kinetics, model-28 

predicted true maximum specific growth rates for Acidithiobacillus ferrooxidans in the PLS and ore-29 

associated phases were found to be 0.0004 and 0.019 h
-1

, respectively. Estimated microbial 30 

attachment and detachment rates suggest that microbial growth is more prolific in the ore-associated 31 

phases with subsequent transport to the bulk flowing PLS. Sensitivity analysis of the hydrodynamic 32 

transport model to changes in the advection mass transfer coefficient, dispersion coefficient and 33 

inoculum size are discussed. For the current reactor configuration, increasing the irrigation rate from 2 34 

to 2.5 L m
-2 

h
-1

, i.e. increasing the advection mass transfer rate, resulted in a significant decrease in 35 

microbial retention within the ore bed. 36 
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1. Introduction 41 

Heap bioleaching is considered a feasible technology for the extraction of base metals from low-grade 42 

mineral sulphide ores. Research is currently focussed on understanding the sub-processes governing 43 

the dissolution of low-grade copper-bearing ores in heaps. Chalcopyrite is thought to be the most 44 

abundant and refractory copper-bearing mineral resource (Wang, 2005, Watling, 2006). However, 45 

lower mineral sulphide dissolution rates have been observed in commercial heaps (Chen and Wen, 46 

2013, Panda et al., 2012, Watling, 2006) than previously obtained in tank bioleaching systems at 47 

temperatures exceeding 50°C (Batty and Rorke, 2006) and pilot scale heaps (Dew et al., 2011), as a 48 

result of poor temperature progression within the heap which limits efficacy. 49 

 50 

In the dissolution of chalcopyrite, both ferric iron and hydronium ions react with the mineral sulphide, 51 

as in Eqs. 1 and 2, respectively. Studies have shown that these reactions together with the microbial 52 

oxidation of ferrous iron (Eq. 3), determine the ferric to ferrous iron ratio which, in turn, affects the 53 

rate of chalcopyrite dissolution (Córdoba et al., 2008, Hiroyoshi et al., 2008). In addition, the 54 

microbial oxidation of reduced sulphur species regenerates the hydronium ions (Eq. 4) responsible for 55 

maintaining low pH conditions necessary for both optimum microbial oxidation and the prevention of 56 

iron precipitation. 57 

 58 

 𝐶𝑢𝐹𝑒𝑆2 + 4 𝐹𝑒
3+ → 𝐶𝑢2+ + 5 𝐹𝑒2+ + 2 𝑆0 (1) 

 59 

 𝐶𝑢𝐹𝑒𝑆2 + 4 𝐻
+ + 𝑂2 → 𝐶𝑢

2+ + 𝐹𝑒2+ + 2 𝑆0 + 2 𝐻2𝑂 (2) 

 60 

 
4 𝐹𝑒2+ + 4 𝐻+ + 𝑂2  

𝑖𝑟𝑜𝑛 𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑟
→           4 𝐹𝑒3+ + 2 𝐻2𝑂 

(3) 

 61 

 
2 𝑆0 + 3 𝑂2 + 2 𝐻2𝑂 

𝑠𝑢𝑙𝑝ℎ𝑢𝑟 𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑟
→              2 𝑆𝑂4

2− + 4 𝐻+ 
(4) 

 62 

Although dump bioleaching has been applied successfully for the treatment of low-grade, copper-63 

bearing ores, previous studies have demonstrated the significance of variation in temperature, oxygen 64 

concentration, concentration of chemical species, microbial activity and abundance across the length 65 

and depth of test scale dumps (Bhappu et al., 1969, Murr, 1980, Murr and Brierley, 1978). Heap 66 

bioleaching has begun to replace dump bioleaching as the more feasible technology (Chen and Wen, 67 

2013, Norgate and Jahanshahi, 2010, Watling, 2006); however, the copper inventory within the heap 68 
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often requires months before metal recovery can occur. Decreasing the holdup of this copper 69 

inventory has significant potential benefit to the industry. 70 

 71 

Typically, commercial heap operations experience long heap start-up periods during which microbial 72 

activity is low, leading to slow temperature progression within the heap and low mineral dissolution 73 

rates. Energy loss from the heap during start-up may be minimised through effective management of 74 

the solution irrigation rate and aeration of the heap (Dixon, 2000, Lizama, 2001, Muñoz et al., 1995). 75 

The exothermic sulphide mineral dissolution reactions which generate energy within the heap are 76 

controlled by the availability of chemical and microbial species, distributed within the heap by the 77 

bulk flowing liquid stream as well as the degree of liberation and accessibility of the sulphide mineral. 78 

Escobar et al. (1996) and van Loosdrecht et al. (1990) suggested that in a mineral leaching 79 

environment, bioleaching micro-organisms may be concentrated in the phases associated with the 80 

mineral. 81 

 82 

Recent studies have demonstrated that bioleaching micro-organisms are present distributed non-83 

uniformly across the identified phases within the heap; namely, in the bulk flowing pregnant leach 84 

solution (PLS), in the stagnant interstitial solution, and weakly and strongly attached to the mineral 85 

surface (Chiume et al., 2012, Govender et al., 2013, Tupikina et al., 2014). These authors found that 86 

the growth of At. ferrooxidans in the PLS did not represent that in the stagnant interstitial solution and 87 

attached phases, with microbial abundance in the ore-associated phases (interstitial and attached) at 88 

least two to three orders of magnitude greater than that in the PLS. In the study by Govender et al. 89 

(2013), maximum specific growth rates in the PLS, interstitial and ore-attached phases were estimated 90 

assuming no microbial transport between the identified phases. The authors concluded that the 91 

specific growth rates in the PLS were exaggerated by the transport of micro-organisms from the ore-92 

associated phases to the bulk flowing solution and may therefore be regarded as apparent maximum 93 

specific growth rates. The estimation of true maximum specific microbial growth rates in whole ore 94 

leaching systems, therefore, requires accounting for microbial transport between the phases. 95 

 96 

Previously, van Loosdrecht et al. (1990) proposed that a portion of new microbes grown in the 97 

reversibly attached population may leave the vicinity of the mineral surface. The transport 98 

mechanisms employed by micro-organisms to travel short distances, namely chemotaxis, Brownian 99 

motion, attraction by electrostatic forces and hydrophobicity, are only effective at the micrometer 100 

scale (Rossi, 1990). The conceptual understanding of microbial transport in mineral bioleaching 101 

systems, as presented by van Loosdrecht et al. (1990) and Rossi (1990), was built on the work of 102 

Marshall (1976), who interpreted numerous studies on porous soil systems aimed at pathogen removal 103 

for the remediation of soils.  104 

 105 
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Expanding on the postulations by Marshall (1976), the advection-dispersion equation has been used to 106 

model spatial and temporal variations in microbial concentration in both saturated and unsaturated, 107 

porous soil systems (Tan et al., 1994, Taylor and Jaffé, 1990, Tufenkji, 2007). However, few studies 108 

have modelled microbial transport in heap bioleaching systems (Leahy et al., 2004, Neuburg et al., 109 

1991, Petersen and Dixon, 2003). None of these cited studies have supported model predictions with 110 

experimental validation of microbial population dynamics and growth in the ore-associated phases. In 111 

addition, microbial transport from the bulk flowing solution to the solid medium was typically 112 

modelled assuming either irreversible attachment, with no detachment term, or reversible attachment 113 

described by equilibrium or kinetic terms. In each of the previous heap leaching models, microbial 114 

transport was assumed to be governed by an advection-dispersion equation with microbial growth, 115 

attachment, detachment and death rates described by a single empirical source/sink term. Although 116 

these studies have acknowledged the microbial transport phenomena present in heaps, none have 117 

decoupled the effect of transport on true microbial growth rates in the identified phases. Additionally, 118 

the dynamic nature of the microbial community has not been described. 119 

 120 

Recently, Soto-Rojo et al. (2013) presented a model to simulate microbial abundance and activity 121 

within sequential lifts in a commercial heap as a function of physico-chemical conditions. The 122 

proposed model was aimed at predicting the spatial variation in microbial population dynamics 123 

between adjacent lifts, based on correlations obtained from pattern recognition in large data sets. 124 

