
I

Three Essays on Game Theory and Computation

Submitted by Elham Nikram to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Economics in December 2016

This thesis is available for Library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper
acknowledgement.

I certify that all material in this thesis which is not my own work has been identified
and that no material has previously been submitted and approved for the award of a
degree by this or any other University.

Signature: …………………………………………………………..

II

Abstract

The results section of this thesis includes three chapters (Chapter 2, 3 and 4).

The first two chapters are on theoretical game theory. In both chapters, by

mathematical modelling and game theoretical tools, I am predicting the

behaviour of the players in some real world issues.

Hoteling-Downs model plays an important role in the modern political

interpretations. The first chapter of this study investigates an extension of

Hoteling-Downs model to have multi-dimensional strategy space and

asymmetric candidates. Chapter 3 looks into the inspection game where the

inspections are not the same in the series of sequential inspections. By

modelling the game as a series of recursive zero-sum games I find the optimal

strategy of the players in the equilibrium.

The forth chapter investigates direct optimization methods for large scale

problems. Using Matlab implementations of Genetic and Nelder-Mead

algorithms, I compare the efficiency and accuracy of the most famous direct

optimization methods for unconstraint optimization problems based on

differing number of variables.

III

This thesis is dedicated to my parents, Ahmad & Nadia.

IV

Acknowledgments

I wish to extend my sincere gratitude to my first supervisor, Dieter Balkenborg,

for his advice, encouragement and guidance to me while conducting this

research study. It has been an honour to have his supervision. He was a great

mentor for me and had a great role in my professional development and

progress of this thesis. I appreciate all his contributions of time and ideas to my

PhD experience.

I would also like to thank my second supervisor, Julian Neira, who has added a

lot of insights to the fourth chapter and developing the experiments.

I am especially grateful to Shmuel Zamir for all his insights which helped me to

precede my second chapter and also his support allowing me to present my

results at prestigious international conferences.

The Business School, University of Exeter provided a great academic

atmosphere which is very supportive for the junior researcher. Besides, I

gratefully acknowledge the 3 years scholarship by Business school, University

of Exeter throughout my PhD which made it possible for me to start and

complete this research study.

My special thanks also go to my family. First of all, my parents, Ahmad and

Nadia, who have supported me throughout whole of my life with tremendous

love; and my younger brother, Mohammad Ali, who has also helped me

psychologically. Without their encouragement I would never have succeeded

in completing my PhD.

V

List of Contents

Chapter 1
Introduction ……………………………………….………………………………………… …………………………………………1

Chapter 2
A Generalized Hoteling-Downs model with Asymmetric Candidates………………………………………3

2.1 Introduction……..3

2.2 Literature Review on Generalization of Hoteling-Downs Model…………………………..…7

2.3 The Model…… 11

2.3.1 The Relation between Tournament Games and Multi-Dimensional Hotelling-Downs

Model………..11

2.3.2 Symmetric zero-sum tournament games…………………………………………………………13

2.4 Main Characteristics of the Model…………………………………………………………………………..15

2.4.1 The Value and Optimal Strategy of Symmetric zero-sum Tournament game…………15

2.4.2 Regular Equilibrium in the Symmetric zero-sum Tournament Game……………………..17

2.5 Generalized Hoteling-Downs model with Asymmetric Candidates………………………….21

2.5.1 Symmetric non zero-sum Tournament Game…………………………………………………………22

2.5.2 Asymmetric zero-sum Tournament Game……………………………………………………………..23

2.6 Sufficient Condition for Uniqueness of the Equilibrium…………………………………………..25

2.7 Regular Tournament Game in the sense of Laffond et al...28

2.8 Conclusion………...32

References……….32

A. Appendix to Chapter 2……………………………………………………………………………………………….….34

A.1. Graphs and Subgraphs…………………………………………………………………………………………………35

A.2. Zero-sum games…….36

A.3 Calculating Optimal Strategies in Zero-Sum Games………………………………………………………37

A.3.1 Indifferent Strategies…………………………………………………………………………………..…………….37

A.4 Regular Equilibrium………………………………………………………………………………………………………40

A.4.1. Regular equilibria in normal form games………………………………………………………..…………40

A.4.2. Calculations of Theorem 2.14..42

A.5 Maple Code for Computing the Equilibrium point in Tournament Games………………….....45

VI

Chapter 3

Inspection game with Partial Inspections……………………………………………………………………………51

3.1 Introduction………51

3.2 Literature review……………………………………………………………………………………………….……52

3.3 Classical Inspection Game…………………………………………………………………………………….…56

3.4 Full Inspection vs. Partial Inspection……………………………………………………………………..…58

3.5 Inspection Game with Partial Inspection………………………………………………………………...65

Conclusion………...74

Reference…….74

B Appendix to Chapter 3……75

B.1 The value and optimal strategies for a 2×2 zero-sum game………………………………………..75

B.2 Maple code for finding the equilibrium point for the inspection game with partial

inspection………76

B.3 The value of game for 𝒗(𝟏, 𝟐, 𝒎, 𝑷) and 𝒗(𝟐, 𝟏, 𝒎, 𝑷) for all the values of 𝑷�…………...83

Chapter 4

A Comparison between Nelder-Mead and Genetic Algorithm for Large Scale Optimization

Problems………85

4.1 Introduction……….85

4.2 Nelder-Mead Simplex Algorithm…………………………………………………………………………..…88

4.2.1 Convergence of the Nelder-Mead algorithm……………………………………………………….….92

4.2.2. Matlab implantation of Nelder-Mead algorithm…………………………………………………...93

4.3 Genetic Algorithm and Mathematical Optimization………………………………………………..95

4.3.1 History of the Genetic algorithm…………………………………………………………………………...95

4.3.2 Genetic algorithm for optimization of the real valued functions…………………………….95

4.3.3 Mutation function in Genetic algorithm………………………………………………………….99

4.3.4 Matlab Implementation of Genetic algorithm……………………………………………………..100

4.4 Comparison of Nelder-Mead algorithm and Genetic Algorithm…………………………...101

4.4.1 Speed and Accuracy………………………………………………………………………………….….103

4.4.2 Resilience……………………………………………………………………………………………….......105

References…….…….110

Appendix C……..…..112

C.1 Selection……...…..112

C.2 Crossover……..…..113

C.3 Mutation………..…114

VII

List of Tables and Figures

Chapter 2

Figure 2. 1. The Graph representing “Scissor, Paper, Stone game” …………………………….…………………..13

Table 2. 2. Matrix game of “Scissor, Paper, Stone game” ……………………………………………………………….13

Figure 2. 3. A Tournament graph with six vertices representing a symmetric zero-sum tournament
game with 6 strategies. ………..14

Table 2. 4. A matrix game of the graph in Figure 2.3, representing the same symmetric zero-sum
tournament game of Figure 2.3. ……………………………………………………………………………………………………..14

Table 2. 5. Possible amount of the values of the asymmetric zero-sum tournament game …………. 28

Figure A. 1. 3. A simple graph with four vertices and three edges………………………………………………..…34

Figure A. 1. 6. A simple graph with four vertices and three edges ……………………………………………..….35

Figure A. 1. 11. A simple directed graph with four vertices and four edges……………………………….……35

Chapter 3

Table 3. 1. Inspection game modelled by Dresher…………………………………………………………………………57

Table 3. 2. The inspection game with one partial inspections and 𝒎 period of times……………..……59

Table 3. 3. The inspection game with just partial inspections……………………………………………………….60

Figure 3. 4. Comparison between the value of the inspection game with just one full inspection, or

one partial inspection where the probability of detection is 1/3 and 2/3…………………………………… 62

Figure 3. 5. The comparison between Inspection games with just full inspections, and inspection

games with just partial inspections. …………………………………………………………………………………………… 62

Figure 3. 6. The relation between number of full inspections and partial inspections to guarantee the

same value……….. 63

Table 3. 7. Inspection game with Partial Inspection…………………………………………………………………….. 65

Figure 3. 8. Three possible cases for the equilibrium in inspection game with partial inspection

Table 3. 9. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟎 < 𝑷 < 𝟏/𝟐 ………………………………………………….. 67

Table 3. 10. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟏/𝟐 < 𝑷 < 𝟏 …………………………………………..…….. 67

Figure 3. 11. Inspection game with one full inspection and one partial inspection …………………..…. 68

Table 3. 12. Inspection game with 1 full inspection and 1 partial inspection……………..…………….…...71

Table B.2.1. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2……………………………………………………………………………...………. 83

VIII

Table B.2.2. 𝑣(1,2, 𝑚, 𝑃), 1/2 < 𝑃 < 1 ………………………………………………….………………………………….. 83

Table B.2.3. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2………………………………………………………………………….…………… 84

Table B.2.4. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2 ……………………………………………………………………….………….… 84

Chapter 4

Figure 4. 1. Reflection operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and 𝒄 is

the centroid………..…. 89

Figure 4. 2. Contraction operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and 𝒄 is

the centroid. The left image shows outside contraction and right image shows inside

contraction………. 89

Figure 4. 3. Expansion operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and 𝒄 is

the centroid…….. 90

Figure 4. 4. Shrink operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) ……….….. 90

Figure 4. 1. Three first sequential simplices that Nelder-Mead algorithm makes to find the minimizer

of 𝒇(𝒙) = |𝒙𝟏| + |𝒙𝟐|. ……….… 92

Figure 4. 2. Sequential simplices made by Nelder-Mead algorithm to solve function 4.1.1, where

𝝉 = 𝟐, 𝜽 = 𝟔 and 𝝓 = 𝟔𝟎 …………………………………………………………………………………………………..……... 93

Table 4. 3. Matlab implementation of the Nelder-Mead algorithm to find the minimum value of

𝑓(𝑋) = |𝑥1| + |𝑥2|. ………... 94

Table 4. 4. Roulette wheel method and probability of selection of individuals. ……………………….… 98

Figure 4. 5. Single crossover between -3.13 and -10.7, when the crossover point is 4……………..…. 98

Figure 4. 6. A mutation on -4.7……………………………………………………………………………………………………. 98

Table 4. 7. Genetic algorithm implementation to find the minimum value of 𝑓(𝑥) = |𝑥1| +

|𝑥2|……………………………………………………………………………………………..……………………………………..……… 100

Table 4. 8. Genetic algorithm implementation to find the minimum value of 𝑓(𝑥) = |𝑥1| +

|𝑥2|……….…… 100

Figure 3.1. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for minimization

of 𝑓(𝑋) = |𝑥1| + |𝑥2|……... 102

Figure 3.2. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for minimization

of 𝑓(𝑋) = |𝑥1| + |𝑥2|…….….…..102

Table 4. 9. Experiment A applied on ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 ………………………………………………………………………….…. 104

Table 4. 10. Experiment A is applied on ∑ 𝑥𝑖
4𝑛

𝑖=1 ……………………………………………………………………….. 104

Table 4. 11. Experiment A is applied on ∑ |𝒙𝒊|
𝒏
𝒊=𝟏 . ……………………………………………………………………... 106

Table 4. 12. Experiment A is ran for functions ∑ 𝑥𝑖
2𝑛

𝑖=1 , ∑ 𝑥𝑖
4𝑛

𝑖=1 and ∑ |𝑥𝑖|𝑛
𝑖=1 to get 10−6 for the

objective function. 106

IX

Figure 4. 13. 𝑓0, 𝑓1 and 𝑓2 are shown with red, blue and green lines respectively, when −1 ≤ 𝑥 ≤

1……… 107

Table 4. 14. Nelder-Mead Algorithm and Genetic algorithm are applied for 𝑓0, 𝑓1 and 𝑓2………... 107

Table 4. 15. Nelder-Mead algorithm is applied for the objective function 𝑓0(𝑥) = min (|𝑥|, |0.8 −

𝑥| + 0.5). ……...…… 108

Table 4. 16. Genetic algorithm is applied for the objective function 𝑦 = min (|𝑥|, |1 − 𝑥| +

0.5)………...….…… 109

Figure C. 1. The Roulette wheel Selection operator……………………………………………………………....….. 112

Figure C. 2. A single point Crossover……………………………………………………………………………………...….. 113

Figure C. 3. A two point Crossover…………………………………………………………………………………….…....…. 114

Figure C. 4. A Scattered Crossover…………………………………………………………………………………………..….. 114

1

Chapter 1

Introduction

The general theme of the first and second results sections of this study

(Chapters 2 and 3) involve mathematical modelling analysing the

behaviour of the players in different real world situations by game

theoretical tools; while the third results section (Chapter 4) employs

Matlab based experiments to investigate the direct numerical

optimization methods.

Chapter 2 extends the famous Hoteling-Downs model to the case where

the preferences of the voters do not have to be single-peaked. Where the

classical results show that the equilibrium point is unique, I show that the

result is robust under small perturbations. However, the structure of the

model and the equilibrium change when the perturbations are not small. I

provide examples and define a criteria which describe the structure of the

equilibrium points when the tie situation has been resolved by

perturbation.

In Chapter 3, I investigate a version of the Inspection game first

introduced by Dresher (1962), where the inspector may run a mixture of

partial and full inspections. I investigate the behaviour of players in the

equilibrium. I show that as long as the opportunity for a full inspection

exists, the inspector never starts his sequential inspections with a partial

inspection. As the game has been modelled as a zero sum game, by

investigating the value of the game we have an efficient tool to compare

the efficiency of the full and partial inspections.

In Chapter 4, I investigate the robust optimization methods and compare

Nelder-Mead and Genetic algorithms. By use of experiments to address

unconstrained optimization problems I show that Nelder-Mead algorithm

2

can be more efficient with regarding to accuracy and required time only

when the objective function has a small number of parameters.

Nevertheless, Nelder-Mead algorithm is sensitive to the position of the

initial guess and may stick to a non-optimizer point or local optimum.

3

Chapter 2

A Generalized Hoteling-Downs model with Asymmetric

Candidates

2.1 Introduction

The Hoteling–Downs model Hotelling (1929) and Downs (1957) describes

a two-party two-stage model of an election, where in the first stage the

two candidates commit themselves to a policy platform and in the second

stage voters vote for one of the two candidates. The candidates are

assumed to be opportunistic, i.e. they only care about winning the

election. In the classical Hoteling-Downs model voters have single-peaked

preferences over policies in a one dimensional policy space. In

equilibrium, voters will vote for the candidate who chooses a policy

closest to their ideal point and candidates will choose a policy which gets

the most votes. In an equilibrium where all voters use undominated

strategies, both candidates propose the ideal policy of the median voter.

By this, candidates guarantee to get at least 50 percent of the whole

votes. Although Hotelling-Downs model has a significant role in the

modern political interpretations, nonetheless some consider the model

over simplistic and the restrictive assumptions on the preferences to

guarantee existence of the equilibrium make some researchers like

Kramer (1973) believe that the model cannot be a good model of reality.

There may be many factors that make the model unrealistic. It is a

recognized phenomena that the voters do not just care about the policy

platform of a candidate. Instead charismatic behaviour, incumbency,

reputation, etc. also influences the voter. It means that if we take a more

realistic point of view, even with the same policy platform, one candidate

can show some advantages over the other one. Cummings (1966)

analysed the data of US presidential elections from 1924 to 1964. The

result of his analyses confirms a higher chance of winning for the

incumbents of the election. Similar analyses have been completed by R.

4

Chacrabarti et al. (2005) on the Lok Sabha elections in India. In contrast to

the voters in US, they detect an anti-incumbency behaviour amongst the

voters in India. However, they could not recognise any pattern for this

behaviour which suggests that, based on the specific time and situation,

the preference of the voter regarding incumbency may change.

Meanwhile, they admit incumbency is always the important matter for

voters in India. To address the asymmetry between the candidates

theoretically in Hotelling-Downs model, Aragones and Palfrey (2002)

analysed the classical Hotelling-Down model where one of the candidates

can take advantages over the other one. They suppose that one of the

candidates loses the election unless he chooses a platform quite close to

the ideal point of the voters. The location of the median voter’s ideal point

has a specific distribution. The authors show that in this case the pure

strategy equilibria may fail to exist. They also discuss the characteristics of

the mixed strategy equilibrium point.

The other consideration about the classical Hotelling-Downs model is the

number of the policy platforms for the candidates. It is often more

reasonable to assume that the strategy space of the candidates is not

unidimensional and single peaked. In fact, the empirical results of many

studies confirm the multi-dimensional nature of real world voting

procedures. Stockes (1963) provides some empirical observation of US

elections which shows the electoral support of the candidates cannot be a

single dimensional space. Several studies have been done to extend the

strategy space of the candidates in different versions of the model. Some

prominent works in this area are Plot (1967), Davis, Groot and Hinich

(1972); Wendell and Thorson (1974) and McKelvey and Wendell (1976).

In this study I suppose that voters have strong preferences over a finite

number of policy platforms. It has been argued by Robert Dahl (1956, pp.

37-38) that in a democratic society the only compatible rule is the majority

preference. Hence, it is important that we analyse cases where there is

more than one alternative and voting procedure is the majority voting.

 Miller (1977) shows that any majority preference of the voters over finite

number of the alternatives can be represented as a direct graph called

“tournament”. Conversely, McGarrey (1953) and Stearns (1959) show that

any tournament demonstrate at least one profile of voters’ preferences.

5

 The immediate result of extending the strategy space to such a

multidimensional strategy space is a possibility of losing the Condorcet

winner1. In fact, Miller (1977) shows that if the representing tournament

of a majority preference of voters has cycles, then there would be no

Condorcet winner. He considers the a case of majority voting procedure

where the orders of the proposals are voted is also a matter. To analyse

the undominated proposals, he introduced the Condorcet set (minimal

undominated set) and discuss under which condition the sincere voting

decision belongs to this set.

In another work, Miller (1980) shows that the “uncovered sets” of the

game have more desirable characteristics and are more beneficial to be

investigated as the solution to the game.

G. Laffond and J.F. Laslier (1992) viewed use tournament graphs to study

an extension of the Hotelling-Downs model without single-peaked

preferences. They look at the two-stage model, where first two candidates

bindingly propose a policy play form and then an odd number of voters,

whose majority preferences are described by the tournament, vote for

one of the two candidates. They show that eliminating dominated

strategies of the voters in the game leads to a zero-sum game between

the two candidates. By employing the classical concepts of the zero-sum

games they analysed the Maxmin strategies of the game. They show that

the equilibrium of this so-called “Tournament Game” is unique, but will

often involve mixed strategies. In fact, in equilibrium players are always

mixing between an odd number of strategies2. A central assumption made

in the paper is that if both candidates propose the same candidate

platform, then they will have an equal chance of winning and hence the

expected payoff is zero.

This assumption is quite restrictive. Hence, by relaxing this assumption,

we can model the situation where there is an incumbent in the election. In

fact, in my model I address asymmetry among the candidates in a multi-

dimensional space. As I mentioned before, this is closer to real world

situations. Additionally, I also analyse the case when both parties have

1 In a majority voting procedure, a Condorcet winner is the candidate who wins in all the pairing against
the other candidates.
2 D. C. Fisher and J. Ryan (1992) show the same results about the equilibrium of the tournament game
separately and differently, without mentioning its relation to Hotelling-Downs model.

6

incentive/disincentive to choose the same platform. The

incentive/disincentive might have occurred by a third party or collusion. In

general, I show how the results depend on resolving the tie situation. The

classical tournament game studied by D. C. Fisher and J. Ryan (1992) is a

symmetric zero-sum game, so to be more specific I refer to it as a

symmetric zero-sum tournament game. In this study the first player

(possibly the incumbent) is called Player 1 or Candidate 1 and the other

player is Player 2 or Candidate 2. Besides, the optimal strategy for the

players is the Maxmin strategy. This study has been organized in seven

sections.

After the introduction, in Section 2.2 I provide a literature review on

generalizing the Hotelling-Downs model which has been utilised by many

researchers over the years. In Section 2.3, I present tournament game to

model the Hoteling-Downs model 𝑛-dimensional strategy space. In Section

2.4, I briefly review the main characteristics of symmetric zero-sum

tournament game which have been studied by both D. C. Fisher and J.

Ryan (1992) and G. Laffond and J.F. Laslier (1992). We see that the mixed

equilibrium point in the model is unique, also in equilibrium players are

mixing between odd number of the strategies. Adding to the previous

knowledge about the symmetric tournament game I prove that the unique

equilibrium point is also regular in the sense of Harsanyi. Later, in Section

2.5 the assumption of symmetry among the candidates is relaxed. By

employing the regularity characteristic of the equilibrium, I show that the

uniqueness of the equilibrium will be kept if the amount of the asymmetry

is negligible among the candidates.

In Section 2.5, I also analyse the behaviour of the equilibrium point under

certain large perturbations of the symmetric zero-sum tournament game,

namely “asymmetric zero-sum tournament game” and “symmetric non

zero-sum tournament game”. We can observe that under large values of

perturbation the structure of the game can be very different and the game

can have several equilibria with varying support. A symmetric equilibrium

does not have to exist. However, in Section 2.6 I provide sufficient

conditions for the uniqueness of the equilibrium in these two classes of

games. Section 2.7, investigates and analyses the equilibrium point for the

regular tournament games. I show that the incumbency in any level does

7

not affect the equilibrium point. I also calculate the value of the game for

a regular tournament game.

2.2 Literature Review on Generalization of Hoteling-Downs

Model

Despite the significant role of the Hotelling-Downs model on modern

political interpretations, over simplicity of the model is quite restrictive. In

this section I review some of the studies which have generalized the

Hoteling-Downs model with respect to asymmetry between the

candidates and dimension of the strategy space.

The asymmetric among the voters in the classical Hoteling-Downs model

has been targeted in many studies. Some of the more famous studies are

Anderson and Glomm (1991), Ingberman (1992) and E. Aragones and T. R.

Palfrey (2002).

Anderson and Glomm (1991) have considered two candidates election

where the voters care about two different features of a candidate. Firstly,

the policy they choose and secondly the non-policy factors such as

charismatic behaviour, incumbency or integrity. The non-policy features

are the factors that may cause asymmetry between the candidates and

will make one candidate gain an advantage over the other. A candidate on

the one hand likes to choose a policy platform close to the median voter’s

ideology; however he also does not want to compromise his ideal policy

because of the non-policy features. The median’s voter evaluation of the

non-policy advantages of the candidate 𝑖, is shown by 𝛼𝑖 + 𝜀𝑖 where 𝛼𝑖 is

the scale for measuring the advantages of the candidates 𝑖 and 𝜀𝑖 is the

standard normal distribution. Another function like 𝑓(|𝑥𝑖|) also measures

the evaluation of the median’s voter of the candidate’s policy platform

(𝑥𝑖). Hence, the utility of the median voter will be 𝑢(𝑥𝑖) = 𝛼𝑖 + 𝜀𝑖 −

𝑓(|𝑥𝑖|), 𝑖 = 1,2. This form of modelling gives the chance to analyse the

Nash and Stackelberg equilibrium. Hence, the authors find that there is

difference in behaviour of the candidates when they have simultaneous

move or the moves in order. In fact, if I suppose that the distribution and

the position of the median voter is common knowledge for both

candidates, the incumbent’s equilibrium strategy is much closer to his

ideal point.

8

Another work to address the asymmetric candidates in Hotelling-Downs

model is E. Aragones and T. R. Palfrey (2002) where one of the candidates

obtains advantages over another. The distribution of the median voter

ideal policy is a common knowledge for both of candidates and they can

select their strategy from the finite number of positions. In fact, they

suppose the policy space as 𝑥𝑖 =
𝑖−1

𝑛−1
, 𝑖 = 1,… , 𝑛 on the interval [0,1],

where voters have Euclidean preferences. If we call the advantaged

candidate by Candidate A (with committed strategy 𝑥𝐴) and the

disadvantaged one by Candidate D (with committed strategy 𝑥𝐷) then a

voter with strategy preference 𝑥𝑖 , has the utility if Candidate A wins

𝑈𝑖(𝑥𝐴) = 𝛿 − |𝑥𝑖 − 𝑥𝐴| and 𝑈𝑖(𝑥𝐷) = −|𝑥𝑖 − 𝑥𝐷| where 𝛿 > 0. The model

is equivalent to the classical Hotelling-Downs model if 𝛿 = 0. It means that

𝛿 determines the advantage of Candidate A over the other Candidate. In

first step, the authors show that there is no pure strategy for the

candidates in this game, and they always mix between their strategies.