However, the authors obtained poor correlations (R
2
 values between 0.53 and 0.71) in predicted 125 

microbial abundance as model validation was based on the assumption that microbial abundance, 126 

growth and activity in the PLS was representative of that within all phases in the heap. 127 

 128 

This study builds on the findings of the biomass transport model presented previously in Govender et 129 

al. (2014). The model was developed to validate the hypothesis that the driving force for microbial 130 

transport between the PLS and ore-associated phases was largely due to the microbial concentration 131 

gradients across the associated boundaries. Although the biomass model successfully predicted the 132 

temporal variation in microbial abundance in the PLS and ore-associated phases, the microbial 133 

transport rates between the phases were poorly estimated. 134 

 135 

The current paper presents the development and validation of an improved mathematical model to 136 

predict the microbial population dynamics within a simulated heap bioleaching environment. The 137 

model is based on the advection-dispersion equation and describes the growth of At. ferrooxidans in 138 

the PLS and ore-associated phases as a function of the physical parameters of the solution, ferric and 139 

ferrous iron transport through the ore bed and microbial attachment and detachment. It builds on the 140 

‘biomass’ model reported previously (Govender et al. 2014) to include microbial transport between 141 

the PLS and ore-associated phases as a function of the dispersive and advective properties of the bulk 142 
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solution. This microbial transport was assumed to be governed by the microbial concentration 143 

gradient between these phases and the availability of ferrous iron at the ore surface, as described by 144 

the population balance model. 145 

 146 

 147 

 148 

2. Methodology 149 

The experimental system used in this study consisted of multiple, agglomerate-scale mini-column 150 

reactors (Govender et al., 2015b). Each mini-column reactor was loaded with ca. 150 g of 151 

agglomerated ore sample comprised of 4 wt. % pyrite, 0.5 wt. % chalcopyrite, 0.3 wt. % covellite, 0.2 152 

wt. % chalcocite and 0.1 wt. % each of bornite and enargite, together with quartz (44.8 wt.%) and 153 

muscovite (28.6 wt.%) as the major gangue minerals . Each ore sample was re-constructed with 154 

identical particle size distribution and mass from an acid pre-leached bulk ore sample with 93% 155 

passing 16 mm and 12% passing 0.25 mm; the detailed particle size distribution is given by Govender 156 

et al. (2015b). A single experiment consisted of multiple mini-column reactors, irrigated from a single 157 

feed source and inoculated from the same sample of At. ferrooxidans (DSM 14882) culture. Each 158 

mini-column reactor, therefore, represented a grab sample of a larger heap. The At. ferrooxidans 159 

culture was grown on sterile autotrophic basal salts (ABS) medium containing trace elements 160 

(Johnson et al., 2008), 0.5 g L
-1

 Fe
2+

 (FeSO4.7H2O) and 1% (w/v) γ-irradiated pyrite concentrate (< 161 

75μm).  162 

 163 

Two sets of tests (A and B), each consisting of one abiotic control and seven biotic mini-column 164 

reactors, were inoculated with approximately 10
10

 cells per ton dry ore and run under identical 165 

conditions. Sterile feed solution containing 0.2 g L
-1

 Fe
3+

 (Fe2(SO4)3.xH2O), ABS and trace elements 166 

at pH 1.7 (96% H2SO4) was irrigated over the columns at a rate of 10 mL h
-1

, equivalent to 2 L m
-2

 h
-1

. 167 

Solution analysis included measurement of pH, redox potential, ferrous and total iron in solution, the 168 

latter two using the modified ferric chloride assay described by Govender et al. (2012). Copper in 169 

solution was measured by AAS.  Details of sampling and analyses are given in Govender et al. 170 

(2015b). At specified time intervals, a column from each test was sacrificed and the ore sample 171 

analysed for microbial abundance. A column from test A was sacrificed every 72 h, whilst shorter 172 

time intervals of 48 h between column sampling was chosen for test B. 173 

 174 

For sampling of the ore-associated microbial population, a representative sample of the packed ore 175 

bed from the sacrificed mini-column reactor was processed using a standardised detachment protocol 176 

(Govender et al., 2013). This method is assumed to result in the extraction of a majority of the ore-177 

associated microbial community. The microbial concentrations in the effluent solution (PLS) and 178 

associated with the ore were determined at regular intervals using the Miles-Misra serial dilution 179 



 

 6 

plating protocol (Miles et al., 1938) for the enumeration of viable colony forming units (cfu) on iron 180 

overlay plates containing approximately 1.5 g L
-1

 Fe
2+

 (FeSO4.7H2O) (Johnson, 1995). Variance in 181 

quantification of viable cell numbers using the Miles-Misra plating technique was determined by 182 

analysing the PLS from multiple columns in an experiment at a single time point and by repeating 183 

analysis of cells recovered from a single detached sample. The relative error associated with cell 184 

enumeration in columns in the same test was found to be less than 13% (data not shown). A residence 185 

time distribution (RTD) study was used to determine the mean residence time, τ, to be 1.45 h. This 186 

study, together with compartment models, allowed for an estimation of the volumes of bulk flowing 187 

and stagnant solution within the packed bed reactor to be ca. 11.7 and 2.3 mL, respectively (Govender 188 

et al., 2015b). 189 

 190 

The empirical data from tests A and B were presented and discussed previously in Govender et al. 191 

(2013) and re-introduced for validation of the biomass transport model (Govender et al., 2014) and 192 

the current model. 193 

 194 

3. Development of the hydrodynamic dispersion model 195 

At the particle scale, the interstitial phase includes the stagnant liquid boundary between the solid 196 

mineral and the bulk flowing solution or PLS. Within this stagnant liquid boundary, the onset of 197 

microbial attachment induces the production of extracellular polymeric substances (EPS) which 198 

facilitate firm or strong attachment (van Loosdrecht et al., 1990). In a well-functioning heap, aside 199 

from the presence of the chemical constituents of EPS, i.e. sugars, lipids and free fatty acids, the 200 

concentration of ferric iron in this stagnant solution is proposed to be much greater than that in the 201 

PLS (Gehrke et al., 1998, Kinzler et al., 2003, Sand and Gehrke, 2006, Tributsch, 2001). As an 202 

experiment progresses, the higher microbial abundance and activity at the mineral surface is expected 203 

to result in the rapid turnover of ferrous to ferric iron in this phase, depending on the extent of mineral 204 

liberation. 205 

 206 

The hydrodynamic dispersion model presented in this study was developed to simulate the effect of 207 

solution flow dynamics on the growth and transport of an At. ferrooxidans culture within a heap 208 

environment. This model aims to describe the transport of chemical and microbial species from the 209 

mineral surface across the largely stagnant interstitial phase surrounding the ore particles to the bulk 210 

flowing PLS, as a function of dispersion and advection transport phenomena. Although dispersion 211 

occurs in all spatial directions, conceptually the model is based on both radial (r-direction) and axial 212 

(z-direction) diffusion of solution within the agglomerate-scale column reactor (Figure 1). This was 213 

further simplified to account for dispersion in the axial direction only and dispersion in the radial 214 

direction was ignored for two reasons: the uniform distribution of leach solution over the top of the 215 
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ore bed in the form of a fine mist, and the small height of the ore bed relative to the bed diameter, as 216 

described in Govender et al. (2015b). 217 

 218 

In this study, the agglomeration of the ore sample and the presence of fine particles was expected to 219 

promote the formation of substantial solution hold-up within the ore bed (Bouffard, 2005, Bouffard 220 

and West-Sells, 2009, McFarlane et al., 2011). The solution hold-up or stagnant interstitial phase 221 

within the heap is constituted of a boundary layer of liquid surrounding individual particles as well as 222 

the stagnant solution held up in the void space between individual particles in a cluster forming the 223 

agglomerate, as illustrated in Figure 1. 224 

 225 

 226 

Figure 1: Illustration of the phases that exist within a cluster of particles at the agglomerate scale, 227 
describing the interaction between the bulk flowing solution, stagnant interstitial phase, solid mineral 228 
surface and gas phases, with radial dispersion in the r-direction and axial dispersion in the z-direction 229 

(Govender-Opitz et al., 2016).  230 

 231 

In developing the model for microbial transport within a heap, the measured ferric and ferrous iron 232 

concentrations in the PLS were proposed to be a poor representation of that in the vicinity of the 233 

mineral surface. This assumption was based on the theories postulated by Tributsch (2001) and Sand 234 

and Gehrke (2006) whereby the rapid turnover from ferrous to ferric iron near the mineral surface and 235 

in the EPS was not described adequately by that measured in the PLS. Thus far, rigorous experimental 236 

data supporting this theory has not been reported. Therefore, the overall ferric and ferrous iron 237 

balances include the iron concentrations measured in the PLS, Ci,PLS , and that estimated in the ore-238 

associated phases, Ci,ore ; each normalised with respect to the estimated volumes in each phase (Eq. 5). 239 

 240 

r

z

Flowing solution

Stagnant solution

Gas

Micro-organisms

Transport between phases

Z = 0

Z = 1

Solid mineral
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 𝐶𝑖,𝑡𝑜𝑡𝑎𝑙 ∙ 𝑉
𝑅 = 𝐶𝑖,𝑃𝐿𝑆 ∙ 𝑉𝑃𝐿𝑆 + 𝐶𝑖,𝑜𝑟𝑒 ∙ 𝑉𝑜𝑟𝑒 (5) 

 241 

where Ci is the concentration of the soluble chemical species, either ferric iron, CFe3+, or ferrous iron, 242 

CFe2+, and V
R
, VPLS and Vore are the volumes of total solution in the reactor, bulk flowing PLS and 243 

stagnant solutions, respectively. The volumes of PLS and stagnant solution within a mini-column 244 

reactor were estimated to be 11.7 and 2.3 mL, respectively (Govender et al., 2015b). These volumes 245 

were analysed using compartment model theory from residence time distribution (RTD) curves. The 246 

model predictions of overall ferric and ferrous iron concentrations may then be used to infer the ferric 247 

and ferrous iron concentrations at the mineral surface, which is expected to be significantly different 248 

from that in the bulk flowing solution. 249 

 250 

Overall temporal and spatial changes in the ferrous and ferric iron concentrations were predicted 251 

using an advection-dispersion equation for solute flow through the heap (Eqs. 6 and 7). The model 252 

describes the rate of iron turnover within the ore bed as a function of the rate of mineral dissolution 253 

(r
R
) and microbial substrate utilisation rate (rbio). Solution-ore contacting results in solute transport out 254 

of the ore bed in the bulk flowing PLS via axial dispersion and advection mass transfer. The 255 

dispersion coefficient constant, DZ, was estimated from the RTD curves to be 4.24 x 10
-5

 m
2
 h

-1
, using 256 

the closed-closed boundary condition assumption. The advection mass transfer coefficient, v, was 257 

assumed to remain constant within the ore bed with time, and was determined from the solution 258 

irrigation rate of 10 mL h
-1

, to be 2.46 x 10
-3

 m h
-1

. Dispersion in the radial direction was assumed to 259 

be negligible due to the small volume of the ore bed (ϕ = 80 mm, h = 25 mm) in combination with the 260 

uniform distribution of feed solution over the top of the ore bed. 261 

 262 

 𝜕𝐶𝐹𝑒3+

𝜕𝑡
=  𝐷𝑍 ∙

𝜕2𝐶𝐹𝑒3+

𝜕𝑧2
−  𝑣 ∙

𝜕𝐶𝐹𝑒3+

𝜕𝑧
− 4 ∙ 𝑟𝑅 + 4 ∙ 𝑟𝑏𝑖𝑜 

(6) 

 263 

 𝜕𝐶𝐹𝑒2+

𝜕𝑡
=  𝐷𝑍 ∙

𝜕2𝐶𝐹𝑒2+

𝜕𝑧2
−  𝑣 ∙

𝜕𝐶𝐹𝑒2+

𝜕𝑧
+ 5 ∙ 𝑟𝑅 − 4 ∙ 𝑟𝑏𝑖𝑜 (7) 

 264 

Stoichiometric coefficients presented in Eqs. 6 and 7 describe the mineral dissolution by ferric iron 265 

and microbial ferrous iron oxidation reactions as presented in Eqs. 1 and 3 respectively. Over the 266 

period of these experiments, whilst ferrous iron was available in solution for microbial ferrous iron 267 

oxidation, the concomitant reactions, i.e. mineral dissolution by acid attack (Eq. 2) and the oxidation 268 

of reduced sulphur species by At. ferrooxidans (Eq. 4), were assumed to be much slower than the 269 

aforementioned reactions (Moinier et al., 2013) and therefore, did not contribute to the corresponding 270 

rates of reaction. Initial ferric and ferrous iron concentrations in the feed solution, at t = 0 h and z = 0 271 
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m, were sourced from empirical measurements to be 3 mmol Fe
3+

 L
-1

 and 0 mmol Fe
2+

 L
-1

, while the 272 

initial spatial boundary conditions at the bottom of the ore bed were assumed to be negligible. 273 

 274 

The application of the advection-dispersion equation to describe the transport of chemical species in 275 

unsaturated packed beds simulating heap leaching systems was most recently presented by Ilankoon 276 

et al. (2013). In this study, positron emission particle tracking (PEPT) was used to quantify the 277 

hydrodynamic dispersion coefficient in the axial (Dz) and radial direction (Dr). Although, the 278 

radioactive tracer particles used in the aforementioned study were 400 μm in diameter, which did not 279 

represent the flow of dissolved chemical species or micro-organisms in the packed bed, the authors 280 

found that the estimation of the Dz using PEPT compared well with that achieved using a salt tracer. 281 

No quantitative comparison of dispersion coefficients may be made since empirical estimations are 282 

dependent on reactor configuration and irrigation rate, which differ between this study and that by 283 

Ilankoon et al. (2013). 284 

 285 

. For this study, the intrinsic rate of mineral dissolution was estimated from the ratio of total ferric to 286 

total ferrous iron concentration (Hansford and Vargas, 2001) using the rate expression provided in Eq. 287 

8, where km is the rate constant [mol m
-2

 h
-1

] and n is the reaction order of 0.5, as proposed by 288 

Williamson and Rimstidt (1994). 289 

 290 

 
𝑟𝑚𝑖𝑛𝑒𝑟𝑎𝑙
′′ = 𝑘𝑚 ∙ (

𝐶𝐹𝑒3+

𝐶𝐹𝑒2+
)
𝑛

 
(8) 

 291 

However, this approach assumes that all particles in the reactor are of the same size, with equal 292 

reaction surface area in contact with the reaction environment over equal exposure times and 293 

therefore, contribute equally to the overall mineral dissolution rate. In a system with non-uniform 294 

particle size distribution, this assumption results in an over- or under-estimation of the overall mineral 295 

leach rate (Kotsiopoulos et al., 2008, Kotsiopoulos et al., 2012). Therefore, the population balance 296 

model (PBM) was applied to the current model to better approximate the overall mineral leach rate, r
R
 297 

[mol m
-3

 h
-1

], using Eq. 9. 298 

 299 

Solution flow dynamics within the mini-column reactors were characterised using RTD studies and 300 

demonstrated relatively well-mixed, continuous reactor behaviour (Govender et al., 2015b). 301 