Later, they analyse the model for a small value of 𝛿 (0 < 𝛿 <
1

𝑛−1
) and

large one. They discover that the behaviour of the candidates are different

for small and large value of 𝛿. In fact, for small value of 𝛿, Candidate A

wins if and only if his ideal policy and the ideal point are as close as

Candidate D’s policy and ideal point. This is not a case for large value of 𝛿.

Hence, the equilibrium is different in these cases. They also show that the

solution depends on the even or odd number of the strategies and the

advantaged candidates has always higher expected payoff. However for

very large number of strategies his advantage shrinks to zero.

The other important issue analysed in many studies is the number of

strategies. The assumption of a one dimensional strategy space is far from

the reality. However, multi-dimensional strategy space gives rise to a

number of new issues such as preferences of the individuals in a group or

combination of strategies, ordering the preferences over the strategies,

complexity of strategy space etc. I should also mention the possibility of

the non-existence of a Condorcet winner, which is known as Condorcet’s

voting paradox.

To address the multidimensional strategy space, O. A. Davis, M. H.

GoorDeGroot and M. J. Hinich (1972) considered the each alternative of

the voters as a point in Euclidean space. It means that a point like

9

𝑥́ = (𝑥1, 𝑥2, … , 𝑥𝑛) represents a possible alternative. Each individual in

the society has the same set of dimension of choice and locate the

alternatives in the Euclidean space similarly. The space of all alternatives is

called 𝐸𝑛. They suppose that each individual has a preferred point like 𝑥,

hence his utility over all the other strategies is defined as follow

𝑢𝑖(‖𝑦 − 𝑥‖) = ‖𝑦 − 𝑥‖2 = (𝑥 − 𝑦)′(𝑥 − 𝑦).

By defining above utility function, they also define the preference relation

over the strategies. By their definition alternative 𝑦 is preferred to 𝑧 (𝑦𝑅𝑧)

if Pr(‖𝑦 − 𝑋‖ ≤ ‖𝑧 − 𝑋‖) ≥ 1/2. In fact, 𝑦 is preferred to 𝑧 if and only if

at least half of the population prefers 𝑦 to 𝑧.

This relation alone is not transitive; however the authors provide the

necessary and sufficient condition to define a transitive relation over 𝐸𝑛

by 𝑅. This transitive relation can completely orders the point in 𝐸𝑛.

Besides, the same necessary and sufficient condition for the transitive

relation can be employed to show the existence of the Condorcet point.

In another work, R. E. Wendell and S. J. Thorson (1974) consider the point

𝑥𝑖́ = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑛) as the position of each voter regarding the different

strategies. By knowing the most preferred location of each voter they

define a loss function for all the other positions. The loss function can

define some indifferent contours3 for each voter which are equivalent to

the concept of Norm functions4. By this mean, it is proved that if all the

voters use the same norm then the equilibrium point is the position of the

multidimensional median.

Miller (1977) discusses the majority voting procedure among 𝑚 > 1

number of proposals where voting procedure may depend on the order in

which the proposals are voted on. First of all, he argues that the majority

preference of the voters can be shown in a directed graph name

“tournament”. Later, by analyse the possible availability of paths and

cycles between the vertices, he investigates the possibility of a Condorcet

winner in his model. He shows that when there is no undominated

strategy then there will be a cycle between the vertices. That means when

3 A indifferent curve is a curve showing different bundle of strategies which the voter is indifferent.
4 The function ‖. ‖ ∶ 𝑅𝑛 ⟶ 𝑅 is the Norm function if it satisfies following conditions for each 𝑥 ∈ 𝑅𝑛

1) ‖𝑥‖ ≥ 0. 2) ‖𝑥‖ = 0 𝑖𝑓𝑓 𝑥 = 0. 3) ‖𝛼𝑥‖ = 𝛼‖𝑥‖; 𝛼 > 0. 4) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖. 5)
‖−𝑥‖ = −‖𝑥‖.

10

there is no undominated strategy there will be also no Condorcet winner.

Hence, he introduces the concept of minimal undominated set (Condorcet

set). Condorcet set includes all the vertices which are not dominated by

any other vertices; also any subset of this set has the same characteristics.

The author shows that for his model represented by a tournament the

Condorcet set exists and is unique. Hence, he also investigates the main

characteristics of this set and shows that many binary majority voting

processes can end up with a strategy selected in Condorcet set. However,

despite being handy to analyse the majority voting systems, Condorcet set

can be very large (possibly even equal to the set of the whole strategies)

and it may include the Pareto-inefficient5 points. So, later Miller in his

other work in 1980 introduces another possible solution for his model

named “uncovered set”. The uncovered set is the set of all the vertices

from which every other vertex is reachable with the path with no more

than two vertices length. Miller (1980) shows that the uncovered set

always exists and it is smaller than Condorcet set, however it includes all

the Pareto-efficient points.

G. Laffond and J.F. Laslier (1992) are the first to use the tournaments to

extend the Hotelling-Downs model to the set of the preferences which are

not single peaked. Using weakly dominated strategies (and assuming that

each candidate is elected with equal probability if they both propose the

same policy) they reduce the model to a zero-sum game defined by a

tournament graph. Hence, Maxmin strategies (see Neumann and

Morgenstern (1944)) can be considered as the optimal solution of the

game. They show that while the value of the game is zero, the optimal

solution of the game is zero. The authors also investigate more

characteristics of the optimal solution and show that in equilibrium

candidates always mix between odd number of the strategies. This form of

analysing seems to be more practical and inclusive rather than all the

previous results. However it is still far from the reality as the main

assumption of the model is symmetry among the candidates.

They are some studies like McKelvey and Ordeshook (1985) and

Ansolabehere and Snyder (2000) which are capturing both

5 Pareto-efficient is the state where it is impossible to increase the payoff of one player without
decreasing the payoff another player.

11

multidimensional nature of the strategy space and asymmetry among the

candidates, however there is no previous study to model the election with

binary preferences over strategies with asymmetric candidates. In this

study, I consider the model introduced first by G. Laffond and J.F. Laslier

(1992) and relax the assumption of symmetry between the candidates.

2.3 The Model

Tournament game is introduced and analysed by D. C. Fisher and J. Ryan

(1992) and G. Laffond and J.F. Laslier (1992). In this section I show and

explain how these games can generalize the Hoteling-Downs model to the

n-dimensional strategy space.

2.3.1 The Relation between Tournament Games and Multi-

Dimensional Hotelling-Downs Model

In this section I describe the relationship between the Hotelling-Downs

model of two-candidate elections, where voters can have arbitrary strict

preferences over finitely many policy platforms, and certain matrix games

that I will call them in general, tournament matrix games.

This extended Hotelling-Downs model is a game in extensive form whose

players are the two candidates, Candidate 1 and Candidate 2, and an odd

number of voters.

There are finite numbers of policy platforms (𝑛 > 1). Voters have strict

preferences over the 𝑛 policy platforms, i.e. a voter is never indifferent

between any two of them. The candidates are assumed to be

opportunistic, i.e. a candidate gets utility +1 if he wins the election and -1

if he loses it. The timing is as follows: In the first stage each of the two

candidates chooses simultaneously and independently a policy platform.

The voters observe these choices and then each voter simultaneously and

independently votes for one of the two candidates. No voter can abstain.

Because the number of voters is odd, exactly one candidate will win the

election by a simple majority rule. This candidate gets payoff +1, the other

loses the election and gets payoff -1. The policy selected by the winner is

implemented and this determines the utility of the voters.

12

 It is easy to see that a strategy of a voter is undominated if and only if for

any pair of distinct policy platforms offered by the two candidates the

voter votes for the candidate who adopted his preferred among the two

platforms. Suppose the two candidates select different policies and the

voters use only undominated strategies. Then that candidate wins the

election whose chosen policy is preferred by a majority of voters.

Which policy 𝑖 wins in a simple majority vote over which policy 𝑗 is usually

summarized by a directed graph 𝑇 called a “tournament” in the literature

(see Miller (1977)). This graph has 𝑛 vertices. There is an arc from node 𝑖

to node 𝑗 if a majority of voters prefer policy platform 𝑖 over policy

platform 𝑗. I use 𝑖 → 𝑗 to show that strategy 𝑖 dominates strategy

𝑗 (similar notation to Miller (1977)). Alternatively, one can work with the

associated 𝑛 × 𝑛 matrix 𝐾(𝑇) = (𝑘𝑖𝑗)𝑛×𝑛 defined as follows. The matrix

has zeroes on the main diagonal. It has entry +1 in row 𝑖 and column 𝑗 if a

majority of voters strictly prefer alternative 𝑖 over 𝑗 and entry -1 if it is

the other way around. I call 𝐾(𝑇) the tournament matrix associated with

the voter’s preferences. Example 2.2 shows a simple example of a

tournament and the matrix game of a symmetric zero-sum tournament

game.

It is easy to see that in a perfect equilibrium of the game no voter will use

a dominated strategy (see Selten (1973)). If both candidates offer the

same policy platform, all voters are indifferent between the two

candidates and hence every possible voting profile is optimal. Clearly, for

any probability 0 < 𝛼 < 1 there is a voting pattern such that the first

candidate wins with probability 𝛼. I hence have the following result.

Theorem 2.1. Consider a Hotelling-Downs model with arbitrary

preferences of the voters over the finitely many policy platforms. Let 𝑲 be

the tournament matrix determined by the voters’ preferences. Hence, for

every perfect equilibrium of this game there exists a diagonal matrix 𝑫

with entries not exceeding 1 in absolute value such that the strategies of

the candidates in the equilibrium form a Nash equilibrium of the matrix

game 𝑲+𝑫. Conversely, let 𝑫 be any diagonal matrix whose entries do

not exceed 1 in absolute value. Then every Nash equilibrium of the matrix

game 𝑲+𝑫 can be extended to a perfect equilibrium of the Hotelling-

Downs model.

13

I call a matrix game 𝑀 = 𝐾 + 𝐷 with 𝐷 as described a general tournament

matrix game. The papers Fisher and Ryan (1992) and Laffond et al. (1993)

consider the special tournament matrix games where the matrix 𝐷 is zero.

I often refer to the matrix game 𝐾 as a symmetric zero-sum tournament

game. This corresponds to the case where each voter votes for each

candidate with equal probability when both candidates chose the same

platform. In Section 2.4 I describe briefly the results of these papers.

2.3.2 Symmetric zero-sum tournament games

“Paper, Scissor and Stone” is the simplest form of a symmetric zero-sum

tournament game where the player has three different strategies. The

rules of the game can be shown with a graph (Figure 2.1) or a matrix game

(Table 2.2). In this game two players simultaneously and independently

choose a strategy among the three. If both choose the same strategy then

the game has been tied otherwise scissor beats paper, paper will beat

stone and stone beats scissor. The situation can be shown with a graph as

follows

Example 2. 2.6

Figure 2. 1. The Graph representing “Scissor, Paper,
Stone game”

[
0
−1
1

1
0
−1

−1
1
0
]

Table 2. 2. Matrix game of “Scissor, Paper, Stone game”

As we can see in this game there is a cycle between strategy preferences

of the players. Hence, there is no undominated point which means that

there is no Condorcet winner. However, if a player mixes between his

strategies with probability of
1

3
, then he would assure himself the expected

pay off of zero. In fact, this payoff is the maximal value he can assure

6 In general by Miller (1977)’s results we know that there is always a profile of voters that yield the tournament

graph. However, for certain graphs we may need a certain minimum number of voters (or a specific number of

voters). In this example, we need at least three voters to yield the graph.

Stone

Scissor Paper

Scissor

Paper

Stone

Scissor Paper Stone

14

himself. Hence, {
1

3
,
1

3
,
1

3
} is Maxmin strategy for the player. Maxmin

strategies are also called optimal strategies for the player.

In Example 2.2 the alternatives can present possible real world

alternatives for candidates. For example, scissor can represent “Lower

taxation”, paper “Free education” and stone “improve infrastructure”.

Empirical examples of the cycling preferences over alternatives and

Condorcet paradox has been detected in real world situations through

different studies. One example is the work by Kurrild-Klitgard (2001) about

a poll of Danish voters preferred prime minister in 1994. In this study, by

paired wise comparison between three candidates the author shows that

voters have a cycling preference over candidates.

Example 2.37 provides another example of a symmetric zero-sum

tournament game, which has six strategies. Similarly, to the “Paper,

Scissor and Stone” in this game there is no Condorcet winner. The optimal

mixed strategies for both players are {0,
1

3
,
1

9
,
1

9
,
1

9
,
1

3
}.

Example 2.3.

Figure 2. 3. A Tournament graph with six vertices
representing a symmetric zero-sum tournament game
with 6 strategies.

K=

[

0
−1
1
1
1
−1

1
0
−1
−1
−1
1

−1
1
0
−1
1
−1

−1
1
1
0
−1
−1

−1
1
−1
1
0
−1

1
−1
1
1
1
0]

Table 2. 4. A matrix game of the graph in Figure 2.3,
representing the same symmetric zero-sum tournament
game of Figure 2.3.

 We can find the cycle in this example where 6 → 2 → 3 → 4 → 5 → 1 →

6. This means that there is no undominated strategy and therefore there

is no Condorcet winner in the game. Besides, As we see in the “Paper,

Scissor and Stone game” and Example 2.3; 𝐾(𝑇) is always a skew-

symmetric matrix. It means that −𝐾 = 𝐾𝑇. To analyse the tournament

games more precisely I provide following definitions.

7 This example has been also analysed in D. C. Fisher and J. Ryan (1992).

1

3

2

4

5

6

15

Definition 2. 4. Let 𝑃 = (𝑝1, … , 𝑝𝑛) be a mixed strategy for a tournament

game with 𝑛 strategies. Strategy 𝑖 is the support of 𝑃 if 𝑝𝑖 > 0. 𝑃 is called

a full support mixed strategy if each 𝑝𝑖 is strictly positive.

Definition 2. 5. Let 𝑷 = (𝒑𝟏, … , 𝒑𝒏) be an optimal strategy for a

tournament game with 𝒏 strategies. Strategy 𝒊 is called a “bad quality”

strategy if 𝒑𝒊 = 𝟎, (see Laffond and Laslier (1993), pp. 187).

Hence, by Definition 2.5 Strategy 1 in Example 2.3 is bad quality strategy.

We can observe easily that in Example 2.3 in the equilibrium, for a bad

quality strategy the probability of winning is less than probability of losing,

while for all the other strategies they are equal. This is the reason why

both players play the bad quality strategy with zero probability.

In this extension of Hoteling-Down model there is no single peak

preferences over the voters. The variety of voter’s options makes the

strategy space of each party multi-dimensional. For example, in Scissor,

Paper and Stone game we see that there is no single preferred strategy

but there is a cyclic preference over all the strategies. As the “tournament

game” is symmetric and zero sum, to be more accurate we can refer to it

as a “symmetric zero-sum tournament game”.

2.4 Main Characteristics of the Model

2.4.1. The Value and Optimal Strategy of Symmetric zero-sum

Tournament game

D. C. Fisher and J. Ryan (1992) and G. Laffond and J.F. Laslier (1993) in two

separate works, discuss the value and optimal strategies of the symmetric

zero-sum tournament games. Here, I provide the brief review of the main

theorems and characteristics of the symmetric zero-sum tournament

game analysed in both papers.

 In a symmetric zero-sum tournament, 𝑇, with 𝑛 different strategies for

both players, if Player 1 plays a mixed strategy 𝑃 and Player 2 responds

with strategy 𝑖 (node 𝑖) then the expected payoff is ((𝐾(𝑇)𝑃)𝑖 . In a

maxmin strategy Player 2 wants to select a strategy to minimize Player 1’s

payoff (as it is a zero-sum game this will increase her payoff). On the other

hand, player 1 wants to maximize his own payoff as well. Hence, if 𝑣

16

denotes the value of the game then 𝑃 is the optimal strategy of the game

if it satisfies the following system.

𝑣 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝐾(𝑇)𝑃 𝑖) , 𝑃 ≥ 0, 1𝑇𝑃 = 1; 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛).

(2.4.1.1)

We know that in a symmetric zero sum game the value is always zero,

hence in the system (2.4.1.1), 𝑣 = 0. As a result, the system (2.4.1.1) can

be simplified to

{
𝐾(𝑇)𝑃 ≥ 0,
𝑃 ≥ 0,

1𝑇𝑃 = 1.

 (2.4.1.2)

Lemma 2. 6. Let 𝒑 and 𝒒 be optimal strategies for a symmetric zero-sum

tournament game on a tournament, T; then 𝒒𝒊 > 𝟎 implies (𝑲(𝑻)𝒑)𝒊 =

𝟎. (See Fisher and Ryan (1993)).

By Lemma 2.6 we can conclude that in a symmetric zero-sum tournament

game for an optimal strategy all the nodes will be selected from those that

make the other player expected payoff zero.

Definition 2. 7. A subtournament game8, 𝑻́, is positive if the optimal
strategy is full support.

Following theorems and corollary show that in a symmetric zero-sum

tournament games the optimal strategy of the players is unique.

Theorem 2. 8. Let 𝑻 be a symmetric zero-sum tournament on 𝒏 nodes,
Then

𝑅𝑎𝑛𝑘(𝐾(𝑇)) = {
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

Corollary 2. 9. In a positive symmetric zero-sum tournament game, in

equilibrium players are mixing between odd number of strategies.

Proof:

𝐾(𝑇)𝑃 = 0 has a nonzero solution only if 𝑅𝑎𝑛𝑘(𝐾(𝑇)) < 𝑛. So

𝑅𝑎𝑛𝑘(𝐾(𝑇)) is equal to 𝑛-1, and as a result 𝑛 is odd.

8 The tournament game 𝑇́ is the sub tournament game of the tournament game 𝑇, if the graph of

tournament game 𝑇́ is the subgraph of the graph of tournament game 𝑇.

17

Theorem 2. 10. The symmetric zero-sum tournament game on n nodes

has a unique optimal strategy, p, such that 𝒑𝒊 > 𝟎 on a positive

subtournament (which must have an odd number of nodes).

Proof:

Let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛)
𝑇 and 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛)

𝑇be two solutions to (1.2).

Let S be the subtournament of 𝑇 on those nodes where either 𝑝𝑖 > 0 or

𝑞𝑖 > 0 (or both). Since both p and q are solutions to (1.2), by lemma 1.2.1

we can conclude that 𝐾(𝑆)𝑝𝑆 = 𝐾(𝑆)𝑞𝑆 = 0 since 𝑝𝑆 ≠ 0 then by

theorem 1.2.3 we know that the null space of K(S) has dimension at most

one, ∃𝛼 ∈ ℝ; 𝑝𝑆 = 𝛼𝑞𝑆 . Since 1𝑇𝑝𝑆 = 1
𝑇𝑞𝑆 = 1, 𝑝𝑆 = 𝑞𝑆 and hence p=q.

We know that 𝐾(𝑆)𝑝𝑆 = 0 and 𝑝𝑆 > 0, hence S is a positive

tournament,∎.

As the game is symmetric when one strategy is a bad quality strategy for

one player, it will suppose bad quality strategy for other player as well.

Hence, both players can delete that strategy from their set of strategies.

The tournament game can be reduced to a sub tournament game where

all the strategies are playing with positive probabilities.

2.4.2. Regular Equilibrium in the Symmetric zero-sum Tournament Game

In this section, I show that the unique equilibrium point in symmetric zero-

sum tournament game is regular in the sense of Harsanyi (1973). (For

more explanation about regular equilibrium see Appendix A.4)

Definition 2. 11. Let 𝑮 be a matrix game of a two player zero-sum game,

where 𝑮𝒏×𝒏 = [

𝒂𝟏
⋮
𝒂𝒏
] ; then 𝑪𝒏×𝒏 = [

(𝟏,… , 𝟏)
𝒂𝟐 − 𝒂𝟏

⋮
𝒂𝒏 − 𝒂𝟏

] is called the computational

matrix of the matrix game 𝑮.

Definition 2. 12. Let 𝑮 be a matrix game of a two player zero-sum game,

where 𝑪 is its related computational matrix; then 𝑪𝒏×𝒏𝑷 = [

𝟏
𝟎
⋮
𝟎

]

𝒏×𝟏

, 𝑷 ≥ 𝟎

is called computational system.

18

Theorem 2. 13. For a positive symmetric zero-sum tournament game, T,

with 𝒏 strategies, computational matrix of the matrix game has full rank.

Proof:

We know that for a positive symmetric zero-sum tournament game , T,

the equilibrium is unique. I denote this unique optimal solution by

𝑃 = (𝑝1, … , 𝑝𝑛); where 𝑝𝑖 > 0. I also denote the matrix game of the game

by 𝐾 = [

𝑆1
𝑆2
⋮
𝑆𝑛

] and its related computational matrix by 𝐶. As 𝑃 is the

maxmin strategy, hence it should satisfy following system

{

𝑀𝑎𝑥 𝑣
∑ −𝐾𝑃𝑇𝑛
𝑖=1 ≥ 𝑣,

∑ 𝑝𝑖 = 1,𝑛
𝑖=1

𝑝𝑖 ≥ 0.

 (2.4.2.1)

where 𝑣 is the value of the game. As the value of the game is equal to

zero, and 𝑃 is the only equilibrium, hence we have

𝑆𝑖𝑃 = 0, 𝑖 = 1. . 𝑛; ∑𝑝𝑖 = 1; 𝑝𝑖 > 0 ;

𝑛

𝑖=1

(See Appendix A.3, for full description on how to find the Maxmin

strategies for a zero-sum games).

Hence, 𝑃 satisfy following system 𝐶𝑃𝑇 = [

1
0
⋮
0

] , 𝑃 > 0; which is the

computational system for matrix game 𝐾. Hence, 𝐶 is invertible and has

full rank.∎

Theorem 2. 14. The equilibrium point in the positive symmetric zero-sum
tournament game is regular.

Proof:

Assume a positive symmetric zero-sum tournament game with set of pure

strategies for Player 1 and Player 2 as 𝑆 = {𝑠1, … , 𝑠𝑛}; where 𝐾 =

19

(𝑘𝑖𝑗)𝑛×𝑛 is the game matrix for Player 1. Hence, 𝐾𝑇 is the game matrix for

Player 2. We also know that, 𝐾𝑇 = −𝐾.

𝑝 = (𝑝1, … , 𝑝𝑛), 𝑞 = (𝑞1, … , 𝑞𝑛) are mixed strategy vectors, and the Nash

equilibrium point is 𝑃 = (𝑝, 𝑞). Hence, the utility functions are

𝑢1(𝑝, 𝑞) = 𝑝𝐾𝑞
𝑇 = ∑ 𝑝𝑖𝐾𝑖𝑗𝑞𝑗𝑖,𝑗 and 𝑢2(𝑝, 𝑞) = 𝑝𝐾𝑇𝑞𝑇 = ∑ −𝑖,𝑗 𝑝𝑖𝐾𝑖𝑗𝑞𝑗 .

We know that the set of Nash equilibrium points is not empty. We define

𝐹1
(1)
, 𝐹2

(1)
, … , 𝐹𝑛

(1)
 and 𝐹1

(2)
, 𝐹2

(2)
, … , 𝐹𝑛

(2)
 as follows

 𝐹1
(1)
= ∑ 𝑝𝑖 − 1

𝑛
𝑖=1 , 𝐹1

(2)
= ∑ 𝑞𝑖 − 1

𝑛
𝑖=1 ,

𝐹𝑖
(1) = [𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞)] × 𝑝𝑖 = [∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡

𝑛
𝑡=1] × 𝑝𝑖;

𝑖 = 2,… , 𝑛.