Therefore, in the application of the PBM to describe the oxidation of low-grade mineral ores in a 302 

heap, a segregation approach was adopted for the modification of the PBM to include both initial 303 

particle size distribution, f0(l0), and the change in particle reaction surface area with age, θ = t0 – t 304 

(Kotsiopoulos et al., 2008). The rate contributions for each particle size fraction over a known age 305 

range were summed up for the estimation of r
R
. 306 
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 307 

 𝑟𝑅 = ∫ ∫ 𝑟𝑚𝑖𝑛𝑒𝑟𝑎𝑙
′′  𝐴𝑝(𝜃, 𝑙0)

∞

0

∞

0

𝑀𝑝(𝜃, 𝑙0)

𝑉𝑅
 𝜙𝑀𝑆 𝑁

𝑇 𝑓0(𝑙0)𝐼(𝜃) 𝑑𝜃 𝑑𝑙0 (9) 

 308 

In Eq. 9, 𝐴𝑝 [m
2
 kg

-1
] is the specific particle surface area, l0 [m] the initial particle size, 𝑀𝑝 [kg] the 309 

particle mass, 𝑉𝑅 [m
3
] the working volume of the reactor, 𝜙𝑀𝑆 the fraction of chalcopyrite in the 310 

particles, I(θ) the internal RTD and 𝑁𝑇 is an estimation of the total number of particles in the reactor. 311 

 312 

In a well-functioning heap, microbial ferrous iron oxidation kinetics are assumed to contribute 313 

significantly to the changing ferrous and ferric iron concentrations in the heap. The overall microbial 314 

ferrous iron oxidation rate, rbio [mol Fe
2+

 m
-3

 h
-1

], was determined from the ratio of total ferric to total 315 

ferrous iron concentration estimated using Eqs. 6 and 7. This approach was used as it has been 316 

recognised that the ferric and ferrous iron concentrations in the PLS is not representative of that at the 317 

ore surface and experimental data are not available. The specific microbial ferrous iron oxidation rate, 318 

𝑞𝐹𝑒2+ [mol Fe
2+

 mol C
-1

 h
-1

], was determined as a function of the total microbial population within all 319 

phases in the heap, Cx,total [mol C m
-3

]. The Michaelis-Menten type rate expression (Eq. 10) as 320 

proposed by Hansford (1997) was used to describe the specific microbial ferrous iron oxidation rate, 321 

𝑞𝐹𝑒2+, as a function of the ferric to ferrous iron ratio. 322 

 323 

 𝑞𝐹𝑒2+ =
− 𝑟𝑏𝑖𝑜
𝐶𝑥,𝑡𝑜𝑡𝑎𝑙

= 
𝑞𝐹𝑒2+
𝑚𝑎𝑥

1 + 𝐾𝑠 ∙ (
𝐶𝐹𝑒3+
𝐶𝐹𝑒2+

)
 (10) 

 324 

where 𝑞𝐹𝑒2+
𝑚𝑎𝑥  [mol Fe

2+
 mol C

-1
 h

-1
] is the maximum specific microbial ferrous iron utilisation rate and 325 

Ks is the dimensionless form of the Michaelis-Menten rate constant. Although At. ferrooxidans is able 326 

to oxidise both ferrous iron and reduced sulphur species, ferrous iron was assumed to be the preferred 327 

substrate during the exponential phase of microbial growth, as recently demonstrated by Moinier et al. 328 

(2013). For the purposes of the current study, the assumption that ferrous iron was the preferred 329 

substrate was validated using copper extraction data from the base case experiments (Govender et al., 330 

2014). 331 

 332 

Specific microbial growth rates were assumed to be governed by ferrous iron availability, hence, the 333 

specific microbial ferrous iron oxidation rate, with the yield coefficient, Ysx, serving as the 334 

proportionality constant. This was based on the assumption of negligible microbial culture 335 

maintenance requirements. Specific microbial growth rates were determined from calibrated 336 

parameters for yield coefficients and microbial ferrous iron oxidation rates, using Eq. 11. 337 

 338 
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 𝜇𝑥,𝑖 = 𝑌𝑠𝑥,𝑖  ∙  
𝑟𝑏𝑖𝑜
𝐶𝑥,𝑖

= 𝑌𝑠𝑥,𝑖  ∙ 𝑞𝐹𝑒2+ (11) 

 339 

where i represents the different locations for microbial growth, i.e. total, PLS and ore-associated 340 

phases. The yield coefficient for substrate utilisation by the total microbial population within the 341 

mini-column reactor, Ysx,total, was determined empirically from base case experimental data to be 0.05 342 

mol Cx,total (mol Fe
2+

)
-1

. The yield coefficients for substrate utilisation by the microbial population in 343 

the PLS, Ysx,PLS [mol Cx,PLS (mol Fe
2+

)
-1

], and ore-associated phases, Ysx,ore [mol Cx,ore (mol Fe
2+

)
-1

], 344 

were estimated from the model fit and used to calculate maximum specific microbial growth rates, 345 

μx,i
max

 [h
-1

], in each phase. 346 

 347 

The model predictions for iron speciation in the ore-associated phases also inform the extent of 348 

microbial substrate utilisation and the magnitude of the yield coefficients in the different phases. In 349 

the absence of this supporting data, the model was developed using the assumption that the microbial 350 

substrate utilisation rate, rbio, was representative of that within all phases in the heap, with separate 351 

yield coefficients used to distinguish the subsequent effect on microbial abundance in the bulk 352 

flowing PLS and ore-associated phases. 353 

 354 

Advection-dispersion phenomena that incorporate microbial growth was applied to predict both 355 

temporal and spatial changes in microbial concentration within all boundaries within the agglomerate-356 

scale heap, as in Eq. 12. 357 

 358 

 𝜕𝐶𝑥,𝑡𝑜𝑡𝑎𝑙
𝜕𝑡

= 𝜇𝑥,𝑡𝑜𝑡𝑎𝑙 ∙ 𝐶𝑥,𝑡𝑜𝑡𝑎𝑙 + 𝐷𝑍 ∙
𝜕2𝐶𝑥,𝑡𝑜𝑡𝑎𝑙
𝜕𝑧2

−  𝑣 ∙
𝜕𝐶𝑥,𝑡𝑜𝑡𝑎𝑙
𝜕𝑧

 (12) 

 359 

where Cx,total [mol C L
-1

] is the microbial concentration in the total reactor volume (V
R
) and μx,total [h

-1

] 360 

is the specific microbial growth rate of the total population within the mini-column reactor.  361 

 362 

Building on the biomass transport model presented previously by Govender et al. (2014), the 363 

hydrodynamic model was developed assuming that the microbial concentration gradient between the 364 

phases is the driving force for microbial transport across the phase boundary. In the proposed 365 

mathematical model, changes to the microbial abundance in the bulk flowing PLS, Cx,PLS [mol C L
-1

], 366 

were described as a function of microbial growth in the PLS, microbial transport through the ore bed 367 

facilitated by bulk solution flow dynamics as well as microbial transport across the interface between 368 

the bulk flowing PLS and ore-associated phases (Eq. 13). 369 

 370 



 

 12 

 𝜕𝐶𝑥,𝑃𝐿𝑆
𝜕𝑡

=  𝜇𝑥,𝑃𝐿𝑆 ∙ 𝐶𝑥,𝑃𝐿𝑆 + 𝐷𝑍 ∙
𝜕2𝐶𝑥,𝑃𝐿𝑆
𝜕𝑧2

−  𝑣 ∙
𝜕𝐶𝑥,𝑃𝐿𝑆
𝜕𝑧

− 𝑘𝑎𝑡𝑡 ∙ (𝐶𝑥,𝑃𝐿𝑆 − 𝐶𝑥,𝑜𝑟𝑒)

+ 𝑘𝑑𝑒𝑡 ∙ (𝐶𝑥,𝑜𝑟𝑒 − 𝐶𝑥,𝑃𝐿𝑆) 

(13) 

Microbial transport from the bulk flowing PLS to the ore-associated phases is described using the 371 

attachment term, katt [h
-1

], whilst microbial transport from the ore-associated phases to the bulk 372 

flowing PLS is described using the detachment term, kdet [h
-1

]. Eq. 13 may be simplified 373 

mathematically by replacing the kdet and katt terms with a net rate of transport term, knet, and a single 374 

concentration difference term. However, individual microbial transport terms may provide insight into 375 

the difference in magnitude of microbial transport rates between the phases. 376 

 377 

Further changes in microbial abundance in the ore-associated phases, Cx,ore [mol C L
-1

], are similarly 378 

modelled as a function of microbial growth and microbial transport across the stagnant solution 379 

associated with the mineral and void space, as shown in Eq. 14. Once again, the source terms relating 380 

to microbial attachment and detachment can be reduced to a net rate of microbial transport, knet, across 381 

the concentration gradient. For demonstration purposes, these terms are decoupled here in an effort to 382 

describe microbial transport across the phase boundaries. 383 

 384 

 𝜕𝐶𝑥,𝑜𝑟𝑒
𝜕𝑡

= 𝜇𝑥,𝑜𝑟𝑒 ∙ 𝐶𝑥,𝑜𝑟𝑒 + 𝑘𝑎𝑡𝑡 ∙ (𝐶𝑥,𝑃𝐿𝑆 − 𝐶𝑥,𝑜𝑟𝑒) − 𝑘𝑑𝑒𝑡 ∙ (𝐶𝑥,𝑜𝑟𝑒 − 𝐶𝑥,𝑃𝐿𝑆) (14) 

 385 

Although microbial transport along the height of the ore bed and out of the mini-column reactor was 386 

assumed to be induced by both the convective forces of the bulk flowing solution and the difference 387 

in microbial concentration between the phases, microbial transport to and from the ore-associated 388 

phases was assumed to be a result of a microbial concentration gradient only. It is proposed that the 389 

microbial concentration gradient was produced in response to the substrate concentration gradient; 390 

assuming a higher microbial production and simultaneous oxidation of ferrous iron in the ore-391 

associated phases as compared to the bulk flowing PLS. At. ferrooxidans transport is facilitated via 392 

pili with “twitching motility” (Li et al., 2010) which may be triggered by cell to cell communication 393 

or quorum sensing in response towards a preferred environment with higher substrate availability, 394 

growth and maintenance requirements (Farah et al., 2005, Jerez, 2008, Soulère et al., 2008, 395 

Valenzuela et al., 2007). 396 

 397 

Microbial transport in non-reactive porous soil systems has been modelled previously using the 398 

advection-dispersion equation (Tan et al., 1994, Taylor and Jaffé, 1990). The current model extends 399 

this approach by incorporating microbial growth kinetics as a function of the kinetics of microbial 400 
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substrate utilisation which, in turn, is limited by the rate of mineral dissolution, together with 401 

microbial attachment and detachment kinetics. The resulting estimation of true maximum specific 402 

growth rate (using Eq. 11) for the total microbial population within the agglomerate-scale heap was 403 

then applied to Eq. 15. As such, the theoretical ferric to ferrous iron ratio required to sustain the 404 

predicted microbial growth and abundance in the PLS and ore-associated phases can be estimated. 405 

 406 

 𝜇𝑥,𝑡𝑜𝑡𝑎𝑙 ∙ 𝐶𝑥,𝑡𝑜𝑡𝑎𝑙 ∙ 𝑉
𝑅 = 𝜇𝑥,𝑃𝐿𝑆 ∙ 𝐶𝑥,𝑃𝐿𝑆 ∙ 𝑉𝑃𝐿𝑆 + 𝜇𝑥,𝑜𝑟𝑒 ∙ 𝐶𝑥,𝑜𝑟𝑒 ∙ 𝑉𝑜𝑟𝑒 (15) 

 407 

The estimated volume of solution in the PLS, VPLS, is 11.7 mL and that within the ore-associated 408 

phase, Vore, is 2.3 mL, with a total reactor volume, V
R
, of 14.0 mL (Govender et al., 2015b). 409 

 410 

3.1. Application of the hydrodynamic transport model 411 

3.1.1. Microbial growth and transport rates 412 

For the purposes of comparison, simplifying assumptions were used to convert the microbial 413 

concentrations in the PLS and ore-associated phases from cfu per millilitre [cfu mL
-1

] and cells per 414 

gram dry ore [cfu g DO
-1

] to mol carbon per litre [mol C L
-1

] using the known reactor working 415 

volume and total mass of dry ore within the mini-column reactor. The cell to mole carbon conversion 416 

was assumed to be 4.8 x 10
-15

 mol C cell
-1

, based on a dry mass of 1.18 x 10
-13

 g cell
-1

 (Moon, 1995) 417 

which compares well with the value of 1.59 x 10
-13

 g cell
-1

 reported by Blight  and Ralph (2008). 418 

 419 

The mineral leaching rate constant (km), maximum specific ferrous iron utilisation rate (qFe2+
max

), 420 

Michaelis-Menten rate constant (Km), overall yield coefficient (Ysx, total), initial particle size distribution 421 

(f0(l0)), dispersion coefficient (Dz) and advection mass transfer rate (v) were estimated from data set 422 

Test A. Model fitting was performed using least squares regression analysis to estimate microbial 423 

yield coefficients in the PLS and ore-associated phases (Ysx,PLS, Ysx,ore) as well as  microbial attachment 424 

(katt) and detachment (kdet) rates. The data set from the repeated experiment Test B, and combined Test 425 

A and B data set, were then used to validate the model. The kinetic parameters used in the model are 426 

presented in Table 1.  427 

 428 
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Table 1: Summary of kinetic parameter values required for input into the hydrodynamic dispersion 429 
model as determined from base case experimental data 430 

Kinetic parameter Units Empirical value 

Mineral leaching rate constant, km mol m
-2

 h
-1

 1 x 10
-6 

Maximum specific ferrous iron utilisation rate, qFe2+
max

 mol Fe
2+

 mol C
-1

 h
-1

 1.61 

Michaelis-Menten rate constant, Km Dimensionless 0.0025 

Overall yield coefficient for substrate utilisation, Ysx, total mol C (mol Fe
2+

)
-1

 0.05 

Dispersion coefficient, Dz m
2
 h

-1
 4.24 x 10

-5 

Advection mass transfer rate, v m h
-1

 2.46 x 10
-3

 

Note: Particle size distribution data was presented previously in Govender et al. (2013). 431 

 432 

The maximum specific ferrous iron utilisation rate, qFe2+
max

, and the dimensionless Michaelis-Menten 433 

rate constant, Km, were determined from experimental data and have been presented previously as an 434 

outcome of the biomass model (Govender et al., 2014). The qFe2+
max

 value of 1.61 mol Fe
2+

 mol C
-1

 h
-1

 435 

presented in this study, was lower than that of 8.8 mol Fe
2+

 mol C
-1

 h
-1

, typically found for At. 436 

ferrooxidans in bioleaching systems (Boon, 1996, Breed and Hansford, 1999, Hansford, 1997). This 437 

result was expected since the cited studies were performed in continuous, well-mixed systems with 438 

fully suspended, milled sulphide mineral particles, whilst this study was conducted on crushed low-439 

grade ore in the absence of supplementary ferrous iron in the feed, with pyrite occlusion in the low-440 

grade ore further limiting substrate availability.  441 

 442 

The total, PLS and ore-associated apparent maximum specific microbial growth rates were presented 443 

previously in Govender et al. (2013). These growth rates are defined as apparent rates since the effect 444 

of microbial transport between the phases was not taken into account in the calculation for specific 445 

growth rates in each phase. This assumption resulted in exaggerated growth rates in the PLS and 446 

under-estimated growth rates in the ore-associated phases. The current model aims to estimate these 447 

microbial transport rates and present true maximum specific microbial growth rates on whole ore. 448 