𝐹𝑗
(2) = [𝑢2(𝑠1, 𝑝) − 𝑢2(𝑠𝑗 , 𝑝)] × 𝑞𝑗 = [∑ ((−𝑘1𝑡) − (−𝑘𝑗𝑡))𝑝𝑡

𝑛
𝑡=1] × 𝑞𝑗;

𝑗 = 2,… , 𝑛.

In an equilibrium, all 𝐹𝑖
(1)

 and 𝐹𝑗
(2)

 are equal to zero. Because, if 𝑠𝑖 (𝑖 ≠ 1)

is another strategy in the equilibrium, then 𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞) (or

similarly [𝑢2(𝑝, 𝑠1) − 𝑢2(𝑝, 𝑠𝑖)]) is equal to zero. Otherwise, 𝑝𝑖 (or

similarly 𝑞𝑗) is equal to zero.

We define 𝐹(𝑝, 𝑞) =

[

 𝐹1

(1)(𝑝, 𝑞)

𝐹2
(1)
(𝑝, 𝑞)
⋮

𝐹𝑛
(1)(𝑝, 𝑞)

𝐹1
(2)(𝑝, 𝑞)
⋮

𝐹𝑛
(2)(𝑝, 𝑞)]

 ; hence we have

20

𝑑𝐹

𝑑𝑃
=

[

𝑑𝐹1

(1)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(1)

𝑑𝑝1

𝑑𝐹1
(2)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(2)

𝑑𝑝𝑛

𝑑𝐹1

(1)

𝑑𝑝2

⋮

…𝑑𝐹1
(1)

𝑑𝑝𝑛

…

𝑑𝐹1

(1)

𝑑𝑞1
⋯𝑑𝐹1

(1)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(1)

𝑑𝑞𝑛

𝑑𝐹1
(2)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(2)

𝑑𝑞𝑛]

(2𝑛)×(2𝑛)

We should show that
𝑑𝐹

𝑑𝑃
≠ 0.

We know that
𝑑𝐹1

(1)

𝑑𝑝𝑖
= 1,

𝑑𝐹1
(1)

𝑑𝑞𝑖
= 0. Similarly, we have

𝑑𝐹1
(2)

𝑑𝑝𝑖
= 0,

𝑑𝐹1
(2)

𝑑𝑞𝑖
= 1.

For 𝑖 > 1 we have

𝑑𝐹𝑖
(1)

𝑑𝑝𝑗
= {

∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.

𝑑𝐹𝑖
(1)

𝑑𝑞𝑗
=(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑝𝑖 .

𝑑𝐹𝑖

(2)

𝑑𝑝𝑗
= −(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑞𝑖 .

𝑑𝐹𝑖
(2)

𝑑𝑞𝑗
= {

∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.

Hence, by some elementary operations in
𝑑𝐹

𝑑𝑃
 , we can see that the rank of

the matrix
𝑑𝐹

𝑑𝑃
 is equal to the rank of 𝐹̿ = [

0
𝐶2

𝐶1
0
]
(2𝑛)×(2𝑛)

, where 𝐶1 and 𝐶2

are computational matrix of Player 1 and Player 2, (Calculations are shown

in Appendix A.4). By Theorem 2.13 we know that 𝐶1 and 𝐶2 have full rank,

hence 𝐹̅ has full rank as well and the equilibrium is regular in the sense of

Harsanyi,∎.

21

Theorem 2. 15. In a symmetric zero-sum tournament game with the set of

strategies {𝒔𝟏, 𝒔𝟐, … , 𝒔𝒏} and the matrix game 𝑲 = [
𝑺𝟏
⋮
𝑺𝒏

], if (𝑷,𝑷)

(𝑷 = (𝒑𝟏, 𝒑𝟐, … , 𝒑𝒏)) is an equilibrium point, then for all the 𝒑𝒊 = 𝟎 we
have 𝑺𝒊𝑷 < 𝟎.

Proof:

Assume that 𝐾̅𝑚×𝑚 ,𝑚 < 𝑛 is the largest positive subtournament of 𝐾.

Hence, as 𝐾̅ is a game matrix of a positive subtournament, then 𝑚 is odd.

If 𝑃̅ = (𝑝1̅̅ ̅, 𝑝2̅̅ ̅, … , 𝑝𝑚̅̅ ̅̅) is the optimal strategy then we have 𝑆̅𝑖𝑃̅
𝑇 = 0. If

we add any bad quality strategy to 𝐾̅ (we call the new game matrix

𝐾̿) then optimal strategy is 𝑃̿ = (𝑝1̅̅ ̅, 𝑝2̅̅ ̅, … , 𝑝𝑚̅̅ ̅̅ , 𝑝𝑚+1̅̅ ̅̅ ̅̅ ̅) where 𝑝̅𝑚+1 = 0. If

we assume that 𝑆𝑚+1𝑃̿ = 0, as a result we have 𝐾̿𝑃̿ = 0. 𝐾̿ is a (𝑚 + 1)

by (𝑚 + 1) matrix where (𝑚 + 1) is even. So, by Theorem 1.2.5 𝐾̿ has full

rank, as a result 𝑃̿ = 0, which is contradiction. Hence, 𝑆𝑖𝑃̿ < 0. ∎

Corollary 2. 16. The equilibrium point in any symmetric zero-sum
tournament game is regular.

Proof:

Let 𝑇́ be the largest positive subtournament of 𝑇 where 𝐾 and 𝐾́ are the

matrix game of the tournaments 𝑇 and 𝑇́, respectively. By Theorem 2.14

we know that the equilibrium in 𝑇́ is regular and therefore, it will remain

unique under small perturbation. On the other hand, by Theorem 2.14 we

know that the expected pay off of a “bad quality” strategy of 𝐾 is strictly

negative. Hence, by small changes in the matrix game it will remain

negative. So, we can conclude that the equilibrium point in the symmetric

zero-sum tournament game is robust under small perturbations, ∎.

Corollary 2. 17. The equilibrium point of the symmetric zero-sum

tournament game is robust under small perturbations.

Proof:

By Corollary 2. 15, we know that a symmetric zero-sum tournament game

is regular. Hence it would be robust under small perturbations, ∎.

22

2.5 Generalized Hoteling-Downs model with Asymmetric

Candidates

In previous sections, I reviewed the main characteristics of the symmetric

zero-sum games. I also, provide some theorems and explanations that

how this game can be considered as the generalization of Hotelling-Downs

model, when the strategy space of the candidates is not single-peaked.

In this section, I make a perturbation on the main diagonal of the matrix

game of the symmetric zero-sum tournament game. By this method, I

extend the symmetric zero-sum tournament game to symmetric non zero-

sum tournament game and asymmetric zero-sum tournament game

(tournament game with incumbent). In this new version of the

tournament games the tie situation has been resolved; and it can model

different political situations.

Definition 2. 18. Let 𝑻 be a symmetric zero-sum tournament game with

matrix game 𝑲. The game with matrix game 𝑲̅ = 𝑲 + 𝜶𝑰 for the first

player and 𝑲̅ = 𝑲𝑻 + 𝜶𝑰 for second player is called symmetric non zero-

sum tournament game; where 𝑰 is the identity matrix.

Definition 2. 19. Let 𝑻 be a symmetric zero-sum tournament game with

matrix game 𝑲. The zero-sum game with matrix game 𝑴 = 𝑲 +𝜶𝑰 is

called asymmetric zero-sum tournament (tournament game with

incumbent); where 𝑰 is the identity matrix.

Theorem 2. 20. Let 𝑻 be a symmetric zero-sum tournament game with

matrix game 𝑲. The equilibrium point of both symmetric non zero-sum

tournament game and asymmetric zero-sum tournament games

associated to the game matrix 𝑲 are unique for all 𝟎 < 𝜶 < 𝟏 and 𝒏 < 𝟕.

Proof:

I designed a computer algorithm with Maple which tests the uniqueness

of the equilibrium point of all the symmetric non zero-sum and

asymmetric zero-sum tournament games where −1 < 𝛼 < 1 and 𝑛 ≤ 7,

See Appendix A.5 for the Maple code. The computer program did not find

any multiple equilibria.

23

2.5.1 Symmetric non zero-sum Tournament Game

Symmetric non zero-sum tournament game, describes the situation where

by selecting the same strategy both players have the same payoff which is

not zero. In reality, it may happen when in a tie situation both players try

to collaborate to increase/decrease their payoff. It means that this model

can capture the cases when there is collusion between the parties, and

they intentionally choose the same platform. The incentive for avoiding

the tie situation can also be created by an external party. The results in

Section 2.4.2 guarantee that if the amount of the perturbation is small

enough, the equilibrium point is unique. However, by some examples I

demonstrate that under large perturbations the structure of the game

varies considerably and the equilibrium point is not necessary unique.

Example 2. 21.

Suppose the matrix game of a symmetric zero sum tournament game as

follow

𝐾 =

[

0
−1
−1
1
1
1
−1
1

1
0
−1
−1
1
−1
−1
−1

1
1
0
−1
−1
−1
1
−1

−1
1
1
0
1
1
−1
1

−1
−1
1
−1
0
−1
1
1

−1
1
1
−1
1
0
−1
−1

1
1
−1
1
−1
1
0
−1

−1
1
1
−1
−1
1
1
0]

 . We can easily calculate that the optimal

strategy is (
1

9
,
1

9
, 0,0,

1

3
,
1

9
,
1

3
, 0) for both players.

We define a symmetric non zero-sum tournament game by following

matrices, 𝐾̅1 = 𝐾 + 𝛼𝐼 and 𝐾̅2 = 𝐾
𝑇 + 𝛼𝐼, where 𝐼 is the identity matrix

and 𝛼 ≠ 0. 𝐾̅1 is the game matrix for the first player and 𝐾̅2 is the game

matrix for second one. In this game, the equilibrium is unique when

0 < 𝛼 < 0.27789. In this example both players have 8 strategies. As I

explained in Theorem 2.24, there is no such this example for the games

with less than 8 strategies.

9 𝛼 has been calculated by employing Gambit 13 to test different games.

24

2.5.2 Asymmetric zero-sum Tournament Game

In this section, we resolve the tie situation by considering a higher chance

of winning for the first player in selecting the same strategy. In this case,

the main diagonal of game matrix of symmetric zero-sum tournament

game changes to a strictly non negative number like 𝛼. The game is still a

zero-sum game; however it is not symmetric any more. We can also call

the asymmetric zero-sum tournament game, the tournament game with

incumbent. As it can describe the political situations where there is an

incumbent who has been in power previously. The effect of the

incumbency has been analysed by many studies. M. C. Cummings (1966)

analysed the data of US presidential elections from 1924 to 1964. His

analyse showed that in those elections the incumbent has more chances

to keep the power compared to the challenging party. In contrast, in some

societies voters may like to change the party who is in power for a long

time. R. Chacrabarti et al. (2005) study about the Sabha elections in India

show the anti-incumbency behaviour among the voters. In both cases, one

of the parties will have more chances to win when they both have chosen

the same platform. The following example demonstrates a tournament

game with incumbent. In this example, we have calculated the range of

the possible positive amount of changes for 𝛼 which keep the equilibrium

unique.

Example 2. 22.

If we consider the matrix game of the symmetric zero-sum tournament

game as 𝐾 =

[

0
−1
−1
−1
1
1
−1

1
0
−1
−1
1
−1
1

1
1
0
1
1
1
1

1
1
−1
0
−1
−1
1

−1
−1
−1
1
0
1
1

−1
1
−1
1
−1
0
−1

1
−1
−1
−1
−1
1
0]

, then the equilibrium is unique when

0 < 𝛼 < 1.
If 𝛼 = 1, the game has two equilibrium points as follow,

𝑃1 = {(
1

5
,
1

5
, 0,0,0,

2

5
,
1

5
) , (

1

5
,
1

5
, 0,

1

5
,
1

5
,
1

5
, 0)} and

𝑃2 = {(
1

5
,
1

5
, 0,

1

10
,
1

10
,
3

10
,
1

10
) , (

1

5
,
1

5
, 0,

1

5
,
1

5
,
1

5
, 0)}.

25

As we see, in both equilibrium points Player 1 is mixing between even

number of strategies; which is in contrast to the previous results in

symmetric zero-sum tournament games. Beside, as we can observe in

equilibrium point 𝑃1, not necessarily both players have the same bad

quality strategies.10

Remark 2.23. The fact that in symmetric zero-sum tournament game

players mix between odd number of strategies (Colloraly 2.9) coming

from the fact that the game matrix of a symmetric zero-sum tournament

game has full rank just when number of strategies 𝑛 are even (Theorem

1.2.5) and otherwise rank 𝑛 − 1. In the latter case the system 𝐾𝑝 = 0,

may have a nontrivial solution and hence an equilibrium. In the case of an

asymmetric zero-sum tournament game and symmetric non zero-sum

tournament game we show (Theorem 2.25) that the game matrix always

has full rank. Hence the support of the equilibrium may vary to have an

odd or even number of positive probabilities.

2.6 Sufficient Condition for Uniqueness of the Equilibrium

 As we observed in the Example 2.21 and Example 2.22 of the previous

section, the equilibrium point of the symmetric non zer-sum tournament

game and asymmetric zero-sum tournament game is not necessarily

unique. However, in this section we provide sufficient condition for

uniqueness of the equilibrium in both of the mentioned tournament

games.

Theorem 2. 23. If 𝑲 is the game matrix of symmetric zero sum tournament

game then all the eigenvalues of 𝑲 are purely imaginary (Hoffman (1971)).

Proof:

We know that for the symmetric zero sum tournament game 𝐾𝑇 = −𝐾.

Hence, we have

𝐾𝑣 = 𝜆𝑣 ⇒ 𝐾𝑣̅̅ ̅̅ = 𝜆𝑣̅̅ ̅ ⇒ 𝐾𝑣̅ = 𝜆̅𝑣̅ , as the elements of 𝐾 are real.

10 𝑃1 and 𝑃2 have been calculated by “enumerating extreme points” method in Gambit 13. As the game is a

zero-sum game, 𝑃1 and 𝑃2 are the extreme points of a convex set of equilibrium points.

26

(𝐾𝑣)̅̅ ̅̅ 𝑇𝑣 = (𝜆̅𝑣̅)
𝑇
 𝑣 ⇒ (𝑣̅)𝑇𝐾𝑇𝑣 = 𝜆̅ (𝑣̅)𝑇 𝑣 ⇒ (𝑣̅)𝑇(−𝐾) 𝑣 =

𝜆̅ (𝑣̅)𝑇 𝑣 ⇒ (𝑣̅)𝑇(−𝜆) 𝑣 = 𝜆̅ (𝑣̅)𝑇 𝑣 ⇒ −𝜆 ‖𝑣‖2 = 𝜆̅‖𝑣‖2 ⇒

Eigenvalues of 𝐾 are purely imaginary,∎.

Theorem 2. 24. The matrix A with eigenvalues as 𝝀𝟏, … , 𝝀𝒏 and the

eigenvectors as 𝒗𝟏, … , 𝒗𝒏 has the same eigenvectors as the matrix

 𝛼𝑚𝐴
𝑚 + 𝛼𝑚−1𝐴

𝑚−1 +⋯+ 𝛼1𝐴 + 𝛼1

but the eigenvalues of the latter will be

 𝛼𝑚𝜆
𝑚 + 𝛼𝑚−1𝜆

𝑚−1 +⋯+ 𝛼1𝜆 + 𝛼1. (see Hoffman (1971)).

By Theorem 2. 8 we know that the matrix game of a symmetric zero-sum

game has full rank just when the number of the strategies are even.

Following theorem explain the rank of the matrix game of an asymmetric

zero-sum tournament game.

Theorem 2. 25. Let 𝑲 be the matrix game of a symmetric zero-sum

tournament game. If 𝑴 = 𝑲 +𝜶𝑰 (𝜶 ≠ 𝟎) then 𝑴 has full rank.

Proof:

By theorem 3.1.1 we know that all the eigenvalues of 𝐾 are in the form of

𝑏𝑖, where 𝑏 is a real number and 𝑖 is the imaginary number. On the other

hand, we know 𝑀 = 𝐾 + 𝛼𝐼 (𝛼 ≠ 0) where 𝐾 is the game matrix of

symmetric zero sum tournament game. As a result by theorems 3.1.2 we

know that all the eigenvalues of 𝑀 are in form of 𝑏𝑖 + 1. 𝑏𝑖 + 1 cannot be

zero, so all the eigenvalues of 𝑀 are non- zero. Hence 𝑀 has full rank, ∎.

Theorem 2. 26. Let 𝑲 be the game matrix of a symmetric zero-sum

tournament game. If 𝑴 = 𝑲 +𝜶𝑰 (𝜶 ≠ 𝟎) the computational matrix of 𝑴

has full rank.

Proof:

If we denote the row vectors of 𝑀 by 𝑎𝑖, we want to show that

𝐶 = [

(1,1,… ,1)
𝑎2 − 𝑎1

⋮
𝑎𝑛−𝑎1

] has full rank. By Theorem 2.25 we know that 𝑀 has full

27

rank for 𝛼 ≠ 0. Hence 𝑎𝑖 − 𝑎1 are linearly independent for 2 ≤ 𝑖 ≤ 𝑛;

which means that

∑𝜆𝑖(𝑎𝑖 − 𝑎1) = 0,

𝑛

𝑖=2

would imply

−(∑𝜆𝑖)𝑎1 +

𝑛

𝑖=2

∑𝜆𝑖𝑎𝑖 = 0,

𝑛

𝑖=2

By linear independence of 𝑎𝑖 we obtain 𝜆2 = ⋯ = 𝜆𝑛 = 0.

Suppose 𝐶 does not have full rank. Hence, the first row of 𝐶, 𝑒́ =

(1,1, … ,1), is the non-trivial combination of other rows.

𝑒́ = ∑ 𝑝𝑖(𝑎𝑖 − 𝑎1)
𝑛
𝑖=2 ,

with 𝑝𝑖0 ≠ 0 for some 2 ≤ 𝑖0 ≤ 𝑛. Suppose 𝑝1 = −∑ 𝑝𝑖
𝑛
𝑖=2 , hence we

have

𝑒́ =∑𝑝𝑖(𝑎𝑖 − 𝑎1)

𝑛

𝑖=2

=∑𝑝𝑖𝑎𝑖 − (∑𝑝𝑖)𝑎1

𝑛

𝑖=2

=

𝑛

𝑖=2

𝑝1𝑎1 +∑𝑝𝑖𝑎𝑖 =∑𝑝𝑖𝑎𝑖

𝑛

𝑖=1

𝑛

𝑖=2

whereby

∑ 𝑝𝑖
𝑛
𝑖=1 = 0,

and 𝑝𝑖0 ≠ 0 for some 2 ≤ 𝑖0 ≤ 𝑛.

We can write this in matrix notation as

𝑒́ = 𝑝́𝑀 and 𝑒́𝑝 = 0

where 𝑝́ = (𝑝1, … , 𝑝𝑛) and 𝑝́ ≠ 0.

However, this leads to the following contradiction for 𝛼 ≠ 0.

We know that 𝑝́𝐾𝑝 = ∑ 𝑘𝑖𝑗𝑝𝑖
2𝑛

𝑖=1 + ∑ (𝑘𝑖𝑗 + 𝑘𝑗𝑖)𝑝𝑖𝑗𝑗>𝑖 = 0, as 𝐾 is a skew-

symmetric matrix.

0 = 𝑒́𝑝 = 𝑝́𝑀𝑝 = 𝑝́(𝐾 + 𝛼𝐼)𝑝 = 𝑝́𝐾𝑝 + 𝛼𝑝́𝐼𝑝 = 0 + 𝛼∑ 𝑝𝑖
2𝑛

𝑖=1 ≠ 0,

28

where by 𝐼 we denotes the identity matrix. Hence, 𝐶 must have full rank,

∎.

Theorem 2. 27. Let 𝑲 be a matrix game of a symmetric zero-sum game. In

an asymmetric zero-sum tournament game where the matrix game is

𝑴 = 𝑲+ 𝜶𝑰 and 𝜶 ≠ 𝟎, in equilibrium, when one player plays with a full

support mixed strategy the other player has a unique optimal strategy.

Proof:

By applying Theorem 2.26, we can show that in an asymmetric zero-sum

tournament game the computational matrices of the game matrix of first

and second player have full rank when 𝛼 ≠ 0. It means that when one of

the players mixes between all of his strategies with positive probability,

the computational system for calculating the optimal strategies of the

other player have to have a unique solution, ∎.

Theorem 2.28. In Symmetric non zero-sum tournament games, in
equilibrium, when one player plays with a full support mixed strategy the
other player has a unique optimal strategy.

Proof:

The proof is the same of Theorem 2.28, ∎.

 In fact, Theorem 2.28 and Theorem 2.29 provide sufficient condition for

uniqueness of the equilibrium.

2.7 Regular Tournament Game in the sense of Laffond et al.

In previous sections we saw that for a symmetric zero-sum tournament

game the value is zero. However there is no theorem to provide the

amount of the value for asymmetric zero-sum tournament game. For

different number of strategies we may have different games with different

values. In this section we first provide an example to show how the

amount of the values can be different for the asymmetric zero-sum

tournament games with the same number of strategies. Later, I will

analyse the special case of regular tournaments in sense of Laffond et al.

where not only we can predict the amount of the value also we can

29

guarantee the unique, uniform distribution optimal strategy for both

players.

Example 2. 29.

Let 𝐾𝑛×𝑛 be a matrix game of a symmetric zero-sum tournament game

with 𝑛 strategies. Suppose the asymmetric zero-sum tournament game

with matrix game 𝑀 = 𝐾 + 𝐼 and 𝑛 number of strategies. Following table

shows the possible values of the value of the game, for different number

of strategies.

𝒏 Value

3 {1,1/3}
4 {1,1/3}

5 {1,
1

3
,
1

4
,
1

5
 }

6
{1,
1

3
,
1

4
,
1

5
 }

7
{1,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
2

11
,
3

13
,
3

17
 }

8
{1,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
2

11
,
3

13
,
3

17
,
3

19
,
5

21
,
5

29
,
5

31
,
5

33
,
7

41
,
7

45
 }

Table 2. 5. Possible amount of the value of the asymmetric zero-sum tournament game for 𝜶 = 𝟏.

Definition 2. 29. A symmetric zero-sum tournament is regular in the sense

of Laffond et al if all its vertices have similar score.

Theorem 2. 30. A symmetric zero-sum tournament is regular if and only if

in the equilibrium players mixes between all the strategies with uniform

distribution.

Proof:

Suppose that 𝐾 is the matrix game of a symmetric zero-sum tournament

game. If we suppose that the all the vertices have similar score, then

obviously players will be indifferent between all the strategies.

On the other hand, in equilibrium players are mixing between the

strategies with the uniform strategy 𝑃 = (𝑝, 𝑝, … , 𝑝). Hence we will have

𝐾𝑃𝑇 = [0]𝑛×1; which means that 𝐾[1]𝑛×1 = [0]𝑛×1. So, in each row of 𝐾

30

we should have equal number of 1 and −1. This means that the score of

all vertices in the tournament game is equal, ∎.

Following theorem explain the optimal strategy and value of the game for

the regular asymmetric zero-sum games.

Theorem 2. 31. Let 𝑻 be a symmetric zero-sum tournament game with the

game matrix 𝑲, and 𝑻̅ an asymmetric zero-sum tournament game with

game matrix 𝑲̅̅̅ = 𝑲 + 𝜶𝑰, 𝜶 ≠ 𝟎. In the equilibrium, in the tournament

game 𝑻 players are mixing between all of the strategies uniformly if and

only if the players in the tournament game 𝑻̅ do the same.

Besides, in this case the value for the asymmetric zero-sum tournament

game 𝑇̅ would be
𝛼

𝑛
 , where 𝑛 is the number of the strategies.