 449 

The model predictions for PLS and ore-associated microbial concentration profiles are compared to 450 

those determined empirically, in Figure 2. From the onset, the model simulated the microbial 451 

concentration profiles in both the PLS and ore-associated phases successfully; in particular, the 452 

exponential growth region in both phases, the constant growth period observed after ca. 250 h in the 453 

PLS (Figure 2a), and the continued but slow increase in microbial concentration in the ore-associated 454 

phase (Figure 2b). 455 

 456 
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 457 

Figure 2: Model prediction of changes in microbial abundance in the (a) bulk flowing PLS and (b) ore-458 
associated phases with time, using the combined base case experimental data set 459 

 460 

A subset of the PLS microbial concentration data is presented in Figure 2a, with the complete data set 461 

presented previously in Govender et al. (2014) showing an initial dip in microbial abundance in the 462 

PLS, a result of initial and rapid microbial attachment. Although the model was able to predict low 463 

microbial concentrations over the first few hours of the experiment, it did not predict this period of 464 

initial and rapid attachment. This type of microbial behaviour, however, was predicted appropriately 465 

by the biomass transport model (Govender et al., 2014). The hydrodynamic dispersion model does 466 

predict the more rapid increase in the ore-associated population which may represent the initial period 467 

of attachment. 468 

 469 

The model outputs for yield coefficients, Ysx,PLS and Ysx,ore, are 0.00027 and 0.012 mol C (mol Fe
2+

)
-1 470 

respectively. These yield coefficients correspond to true maximum specific growth rates in the PLS 471 

and ore-associated phases of 0.0004 and 0.019 h
-1

 respectively. The apparent maximum specific 472 

growth rates as determined from empirical data without accounting for microbial transport between 473 

the phases may be compared to the true maximum specific growth rates as predicted by the biomass 474 

and hydrodynamic models (Table 2). 475 

 476 

The most notable difference in the hydrodynamic model output was the higher true maximum specific 477 

growth rates predicted for the ore-associated phase over the PLS (Table 2). This finding, together with 478 

the relatively low maximum specific growth rate in the PLS, suggests that microbial growth occurs 479 

primarily within the largely stagnant interstitial solution and mineral attached phases, with a 480 

proportion of the new cells being transported away from the mineral surface. The predicted true 481 

maximum specific growth rates in the ore-associated phase corresponded to a culture doubling time of 482 

36.5 h. The predicted ore-associated growth rate and doubling time is comparable to literature values 483 

a b 

                Model 

                PLS Data 

            Model 

            Ore-Associated Data 
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for microbial growth on pulverised low-grade Kennecott ore at similar substrate-free test conditions 484 

(Plumb et al., 2008), where the specific growth rate is estimated from further analysis of data to be 485 

0.028 h
-1

, with a corresponding doubling time of 24.8 h. 486 

 487 

Since microbial transport out of the ore bed through advection is incorporated into the equation 488 

describing the change in total microbial abundance within all phases in the heap (Eq. 12), the 489 

predicted total true maximum specific growth rate of 0.088 h
-1

, with a doubling time of 7.9 h, was 490 

higher than that for the ore-associated phase of 0.019 h
-1

, with a doubling time of 36.5 h. These 491 

doubling times (Table 2) are comparable to those reported previously for At. ferrooxidans growth on 492 

chalcopyrite mineral of 25 h (Plumb et al., 2008) and 13.9 h (McGoran et al., 1969), corresponding to 493 

specific growth rates of 0.028 and 0.050 h
-1

 respectively. The prediction for total true maximum 494 

specific growth rate from the current model compared more favourably to previously reported 495 

literature values, than that predicted by the biomass transport model (Govender et al. 2014). 496 

 497 

Table 2: Maximum specific growth rates as determined from experimental data and predicted by the 498 
biomass (Govender et al., 2014) and hydrodynamic microbial transport models, using Michaelis-Menten 499 

type rate kinetics 500 

  Test A & B combined Biomass model Hydrodynamic model 

μx,PLS
max

 h
-1

 0.741 ± 0.011 0.736 0.0004 

μx,ore
max

 h
-1

 0.054 ± 0.006 0.048 0.019 

μx,total
max h

-1
 0.733 ± 0.013 0.739 0.088 

 501 

The predicted rate of microbial transport from the PLS to the ore-associated phases via microbial 502 

attachment (katt) was estimated to be 1.2 x10
-7

 h
-1

, whilst the rate of microbial transport from the ore-503 

associated phases to the bulk flowing PLS via detachment (kdett) was estimated to be 5 x10
-5

 h
-1

. The 504 

higher rate of microbial transport from the ore-associated phases to the PLS, predicted by the 505 

hydrodynamic model, was in contrast to that previously predicted by the biomass model. The 506 

hydrodynamic model, therefore, supports the hypothesis that microbial growth is more prolific in the 507 

ore-associated phases with subsequent transport to the bulk flowing PLS. 508 

 509 

The success of the current hydrodynamic model in predicting true maximum specific growth rates as 510 

a function of microbial transport may lie in the incorporation of attachment and detachment rates that 511 

are a function of the microbial concentration gradient, into the advection-dispersion model (Eqs. 13 512 

and 14). While it is recognised that attachment and detachment are also impacted by physicochemical 513 

surface properties of the microorganisms and mineral, surface topology of the mineral and fluid flow 514 

conditions, these are not varied in this study to allow the impact of concentration driving force to be 515 

determined. Current understanding suggests that in the first few hours after inoculation, the rate of 516 
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microbial attachment is significantly higher than the rate of microbial detachment, with katt(Cx,PLS – 517 

Cx,ore) >> kdet(Cx,ore – Cx,PLS). Based on the attachment and detachment rates determined using the 518 

model, it can be postulated that once steady state conditions are reached, the rate of microbial 519 

detachment is much greater than microbial attachment, i.e. kdet(Cx,ore – Cx,PLS) >> katt(Cx,PLS – Cx,ore), 520 

owing to growth at the mineral surface. The low microbial transport rates as compared to growth rates 521 

may require further study for refinement; in this study, the attachment and detachment rate constants 522 

(katt and kdet) were postulated to remain unchanged despite the slopes of the concentration-time curves 523 

change over the region of exponential microbial growth and constant growth (Figure 2a and b). The 524 

use of a single value for each transport rate constant over the short duration of the experiments was 525 

sufficient in the current study to decouple the effect of microbial transport from microbial growth. 526 

 527 

Using the hydrodynamic dispersion model, 3D plots were generated to demonstrate the change in 528 

microbial concentration profiles in the PLS and ore-associated phases with time, as well as the change 529 

in microbial distribution at t = 700 h with fractional distance from the top of the ore bed (top = 0.0). 530 

The model predicted the rapid increase in PLS microbial concentration with time over the initial 531 

period of ca. 250 h, followed by the period of slower increase (Figure 3b(i)). The microbial 532 

distribution in the void PLS volume (Figure 3a (ii)) was observed to be ca. 10 times lower at the top 533 

of the column than at the bottom, with the microbial abundance in the PLS increasing linearly with 534 

the depth of the ore bed. This observation, however, may be subject to the hydrodynamic properties of 535 

the bulk flowing solution which is largely influenced by both the height to diameter ratio of the ore 536 

bed (Kappes, 2002) as well as flow rate of the irrigation solution (Pantelis and Ritchie, 1991, Pantelis 537 

and Ritchie, 1992). 538 

 539 

Microbial abundance in the ore-associated phases, shown in Figure 3b, was found to increase non-540 

linearly from the top to the bottom of the ore bed (Figure 3b(ii)), with a significantly higher microbial 541 

abundance associated with the ore than that observed in the PLS. A high microbial concentration was 542 

observed at the bottom of the ore bed by the end of the experiment. The observations suggest that for 543 

this particular reactor configuration, the microbial population associated with the ore bed is not 544 

uniformly distributed throughout the bed. This is consistent with the transfer of micro-organisms 545 

through the bed, associated with fluid flow under gravity. 546 

 547 
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Figure 3: 3D Plot illustrating changes to microbial concentration in the (a) bulk flowing PLS and (b) ore-548 
associated phases with time and fraction of distance along the ore bed (top = 0.0) at the termination of the 549 
experiment. Inserts (i) highlights the change in biomass concentration with time and inserts (ii) highlights 550 

the change in biomass concentration with the depth of the bed. 551 

 552 

3.1.2. Ferric to ferrous iron concentrations within the ore bed 553 

In an effort to decouple the concentrations of ferric and ferrous iron in the respective phases, model 554 

predictions of overall iron concentrations relative to those measured in the PLS, were compared 555 