Proof:

Suppose that in the tournament game 𝑇̅, players mix between all of the

strategies uniformly.

Let 𝐸 = [

1 1…1
𝑒1
⋮

𝑒𝑛−1

] and 𝐸̅ = [

1 1…1
𝑒̅1
⋮

𝑒̅𝑛−1

] be the computational matrices of 𝐾

and 𝐾̅, respectively. In each 𝑒̅𝑖 we have “-1-𝛼 and 𝛼-1” or “1- 𝛼 and 𝛼 +1”.

Hence, as players are mixing between all the strategies uniformly the

computational system 𝐸̅𝑞 = [

1
⋮
0
0

], will have the same answer as

computational system 𝐸𝑞 = [

1
⋮
0
0

].

Suppose that in the tournament game 𝑇, players mix between all of the

strategies uniformly. If 𝑞 is the unique optimal strategy then it would be

the solution of following computational system, 𝐸 [

1 1…1
𝑒1
⋮

𝑒𝑛−1

] 𝑞 = [

1
⋮
0
0

]. We

add a -𝛼 to the the first element and an 𝛼 to the 𝑖 + 1th element of 𝑒𝑖. So,

31

the system will change to 𝐸̅ [

1 1…1
𝑒̅1
⋮

𝑒̅𝑛−1

] 𝑞 = [

1
⋮
0
0

], where the solution has

been not changed.

Hence, tournament games 𝑇 and 𝑇̅ have the same optimal solutions. As a

result, the value for 𝑇̅ would be
𝛼

𝑛
 where 𝑛 is the number of the

strategies,∎.

Example 2. 32. For the regular symmetric zero-sum tournament game
with matrix game

𝐾 =

, the optimal strategy for both players is

{
1

5
,
1

5
,
1

5
,
1

5
,
1

5
}.

In the asymmetric zero-sum tournament game with matrix game

𝐾̅ = 𝐾 + 𝛼𝐼, 𝛼 ≠ 0 the optimal strategy for both players is {
1

5
,
1

5
,
1

5
,
1

5
,
1

5
}

and the value of the game is
𝛼

5
 .

Corollary 2. 33. Let 𝑻 be a symmetric zero-sum tournament game with

matrix game 𝑲 and 𝑻̅ be an asymmetric zero-sum tournament game with

matrix game 𝑲̅ = 𝑲 + 𝜶𝑰, 𝜶 ≠ 𝟎.

In tournament game 𝑇̅, in the equilibrium players cannot mix between all

of their strategies uniformly when the number of the strategies are even.

Proof:

We know that in the tournament game 𝑇, in the equilibrium players are

mixing between odd number of the strategies. Hence, they cannot have

the uniform full support optimal strategies. As a result by Theorem 1,

players in tournament game 𝑇̅ cannot have uniform full support

equilibrium point as well.

32

2.8 Conclusion

I analyse the tournament game (named as symmetric zero-sum

tournament game in this study). Previous results have shown that it has a

unique solution; I demonstrate that the uniqueness is robust under small

perturbation. However, the structure of the solution changes significantly

when the amount of perturbation is greater than a certain threshold

dependent on each game. I analyse the tournament game with incumbent

as the case of a perturbed tournament game. By providing several

examples I show that the structure of the equilibrium point is

fundamentally different from the standard tournament game. While there

is no general criteria to describe the value and optimal strategies of the

game I provide a partial criteria which is a sufficient condition for

uniqueness of equilibrium. This work enables future studies on

determining the threshold of perturbations and general criteria for

optimal strategies in perturbed games.

References

Anderson, S. P. and G. Glomm (1992). 'Incumbency effects in political
campaigns', Public Choice, vol. 74(2), pp. 207-219.

Ansolabehere, S. and J. M. Snyder Jr (2000). 'Valence politics and
equilibrium in spatial election models', Public Choice, vol. 103(3-4),
pp. 327-336.

Aragones, E. and T. R. Palfrey (2002). 'Mixed equilibrium in a Downsian
model with a favored candidate', Journal of Economic theory, vol.
103(1), pp. 131-161.

Arrow, K. J. (1951). '1963. Social choice and individual values', Wiley, New
York.

Chakrabarti, R., S. Gangopadhyay and S. Krishnan (2005). 'Incumbency
Effects in Indian Elections–A Preliminary Exploration', Unpublished
paper. Accessed April, vol. 15, pp. 2014.

Cummings, M. C. (1966). Congressmen and the Electorate: Free Press.
Dahl, R. A. (2006). A Preface to Democratic Theory: University of Chicago

Press.
Davis, O. A., M. H. DeGroot and M. J. Hinich (1972). 'Social preference

orderings and majority rule', Econometrica: Journal of the
Econometric Society, pp. 147-157.

Downs, A. (1957). 'An Economic Theory of Democracy Harper Collins', New
York.

33

Fisher, D. C. and J. Ryan (1992). 'OPTIMAL STRATEGIES FOR A
GENERALIZED SCISSORS, PAPER, AND STONE GAME', American
Mathematical Monthly, vol. 99(10), pp. 935-942.

Hans, P. (2008). 'Game theory, A multi-leveled approach', in (Editor
Ed.)^Eds.), Book Game theory, A multi-leveled approach, City:
Springer-Verlag, Berlin Heidelberg.

Harsanyi, J. C. (1973). 'Oddness of the number of equilibrium points: a
new proof', International Journal of Game Theory, vol. 2(1), pp. 235-
250.

Hoffman, K. and R. Kunze 'Linear Algebra. 1971', Englewood Cliffs, New
Jersey.

Hotelling, H. (1990). 'Stability in competition', The Collected Economics
Articles of Harold Hotelling, pp. 50-63: Springer.

Ingberman, D. E. (1992). 'Incumbent reputations and ideological campaign
contributions in spatial competition', Mathematical and Computer
Modelling, vol. 16(8), pp. 147-169.

Kramer, G. H. (1973). 'On a class of equilibrium conditions for majority
rule', Econometrica: Journal of the Econometric Society, pp. 285-
297.

Kurrild-Klitgard, P. (2001), An empirical example of the Condorcet

paradox of voting for a large electorate, Public Choice, 107(1): 135–145.

Laffond, G., J. F. Laslier and M. Lebreton (1993). 'The Bipartisan Set of a
Tournament Game', Games and Economic Behavior, vol. 5(1), pp.
182-201.

Luce, R. D. and H. Raiffa (1957). 'Games anddecisions', New York, JohnW
iley Sons.

Maschler, M. and E. Solan 'S, Zamir (2013)', Game Theory.
McGarvey, D. C. (1953). 'A theorem on the construction of voting

paradoxes', Econometrica: Journal of the Econometric Society, pp.
608-610.

McKelvey, R. D. (1976). 'Intransitivities in multidimensional voting models
and some implications for agenda control', Journal of Economic
theory, vol. 12(3), pp. 472-482.

McKelvey, R. D. and P. C. Ordeshook (1985). 'Elections with limited
information: A fulfilled expectations model using contemporaneous
poll and endorsement data as information sources', Journal of
Economic theory, vol. 36(1), pp. 55-85.

McKelvey, R. D. and R. E. Wendell (1976). 'Voting equilibria in
multidimensional choice spaces', Mathematics of operations
research, vol. 1(2), pp. 144-158.

34

Miller, N. R. (1977). 'Graph-theoretical approaches to the theory of
voting', American Journal of Political Science, pp. 769-803.

Miller, N. R. (1980). 'A new solution set for tournaments and majority
voting: Further graph-theoretical approaches to the theory of
voting', American Journal of Political Science, pp. 68-96.

Plott, C. R. (1967). 'A notion of equilibrium and its possibility under
majority rule', The American Economic Review, pp. 787-806.

Selten, R. (1973). 'A simple model of imperfect competition, where 4 are
few and 6 are many', International Journal of Game Theory, vol.
2(1), pp. 141-201.

Stokes, D. E. (1963). 'Spatial models of party competition', American
Political Science Review, vol. 57(02), pp. 368-377.

Trudeau, R. J. (2013). Introduction to graph theory: Courier Corporation.
Van Damme, E. (1991). Stability and perfection of Nash equilibria:

Springer.
Von Neumann, J. and O. Morgenstern (1945). 'Theory of games and

economic behavior', Bull. Amer. Math. Soc, vol. 51(7), pp. 498-504.
Wendell, R. E. and S. J. Thorson (1974). 'Some generalizations of social

decisions under majority rule', Econometrica: Journal of the
Econometric Society, pp. 893-912.

A. Appendix to Chapter 2

This appendix provides mathematical background for the models and

theorems in this chapter.

A.1. Graphs and Subgraphs

Graphs are the structures that connect some set of vertices with some

specific rules. Despite the simple structures graphs have wide application

in mathematical modelling.

In this Appendix, the concepts and definitions of graphs and subgraphs

used in the models and theorems of this study are explained, (See

Trudeau (2013)).

Definition A. 1. 1. A graph 𝐺 consists of two sets. First a non-empty set

𝑉(𝐺) (set of vertices) and secondly, 𝐸(𝐺) (set of edges).

35

Following example shows a simple graph with four vertices and three

edges.

Example A. 1. 2.

𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4}.

Figure A. 1. 3. A simple graph with four vertices and three edges

Definition A. 1. 4. A directed graph 𝐷 consists of two sets. First a non-

empty set 𝑉(𝐷) (set of vertices) and secondly a finite set of ordered pair

of elements of 𝐷 (𝐴(𝐷)), each ordered pair is called arc.

Following example shows a simple directed graph with four vertices and

three arcs.

Example A. 1. 5.

𝑉(𝐷) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐴(𝐷) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4}.

Figure A. 1. 6. A simple graph with four vertices and three edges

Definition A. 1. 6. In a directed graph like 𝐷, two vertices like 𝑣1, 𝑣2 are

adjacent if 𝑣1𝑣2𝜖𝐴(𝐷).

Definition A. 1. 7. In a directed graph like 𝐷, there is a path from vertex 𝑣1

to 𝑣𝑛 ,if there is a finite sequence of arcs of the form

𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑛−1𝑣𝑛 between 𝑣1 and 𝑣𝑛.

Definition A. 1. 8. In a directed graph like 𝐷, there is a path with the

length of 𝑚 from vertex 𝑣1 to 𝑣𝑛 if the shortest path between 𝑣1 to 𝑣𝑛

has exactly 𝑚 arcs.

𝑣1 𝑣2

𝑣4 𝑣3

𝑣2

𝑣4 𝑣3

𝑣1

36

Definition A. 1. 9. A directed graph like 𝐷 has a cycle, if we can find a path

starting from a vertex like 𝑣1 and ending to 𝑣1 with the length of |𝑉(𝐺)|.

Example A. 1. 10.

𝑉(𝐷) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐴(𝐷) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1, 𝑣3𝑣1}.

- There is a path of length two between 𝑣1 and 𝑣3 (𝑣1𝑣2, 𝑣2𝑣3).
- The graph has a cycle (𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1).

Figure A. 1. 11. A simple directed graph with four vertices and four edges

Definition A. 1. 11. A directed graph 𝐷̅ is a subgraph of directed graph 𝐷,

if 𝑉(𝐷̅) ⊆ 𝑉(𝐷) and 𝐴(𝐷̅) ⊆ 𝐴(𝐷).

A.2. Zero-sum games

In this appendix, I review the definition and characteristics of the zero-

sum games which is the base of the model in Section 2. In this appendix,

the notations and definitions are the same of Maschler, Solan and Zamir

(2013).

Definition A. 2. 1. A two player game is a zero-sum game if for each pair of

strategies (𝑠𝐼 , 𝑠𝐼𝐼) one has

𝑢𝐼(𝑠𝐼 , 𝑠𝐼𝐼) + 𝑢𝐼𝐼(𝑠𝐼 , 𝑠𝐼𝐼) = 0.

Where 𝑢𝐼 and 𝑢𝐼𝐼 are the utility functions of the first and second player.

Typically, the concepts of maxmin and minmax strategy are useful in

analysing the zero-sum games.

Maxmin value is the value that first player guarantees that he will get, and

minmax value is the value that second player guarantees he will lose no

more than. For a zero-sum game the maxmin and minmax values can be

found by following equations

𝑣 = max
𝑠𝐼𝜖𝑆𝐼

min
𝑠𝐼𝐼𝜖𝑆𝐼𝐼

𝑢(𝑠𝐼 , 𝑠𝐼𝐼),

𝑣1

𝑣2

𝑣3 𝑣4

37

𝑣 = min
𝑠𝐼𝐼𝜖𝑆𝐼𝐼

max
𝑠𝐼𝜖𝑆𝐼

𝑢(𝑠𝐼 , 𝑠𝐼𝐼),

where 𝑢𝐼 = −𝑢𝐼𝐼 = 𝑢 and 𝑆𝐼 and 𝑆𝐼𝐼 are the set of strategies for first and

second player respectively. For zero-sum games, maxmin and minmax

values are equal (𝑣 = 𝑣 = 𝑣), where 𝑣 is called value of the game. Any

maxmin and minmax strategies of the game are called optimal strategy.

Maxmin strategies and Nash equilibrium are two different concepts.

However, for the case of zero-sum games they are equivalent.

A.3 Calculating Optimal Strategies in Zero-Sum Games

There are some theorems which can predict the value and optimal

strategies of certain zero-sum games. However, here I briefly review two

different methods for calculating the optimal strategies of a zero-sum

game.

 A.3.1 Indifferent Strategies

In a mixed strategy equilibrium for a zero-sum game, we know that a

player will mix between two (or more) strategies if he is indifferent

between them. If we know that the player is mixing between all of his

strategies, we can use this fact to find the optimal strategies.

Suppose a zero-sum game 𝐺̅ with two players. The matrix game of the

game can be denoted as 𝐺 = (𝑔𝑖𝑗)𝑛×𝑛 = [

𝑎1
⋮
𝑎𝑛
].

If Player 1, mixes between all of his strategies then we can find the

optimal strategies for second player by solving the following system

38

𝐶1𝑞 = [

1
0
⋮
0

]

𝑛×1

 𝑤ℎ𝑒𝑟𝑒 𝑞 ≥ 0, 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛); (A.3.1.1)

where 𝐶1 = [

(1,… ,1)
𝑎2 − 𝑎1

⋮
𝑎𝑛 − 𝑎1

].

Similarly, if second player mixes between all of his strategies then we can

find the optimal strategies of first player by solving the following system

𝐶2𝑝 = [

1
0
⋮
0

]

𝑛×1

𝑤ℎ𝑒𝑟𝑒 𝑝 ≥ 0, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛); (A.3.1.2)

where −𝐺 = [
𝑏1
⋮
𝑏𝑛

] and 𝐶2 = [

(1,… ,1)

𝑏2 − 𝑏1
⋮

𝑏𝑛 − 𝑏1

].

This is not an efficient method to find all of the equilibriums of a zero-sum

game. Obviously, there might be some equilibriums that a player is not

mixing between all of his strategies.

A.3.2 Linear Programing

Luce and Raiffa (1957) introduced a linear programing system to calculate

the optimal strategies of a zero-sum game. In comparison with Indifferent

strategies method described in A.3.1, this method is computationally

more costly. However, it is more efficient as it can calculate all of the

optimal strategies of a player.

For a zero-sum game with matrix game 𝐺 = (𝑔𝑖𝑗)𝑛×𝑛, the following

system can give us all the possible optimal strategies (minmax strategies)

for Player 1.

{

𝑀𝑎𝑥 𝑣
(𝐺𝑇𝑥)𝑗 ≥ 𝑣 ∀𝑗

∑ 𝑥𝑖 = 1𝑛
𝑖=1

𝑥𝑖 ≥ 0.

 (A.3.2.1)

39

To change System (A.3.2.1) to a LP program, initially we add a large

enough positive number to all the entries of 𝐺 to make them all positive.

 ∃𝑎 > 0; 𝐺́ = (𝑔𝑖𝑗 + 𝑎)𝑛×𝑛 ⇒ 𝐺́ > 0.

If we rewrite System (A.3.2.1) for the new matrix, 𝐺́, we have

{

𝑀𝑎𝑥 𝑣

(𝐺́𝑇𝑥)𝑗 ≥ 𝑣 ∀𝑗

∑ 𝑥𝑖 = 1𝑛
𝑖=1

𝑥𝑖 ≥ 0.

 (A.3.2.2)

By solving the system (A.3.2.2) we can find optimal strategies. However,

the calculated value in (A.3.2.2) is the value of the game with matrix game

𝐺, added by 𝑎. we denote the new value by 𝑣∗. We know that as 𝐺́ > 0

then 𝑣∗ > 0. Hence, as 𝑣∗ > 0, then by letting
𝑥𝑖

𝑣∗
= 𝑢𝑖 and dividing

∑ 𝑔𝑖𝑗́ 𝑝𝑖 ≥ 𝑣∗𝑛
𝑖=1 to 𝑣∗ the system (A.3.2.2) changes to

{

min∑ 𝑢𝑖

𝑛
𝑖=1

(𝐺́𝑇𝑢)𝑗 ≥ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝑢𝑖 ≥ 0.
 (A.3.2.3).

By solving the LP system (A.3.2.3), we can find all the optimal strategies of

the first player.

Similarly we can find optimal strategies for the second player by solving

the following problem.

{

𝑀𝑎𝑥 𝑣

∑−𝐺𝑞

𝑛

𝑖=1

≥ 𝑣

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

⇒

{

𝑀𝑖𝑛 𝑣́

∑𝐺𝑞

𝑛

𝑖=1

≤ 𝑣́

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

 ⇒

{

𝑀𝑖𝑛 𝑣∗

∑𝐺́𝑞𝑖

𝑛

𝑖=1

≤ 𝑣∗

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

 ⇒

(A.3.2.4) (A.3.2.5) (A.3.2.6)

40

(𝑏𝑦
𝑞𝑖
𝑣∗
= 𝑣𝑖)

{

 𝑀𝑎𝑥 ∑𝑣𝑖

𝑛

𝑖=1

∑𝐺́𝑣𝑖

𝑛

𝑖=1

≤ 1

𝑣𝑖 ≥ 0.

(A.3.2.7).

LP Systems (A.3.2.3) and (A.3.2.7) are dual.

A. 4 Regular Equilibrium

In this appendix, I briefly review the concept of the regular equilibrium in

the sense of Harsanyi (1973). Later, I provide the detailed calculation of

the Theorem 2. 14, which investigates the regular equilibrium in

perturbed asymmetric zero-sum games.

A.4.1. Regular equilibria in normal form games

The concept of regular equilibria is defined by Harsanyi (1973) to do more

refinements with the concept of Nash equilibrium. In this section I review

the concept of regular equilibrium for finite normal form games. For this

matter I follow the definitions and notations by Van Damme (1991), which

are slightly different from the definitions given by Harsanyi (1973).

However, with both definitions we can conclude the strong stability

characteristics.

In this section, first I provide the definition of the 𝑛-person normal form

game, and then I provide some notations and formulations needed to

introduce the regular equilibrium.

Definition A. 4. 1. A finite 𝑛-person normal form game is a 2𝑛-tuple

Γ(Φ1, Φ2, … ,Φ𝑛, 𝑅1, … , 𝑅𝑛) where Φ𝑖 is a finite non-empty set and 𝑅𝑖 is a

41

mapping 𝑅𝑖:∏ Φ𝑗 → ℛ𝑛
𝑖=1 . Φ𝑖 is the set of pure strategies of the player 𝑖,

and 𝑅𝑖 is the payoff function of this player.

We also define 𝑚𝑖 = |Φ𝑖|. The generic element of Φ𝑖 is denoted by 𝜙𝑖.

We also assumed that the elements of Φ𝑖 are numbered, hence we can

talk about the 𝑘𝑡ℎ pure strategy of player 𝑖. So, the generic element of Φ𝑖

can also be denoted by 𝑘.

A mixed strategy 𝑠𝑖 of player 𝑖 is a probability distribution on Φ𝑖. I denote

the probability which 𝑠𝑖 assigns to pure strategy 𝑘 of player 𝑖 by 𝑠𝑖
𝑘 .

Hence, the set of all mixed strategies of player 𝑖 is

𝑆𝑖 = {𝑠𝑖𝜖𝑓(Φ𝑖 , 𝑅); ∑𝑠𝑖
𝑘 = 1,

𝑘

𝑠𝑖
𝑘 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘𝜖Φ𝑖}.

If 𝑠𝑖𝜖𝑆𝑖 then we define 𝐶(𝑠𝑖) as follows

𝐶(𝑠𝑖) = {𝑘𝜖Φ𝑖; 𝑠𝑖
𝑘 > 0}.

Φ and 𝑆 are defined as follow.

Φ =∏Φ𝑖

𝑛

𝑖=1

, 𝑆 =∏𝑆𝑖

𝑛

𝑖=1

.

A generic element of Φ is denoted by 𝜙. So, we can define 𝐶(𝑠) as

𝐶(𝑠) = {𝜙; 𝑠(𝜙) > 0} =∏𝐶(𝑠𝑖)

𝑛

𝑖=1

.

In a finite normal form game, players choose their strategy independently,

therefore the probability 𝑠(𝜙) that 𝜙 = (𝑘1, . . , 𝑘𝑛) occurs if 𝑠 =

(𝑠1, . . , 𝑠𝑛) is played, is given by

𝑠(𝜙) = ∏ 𝑠𝑖
𝑘𝑛

𝑖=1 .

Hence if 𝑠 is played, the expected payoff of player 𝑖 is

𝑅𝑖(𝑠) =∑𝑠(𝜙)𝑅𝑖(𝜙).

𝜙

If 𝑠 = (𝑠1, . . , 𝑠𝑛) then 𝑠\𝑠̅𝑖 means replacing strategy 𝑠𝑖 with 𝑠̅𝑖 .

42

Let Γ(Φ1, Φ2, … ,Φ𝑛 , 𝑅1, … , 𝑅𝑛) be an 𝑛-person normal form game. 𝑋𝑖 is

the set of all mappings from Φ𝑖 to ℛ and we have 𝑆𝑖 ⊂ 𝑋𝑖. The generic

element of 𝑋𝑖 is denoted by 𝑥𝑖 and 𝑥𝑖
𝑘 denotes value of 𝑥𝑖 at 𝑘. Besides,

𝑋 = ∏ 𝑋𝑖
𝑛
𝑖=1 and generic element of 𝑋 is 𝑥.

We define 𝑅𝑖 as follows

𝑅𝑖(𝑥) = ∑ 𝑥(𝜙)𝑅𝑖(𝜙)𝜙𝜖Φ ; 𝑥(𝜙) = ∏ 𝑥
𝑗

𝑘𝑗𝑛
𝑗=1 if 𝜙 = (𝑘1, … , 𝑘𝑛).

Let 𝐹(𝑥|𝜙) be a mapping defined precisely as follow

𝐹𝑖
𝑘(𝑥|𝜙) = 𝑥𝑖

𝑘(𝑅𝑖(𝑥|𝑘) − 𝑅𝑖(𝑥|𝑘𝑖)) for 𝑖𝜖𝑁, 𝑘𝜖Φ𝑖 , 𝑘 ≠ 𝑘𝑖,

𝐹𝑖
𝑘𝑖(𝑥|𝜙) = ∑ 𝑥𝑖

𝑘
𝑘 − 1 for 𝑖𝜖𝑁. Then Jacobian matrix is 𝐽(𝑠|𝜙) =

𝜕𝐹(𝑥|𝜙)

𝜕𝑥
|𝑥=𝑠 .

We can easily see that if 𝑠 is an equilibrium of Γ with 𝜙𝜖𝐶(𝑠), then

𝐹(𝑠|𝜙) = 0. Hence, we can expect that the Jacobian matrix may have also

some nice properties (such as being locally invertible). Following definition

employed the Jacobian matrix to define the regular equilibrium.

Definition A. 4. 2. An equilibrium 𝑠 of Γ is a regular equilibrium if 𝐽(𝑠|𝜑) is

nonsingular for some 𝜑𝜖𝐶(𝑠).

Theorem A. 4. 3. Every regular equilibrium is strongly stable.

Strongly stable equilibrium means that by small perturbation in the data

of the game, the equilibrium will not change.

A.4.2. Calculations of Theorem 2.14.

As we see in proof of the Theorem 2.14 of section 2.4.2

We define 𝐹(𝑝, 𝑞) =

[

 𝐹1

(1)(𝑝, 𝑞)

𝐹2
(1)(𝑝, 𝑞)
⋮

𝐹𝑛
(1)(𝑝, 𝑞)

𝐹1
(2)(𝑝, 𝑞)
⋮

𝐹𝑛
(2)
(𝑝, 𝑞)]

 ; where

𝐹1
(1)
= ∑ 𝑝𝑖 − 1

𝑛
𝑖=1 , 𝐹1

(2)
= ∑ 𝑞𝑖 − 1

𝑛
𝑖=1 ,

43

𝐹𝑖
(1) = [𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞)] × 𝑝𝑖 = [∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡

𝑛
𝑡=1] × 𝑝𝑖;

𝑖 = 2,… , 𝑛.

𝐹𝑗
(2) = [𝑢2(𝑠1, 𝑝) − 𝑢2(𝑠𝑗 , 𝑝)] × 𝑞𝑗 = [∑ ((−𝑘1𝑡) − (−𝑘𝑗𝑡))𝑝𝑡

𝑛
𝑡=1] × 𝑞𝑗;

𝑗 = 2,… , 𝑛.

Hence, we have

𝑑𝐹

𝑑𝑃
=

[

𝑑𝐹1

(1)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(1)

𝑑𝑝1

𝑑𝐹1
(2)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(2)

𝑑𝑝𝑛

𝑑𝐹1

(1)

𝑑𝑝2

⋮

…𝑑𝐹1
(1)

𝑑𝑝𝑛

…

𝑑𝐹1

(1)

𝑑𝑞1
⋯𝑑𝐹1

(1)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(1)

𝑑𝑞𝑛

𝑑𝐹1
(2)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(2)

𝑑𝑞𝑛]

(2𝑛)×(2𝑛)

We know that
𝑑𝐹1

(1)

𝑑𝑝𝑖
= 1,

𝑑𝐹1
(1)

𝑑𝑞𝑖
= 0. Similarly, we have

𝑑𝐹1
(2)

𝑑𝑝𝑖
= 0,

𝑑𝐹1
(2)

𝑑𝑞𝑖
= 1.

For 𝑖 > 1 we have

𝑑𝐹𝑖
(1)

𝑑𝑝𝑗
= {

∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.

𝑑𝐹𝑖
(1)

𝑑𝑞𝑗
=(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑝𝑖 .

𝑑𝐹𝑖

(2)

𝑑𝑝𝑗
= −(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑞𝑖 .

𝑑𝐹𝑖
(2)

𝑑𝑞𝑗
= {

∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.

Hence,
𝑑𝐹

𝑑𝑃
= [

𝐴 𝐵
𝐶 𝐷

] where

44

𝐴 =

[

 (𝑘1𝑡

𝐸1𝑘2𝑡)𝑞𝑡
0

0
⋮
0

1

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

0
⋮
0

1
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

…
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

1
0

⋮

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1]

𝐵 =

[

0
(𝑘11−𝑘21)𝑝2
(𝑘11−𝑘31)𝑝3

⋮
(𝑘11−𝑘𝑛1)𝑝𝑛

0
 (𝑘12−𝑘22)𝑝2
 (𝑘12−𝑘31)𝑝3

⋮
 (𝑘12−𝑘𝑛2)𝑝𝑛

0
 (𝑘13−𝑘23)𝑝2
 (𝑘13−𝑘33)𝑝3

⋮
 (𝑘13−𝑘𝑛3)𝑝𝑛

⋯

⋮
…

0
(𝑘1𝑛−𝑘2𝑛)𝑝2
(𝑘1𝑛−𝑘3𝑛)𝑝3

⋮
(𝑘1𝑛−𝑘𝑛𝑛)𝑝𝑛]

𝐶 = −

[

0
(𝑘11−𝑘21)𝑞2
(𝑘11−𝑘31)𝑞3

⋮
(𝑘11−𝑘𝑛1)𝑞𝑛

0
 (𝑘12−𝑘22)𝑞2
 (𝑘12−𝑘31)𝑞3

⋮
 (𝑘12−𝑘𝑛2)𝑞𝑛

0
 (𝑘13−𝑘23)𝑞2
 (𝑘13−𝑘33)𝑞3

⋮
 (𝑘13−𝑘𝑛3)𝑞𝑛

⋯

⋮
…

0
(𝑘1𝑛−𝑘2𝑛)𝑞2
(𝑘1𝑛−𝑘3𝑛)𝑞3

⋮
(𝑘1𝑛−𝑘𝑛𝑛)𝑞𝑛]

𝐷 = −

[

 (𝑘1𝑡

𝐸1𝑘2𝑡)𝑞𝑡
0

0
⋮
0

1

∑(𝑘1𝑡 − 𝑘2𝑡)𝑝𝑡

𝑛

𝑡=1

0
⋮
0

1
0

∑(𝑘1𝑡 − 𝑘3𝑡)𝑝𝑡

𝑛

𝑡=1

⋮
0

…
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

1
0

⋮

∑(𝑘1𝑡 − 𝑘𝑛𝑡)𝑝𝑡

𝑛

𝑡=1]

In equilibrium, ∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛
𝑡=1 and ∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡

𝑛
𝑡=1 are zero.

Hence, in equilibrium
𝑑𝐹

𝑑𝑃
=

[

1
0
⋮

0
−(𝑘11 − 𝑘21)𝑞2

⋮
−(𝑘11 − 𝑘𝑛1)𝑞𝑛

1

0

…
…

…
…
…

1
0
⋮

0
−(𝑘1𝑛 − 𝑘2𝑛)𝑞2

⋮
−(𝑘1𝑛 − 𝑘𝑛𝑛)𝑞𝑛

0
(𝑘11 − 𝑘21)𝑝2

⋮
(𝑘11 − 𝑘𝑛1)𝑝𝑛

1

0

⋮

0

0

1
0

0

…
…

…

…

0
(𝑘1𝑛 − 𝑘2𝑛)𝑝2

⋮
(𝑘1𝑛 − 𝑘𝑛𝑛)𝑝𝑛

1

0

⋮

0]

If change the first row and (𝑛 + 1)th row, then we have matrix 𝐹̅ which

has a similar rank to
𝑑𝐹

𝑑𝑃
. On the other hand, we can see that

45

𝐹̅ =

[

0
0
⋮

1
−(𝑘11 − 𝑘21)𝑞2

⋮
−(𝑘11 − 𝑘𝑛1)𝑞𝑛

0

1

…
…

…
…
…

0
0
⋮

1
−(𝑘1𝑛 − 𝑘2𝑛)𝑞2

⋮
−(𝑘1𝑛 − 𝑘𝑛𝑛)𝑞𝑛

1
(𝑘11 − 𝑘21)𝑝2

⋮
(𝑘11 − 𝑘𝑛1)𝑝𝑛

0

0

⋮

0

1

0
0

0

…
…

…

…

1
(𝑘1𝑛 − 𝑘2𝑛)𝑝2

⋮
(𝑘1𝑛 − 𝑘𝑛𝑛)𝑝𝑛

0

0

⋮

0]

We know that 𝑝𝑖 > 0 and 𝑞𝑗 > 0. If we divide the 𝑖th row to 𝑝𝑖 where

1 ≤ 𝑖 ≤ 𝑛 and to 𝑞𝑖 where 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛, then we will have 𝐹̿ which has

a similar rank to 𝐹̅. On the other hand, 𝐹̿ = [
0
𝐶2

𝐶1
0
]
(2𝑛)×(2𝑛)

, where 𝐶1 is

the computational matrix of 𝐾 and 𝐶2 computational matrix of -𝐾. By

Theorem 2.13 we know that both 𝐶1 and 𝐶2 have full rank. Hence, 𝐹̿ have

full rank.

A.5 Maple Code for Computing the Equilibrium point in

Tournament Games

Following Maple code has been designed to receive the number of

strategies and 0 ≤ 𝛼 ≤ 1, to calculate optimal strategies of the

asymmetric zero-sum tournament game and symmetric zero-sum

tournament game with matrix game 𝑀 = 𝐾 + 𝐼. Optimal strategies can be

calculated by linear programing method (LP_method_maxmin) or making

all the strategies indifferent (Indifference_row). There is also couple of

other modules which can test different characteristic of the equilibrium

point. full_support test if the optimal strategy has full support and

Uniform_dis test if the optimal strategy has uniform distribution.

> restart;

with(LinearAlgebra):

with(Optimization):

with(simplex):
>

Matrices:=proc(a,t)

global C,B,N,N2;

local A,i,j,temp2,check,count3,s;

46

##for i from 1 to (2^N2) do

B[t]:=Matrix(N):

##end do:

A:=Matrix(N):

C:=Matrix(N):

##for t from 1 to (2^N2) do

#print(t);

temp2:=0;

while temp2=0 do

A:=RandomMatrix(N,N,generator=0..1,shape=triangular[upper])

:

for i from 1 to N do

 for j from 1 to N do

 B[t][i,j]:=A[i,j];

 end do:

end do:

for i from 1 to N do

 for j from 1 to N do

 if i<j and B[t][i,j]=0 then B[t][i,j]:=-1; end if:

 if i<j and B[t][i,j]=1 then B[t][i,j]:=1; end if:

 if i=j then B[t][i,j]:=a; end if;

 if i<j then B[t][j,i]:=(-1)*B[t][i,j] end if;

 end do:

end do:

check:=0;

for s from 1 to t-1 while check=0 do

count3:=0;

for i from 1 to N do

 for j from 1 to N do

 if s<>t and B[t][i,j]=B[s][i,j] then count3:=count3+1;

end if:

 end do:

end do:

###print("Comparison with",s,t,count3);

if count3=N*N then check:=1; end if;

end do: ###end of checking

if check=1 and t>1 then temp2:=0; else temp2:=1; end if;

end do; ###end of while loop

###print(t,B[t],Determinant(B[t]));

for i from 1 to N do

 for j from 1 to N do

 C[i,j]:=B[t][i,j];

47

 end do:

end do:

end proc:

###################################

> Indifference_row:=proc(A)

global q,D1,Equ;

local Equ_b,i,j;

Equ:=Matrix(N):

Equ_b:=Matrix(N,1):

Equ_b[1,1]:=1;

for i from 2 to N do

 Equ_b[i,1]:=0;

end do:

##print(Equ_b,"RHS");

q:=Matrix(N,1):

for i from 1 to N do

 Equ[1,i]:=1;

end do:

for i from 2 to N do

for j from 1 to N do

 Equ[i,j]:=-(A[i,j]-A[1,j]);

end do:

end do:

###print(Equ);

##print(Rank(Equ));

D1:=Determinant(Equ);

q:=LinearSolve(Equ,Equ_b);

##print("probability",q);

end proc:

########################

> LP_method_maxmin:=proc(A)

global Y;

local i,j,q,A1,Equ,cnsts,obj,set1;

for i from 1 to N do

 for j from 1 to N do

 A1[i,j]:=A[i,j];

 end do:

48

end do:

for i from 1 to N do

 for j from 1 to N do

 A1[i,j]:=A1[i,j]+2;

 end do:

end do:

Equ:=Matrix(N+1);

for i from 1 to N+1 do

 for j from 1 to N+1 do

 if i<N+1 and j<N+1 then Equ[i,j]:=A1[i,j]; end if;

 if i=N+1 and j<N+1 then Equ[i,j]:=-1; end if;

 if i<N+1 and j=N+1 then Equ[i,j]:=-1; end if;

 if i=N+1 and j=N+1 then Equ[i,j]:=0; end if;

 end do:

end do:

##print(Equ);

for i from 1 to N+1 do

q[i]:=0;

end do:

for j from 1 to N+1 do

for i from 1 to N+1 do

 q[j]:=Equ[j,i]*y[i]+q[j];

end do:

end do:

for i from 1 to N do

 cnsts[i]:=q[i]<=0;

end do:

cnsts[N+1]:=q[N+1]<=-1;

set1:={seq(cnsts[i],i=1..N+1)};

##print(set1);

obj := -y[N+1]:

Y:=maximize(obj,set1,NONNEGATIVE);

##print(Y);

end proc:
> LP_method_minmax:=proc(A)

global Y;

local i,j,q,A1,Equ,cnsts,obj,set1;

for i from 1 to N do

 for j from 1 to N do

49

 A1[i,j]:=A[i,j];

 end do:

end do:

for i from 1 to N do

 for j from 1 to N do

 A1[i,j]:=A1[i,j]+2;

 end do:

end do:

Equ:=Matrix(N+1);

for i from 1 to N+1 do

 for j from 1 to N+1 do

 if i<N+1 and j<N+1 then Equ[i,j]:=A1[i,j]; end if;

 if i=N+1 and j<N+1 then Equ[i,j]:=-1; end if;

 if i<N+1 and j=N+1 then Equ[i,j]:=-1; end if;

 if i=N+1 and j=N+1 then Equ[i,j]:=0; end if;

 end do:

end do:

##print(Equ);

for i from 1 to N+1 do

q[i]:=0;

end do:

for j from 1 to N+1 do

for i from 1 to N+1 do

 q[j]:=Equ[i,j]*y[i]+q[j];

end do:

end do:

for i from 1 to N do

 cnsts[i]:=q[i]>=0;

end do:

cnsts[N+1]:=q[N+1]>=-1;

set1:={seq(cnsts[i],i=1..N+1)};

##print(set1);

obj := -y[N+1]:

Y:=minimize(obj,set1,NONNEGATIVE);

#print(Y);

end proc:
>

full_support:=proc(Y1)

50

local count1,i;

global check;

check:=0; count1:=0;

 for i from 1 to N do

 if op(2,Y1[i])>0 then count1:=count1+1; end if;

 end do:

 if count1=N then print("*************** This game is Full

Support***************"); check:=1; end if;

end proc:

>

Uniform_dis:=proc(Y1)

 local count1, I;

 global check2;

check2:=0;count1:=0;

for I from 1 to N do

 if (op(2,Y1[i]))=(1/N) then count1:=count1+1; end if;

 end do:

if count1=N then print(“the Optimal strategy is Uniform”);

check2:=1; end if;

51

Chapter 3

Inspection game with Partial Inspections

3.1 Introduction

An inspection game is a mathematical model for a game between two

players, where one (the inspectee / potential violator) has enough

potential to violate a certain legal act. The other player (the inspector)

tries to verify the inspectee’s adherence to those legal acts by carrying out

inspections over a certain period of time.

Dresher (1962) has studied the case where the inspectee can commit at

most one violation during 𝑚 periods of times, while the number of

inspections is limited to a fixed number 𝑛. Dresher supposed that if the

inspector inspects when the inspectee violates, the violation would be

detected with probability of 𝑃 = 1. In each stage both players know how

many inspection and time periods are left. So, if 𝑛 ≥ 𝑚 then the inspectee

will not violate as he knows that he will be caught for certain. Due to lack

of usually 𝑛 < 𝑚. Dresher has determined the value and optimal

strategies for these cases. Various version of the Inspection game

introduced by Dresher’s paper, have been analysed in several studies;

such as in the works by, B. von Stengel (1991), M. J. Canty et al. (2000) and

Rothenstein and Zamir (2002).

In this study, I assume that the inspector may run some “partial

inspections” where the probability of detection is not equal to one. The

inspections with the probability of detection equal to one would be called

a “full inspection”.

The assumption of partial inspection is a more realistic representation of

real world problems as full inspection can be too costly or time

consuming. Hence, instead of a full inspection the inspector may run some

partial inspections with lower cost and effort. Hence, by conducting a

partial check the probability of detection would be 𝑃, which is not

necessarily equal to one. A famous form of partial inspections a famous

52

form of partial inspections applies to airplane safety checks. The full safety

check of the plane typically takes more than two days, which is a long and

costly ground time for the airplanes, making partial inspections much

more favourable. However, it is critical that effective inspections

guarantee the safety of the flight. I model the situation as a non-

cooperative zero sum game and describe the value and optimal strategies

of the game using recursive formulae. In particular, I compare the value of

the game for inspection games with full and partial inspections only and

hence determine the opportunity costs for using these technologies. In a

number of cases I provide closed form solutions for the values of the game

and the optimal strategies.

In Section 3.2 of this study I review the literature regarding Inspection

game, of which the classical form was originally proposed by Dresher

(1962). In Section 3.4 I introduce the concept of partial inspections and

also I analyse the inspection with just partial inspections. By providing a

formula for calculating the value of this game, we can have a tool to make

a comparison between full inspections and partial inspections.

In the next section, I investigate the case where the inspector can choose

between full inspection, partial inspection and no control in each period of

time. I show that in equilibrium the inspector always mixes between full

inspections and no control. It means that as long as the opportunity for a

full inspection exists, the inspector never starts his sequential inspections

with a partial inspection. I also provide a way to calculate the values. This

could offer a useful tool for comparison of partial and full inspection,

resulting in a classical result of inspection game with full inspections.

3.2 Literature review

The inspection game is a mathematical model where one player verifies

the commitment of the other player to the certain legal agreements. An

example of this could be a customs officer and smuggler at the border

control. The customs officer knows that smugglers have enough potential

to illegally carry some goods across a border line. However, because of the

perishable nature of the goods, the smuggler will choose one of the 1 to 𝑚

possible time units to carry out the violation. A further example is arm

53

control treaties, when the there is enough potential that the treaty is

violated. Hence, the game is between an inspector and a potential violator

which is called inspectee. The problem that typically arises within this

situation is because of a lack of inspector’s budget to run an inspection in

all the events. The amount of the inspection which is left and period of

time is common knowledge for both players. Hence, the inspectee knows

that there is a chance to violates without being detected.

Seemingly the first genuine inspection game was introduced and analysed

by Dresher (1962)1. In Dresher’s study, the inspector has 𝑛 number of

inspections, where there is 𝑚 period of time. He models the situation as

some sequential zero-sum games. In his model the inspector’s payoff for

the detected violation is +1, and -1 for the undetected violation. If the

inspector can inspect all events then the inspectee knows that he will

definitely be caught if he violates. He will therefore not violate, and the

payoff for both players will be 0. If we show the value of the game by

𝑣(𝑛, 𝑚), where 𝑚 is the number of events and 𝑛 is number of available

inspections we have following boundary conditions.

𝑣(𝑛, 0) = −1, 𝑣(𝑛, 𝑛) = 0.

Dresher found the closed form of the value and optimal strategies.

Different versions of the game have been analysed so far. Maschler (1966)

analysed the inspection game with different boundary conditions. He

shows that the expected payoff of inspector and inspectee by 𝑣(𝑛, 𝑚) and

𝑤(𝑛, 𝑚) where 𝑚 is the number of events and 𝑛 is number of available

inspections, the boundary conditions are

𝑣(𝑛, 𝑛) = 𝛼, 𝑤(𝑛, 𝑛) = 𝛽 where 𝛼 > 1, 0 < 𝛽 < 1.

𝑣(𝑛, 𝑛) = 0, 𝑤(𝑛, 𝑛) = 1.

Similar to the Dresher paper, Maschler calculates the closed form of

𝑣(𝑛, 𝑚) and 𝑤(𝑛, 𝑚). Further works by Maschler (1967) analyses the

inspection game as a non-constant-sum game, where each event can

produce a special signal to indicate if it is natural or violated.

1 Dresher’s game is fully explained and discussed in Section 3.2.

54

More recent works include Von Stengel (1991) and Von Stengel (2016),

where it is suggested that the inspectee violate more than one time and

collect different values of rewards by each violation. The common feature

of these works is expecting a one hundred percent accurate result from an

inspection. It means that when there is simultaneous inspection and

violation the violation is detected for sure. However, in real world this is

not always the case.

To my knowledge, the first paper to model the situation between custom

officer and smuggler, where the custom officer’s inspections are

imperfect is Thomas and Nisgav (1976). Similarly to Dresher they assume

that there are 𝑚 periods of time and due to lack of budget the inspector

can just run 𝑛 < 𝑚 inspections. However, the inspections can detect the

violation with probability of 𝑃. This means that in a simultaneous

inspection and violation, the payoff for the inspector will be 2𝑃 − 1.

Besides, if we show the value of the game by 𝑔(𝑛, 𝑚), where 𝑚 is the

number of events and 𝑛 is number of available inspection, we will have

following boundary conditions

𝑔(𝑛, 0) = −1, 𝑔(𝑛, 𝑛) = 2𝑃 − 1.

By all these assumptions they calculate the value of the game and optimal

strategies of the players. They also introduce the case where the customs

officer can use two of his inspections in a night to increase the probability

of detection. Moreover, they introduce the situation where the customs

officer has two different type of inspection with different probabilities of

detection, and he can choose to run both in a night to achieve a higher

probability of detection, or separately to cover more of the events as

inspected. They model both scenarios as a recursive zero-sum game;

however, they are unable to find the closed form of the value and optimal

strategies as the equations are getting too complicated.

Later, Baston and Bostock (1991) investigate the problem introduced by

Thomas and Nisgav (1976) one more time. In their model, the customs

officer can have 𝑘1 number of inspections with probability of detection 𝑃1

and 𝑘2 number of inspections with probability of detection 𝑃2. Customs

officers can run these two type of inspections separately or together. The

probability of detection in a joint inspection is 𝑝 > 𝑚𝑎𝑥{𝑃1, 𝑃2}.

55

They also suppose that when there is no any violation, the customs

officer’s payoff is 1. It means that customs officer is indifferent between a

detected violation and no violation. This is also assumed by Thomas and

Nisgav (1976). This assumption is different from Dresher’s model where

inspectee will not violate if he is sure that he will be detected. However,

this difference will not change the closed form of value found by Thomas

and Nisgav (1976) for the case of one kind of inspection and 𝑚 number of

period of times (only the boundary condition will change).

In the games analysed by Baston and Bostock (1991) the assumption plays

a critical role. They modelled the situation as a zero-sum game and

calculated the value of the game. However, they mention that the game

with the same assumption as Dresher includes much more complicated

equations even if even the probability of detection is supposed to be 1.

Further models where they include an inspection game with probability of

detection less than 1 are inspection games with imperfect inspections. The

concept of imperfect inspection differs from the kind of inspection (partial

inspection) that I am analysing in this study. Imperfect inspection is the

inspection with two different types of error. Type One Error means that

the inspector may call a false alarm (with probability of 𝛼), and Type Two

Error means that the inspector may fail to detect the violation (with

probability of 𝛽). In an imperfect inspection, an error has happened.

However in partial inspection the inspector intentionally chooses the

partial inspection, despite the fact he knows its probability of detection is

not equal to 1.

In industries such as aviation, the kind of the inspection used is partial

inspections, since the full inspection (inspection with probability of

detection equal to 1) is too costly and time consuming. For example, a full

safety check of the airplane may take more than three days which imposes

a significant monetary cost to the airlines. Hence, the safety inspectors

intentionally run some partial inspections. There may be some occasions

which they switch to full inspections, but partial inspection is always one

of the methods of inspection.

Imperfect inspection has been analysed in different version of inspection

game. Some of the papers include Rothenstein and Zamir (2002) and

56

Avenhaus and Canty (2005). However, there are not many studies

investigating the concept of partial inspection.

The kind of inspections in Thomas and Nisgav (1976) and Baston and

Bostock (1991) can also be considered as “Partial inspection”. However,

these studies have different assumptions of the classical inspection

games, which makes the equations slightly easier. Besides, the case of

mixing between different types of inspections is not considered.

In this study, I investigate the concept of “partial inspection” in a model

with the same assumptions of classical inspection games (similar to

Dresher paper), also I analyse the case where in optimal strategy the

inspector is mixing between full inspection and partial inspection.