(Figure 4). Using the combined data set, the ferric and ferrous iron concentrations measured in the 556 

bulk flowing PLS were used to estimate the mineral leach and microbial substrate utilisation kinetics 557 

for input into the model to describe the total microbial growth kinetics. The resulting model-predicted 558 

substrate utilisation kinetics in the PLS and ore-associated phases were then used to determine the 559 

ferrous and ferric iron concentrations required to sustain the combined PLS and ore-associated 560 
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microbial populations. The difference between the model prediction and the measured concentrations 561 

was assumed to represent that in the ore-associated phases (Eq. 5). 562 

 563 

The model prediction of higher overall ferric and ferrous iron concentrations than that measured in the 564 

PLS supports the assumption of higher iron concentrations in the ore-associated phases. The predicted 565 

overall iron concentrations follow similar trends to that shown by the measured data set. For example, 566 

the model describes the expected initial production of ferrous iron (Figure 4b) as a result of 567 

instantaneous oxidation of the mineral by ferric iron, depicted by the initial decrease in ferric iron 568 

concentration (Figure 4a). The subsequent decrease in ferrous iron concentration in response to 569 

increased microbial activity was also described by the model. In addition, the model predicts an 570 

absence of residual ferrous iron concentration by ca. 200 h in the PLS and consequently, the ore-571 

associated phases. 572 

 573 

574 
   575 

Figure 4: Model predictions for overall (a) ferric and (b) ferrous iron concentrations ( ▬ ) in comparison 576 
with ferric and ferrous iron concentrations measured in the bulk flowing PLS [●]. 577 

 578 

3.2. Model sensitivity analysis 579 

The trends presented in Figure 3 and Figure 4 are subject to the current test conditions, more 580 

specifically, the dispersion and advection properties of the bulk flowing solution. The dispersion 581 

coefficient, DZ, and advection mass transfer rate, v, were estimated from RTD experiments to be 4.24 582 

x 10
-5

 m
2
 h

-1
 and 2.46 x 10

-3
 m h

-1
, respectively (Table 1). A sensitivity analysis was performed to 583 

determine the effect of varying these parameters on the model outcomes (Figure 5). For this analysis, 584 

the dispersion coefficient was doubled to 8.48 x 10
-5

 m
2
 h

-1
 (Figure 5a) and halved to 2.12 x 10

-5
 m

2
 h

-
585 

1
 (Figure 5b). The advection mass transfer rate was varied through irrigation rates of 2 L m

-2
 h

-1
 to 2.5 586 

a b 
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L m
-2

 h
-1

 and 1 L m
-2

 h
-1

, respectively. As such, the equivalent advection mass transfer rates were 3.07 587 

x 10
-3

 m h
-1

 (Figure 5c) and 1.23 x 10
-3

 m h
-1

 (Figure 5d), respectively. 588 

 589 

3.2.1. Sensitivity of hydrodynamic model to variations in dispersion coefficient 590 

An increase in Dz resulted in an increase to the initial microbial concentrations found in the PLS and 591 

ore-associated phases followed by a decrease in microbial abundance in both phases over the steady 592 

state period, as illustrated in Figure 5a. Since increased dispersion increases the mixing or contacting 593 

between the PLS and ore-associated phases, a larger portion of the inoculum is uniformly distributed 594 

within the column initially, however, this will also facilitate increased transport of micro-organisms in 595 

the bulk solution with depth of the ore bed. In addition, increased contacting would result in a higher 596 

rate of attachment, katt, with a larger population of micro-organisms in the PLS transporting to the ore-597 

associated phase. This would be observed by the decrease in the difference between the ore-associated 598 

microbial abundance as predicted by the model and that of the model response to an increase in the 599 

dispersion coefficient. Decreasing the dispersion coefficient (Figure 5b), decreased the retention of 600 

inoculum in the mini-column reactor as a result of less contacting between the phases and possible 601 

poor mixing or channelling of solution within the ore bed. Preferential flow within the ore bed would 602 

result in greater detachment of the ore-associated population into the bulk PLS and out of the ore bed. 603 

 604 

3.2.2. Sensitivity of hydrodynamic model to variations in advection mass transfer coefficient 605 

The advection mass transfer coefficient (v) was varied by increasing the feed irrigation rate from 2 L 606 

m
-2

 h
-1

 to 2.5 L m
-2

 h
-1

 (Figure 5c) and decreasing the irrigation rate to 1 L m
-2

 h
-1

 (Figure 5d). Beyond 607 

these constraints, the model predictions for microbial concentration along the height of the ore bed 608 

became unstable, yielding erratic concentration profiles. The variations resulted in significant changes 609 

to the predicted microbial concentrations in the PLS and the ore-associated phases. A decrease in the 610 

retention of inoculum within the mini-column with increasing v was predicted, resulting in decreased 611 

microbial abundance in the PLS and ore-associated phases (Figure 5c). By decreasing v, a greater 612 

population of micro-organisms was predicted to remain within the ore bed, resulting in an increase in 613 

microbial abundance in the PLS and ore-associated phases (Figure 5d). The effect of varying 614 

irrigation rates on inoculum retention and microbial colonisation was supported by the corresponding 615 

change in the rate of ferrous iron oxidation at higher irrigations (results not shown). 616 
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Figure 5: Sensitivity of proposed model to changes in dispersion coefficient (DZ) and advective transfer 617 
rate (v ), with (a) increasing DZ to 8.48 x 10

-5
 m

2
h

-1
, (b) decreasing DZ to 2.12 x 10

-5
 m

2
h

-1
, (c) increasing v 618 

to 3.07 x 10
-3

 mh
-1

 and (d) decreasing v to 1.23 x 10
-3

 mh
-1

. The fitted model is represented by the solid line 619 
and the model predicted outcome following a change in parameter by the dashed line. 620 
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a 

b 

▬▬ Model DZ, 4.24x10-5 m2h-1 

● ●    Experimental Data 

▬ ▬ Increase DZ, 8.48x10-5 m2h-1 

▬▬ Model DZ, 4.24x10-5 m2h-1 

● ●    Experimental Data 

▬ ▬ Decrease DZ, 2.12x10-5 m2h-1 

c 

▬▬ Model v, 2.46x10-3 mh-1 

● ●    Experimental Data 

▬ ▬ Increase v, 3.07x10-3 mh-1 

d 

▬▬ Model v, 2.46x10-3 mh-1 

● ●    Experimental Data 

▬ ▬ Decrease v, 1.23x10-3 mh-1 
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3.2.3. Sensitivity of hydrodynamic model to variations in inoculum size 622 

The sensitivity analysis on the hydrodynamic model was extended to include the response of the 623 

model to variations in an operating condition, in particular, to an increase and decrease in inoculum 624 

concentration. The effect of varying inoculum size on microbial growth and activity using the current 625 

experimental system has been discussed previously in Govender et al. (2015a); however, direct 626 

comparison of the model predictions with experimental data cannot be made since the At. 627 

ferrooxidans pre-culturing conditions and feed composition vary. 628 

 629 

 