3.3 Classical Inspection Game

Dresher (1962) introduced a sequential zero-sum game with two players.

One of the players committed to certain legal act. However he has enough

potential to violate if he is sure that he is not going to be caught. The

other player runs some inspections to ensure that the inspectee does not

violate. There are 𝑚 number of events that the violation can happen, and

the number of the inspections is limited to 𝑛. Because of lack of budget

usually 𝑛 < 𝑚. The inspector cannot run more than one inspection in each

period of time. However, he still cannot cover all the suspicious events.

The inspectee may run at most one violation, and after violation the game

will be ended. The Number of the inspections and events left is the

common knowledge for both players in any stage of the game. The payoff

of a detected violation for inspector is +1 and no detection is -1. If no

violation happens in the whole the game, the payoff for both players will

be 0. At the beginning of each event (period of time) the inspectee will

decide to act legally or violate. Dresher (1962) models the game as a

dynamical zero-sum game. He denoted the value of the game by 𝑉(𝑛, 𝑚),

where 𝑛 is the number of inspections and m is the period of times. Hence,

he describes the game by the following table.

57

 Inspectee

Inspector

 Legal act violation

Inspection

No Control

𝑉(𝑛 − 1, 𝑚 − 1) +1

𝑉(𝑛, 𝑚 − 1) -1
Table 3. 1. Inspection game modelled by Dresher.

If 𝑛 ≥ 𝑚, then 𝑉(𝑛, 𝑚 − 1) = 0. Also, 𝑉(𝑛, 0) = 0 and 𝑉(0, 𝑚) = −1

where 𝑚 > 0.

As we know that −1 ≤ 𝑉(𝑛, 𝑚) ≤ 1, the players mix between their

strategies. If 𝑝, is the probability of running an inspection then we have

𝑝. 𝑉(𝑛 − 1, 𝑚 − 1) + (1 − 𝑝). 𝑉(𝑛, 𝑚 − 1) = 𝑝. 1 + (1 − 𝑝). (−1).

Besides if in equilibrium we denote the probability of violation by 𝑞, then

we have

𝑉(𝑛 − 1, 𝑚 − 1). 𝑞 + (1 − 𝑞). (1) = 𝑉(𝑛, 𝑚 − 1). 𝑞 + (1 − 𝑞). (−1).

Hence, we can find the value of the game by following recursive formulas

𝑉(𝑛, 𝑚) =
𝑉(𝑛,𝑚−1)+𝑉(𝑛−1,𝑚−1)

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
 . (3.3.1)

Besides, in equilibrium the probability of inspection is

𝑝 =
𝑉(𝑛−1,𝑚)+1

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
 , (3.3.2)

And the probability of violation is

𝑞 =
2

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
 , (3.3.4)

Dresher (1962) shows that explicit formula for recursive formula (3.3.1)

can be given by

𝑉(𝑛, 𝑚) = −
(

𝑚−1
𝑛

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

 (𝑛 < 𝑚). (3.3.5)

As, we see by know the explicit formula for the value of the game we can

find the probability of inspection and probability of violation as well.

58

3.4 Full Inspection vs. Partial Inspection

In this study, I assume that the inspector may run some partial inspections

as well as full inspections. As I mentioned in the literature review, by

partial inspection I mean an inspection which can detect the violation by

probability 𝑃. That is not because of any possible mistake by the inspector

and is just the nature of the inspection. The inspection in any form (full or

partial) is always necessary as it is the only means to prevent the

inspectee performing a violation. Similar to Dresher’s paper, we have

modelled the situation as a zero sum game. I denote the value of the

game by 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃), where 𝑛1 is the number of full inspections (which

have the probability of detection equal to one), 𝑛2 is the number of the

partial inspections, 𝑚 is the number of the period of times and 𝑃 is the

probability of the detection in partial inspections. 𝑛1, 𝑛2, 𝑚 and 𝑃 are fixed

through the whole game. In each stage of the game the inspector and

inspectee both know how many inspections and time periods have been

left. Also, in each stage of the game, the inspector can run just one

inspection which can be full or partial.

The payoffs are similar to those in Dresher’s paper. The only difference

arises when the inspectee violates and the inspector partially inspects. In

this case the inspector wins with probability 𝑃 while he loses with

probability 1 − 𝑃. So the expected payoff to the inspector is 2𝑃 − 1. In

any case, the game ends because the inspectee either achieves his aim or

gets caught.

Obviously, when 𝑛2 is equal to zero, the game is completely similar to

Dresher game and we would have following conditions.

𝑣(𝑛1, 0, 𝑚, 𝑃) = 0; 𝑛1 ≥ 𝑚, 0 ≤ 𝑃 ≤ 1. 𝑚 ≥ 1.

𝑣(0,0, 𝑚, 𝑃) = −1; 0 ≤ 𝑃 ≤ 1.

And also we assume 𝑣(𝑛1, 𝑛2, 0, 𝑃) =0; which means when no time period

has been left of course there would be no detection and not violation.

In our analysis, we exclude the cases of 𝑃 = 0 and 𝑃 = 1. As obviously, if

we denote the value of Dresher’s game by 𝑉 then 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =

𝑉(𝑛1, 𝑚) and 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) = 𝑉(𝑛1 + 𝑛2, 𝑚) where 𝑃 = 0 and P=1;

respectively.

59

Additional to the initial conditions discussed before, we have following

initial conditions:

𝑣(0, 𝑚, 𝑚, 𝑃) = 2𝑃 − 1, 0 < 𝑃 <
1

2
, 𝑚 ≥ 1; (As the probability of

detection is not so high, hence in equilibrium the inspectee will choose to

violate in a Nash equilibrium).

𝑣(0, 𝑚, 𝑚, 𝑃) = 0,
1

2
≤ 𝑃 ≤ 1, 𝑚 ≥ 1; (As the probability of detection is

high, in equilibrium the inspectee will not violate).

Theorem 3. 1. 2 In an inspection game, 𝒗(𝟎, 𝟏, 𝒎, 𝑷), 𝒎 > 𝟎 where 𝑷 is

the probability of detection in the partial inspection, the value of the

game is as follows

a) If 0 < 𝑃 < 1/2 then 𝑣(0,1, 𝑚, 𝑃) =
2𝑃

𝑚
− 1, 𝑚 > 0,

b) If 1/2 < 𝑃 < 1 then (0,1, 𝑚, 𝑃) = −
𝑚−1

𝑚−1+2𝑃
, 𝑚 > 0.

Proof:

For 𝑣(0,1, 𝑚, 𝑃) we have following table

 Inspectee

Inspector

 Legal act Violation

Partial Inspection

No Control

𝑣(0,0, 𝑚 − 1, 𝑃) 2 𝑃 − 1

𝑣(0,1, 𝑚 − 1, 𝑃) -1
Table 3. 2. The inspection game with one partial inspections and 𝒎 period of times.

We know that 𝑣(0,0, 𝑚 − 1, 𝑃) = −1. Hence, players are mixing between

their strategies. By employing the formula in Appendix B.1 we have

𝑣(0,1, 𝑚, 𝑃) =
−1+(2𝑃−1)𝑣(0,1,𝑚−1,𝑃)

𝑣(0,1,𝑚−1,𝑃)+2𝑃+1
 . (3.4.1)

Besides, we have following initial conditions 𝑣(0,1,1) = 2𝑃 − 1 for

0 < 𝑃 < 1/2, and 𝑣(0,1,1) = 0 for 1/2 < 𝑃 < 1. As we see, the initial

conditions satisfy part a and b respectively. Hence, they can be used as the

start point of an induction.

2 The formula of the part a of this theorem has been also found by Thomas and Nisgav (1976), for a
model which is slightly different. In their model, in the case of no violation Inspector’s payoff is 1. This
change just affect the border condition and not the general formula.

60

We can easily see that
2𝑃

𝑚+1
− 1 =

−1+(2𝑃−1)(
2𝑃

𝑚
−1)

2𝑃

𝑚
−1+2𝑃+1

 and −
𝑚−1

𝑚−1+2𝑃
=

−1+(2𝑃−1)(−
𝑚

𝑚+2𝑃
)

−
𝑚

𝑚+2𝑃
+2𝑃+1

 . Hence, we prove the theorem inductively, ∎.

Theorem 3. 2. In an inspection game, 𝑣(0, 𝑛2, 𝑚, 𝑃) where 𝑛2 < 𝑚,

where 𝑃 is the probability of detection in the partial check, the value of

the game is as follows

a) 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1, 0 < 𝑃 < 1/2;

b) 𝑣(0, 𝑛2, 𝑚, 𝑃) = −
(𝑚−1

𝑛2
)

∑ (
𝑚
𝑖)(2𝑃−1)𝑛2−𝑖𝑛2

𝑖=0

 , 1/2 < 𝑃 < 1.3

 Proof:

For 𝑣(0, 𝑛2, 𝑚) we have following table

 Inspectee

Inspector

 Legal act Violation

Partial Inspection

No Control

𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃) 2𝑃 − 1

𝑣(0, 𝑛2, 𝑚 − 1, 𝑃) -1

Table 3. 3. The inspection game with just partial inspections.

Hence, we can calculate the value by the following recursive formulae,

𝑣(0, 𝑛2, 𝑚, 𝑃) =
(2P−1)𝑣(0,𝑛2 ,𝑚−1,𝑃)+𝑣(0,𝑛2−1,𝑚−1,𝑃)

𝑣(0,𝑛2,𝑚−1,𝑃)+2P−𝑣(0,𝑛2−1,𝑚−1,𝑃)
, (3.4.2)

We know that 𝑣(0, 𝑛2, 𝑛2, 𝑃) = 2𝑃 − 1 for 0 < 𝑃 < 1/2 and

𝑣(0, 𝑛2, 𝑛2, 𝑃) = 0 for
1

2
< 𝑃 < 1, which they both satisfy (3.4.2).

For part a, suppose that 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1 we should prove that

𝑣(0, 𝑛2, 𝑚 + 1, 𝑃) =
2𝑛2𝑃

𝑚+1
− 1. We can easily see that

2𝑛2𝑃

𝑚+1
− 1 =

(2P−1)(
2𝑛2𝑃

𝑚
−1) +

2(𝑛2−1)𝑃

𝑚
−1

2𝑛2𝑃

𝑚
−1+2P−

2(𝑛2−1)𝑃

𝑚
+1

 . Hence, 𝑣(0, 𝑛2, 𝑚 + 1, 𝑃) =
2𝑛2𝑃

𝑚+1
− 1.

3 While calculating 𝑣(0,1, 𝑚, 𝑃) we can see in the Table 3.2 that when players are mixing, then the crucial value is 𝑃 = 1/2, as in
this case 2𝑃 − 1 = 0. We have modelled the game as a recursive game hence 𝑃 = 1/2 will be the crucial value for 𝑣(0, 𝑛2, 𝑚, 𝑃)
in Theorem 3.2 as well.

61

For part b4, let 𝑠(𝑛2, 𝑚) = ∑ (
𝑚
𝑖

) (2𝑝 − 1)𝑛2−𝑖𝑛2
𝑖=0 . Hence, we will have

𝑠(𝑛2, 𝑚 − 1) = (2𝑃 − 1). 𝑠(𝑛2 − 1, 𝑚 − 1) + (
𝑚 − 1

𝑛2
) and

𝑠(𝑛2, 𝑚) = 𝑠(𝑛2, 𝑚 − 1) + 𝑠(𝑛2 − 1, 𝑚 − 1). We can see that

𝑣(0, 𝑛2, 𝑚, 𝑃) = −
(𝑚−1

𝑛2
)

𝑠(𝑛,𝑘)
 satisfies the recursive formulae (3.4.2), ∎.

Theorem 3.1 and Theorem 3.2 can provide the efficient tool to compare

full inspections with partial inspections. Not only can we compare the

different inspection games, we can also easily calculate how many partial

inspections are required to achieve a certain probability of detection

similar to that gained from a full inspection (classical inspection game).

The following examples show different kind of useful comparisons that we

can make.

Example 3.3. Figure 3.4 demonstrates the value of three different

inspection games when the number of events is changing. The first game

which is shown by red dots is the inspection game with just one full

inspection. The other inspection games which are shown by green and

blue dots are inspection games with just one partial with probability of

detection equal to 2/3 and 1/3, respectively. As we could predict, in Figure

3.4 we can see that for any value of 𝒎, 𝒗(𝟏, 𝟎, 𝒎, 𝑷) ≥ 𝒗(𝟎, 𝟏, 𝒎, 𝟐/𝟑) ≥

𝒗(𝟎, 𝟏, 𝒎,
𝟏

𝟑
). We can also observe that, as 𝒎 is getting larger the value of

the all the games is approaching -1.

4 This part of the proof is similar to the proof in Rinderle (1996).

62

Figure 3. 4. Comparison between the value of the inspection game with just one full

inspection, or one partial inspection where the probability of detection is 1/3 and 2/3.

Example 3. 4. Figure 3.5 compares the value of the inspection games with

just one and two full inspections with the inspection game with one and

two partial inspections, where probability of detection is 2/3. We can see

that for any value of 𝒎, 𝒗(𝟐, 𝟎, 𝒎, 𝟏) ≥ 𝒗(𝟎, 𝟐, 𝒎, 𝟐/𝟑) ≥ 𝒗(𝟏, 𝟎, 𝒎, 𝟐/

𝟑) ≥ 𝒗(𝟎, 𝟏, 𝒎, 𝟐/𝟑).

Figure 3. 5. The comparison between Inspection games with just full inspections, and

inspection games with just partial inspections.

63

As I mentioned, by employing Theorem 3.1 and Theorem 3.2 we can find

out how many partial inspection are required to have the same value a full

inspection. The following example provides a comparison between value

of the inspection game with just full inspections and just partial

inspections.

Example 3. 5. Suppose an inspection game with 2 full inspections and 6

periods of time. Hence by the Dresher formula (formula 3.3.5) we know

that 𝑣(2,0,6, 𝑃) = 𝑉(2,7) = −0.3125. If the inspector decides to, instead

of full inspection, run partial inspections with probability of detection

equal 2/5, he will need at least five partial inspections. As we know that

𝑣(0,4,7,2/5) < −0.3125 < 𝑣(0,5,7,2/5).

Example 3. 6. Figure 3.6 demonstrates that if we have 100 period of times,

for different numbers of full inspections (𝒏𝟏) how many partial inspections

(𝒏𝟐) are required to get the same value. In this example, the probability of

detection for the partial inspection is 2/3. The blue line is the relation

between the number of full and partial inspections, and the red line is

when 𝒏𝟏 = 𝒏𝟐. Hence we can easily see that relation between the

number of full and partial inspections is not linear.

 Figure 3. 6. The relation between number of full inspections and partial inspections to

guarantee the same value.

64

The following theorem explains the results in Example 3.6 theoretically.

Theorem 3. 7. For an inspection game with 𝒏𝟏 number of full inspections,

we need at least [(−
(

𝒎−𝟏
𝒏𝟏

)

∑ (
𝒎
𝒊

)𝒏
𝒊=𝟎

+ 𝟏) (
𝒎

𝟐𝑷
)] + 𝟏 partial inspections with a

probability of detection 𝑷 to achieve the same value, if < 𝑷 < 𝟏/𝟐 .

Proof:

By Dresher formula we know that the value of an inspection game with n

full inspection is −
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

 . Besides, by Theorem 3.2 we know that

when 0 < 𝑃 < 1/2, the value of the inspection game with 𝑛2 number of

partial inspections is
2𝑛2𝑃

𝑚
− 1.

2𝑛2𝑃

𝑚
− 1 = −

(
𝑚−1

𝑛1
)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

⇔ 𝑛2 = (−
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

+ 1) (
𝑚

2𝑃
),

Hence, we need 𝑛2 = [(−
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

+ 1) (
𝑚

2𝑃
)] + 1, ∎.

We cannot have a kind of similar theorem for 1/2 < 𝑃 < 1, as it is not

possible to find the explicit formula for 𝑛2.

Theorem 3. 8. Consider an inspection game with no full inspection, 𝑛2

number of partial inspections and 𝑚 period of time, where 𝑃 is the

probability of detection in partial inspections. If 𝑝 is the probability of

assigning a partial check and 𝑞 is the probability of selecting one of the

times to violate, then for 0 < 𝑃 < 1/2 we have

 𝑝 =
𝑛2

𝑚
 (probability of assigning a partial check),

 𝑞 = 1 −
1

𝑚
 (probability of selecting one of the times to violate).

For 1/2 < 𝑃 < 1 we have

𝑝 =

(2𝑃)𝑛2−1 + (2𝑃)𝑛2−2 (𝑚 − 𝑛2
1

) + ⋯ + (
𝑚 − 2
𝑛2 − 1

)

(2𝑃)𝑛2 + (2𝑃)𝑛2−1 (
𝑚 − 𝑛2

1
) + ⋯ + (2𝑃) (

𝑚 − 2
𝑛2 − 1

) + (
𝑚 − 1

𝑛2
)

 ,

65

𝑞 = 1 −
2𝑃

−
(

𝑚−2
𝑛2

)

∑ (𝑚−1
𝑖

)(2𝑃−1)𝑛2−𝑖𝑛2
𝑖=0

+
(

𝑚−2
𝑛2−1)

∑ (𝑚−1
𝑖

)(2𝑃−1)𝑛2−𝑖−1𝑛2−1
𝑖=0

 .

Proof:

By employing Table 3.3 we know that in the equilibrium we have

𝑝𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃) + (1 − 𝑝)𝑣(0, 𝑛2, 𝑚 − 1, 𝑃)

= 𝑝(2𝑃 − 1) + (1 − 𝑝)(−1)

and

𝑞(2𝑃 − 1) + (1 − 𝑞)𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃)

= −𝑞 + (1 − 𝑞)𝑣(0, 𝑛2, 𝑚 − 1, 𝑃)

𝑝 =
𝑣(0,𝑛2,𝑚−1,𝑃)+1

𝑣(0,𝑛2,𝑚−1,𝑃)+2P−𝑣(0,𝑛2−1,𝑚−1,𝑃)
 , (3.8.1)

1 − 𝑞 =
2𝑃

𝑣(0,𝑛2,𝑚−1,𝑃)−𝑣(0,𝑛2−1,𝑚−1,𝑃)+2P
 . (3.8.2)

For 0 < 𝑃 < 1/2, by the Theorem 3.2 we know that 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1. Hence, by formula 3.8.1 and 3.8.2 we can see that 𝑝 =

𝑛2

𝑚
 and

𝑞 = 1 −
1

𝑚
 .

For 1/2 < 𝑃 < 1, by the Theorem 3.2 we know that 𝑣(0, 𝑛2, 𝑚, 𝑃) =

−
(𝑚−1

𝑛2
)

∑ (
𝑚
𝑖)(2𝑃−1)𝑛2−𝑖𝑛2

𝑖=0

 . Hence, by employing formula 3.8.1 and 3.8.2 we can

show the result, ∎.

3.5 Inspection Game with Partial Inspection

In this section I consider a version of Inspection game, that the inspector

can employ both of the inspection technologies. In other words, 𝑛1 and 𝑛2

are both positive. We can describe the 𝑣(𝑛1, 𝑛2 , 𝑚, 𝑃) by following table

66

 Inspectee

Inspector

 Legal act violation

Full Inspection

Partial Inspection

No Control

 𝑣(𝑛1 − 1, 𝑛2 , 𝑚 − 1, 𝑃) +1

𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃) 2 𝑃 − 1

𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃) -1

Table 3. 7. Inspection game with Partial Inspection

We know that

𝑣(𝑛1 − 1, 𝑛2 , 𝑚 − 1, 𝑃) < 𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃) < 𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃).

Besides, for all value of 𝑛1, 𝑛2 and 𝑚 −1 ≤ 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) ≤ 1. On the

other hand, as 0< 𝑃 < 1 we know that 0< 2𝑃 − 1 < 1. Hence, we can

easily observe that there is a mixed strategy equilibrium. To analyse the

equilibrium three cases may happen.

Case 1: In equilibrium inspector mixes between No Control and Full

inspection.

Case 2: In equilibrium inspector mixes between No Control and Partial

inspection.

Case 3: In equilibrium inspector mixes between Full-inspection and Partial

inspection.

These cases are shown in the following figures. In all the following graphs

horizontal line shows the probability of the violation (𝑞) by the inspectee

and the vertical line shows the expected pay off for the inspector.

67

Green line denotes Not- check strategy, while inspectee is mixing between violate and not violate.

Blue line denotes Full- check strategy, while inspectee is mixing between violate and not violate.

Grey line denotes Partial- check strategy, while inspectee is mixing between violate and not violate.

The equilibrium point (Minmax strategy) has been denoted by a circle.

Figure 3. 8. Three possible cases for the equilibrium in inspection game with partial inspection

By knowing the initial condition of the value and the fact that the

equilibrium is one of the cases in Figure 3.8, we can design a computer

program to calculate the 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃). The Maple code for computing

the equilibrium point and its description are provided in Appendix B.1. The

value of the game with one full inspection and one partial inspection is

shown in the following two tables. Some other examples are provided in

Appendix B.2

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃)

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃)

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃)

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃)

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃)

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃)

+1 +1 +1

-1 -1 -1

2P-1
2P-1

2P-1
𝑞 𝑞 𝑞

Case 1 Case 2 Case 3

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃)

68

𝑚 𝑣(1,1, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of

the Case

2

3

4

5

6

Case 3

Case 1

Case 1

Case 1

Case 1

Table 3. 9. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟎 < 𝑷 < 𝟏/𝟐.

𝑚 𝑣(1,1, 𝑚, 𝑃), 1/2 < 𝑃 < 1

Type of

the Case

2

3

4

5

6

0

Case 1

Case 1

Case 1

Case 1

Case 1

Table 3. 10. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟏/𝟐 < 𝑷 < 𝟏.

69

Employing computer programing is computationally costly and slow. The

following theorems help to find the value and optimal strategies much

quicker.

Theorem 3. 8. For the Inspection game 𝒗(𝟏, 𝟏, 𝒎, 𝑷), when 𝒎 > 𝟐, in the

equilibrium the inspector is mixing between Full-inspection and Not-

inspection.

Proof:

We can describe the game by the following graph.

Figure 3. 11. Inspection game with one full inspection and one partial inspection

 is the connection of Full check line and Not check line.

 is the connection of Partial check line and Not check line.

 is the connection of Partial check line and Full check line.

 is the line passing the intersection of Partial check line and Full check line, and (1,-1).

In the Graph 2.3 we know that 𝑣(1,1, 𝑚, 𝑃) > 𝑣(1,0, 𝑚, 𝑃) > 𝑣(0,1, 𝑚, 𝑃);

however we do not know if 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚.

If 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 then the equilibrium point is at intersection of Full

inspection and No control; on the other hand, if 𝑣(1,1, 𝑚, 𝑃) < 𝑋𝑚 then

the equilibrium point is at intersection of Partial inspection and No

control.

We want to show that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚, ∀ 𝑚 > 2; and as a result the

equilibrium point is the intersection of full inspection and not inspection.

We know that 𝑣(0,1,1, 𝑃) = 0, 𝑣(1,0,1, 𝑃) = 0 and 𝑣(1,1,1, 𝑃) = 0 for
1

2
< 𝑃 < 1; as a result 𝑣(1,1,2, 𝑃) = 0 for

1

2
< 𝑃 < 1 where in equilibrium

the inspector is mixing between all of his strategies. Besides, as we know

𝑣(1,1, 𝑚, 𝑃)?

𝑣(1,1, 𝑚, 𝑃)?

𝑣(1,0, 𝑚, 𝑃)

𝑣(0,1, 𝑚, 𝑃)

+1

 2𝑃 − 1

−1

 𝑌𝑚+1
 𝑋𝑚 𝑞

70

𝑣(1,1,2, 𝑃) = 0, 𝑣(1,0,2, 𝑃) = −
1

3
 and 𝑣(0,1,2, 𝑃) = −

1

2𝑃+1
 ; as a result

we can easily calculate that 𝑣(1,1,3, 𝑃) = −
1

4𝑃+3
 where in equilibrium

inspector is mixing between full inspection and no control.

Suppose that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚; we have to show that 𝑣(1,1, 𝑚 +

1, 𝑃) ≥ 𝑋𝑚+1.

We know that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 if and only if 𝑣(1,1, 𝑚 + 1, 𝑃) ≥ 𝑌𝑚+1;

hence if we show that 𝑌𝑚+1 ≥ 𝑋𝑚+1 then it will implies that 𝑣(1,1, 𝑚 +

1, 𝑃) ≥ 𝑋𝑚+1.

Full inspection line is the line passing two following points

(0, 𝑣(0,1, 𝑚, 𝑃)) and (1, 1). By Theorem 3.1 we know that 𝑣(0,1, 𝑚, 𝑃) =

−
𝑚−1

𝑚−1+2𝑃
 . So the full inspection line is

.

Partial inspection line is the line passing two following points

(0, 𝑣(1,0, 𝑚, 𝑃)) and (1, 2𝑃 − 1). By the Dresher formula (formula 3.3.5)

we know that 𝑣(0,1, 𝑚, 𝑃) = −
𝑚−1

𝑚+1
 . So the partial inspection line is

.

Hence, the intersection of full inspection and partial inspection line is

𝑥1 = , 𝑦1 = .

.

Hence, 𝑌𝑚+1 = −
(𝑚−1)𝑚

2𝑃𝑚+𝑚2+2𝑃+𝑚−2
 .

On the other hand, the line between (𝑥1, 𝑦1) and (1,-1) is

𝑥−𝑥1

𝑦−𝑦1
=

1−𝑥1

−1−𝑦1
. If 𝑥 = 0, then 𝑦 = (

1−𝑦1

−1−𝑥
) (−𝑥1) + 𝑦1.

 Hence, 𝑋𝑚 = .

As a result, 𝑌𝑚+1 − 𝑋𝑚+1 = ,

which is positive for 𝑚 > 2 and 𝑃 >
1

2
. Hence, if 1/2 < 𝑃 < 1 in

equilibrium the inspector is mixing between full inspection and no control.

71

We know that for 0 < 𝑃 < 1/2, in the game 𝑣(1,1,3, 𝑃) in equilibrium the

inspector is mixing between full inspection and no control (Case 1). Hence,

similar to the induction we made for 1/2 < 𝑃 < 1 we suppose that

𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 and we have to show that 𝑣(1,1, 𝑚 + 1, 𝑃) ≥ 𝑋𝑚+1,

which is equivalent to show 𝑌𝑚+1 − 𝑋𝑚+1 ≥ 0.

Full inspection line is the line passing two following points

[(0, 𝑣(0,1, 𝑚, 𝑃)), (1, 1)]. We know by Theorem 3.1 that (0,1, 𝑚, 𝑃) =
2𝑃

𝑚
− 1 , so the Full check line is .

Partial inspection line is the line passing two following points

[(0, 𝑣(1,0, 𝑚, 𝑃)), (1, 2𝑃 − 1)]. By the Dresher formula we know that

𝑣(1,0, 𝑚, 𝑃) = −
𝑚−1

𝑚+1
 , so the Partial inspection line is

.

The Intersection between the full inspection and partial inspection line is

𝑥1 =

𝑦1 =

Hence, 𝑌𝑚+1 = .

On the other hand, the line between (𝑥1, 𝑦1) and (1,-1) is

𝑥−𝑥1

𝑦−𝑦1
=

1−𝑥1

−1−𝑦1
. If 𝑥 = 0, then 𝑦 = (

−1−𝑦1

−1−𝑥
) (−𝑥1) + 𝑦1.

Hence, 𝑋𝑚 =

As a result, 𝑌𝑚+1 − 𝑋𝑚+1 =

−
2𝑃(𝑃𝑚 + 2𝑃 − 𝑚 − 1)

(𝑃𝑚2 + 2𝑃𝑚 − 𝑚2 + 𝑃 − 2𝑚)(𝑚 + 1)(𝑃𝑚 + 2𝑃 − 𝑚 − 2)

We know that 𝑃𝑚2 + 2𝑃𝑚 − 𝑚2 + 𝑃 − 2𝑚 = 𝑚2(𝑃 − 1) +

𝑚(2𝑃 − 2) + 𝑃 which is always negative. On the other hand, (𝑃𝑚 + 2𝑃 −

72

𝑚 − 1) and (𝑃𝑚 + 2𝑃 − 𝑚 − 2) are both negative. Hence, 𝑌𝑚+1 − 𝑋𝑚+1 ≥ 0.

Which means that for 0 < 𝑃 < 1/2 and 𝑚 > 2 in equilibrium the

inspector mixes between full inspection and no control, ∎.

Corollary 3. 9. For the inspection game with 1 full inspection and 1 partial

inspection, if in equilibrium 𝒑(𝟏, 𝟏, 𝒎, 𝑷) is the optimal probability of

assigning the full inspection, and 𝒒(𝟏, 𝟏, 𝒎, 𝑷) is probability of violation

and 𝒗(𝟏, 𝟏, 𝒎, 𝑷) is the value of the game then they can be calculated by

following recursive formulas.

𝑣(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+𝑣(0,1,𝑚−1,𝑃)

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
 (3.5.1)

𝑝(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+1

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
 (3.5.2)

𝑞(1, 1, 𝑚, 𝑃) =
2

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
 (3.5.3)

Proof:

We know that we can describe the 𝑣(1, 1, 𝑚, 𝑃) by the following table.

 Inspectee

Inspector

Not Violate Violate

Full Inspection

Partial Inspection

No Control

𝑣(0, 1, 𝑚 − 1, 𝑃) +1

𝑣(1, 0, 𝑚 − 1, 𝑃) 2P-1

𝑣(1, 1, 𝑚 − 1, 𝑃) -1

Table 3. 12. Inspection game with 1 full inspection and 1 partial inspection.

Besides, by Theorem 3.8 we know that in equilibrium the inspector is

mixing between the full inspection and no control. Hence, as it has been

explained in Appendix B.1 the value is equal to

𝑣(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+𝑣(0,1,𝑚−1,𝑃)

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
.

𝑝(1, 1, 𝑚, 𝑃) and 𝑞(1, 1, 𝑚, 𝑃) can also be calculated by the formulas

provided in Appendix B.1, ∎.

73

Theorem 3. 10. In an inspection game with 𝑛1 number of full inspections,

𝑛2 number of partial inspection and 𝑚 period of times, for 𝑛1 + 𝑛2 ≤ 50

in the equilibrium we have

a) For 0 < 𝑃 < 1/2, the inspector mixes between partial inspection

and full inspection (Case 3) if 𝑛1 + 𝑛2 = 𝑚; and the inspector mixes

between full inspection and no control (Case 1) if 𝑛1 + 𝑛2 < 𝑚.

b) For 1/2 < 𝑃 < 1, the inspector mixes between full inspection and

no control.

 Proof:

 By employing the Maple code provided in Appendix B.2 we have

analyzed all the inspection games with 𝑛1 number of full inspections and

𝑛2 number of partial inspections and 𝑚 period of times where 𝑛1 + 𝑛2 ≤

𝑚 ≤ 50. The results of the computations are the same with the claim in

the Theorem, ∎.

Theorem 3.10 is providing a general guess for the behavior of the players

in the equilibrium. It seems that except when 𝑛1 + 𝑛2 = 𝑚 and

0 < 𝑃 < 1/2 which is Case 3, in all the other situations in equilibrium the

inspector is mixing between full inspection and partial inspection. It means

that the inspector never starts his sequential inspections with a partial

inspection. In other words, as long as any opportunity exists for running a

full inspection, the inspector will not run any partial inspections. Partial

inspections will be used when no remaining full inspections are available.

 The other benefit, application of Theorem 3.10 is finding an efficient way

to determine the value and optimal strategies of the game. The following

theorem explains how Theorem 3.10 may help to find the more efficient

way to calculate the value of the game and optimal strategies.

Theorem 3. 11. If in an inspection game with partial inspection there are a

number of full inspections, a number of partial inspection and m period of

times; if we know that in equilibrium the inspector is mixing between full

inspection and no control then the value of the game can be calculated by

the values of the previous level by following formula

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)

𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+2−𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)
 . (3.5.4)

74

If we know that in equilibrium the inspector is mixing between partial

inspection and no control then the value of the game can be calculated by

the values of the previous level by following formula

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
(2𝑃−1)𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)

𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+2𝑃−𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)
. (3.5.5)

If we know that in equilibrium the inspector is mixing between partial

inspection and full inspection then the value of the game can be

calculated by the values of the previous level by following formula

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)−(2𝑃−1)𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)

𝑣(𝑛1 ,𝑛2−1,𝑚−1,𝑃)+(2−2𝑃)−𝑣(𝑛1−1,𝑛2 ,𝑚−1,𝑃)
 . (3.5.6)

Conclusion

I investigate the classical inspection game while not all the inspections can

fully detect the violation. For some cases I show that the inspector always

applies a full inspection at the beginning of the series of inspections. This

characteristic leads to find a recursive formula for calculating the value of

the game. The recursive formulae and its explicit solution computationally

would be less costly, comparing to the computer programing method.

Values of the games with a different number of full and partial inspection

can provide a robust tool to compare the different type of the inspections.

Reference

Avenhaus, R. and M. J. Canty (2005). 'Playing for time: A sequential
inspection game', European Journal of Operational Research, vol.
167(2), pp. 475-492.

Baston, V. J. and F. A. Bostock (1991). 'A GENERALIZED INSPECTION
GAME', Naval Research Logistics, vol. 38(2), pp. 171-182.

Canty, M. J., D. Rothenstein and R. Avenhaus (2001). 'Timely inspection
and deterrence', European Journal of Operational Research, vol.
131(1), pp. 208-223.

Dresher, M. (1962) A sampling inspection problem in arms control
agreements: A game-theoretic analysis, DTIC Document.

75

Maschler, M. (1966). 'A price leadership method for solving the inspector's
non‐constant‐sum game', Naval Research Logistics Quarterly, vol.
13(1), pp. 11-33.

Maschler, M. (1967). 'The inspector's non‐constant‐sum game: Its
dependence on a system of detectors', Naval Research Logistics
Quarterly, vol. 14(3), pp. 275-290.

Rinderle, K. (1996). Mehrstufige sequentielle Inspektionsspiele mit
statistischen Fehlern erster und zweiter Art: Kovač.

Rothenstein, D. and S. Zamir (2002). 'Imperfect inspection games over
time', Annals of Operations Research, vol. 109(1-4), pp. 175-192.

Thomas, M. U. and Y. Nisgav (1976). 'An infiltration game with time
dependent payoff', Naval Research Logistics Quarterly, vol. 23(2),
pp. 297-302.

von Stengel, B. (1991). 'Recursive inspection games, Report No. S 9106',
Computer Science Faculty, Armed Forces University Munich.

Von Stengel, B. (2016). 'Recursive inspection games', Mathematics of
operations research.

76

B Appendix to Chapter 3

B.1 The value and optimal strategies for a 2×2 zero-sum

game

Let following table be the matrix game of a two player zero-sum game

(See Von Stengel (1991)).

 Player 2
Player 1

Strategy C Strategy D

Strategy A

Strategy B

 a b

 c d

If 𝑎 ≤ 𝑏, 𝑐 > 𝑑, 𝑎 ≤ 𝑐, 𝑏 > 𝑑, then we can easily observe that in

equilibrium players are mixing between their strategies. We denote the

probability of playing Strategy A by Player 1 with 𝑝, the probability of

playing Strategy C by Player 2 and the value of the game with 𝑣. As the

players are indifferent between their strategies then we have

𝑣 = 𝑝. 𝑎 + (1 − 𝑝). 𝑐 = 𝑝. 𝑏 + (1 − 𝑝). 𝑑,

𝑣 = 𝑞. 𝑎 + (1 − 𝑞). 𝑏 = 𝑞. 𝑐 + (1 − 𝑞). 𝑑.

Hence, we have

𝑝 =
𝑐−𝑑

𝑐−𝑑+𝑏−𝑎
 , (B.1.1)

𝑞 =
𝑏−𝑑

𝑐−𝑎+𝑏−𝑑
 , (B.1.2)

𝑣 =
𝑏.𝑐−𝑎.𝑑

𝑐−𝑑+𝑏−𝑎
 . (B.1.3)

B.2 Maple code for finding the equilibrium point for the

inspection game with partial inspection

The maple code provided in this section finds the equilibrium point and

calculates the value of the inspection game with partial game for different

value of full inspection, partial inspection and period of times. The user

can set the code to work for small (0 < 𝑃 < 1/2) or large (
1

2
< 𝑃 < 1)

77

probability of detection for the partial inspection. The program calculates

the value of all the games 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑛1 ≤ 𝑁1, 𝑛2 ≤ 𝑁2, 𝑚 ≤ 𝑀

where 𝑁1, 𝑁2 and 𝑀 can be set by user. 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) where 𝑛1 + 𝑛2 ≤

𝑚 are calculated in following orders.

First 𝑣(1,1,1, 𝑃) to 𝑣(1,1, 𝑀, 𝑃), then 𝑣(1,2,3, 𝑃) to 𝑣(1,2, 𝑀, 𝑃). This

continue to 𝑣(1, 𝑁2, 𝑁2 + 1, 𝑃) to 𝑣(1, 𝑁2, 𝑀, 𝑃). Finally, 𝑣(2, 𝑁2, 𝑀, 𝑃) to

𝑣(2, 𝑁2, 𝑀, 𝑃); which will continue to 𝑣(𝑁1, 2,1, 𝑃) to 𝑣(𝑁1, 2, 𝑀, 𝑃).

The program runs following steps

a) Calculating 𝑣(𝑛1, 0, 𝑚, 𝑃) by Dresher formula for 𝑛1 ≤ 𝑁1 and

𝑚 ≤ 𝑀.

b) Calculating 𝑣(0, 𝑛2, 𝑚, 𝑃) 𝑛2 ≤ 𝑁2 and 𝑚 ≤ 𝑀 by the formulas

provided in Theorem 3.2 for small or large value of 𝑃 (Depends on

user to select which of them)

c) Setting 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) = 0 for 𝑛1 ≥ 𝑚.

d) For a given 𝑛1, 𝑛2 and 𝑚, the program calculates the equation of

following 3 lines given the coordination of their start point and end

point:

No control line [(0, 𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃)), (1, −1)].

Partial inspection line [(0, 𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃)), (1, 2 ∗ 𝑃 − 1)].

Full inspection line [(0, 𝑣(𝑛1 − 1, 𝑛2, 𝑚 − 1, 𝑃)), (1, 1)].

e) The program calculates the intersection of each two different lines

in part e). Hence, we will have the coordination of the following

point.

NP= intersection of no control line and Partial inspection line.

FP= intersection of full inspection line and Partial inspection line.

FN= intersection of full inspection line and no control line.

f) The program compares the height of the calculated points for all the

values of 𝑃. If NP had the greatest height among the others, it

means that NP is the optimal strategy (Minmax). Otherwise, the

equilibrium point is FP or FN. If height of FP is smaller than height of

FN then the equilibrium point is FP, otherwise it is FN.

78

The following maple codes calculate the value of the game (𝑛1, 𝑛2, 𝑚, 𝑃)

𝑛1 ≤ 2, 𝑛2 ≤ 2, 𝑚 ≤ 5. The results of the code are shown by blue.

> restart;

>

>

>

>

P := proc(n, k)

RETURN(product(n-j, j=0..(k-1)))

end:

> C := proc(n, k)

RETURN(P(n,k)/k!)

end:

>

Value1:=proc(i,m)

global Value;

local j,b,A,AA;

if m<=i then Value[i,0,m]:=0; else

#print(i,m);

#print(C(m-1,i));

A:=C(m-1,i);

##print("A is",A);

AA:=0;

for j from 0 to i do

 b:=C(m,j):

AA:=AA+b:

end do:

#print(AA);

Value[i,0,m]:=-A/AA;

end if;

#print("Value is",i,m,Value[i,0,m]);

end proc:

>

for i from 1 to BB do

for m from 1 to BB do

 Value1(i,m-1);

end do:

end do:

79

> ##################### for large P

Vlarge:=proc(n1,n2,m1)

 global Value;

 local temp1,i,temp2;

 temp1:=0;

for i from 0 to n2 do

 temp1:=((2*P)^(i))*binomial(m1-1-i,n2-i)+temp1:

end do:

 temp2:=binomial(m1-1,n2);

 Value[0,n2,m1]:=-temp2/temp1;

 #print(Value[0,n2,m1]);

end proc:

>

> for n2 from 1 to BB do

 for m from 1 to BB do

Vlarge(0,n2,m);

 end do:

end do:

>

>

>

>

> ######### for small P, 0<P<1/2

Value[1, 1, 1] := 0;

for i1 from 1 to 10 do

 for i2 from 1 to 10 do

 for m from 1 to 10 do

 if i2>= m then Value[0, i2, m]:=2*P-1; end if;

 if i1>= m then Value[i1, i2, m]:=0; end if;

 end do:

 end do:

 end do:

>####### for small P

for n2 from 1 to 10 do

for m from 1 to 10 do

80

 Value[0,n2,m]:=((2*P*n2)/(m))-1;

 #print(0,n2,m,Value[0,n2,m]);

end do:

end do:

>

for n1 from 1 to 2 do

for n2 from 1 to N2 do

for m from 2 to M do

print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&",n1,n2,m);

#print(Value[n1,n2,m-1]);

geometry[point](e,0,Value[n1,n2,m-1]):

geometry[point](f,1,-1):

#print(n2-1,m-1,Value[n1,n2-1,m-1]);

geometry[point](c,0,Value[n1,n2-1,m-1]):

geometry[point](d,1,2*P-1):

aa:=n2;

if n2>(m-1) then aa:=m-1; end if;

Value1(aa,m-1);

Value[0,n2,m-1]:=Value[0,aa,m-1];

#print(Value[n1-1,n2,m-1]);

geometry[point](a,0,Value[n1-1,n2,m-1]):

geometry[point](b,1,1):

geometry[line](l1,[a,b]):

#if m=8 then print("full check"): end if:

F:=geometry[Equation](l1,[x,y]);

#print("full check",F):

geometry[line](l2,[c,d]):

P1:=geometry[Equation](l2,[x,y]);

#print("partial check",P1):

geometry[line](l3,[e,f]):

N:=geometry[Equation](l3,[x,y]);

#print("Not check",N);

#print("Full & Not");

81

FN:=solve({F,N},{x,y});

#print("Full & Partial");

FP1:=solve({F,P1},{x,y});

#print("Partial & Not");

NP1:=solve({N,P1},{x,y});

FN:=op(2,op(2,FN));

FP1:=op(2,op(2,FP1));

NP1:=op(2,op(2,NP1));

temp1:=minimize(FN-FP1,P=a1..b1);

temp2:=minimize(FN-NP1,P=a1..b1);

check:=1;

if temp1>=0 and temp2>=0 then

print("Case1:Value is intersection of Not-Check and Full-

Check");

value1:=FN;

print("the value is",value1);

check:=1;

else

 check:=0;

 print("It is not Case 1",n1,n2,m);

 temp3:=minimize(NP1-FP1,P=a1..b1);

 if temp3<0 then

 print("Case2:Value is intersection of Not-Check and

Partial-Check");

 value1:=NP1;

 print("the value is",value1);

 else

 print("Case3:Value is intersection of Full-Check and

Partial-Check");

 value1:=FP1;

 print("the value is",value1);

 end if;

end if;

Value[n1,n2,m]:=value1:

#print(n1,n2,m);

#print(Value[n1,n2,m]);

#if check=0 then print("The plot of intersections");

plot([FN,FP1,NP1],P=0..1/2,color=[red,green,blue]); end if:

82

end do:

end do:

end do:

83

B.3 The value of game for 𝒗(𝟏, 𝟐, 𝒎, 𝑷) and 𝒗(𝟐, 𝟏, 𝒎, 𝑷)

for all the values of 𝑷

𝑚 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of the

Case

2

3

4

5

6

Case 3

Case 3

Case 1

Case 1

Case 1

Table B.2.1. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2.

𝑚 𝑣(1,2, 𝑚, 𝑃), 1/2 < 𝑃 < 1 Type of the

Case

84

2

3

4

5

6

0

0

Case 1, 2 & 3

Case 1, 2 & 3

Case 1

Case 1

Case 1

Table B.2.2. 𝑣(1,2, 𝑚, 𝑃), 1/2 < 𝑃 < 1.

𝑚 𝑣(2,1, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of the Case

2

3

4

5

6

0

Case 1, 2 & 3

Case 3

Case 1

Case 1

Case 1

Table B.2.3. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2.

𝑚 𝑣(2,1, 𝑚, 𝑃), 1/2 < 𝑃 < 1 Type of the Case

85

2

3

4

5

6

0

0

Case 1, 2 & 3

Case 1, 2 & 3

Case 1

Case 1

Case 1

Table B.2.4. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2.

Chapter 4

A Comparison between Nelder-Mead and Genetic Algorithm for

Large Scale Optimization Problems

4.1 Introduction

Optimization problems can appear in a wide range of sciences where we

are interested in finding the best solution to a problem after exploring all

feasible solutions. In this study we aimed to compare the most popular

direct numerical optimisation methods: the Nelder-Mead algorithm and

the Genetic algorithm.

Numerical optimization methods have wide application in many

optimization problems arisen in different field of science. Instead of

focusing on exact solution of the problem, they provide an approximation

of the solution with reasonable accuracy. Hence, they can cover a wider

range of the complex problems. There are many different numerical

methods which are compatible with different types of problems and their

associated characteristics. However, numerical methods can broadly be

divided into two main categories: gradient methods and direct methods.

Gradient methods are a form of numerical method which use the special

features of the objective function such as continuity or gradient to

establish an iterative method to approximate the solution. These methods

are usually fast to converge. However, they are not compatible with

irregular objective functions1 and they may just provide the local optimum

of the problem. One of the most famous examples of gradient method is

Newton method which needs differentiation in each iteration. As a result,

it can be computationally costly and also it is only applicable for

continuous differentiable functions. As other example of a gradient

1 A function is irregular, if its derivative is not well-defined or does not exist.

method we can mention Gauss-Newton method introduced by Harley

(1961) and another algorithm introduced by Marquardt (1977).

In contrast, direct methods of optimization can be applied with a wider

range of objective functions as they just require the value of the objective

function. Convergence is almost surely slower compared to gradient

methods in any form of the application, but overall there is no general

criterion for the objective function. The Nelder-Mead simplex algorithm2

(See Nelder and Mead (1965)) and the Genetic algorithm (see Holland

(1975)) are two of the most widely used direct methods to deal with

optimization problems.

The Nelder-Mead simplex method has been widely used in optimization

problems. It is also an efficient tool for the optimization problems arising

in Economics. Hugget, Ventura, Yaron (2011) employ the Nelder-Mead

algorithm in a Macroeconomics problem when they are investigating

sources of lifetime inequality.

Because of the important role of the algorithm in optimization problems it

appears in many numerical methods handbooks like the one by Press,

Flannery, Teukolsky and Vettering (1992), beside it is part of the MATLAB’s

optimization package. However, the method still does not have a

satisfactory convergence theory. Not only is there a chance of

approaching and sticking to a local optimum point instead of the global

one, but also the algorithm may converge to a non-stationary point3.

McKinnon (1998) provides a number of the examples which cause the

algorithm to converge a non-stationary point.