 

Figure 6: Sensitivity of the proposed model predictions of the change in microbial concentrations in the 630 
PLS and ore-associated phases, to (a) a ten-fold increase in inoculum concentration and (b) a ten-fold 631 

decrease in inoculum concentration. The fitted model is represented by the solid line [▬], experimental 632 
data by shaded circles [●] and the model predicted outcome following a change in parameter by the 633 

dashed line [- - - -]. 634 

 635 

As observed from Figure 6a, an increase in inoculum size increased the initial microbial abundance in 636 

each of the phases. An increase in inoculum size has been shown to produce a more rapid increase in 637 

microbial number, which is in agreement with that observed in previous studies (Govender et al., 638 

2015a, Tupikina et al., 2014). This effect was not observed since the hydrodynamic model exhibits 639 

a 

b 
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poor resolution over this initial period. As previously mentioned, the model also did not simulate the 640 

initial decrease in PLS concentration as a result of rapid microbial attachment to the mineral (Figure 641 

2a). Initial microbial populations reporting to the PLS and ore-associated phases were observed to 642 

decrease with a decrease in inoculum size (Figure 6b) and the time required before microbial numbers 643 

increase substantially was expected to increase. 644 

 645 

However, irrespective of inoculum size, the final maximum microbial concentrations in both the PLS 646 

and ore-associated phases remain unchanged. In addition, the model predicted that an increase in 647 

inoculum size results in the maximum microbial concentration being reached earlier than with a lower 648 

inoculum size. The abovementioned model responses to varying inoculum concentration were also 649 

observed in the empirical data presented previously (Govender et al., 2015a). 650 

 651 

 

 

Figure 7: Sensitivity of the proposed model predictions of overall ferric and ferrous iron concentrations, 652 
to (a) a ten-fold increase in inoculum concentration and (b) a ten-fold decrease in inoculum 653 

concentration. The fitted model is represented by the solid line [▬], experimental data by shaded circles 654 
[●] and the model predicted outcome following a change in parameter by the dashed line [- - - -]. 655 

 656 

a 

b 
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An increase in inoculum size resulted in a more rapid increase in microbial activity, as observed in the 657 

predicted overall ferric and ferrous iron concentrations (Figure 7a). The ten-fold increase in inoculum 658 

size produced an approximate decrease the time for onset of microbial activity of 50 h. Similarly, a 659 

ten-fold decrease in inoculum size resulted in a predicted increase in time delay for onset of microbial 660 

activity of ca. 100 h (Figure 7b). 661 

 662 

4. Conclusions 663 

Recent mineral bioleaching studies have demonstrated the significant difference between the 664 

microbial populations in the PLS and ore-associated phases. This has impact on the interpretation of 665 

the data obtained during monitoring of heap bioleaching systems. However, no studies have yet 666 

developed and validated an appropriate mathematical model to decouple the effects of microbial 667 

transport between these phases and microbial growth kinetics. The proposed hydrodynamic model 668 

was developed assuming that the microbial concentration gradient between the PLS and ore-669 

associated phases was the driving force, together with substrate availability, for microbial attachment 670 

to and detachment from the ore-associated phases, with transport being facilitated by advection-671 

dispersion properties of the bulk flowing solution. Mineral leach kinetics were assumed to be 672 

dependent on the ferric to ferrous iron ratio and modified to include the population balance model 673 

(PBM), thus providing a better estimation of the contribution of surface-based reactions to the overall 674 

mineral leach rate. Microbial substrate utilisation kinetics were described assuming a Michaelis-675 

Menten type relationship with ferric to ferrous iron ratio and related to growth kinetics through the 676 

yield coefficient. 677 

 678 

This proposed model successfully predicted the changes in microbial concentration in the PLS and 679 

ore-associated phases using an advection-dispersion equation, which incorporated terms for microbial 680 

growth, attachment and detachment rates. The model prediction for the true maximum specific 681 

growth rate in the ore-associated phases was found to be significantly greater than that predicted in 682 

the PLS. This result is in accordance with the hypothesis that within a whole ore bioleaching system, 683 

microbial growth and activity occurs primarily in the ore-associated phases, where ferrous iron 684 

availability is enhanced. Hence, the microbial abundance in the PLS was a result of microbial 685 

transport from the ore-associated phases to the PLS. This hydrodynamic dispersion model provides 686 

insight into true estimates for microbial growth rates within heap bioleaching systems. With further 687 

refinement and validation, the model, therefore, offers the potential for the estimation of the relative 688 

microbial abundance in the ore-associated phases, given the microbial concentration and activity 689 

measured in the PLS, and without the need to sample the heap for analysis the ore. 690 

 691 

Since the model is based on the hydrodynamic properties of the bulk solution, the effect of variables 692 

such as solution flow rate, bulk density and reactor configuration on the model outputs require further 693 
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study for refinement of these parameters for enhanced model predictions. These variables are 694 

particularly important for the estimation of dispersion coefficients and the advection transfer rates, 695 

which have a significant effect on the model outputs. In addition, the model may be improved through 696 

the inclusion of ferric and ferrous iron concentrations measured at the mineral interface, which will 697 

allow for further validation the model. 698 

 699 

5. List of symbols 700 

μx,pls Specific microbial growth rate in the PLS h
-1

 

μx,ore Specific microbial growth rate in the ore-associated phase h
-1

 

μx,total Specific microbial growth rate in the total population h
-1

 

μx,i
max

 Maximum microbial specific growth rate for each phase h
-1

 

ϕMS Fraction of pure mineral sulphide in ore dimensionless 

τ Mean residence time h 

θ Age of particle h 

A
P
 Particle specific surface area m

2
 kg

-1
 

CFe
2+

 Ferrous iron concentration molFe
2+

 L
-1

 

CFe
3+

 Ferric iron concentration  molFe
3+

 L
-1

 

Cx,pls Microbial concentration in the PLS molC L
-1

 

Cx,ore Microbial concentration in the ore-associated phase molC L
-1

 

Cx,total Microbial concentration in the total population molC L
-1

 

Dr Dispersion coefficient in radial direction m
2
 h

-1
 

Dz Dispersion coefficient m
2
 h

-1
 

f0 (l0) 
The normal distribution representing the probability of particles in a 

specific size range 
m

-1
 

I (θ) The internal age distribution of particles h
-1

 

katt Microbial attachment rate constant h
-1

 

kdet Microbial detachment rate constant mol m
-2

 h
-1

 

km Mineral leach rate constant mol m
-2

 h
-1

 

Ks Michaelis-Menten constant for substrate utilisation  dimensionless 

l0 Initial particle size or diameter m 

M
P
 Mass of a particle kg 

n Order of mineral leach reaction dimensionless 

N
T
 Total number of particles in the reactor dimensionless 

qFe
2+

 Microbial specific ferrous iron oxidation rate molFe
2+

 molC h
-1

 

qFe2+
max

 Maximum microbial specific ferrous iron oxidation rate  molFe
2+

 molC h
-1
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rbio Rate of microbial ferrous iron oxidation molFe
2+

 L
-1

 h
-1

 

r
”

min Intrinsic mineral surface reaction rate mol m
-2

 h
-1

 

r
R
 Overall mineral leach rate mol m

-3
 h

-1
 

t Time h 

v Advection mass transfer coefficient m h
-1

 

V
R
 Total working liquid volume in reactor m

3
 or L 

VPLS Volume of bulk flowing solution or PLS within ore bed L 

Vore Volume of stagnant interstitial solution within ore bed L 

Ysx,pls Microbial yield coefficient in PLS molCx,PLS [molFe
2+

]
-1 

Ysx,ore Microbial yield coefficient in ore=associated phase molCx,ore [molFe
2+

]
-1 

Ysx,total Microbial yield coefficient in all phase in ore bed molCx,total [molFe
2+

]
-1 

z Depth of bed m 

 701 
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