 The inefficiency of the method for higher dimension problems has been

also observed and analysed in some studies. Byatt (2000) and Torczon

(1989) provide some results for minimization of the function 𝑓(𝑥) =

∑ 𝑥𝑖
2𝑛

𝑖=1 for different value of 𝑛. They observe in their numerical

implementation of the method, that it is working inefficiently when 𝑛 is

moderately large (approximately more than 32). Hans and Neumann

(2006) provide some theoretical aspects for employing Nelder-Mead

simplex algorithm for the mentioned function and they show that the

2 Nelder-Mead simplex algorithm should not be mix with Dantzing simplex method (see Dantzing (1947))
which is an optimization method in linear programming.
3 A point with non-zero gradient, which is obviously is not candidate to be a optimum point.

algorithm is inherently become inefficient by increasing the number of

parameters. The mentioned works provide an example for the effect of

the dimensionality4 on the Nelder-Mead simplex algorithm, which means

that we can expect the same problem for some other unconstraint

optimization problems as well.

Genetic Algorithm is another direct optimization method which also has

been widely used for optimization in many different fields like

electromagnetics (see Weile and Michielssen (1997)), water distribution

systems (van Zyl and Savic(2004)) and economic predictions (see Shin and

Lee (2002)). It is also employed in economics and finance optimization

problems. Pereira (2000) presents the Genetic algorithm as a strong tool

in finance problems like choosing the optimized parameters for a specific

trading rule. Another example is Chen and Chang (1995) which employ

the Genetic algorithm to solve the economic dispatch problem in large

scale systems.

This method starts from the set of initial solutions and iterates toward

more optimized set of solutions using techniques inspired by natural

evolution and Darwinian process5. Beside the flexibility to deal with many

ranges of the optimization problem, Genetic algorithm can also be easily

coded to solve the unconstraint optimization problems where the

objective function is not necessarily differentiable.

Many studies show that Genetic algorithm is working well for big and

complex problems; however it might be slow to achieve a very precise

answer (see Yugeng, Tianyou and Weimin (1996)).

In this study, we briefly compare the Nelder-Mead and Genetic algorithms

with respect to speed, accuracy and the resilience as the problem

increases in size. For this matter, by Matlab implementation of both

algorithms we perform experiments.

We observe that Nelder-Mead algorithm with regards to the number of

iterations required and processing time is efficient only when the number

of parameters is small. We provide an example which shows that,

regardless of the number of parameters, Nelder-Mead algorithm can stick

4 The effect of large number of parameters on efficiency of the method is called dimensionality.
5 Full process of Genetic algorithm and its operators are provided in Section 4.3.

to a local optimum point based on the position of the starting point.

Genetic algorithm shows faster approaching to the global optimum point

and also can skip the local optimum points by mutation functions.

It is obvious that changing parameters or employing hybrid methods may

improve the final results for some specific problems; however we choose

to use the default parameters within Matlab for a pure comparison.

This study has been organized in four sections. In Section 4.2 and 4.3 we

briefly review the Nelder-Mead and Genetic algorithms and their special

characteristics. In Section 4.4, we introduce some experiments to compare

both methods with regarding to accuracy and required time. In Section

4.4, we provide an experiment to see dependency of Nelder-Mead

algorithm on the place of the initial guess. We also show this problem can

be skipped by Genetic Algorithm.

The Matlab version used to perform the experiments in this study is

R2013b, and as mentioned, implements the default parameters for

Genetic and Nelder-Mead algorithm otherwise specified6.

4.2 Nelder-Mead Simplex Algorithm7

In this section we explain the Nelder-Mead simplex algorithm and its main

characteristics.

The Nelder-Mead simplex algorithm is based on iteratively constructing

sequence of simplices, where the amount of the objective function for the

vertices of the simplex evaluated and sorted in each iteration. The

algorithm applies four possible operators of reflection, expansion,

contraction and shrinks to construct a new simplex which has improved

evaluated functions on its vertices in general. The algorithm terminates

when the vertices of the simplex meet the stopping criteria.

For minimizing a real valued function like 𝑓: ℛ𝑁 → ℛ; 𝑓(𝑋) = 𝑦, Nelder-

Mead algorithm is starting with a simplex defined in 𝑁 + 1 dimension. The

algorithm also can start with just one initial point, where we define a

6 Matlab’s default settings for Nelder-Mead algorithm and Genetic algorithm have fully provided and
discussed in section 4.2.2 and 4.3.2.
7 The algorithm is also called Nelder-Mead algorithm.

function which can construct a simplex in N+1 dimension based on that

point. Each vertex of the simplex is defined by function values at a

different point. Having ranked the vertices of the simplex, we aim to move

the worst performing vertex of the simplex around the centroid to update

the simplex. In updating procedure four operators of Reflection,

Expansion, Contraction, and Shrink are used. If we define the centroid of

the simplex as average of all the vertices of the simplex to expect the

worst one, then Nelder-Mead operators are as follow.

a) Reflection: reflect the worst vertex around the centroid. The

function for finding the reflected point (𝑥𝑟) is 𝑥𝑟 = 𝑐 + 𝛼(𝑐 − 𝑥ℎ)

where 𝛼 > 0. Figure 4.1 shows the reflection function for a 2-

dimensional simplex.

Figure 4. 1. Reflection operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and
𝒄 is the centroid.

b) The contraction operator makes the simplex smaller by making the

worst vertex closer to the centroid. There can be two forms of

contraction, contraction inside and contraction outside. The

contracted point can be calculated by 𝑥𝑐 = 𝑐 + 𝛽(𝑥𝑟 − 𝑐) for

outside contraction or 𝑥𝑐 = 𝑐 + 𝛽(𝑥ℎ − 𝑐) for inside contraction

where 𝑥𝑟 is the reflection of 𝑥ℎ and 0 < 𝛽 < 1. Figure 4.2 shows

the contraction function in a 2-dimentional simplex.

Figure 4. 2. Contraction operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍)
and 𝒄 is the centroid. The left image shows outside contraction and right image shows inside
contraction.

c) Expansion operator, expand the simplex by multiply the distance of

the worst vertex and the centroid by a coefficient greater than 𝛼.

The function for finding the expanded point (𝑥𝑒) is 𝑥𝑒 = 𝑐 + 𝛾(𝑥𝑟 −

𝑐) where 𝑥𝑟 is the reflected point of the worst vertex and

𝛾 > 1, 𝛾 > 𝛼. Figure 4.3 shows the expansion function for a 2-

dimensional simplex.

Figure 4. 3. Expansion operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and
𝒄 is the centroid.

d) Shrink operator, for a N+1 dimensional simplex calculates the N new

vertices where all of them are closer to the best vertex. The location

of the best vertex is kept fixed. The new vertices are calculated by

𝑥𝑗 = 𝑥𝑙 + 𝛿(𝑥𝑗 − 𝑥𝑙). Figure 4.4 shows the Shrink function for a 2-

dimensional simplex.

Figure 4. 4. Shrink operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍).

𝛼, 𝛽, 𝛾 and 𝛿 can have different values, however in standard Nelder-Mead

algorithm it always suppose that 𝛼 = 1, 𝛽 =
1

2
 , 𝛾 = 2 and =

1

2
 .

The steps of the Nelder-Mead algorithm for minimization of a real value

function with N variables are as follows:

Step 1: The algorithm starts with the first simplex which has N+1 vertex.

Nelder-Mead algorithm can also start with just one start point. We can

define a rule that after receiving the initial guess it will make the other

vertices of the algorithm. Suppose that 𝑋0, 𝑋1, … , 𝑋𝑛 are the vertices of

the first simplex.

Step 2: The vertices of the simplex are sorted in increasing order. Hence

we have 𝑓(𝑋0) < 𝑓(𝑋1) < ⋯ < 𝑓(𝑋𝑛). We suppose that 𝑋𝑢 is the best

vertex, 𝑋𝑣 is the second worst vertex and 𝑋𝑤 is the worst vertex. By

employing all the vertices except the worst one, we calculate the Centroid

point (𝐶).

Step 3: In general, this step updates the worst vertex of the simplex or it

will shrink the whole simplex. The algorithm first tries the Reflection

operator. The worst vertex is reflected around the centroid, and value of

the reflected vertex is evaluated. If we show the reflected point by 𝑋𝑅,

then

a) If 𝑋𝑅 is better than the best vertex (𝑓(𝑋𝑅) < 𝑓(𝑋𝑢)), then the

simplex experience expansion. If the expanded point (𝑋𝑠) was

better than reflected point, then we accept 𝑋𝑠 and the algorithm

goes to Step 2. Otherwise, we accept 𝑋𝑅.

b) If 𝑋𝑅 is just better than the second worst vertex (𝑓(𝑋𝑢) ≤ 𝑓(𝑋𝑅) <

𝑓(𝑋𝑣)), then the worst vertex replaced with 𝑋𝑅, and the algorithm

goes to Step 2;

Otherwise, the algorithm runs Contraction in following way. We show the

inside contracted point by 𝑋𝐶1, and outside contracted point by 𝑋𝐶2.

a) If 𝑓(𝑋𝑅) < 𝑓(𝑋𝑤) then algorithm calculated outside contracted

point (𝑋𝐶2), if 𝑓(𝑋𝐶2) < 𝑓(𝑋𝑅) then algorithm accept 𝑋𝐶2 and goes

to Step 2. Otherwise, the simplex shrinks and the algorithm goes to

Step 2.

b) If 𝑓(𝑋𝑅) ≥ 𝑓(𝑋𝑤) then algorithm calculates inside contracted point

(𝑋𝐶1), if 𝑓(𝑋𝐶1) < 𝑓(𝑋𝑅) then algorithm accept 𝑋𝐶1 and goes to

Step 2. Otherwise, the simplex shrinks and the algorithm goes to

Step 2.

The algorithm is repeated until the time, it gets to one of the stopping

criteria. The most common stopping criteria are number of Iterations,

number of function evaluations, X tolerance or function tolerance.

Example 4.1 briefly explains the steps of the Nelder-Mead algorithm for

minimization of 𝑓(𝑥) = |𝑥1| + |𝑥2|, where the starting point is [1,1].

Example 4. 1. In this example we follow few iterations of the Nelder-Mead

algorithm to find minimizer of 𝑓(𝑥) = |𝑥1| + |𝑥2|, where the starting

point is [1,1]. The coefficients of the Nelder-Mead functions supposed to

be the standard one.

As the initial point is [1,1], by assigning a function to [1,1] we make two

other vertices. In this example we suppose that the other vertices are

[3,1] and [1,2]. Hence, we can sort the vertices as 𝑋3
(0)

= [1,3], 𝑋2
(0)

=

[2,1] and 𝑋1
(0)

= [1,1] where 𝑓 (𝑋1
(0)

) < 𝑓 (𝑋2
(0)

) < 𝑓(𝑋3
(0)

). The

centroid of the simplex is 𝐶 = [1,1.5]. The reflection of the worst vertex is

𝑋𝑅
(0)

= [−1,3], which is worse than the worst vertex so algorithm runs

contract inside witch is [2, 1.5] and better than the worst vertex. Hence

new simplex is 𝑋3
(1)

= [2,1.5], 𝑋2
(1)

= [2, 1] and 𝑋1
(1)

= [1,1].

Figure 4.3 shows the some of the first sequential simplices that Nelder-

Mead algorithm makes to find the minimizer of the objective function.

Figure 4. 1. Three first sequential simplices that Nelder-Mead algorithm makes to find the
minimizer of 𝒇(𝒙) = |𝒙𝟏| + |𝒙𝟐|.

4.2.1 Convergence of the Nelder-Mead algorithm

Despite the wide application of the Nelder-Mead algorithm in

optimization problems, still there is lack of a global convergent theorem.

The method is dependent on position of the initial guess. It means that

based on the position of the initial guess the algorithm may approaches a

local optimum. There is no way to be sure that the method will show the

global optimizer of the problem. Adding to the problem of the position of

the initial guess, in general there is no guarantee the method converge.

Lagarias, Reeds, Wright and Wright (1998) investigate the convergent

properties of Nelder-Mead algorithm for the one dimensional functions.

They show that the method is convergent for the one dimensional strictly

Solution

convex functions as long as the expansion function in the Nelder-Mead

method is genuine. McKinnon (1998) also proves that the method is

convergent for functions with more than three continuous derivations.

However, he also provide couple of examples where the Nelder-Mead

algorithm produce simplices elongate of each other where the best vertex

is not changing. In fact, he shows that for functions like

𝑓(𝑥, 𝑦) = {
𝜃𝜙|𝑥|𝜏 + 𝑦 + 𝑦2; 𝑥 ≤ 0

𝜃|𝑥|𝜏 + 𝑦 + 𝑦2; 𝑥 ≥ 0
 (4.1.1)

Nelder-Mead algorithm repeatedly runs inside contraction while the best

vertex is not changing. This situation is shown in Figure 4.2.

Figure 4. 2. Sequential simplices made by Nelder-Mead algorithm to solve function 4.1.1,
where 𝝉 = 𝟐, 𝜽 = 𝟔 and 𝝓 = 𝟔𝟎 (see McKinnon (1998)).

4.2.2. Matlab implantation of Nelder-Mead algorithm8

The Nelder-Mead algorithm is widely used in optimization problems, so it

is part of the optimization package of many mathematical programing

softwares like Matlab and Mathematica.

In Matlab, the method accessible via optimization app and also can be run

by FMINSEARCH command, on the command line. The initial guess should be

8 The Matlab version used in this study is R2013b. For reviewing the optimization settings, Matlab’s
users guide is employed (see Ljung (1995)).

input by the user, then the N+1 vertices for producing the initial simplex is

made by adding 0.05 to each component of the initial guess. The

coefficients of the Nelder-Mead algorithm are equivalent to the standard

Nelder-Mead algorithm. The default stopping criteria are maximum

iterations of less than 200×number of the variables, maximum function

evaluations to be less than 200×number of the variables, and also both X

tolerance and function tolerance to be less than 10−4. X tolerance

specifies the termination tolerance for X. Function tolerance specifies the

termination tolerance for the objective function value. As an example, if

the best function value of the previous iteration is 1.10001 and current

best function value is 1.00000 the algorithm will stop as |1.10001 − 1| <

0.0001.

Table 4.1, shows the Matlab implementation of Nelder-Mead algorithm

for finding the minimum value of 𝑓(𝑥) = |𝑥1| + |𝑥2|. The starting point is

set to be 𝑥 = [1,1], and stopping criteria is Max Iterations less than 10.

For the rest of the settings, Matlab’s default parameters were employed.

Iteration Func-count min f(x) Procedure
 0 1 2
 1 3 2 initial simplex
 2 5 1.975 expand
 3 7 1.8625 expand
 4 9 1.75625 expand
 5 11 1.47812 expand
 6 13 1.37187 reflect
 7 15 1.14375 reflect
 8 17 1.14375 contract inside
 9 19 1.01445 expand
 10 21 1.01445 contract outside

Exiting: Maximum number of iterations has been exceeded
 - increase MaxIter option.
 Current function value: 1.014453

Table 4. 3. Matlab implementation of the Nelder-Mead algorithm to find the minimum value

of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The start point is 𝑋 = (1,1), the stopping is Maximum number of

Iterations less than 10, with the remaining settings being Matlab’s default for Nelder-Mead

algorithm. The minimum value of the objective function is shown in each iteration of the

algorithm.

4.3 Genetic Algorithm and Mathematical Optimization

4.3.1 History of the Genetic algorithm

The Genetic algorithm is an optimization method which has been inspired

by evolution in nature and Darwinian process. The initial idea of

employing evolution to find optimised solutions appears in the works of

Rechenberg (1965) and Schwefel (1975, 1977). By employing evolution

they optimize some real valued parameters which had applications in

designing devices such as airplane wings. Later, some others scientists like

Fogel, Owens and Walsh (1966) developed evolutionary programming for

optimizing a way of allocating candidates to some tasks, by repeatedly

changing in the allocation.

Genetic algorithm, as the famous optimization method which nowadays

we know, was first invented by Holland (1960). He initially was looking for

a method not to find the optimized solution of a specific problem, but a

method compatible to the wide range of problems. In his method, the set

of initial solutions (initial population) is evolving to the next set of

solutions (next generation) by some functions similar to the “natural

selection” in Darwinian theory. The algorithm repeatedly produces

solutions (one generation after another) and will finish when it gets to

some stopping criteria.

4.3.2 Genetic algorithm for optimization of the real valued functions

In general, Genetic algorithm first designates a fitness function to a

problem. A fitness function estimates how much a solution is close to the

optimum one. In the next step, the algorithm starts with a set of feasible

solutions called “first generation”. Then, three operators of Selection of

the fittest, Crossover and Mutation are employed to make another set of

solutions. Selection chooses the most fitted solutions in the first

generation and by duplicating them gives them greater chance to produce

offspring. Crossover produces the next set of solution by fitted solutions

provided in the previous step. Later, the Mutation function randomly

chooses one or more of the elements of the current generation and makes

a random change in which is then present in the next generation. The

algorithm repeatedly makes one generation after another. Each

generation is in general more fitted.

Genetic algorithm’s operators (Selection, Crossover, Mutation) can be

applied on a population in different ways. The famous methods of

Selection are Roulette wheel, tournament and uniform. The famous

crossover methods are single point crossover, two point crossover and

scattered crossover. The famous way of mutation is Uniform. All these

operators have been fully explained and discussed in Appendix C.

The Genetic algorithm can be employed for a wide range of the problems

with different types of solution sets. In this study we focus on the

application of Genetic algorithm to find the optimized solution of real

valued functions. For minimizing a real valued function, first we set the

suitable fitness function for a program. Besides, following constants are

set to be fixed through the all the iterations:

Number of individuals in each chromosome, Length of each chromosome,

number (or percentage) of best fitted individuals who are going to survive

in each iteration, selection and crossover methods and mutation rate.

To optimize a real valued function like 𝑓(𝑋), Genetic algorithm runs

following steps.

Step 1: Randomly generate a set of 𝑁 feasible solutions which will be the

first population. Each number in the set is called an individual

(Chromosome). To run the operators on these numbers, Genetic algorithm

changes them to the binary form. It means that each individual in the

population will be a sequence of 0 and 1. Each 0 or 1 is called a gene.

Step 2: Calculate the fitness of each individual in the population, based on

the fitness function.

Step 3: Based on the fitness scaling, the fittest individuals survive and the

worst ones are deleted from the population. Best individuals reproduce

and have a greater chance to produce offspring.

Step 4: Crossover operator makes a new generation, which should be

more fitted in general.

Step 5: Based on the probability of mutation, some percentage of the

genes are randomly mutated from 1 to 0, or 0 to 1.

Step 6: Replace the new population with the previous one.

Step 7: If the stopping criteria has not been met, go to Step 2.

To illustrate, Example 4.2 applies genetic algorithm to find the minimum

of 𝑓(𝑥) = 𝑥2. The first iteration of the method is fully explained, where

the number of individuals is 5, length of each chromosome is 9, individuals

have 80 percent chance of survival, selection method is Roulette wheel,

crossover method is single point and the probability of mutation is 0.03.

Example 4. 2.

Step 1: To find the minimum of 𝒇(𝒙) = 𝒙𝟐, 𝒇𝒕(𝒙) = (
𝟏

𝟏+𝒙𝟐
)

𝟐

 can be a

suitable scaling function. Genetic algorithm first produces 5 randomly
numbers which can be -14.5, -10.7, -3.13, 3.5, 4.7. We consider following
binary format for the individuals in each generation.

-14.5 → [011101000],

-10.7→[010100111],

-3.13→ [000111101],

3.5→[101000111],

4.7→[101000111].

In this form of binary format, the first digit shows the sign of the number;

the next four digits show the integer part of the number, and last four

digit show the fraction part of the number.

Step 2: Fitness of each individual is calculated. Hence, we will have

𝑓𝑡 (-14.5)=0.000022, 𝑓𝑡 (-10.7)=0.000074, 𝑓𝑡 (-3.13)=0.008578, 𝑓𝑡

(3.5)=0.005695, 𝑓𝑡 (4.7)=0.001875.

Step 3: As there is 80 percent chance of survival, all the individuals pass to

the next generation. Roulette wheel operator chooses 5 random numbers

between 0 and 5 (𝑅𝑖), also it calculates 𝑃𝑖 =
𝑓𝑡(𝑥𝑖)

∑ 𝑓𝑡(𝑥𝑖)𝑛
𝑖=1

 , 𝑖 = 1. .5. Table 4.5

shows all the 𝑃𝑖 and cumulative probability 𝐶𝑖 (𝐶𝑖 = ∑ 𝑃𝑗
𝑖
𝑗=1) and 𝑅𝑖.

𝑖 𝑃𝑖 𝐶𝑖 𝑅𝑖
1 0.001293108453 0.001293108453 0.041
2 0.004326529042 0.005619637495 0.003
3 0.4950285284 0.5006481659 0.014
4 0.3286976729 0.8293458388 0.688
5 0.1706541617 1 0.328

Table 4. 4. Roulette wheel method and probability of selection of individuals.

For 𝑗𝜖𝑁; 0 ≤ 𝑗 ≤ 4 and 𝐶0 = 0; if 𝐶𝑗 < 𝑅𝑖 < 𝐶𝑗+1 then 𝑥𝑖+1 will be kept in

the population. Hence, the population will be updates to -3.13, -10.7, -

3.13, 3.5, -3.13. As we can see, the algorithm gives more chances to -3.13

to produce offspring.

Step 4: Crossover operator produces a new population by crossover

between -3.13 and -10.7; -10.7 and -3.13; -3.13 and 3.5; 3.5 and -3.13. For

single point crossover, first a number between 1 to 8 is randomly selected

(crossover point). Secondly, the digits of the two numbers are swapped

based on the crossover point. Figure 4.7 illustrates the single crossover

between -3.13 and -10.7, if the cross over point is 4.

 [000111101]

 [010100111]

Figure 4. 5. Single crossover between -3.13 and -10.7, when the crossover point is 4.

Hence, if we calculate all the other crossovers then the new generation is

-4.7, 11.5, 2.8, -3.5, 1.6.

Step 5: There are 5 chromosomes in the population each have 9 genes, as

the probability of mutation is 0.03, 1 gene ([3 × 5 × 9/100]9) from one of

the individuals is randomly selected to mutate. Figure 4.5 illustrates a

possible mutation on -4.7.

 −4.7 = [000100111] [100100111] = 4.7

Figure 4. 6. A mutation on -4.7.

Step 6: The new generation is 4.7, 11.5, 2.8, -3.5, and 1.6. This new

population is replaced with previous one.

Step 2 to 6 will be repeated until the time we get to one of the stopping

criteria. The most common stopping criteria are number of generations,

number of function evaluations, function tolerance10 and time limit.

9 The [] shows the integer part of a number.
10 Function tolerance has a same definition as the one in Nelder-Mead algorithm, however here the
average fitness value of the previous generation is compared to the current average fitness value.

[000100111] =-4.7

In each iteration of the Genetic algorithm a new set of individuals is

produced, the new set has a better fitness in general. This does not mean

that all the new individuals are better than the previous generation. There

might be some individuals with less fitness compared to individuals in

previous generations. This is mostly because of the mutation operator

which may produce a not fitted solution. We show in Section 4.3.1 that

how much mutation operator is important part for Genetic algorithm. In

fact, the efficiency of this method to explore the wider area of feasible

solution is coming from mutation.

4.3.3 Mutation function in Genetic algorithm

In this section we investigate some special features of the Genetic

algorithm, which make it different from the other algorithms. The most

different and important operator in Genetic algorithm is Mutation. By

Mutation we intentionally may produce some less fitted individuals,

however in general this operator has important role in efficiency and

accuracy of the Genetic algorithm. We run the following experiment to

show how mutation function increases the efficiency of the Genetic

algorithm.

In this example, the objective function is 𝑓(𝑥) = |𝑥1| + |𝑥2| , where we

want to estimate its minimum. The ”ga” command in Matlab11 is applied

where the stopping criteria is the number of generations (to be at most

10). The defaults within Matlab are accepted for other settings. Table 2.2

shows the results where the mutation function is Uniform with the rate of

0.01 in each generation. In contrast, Table 4.6 shows the result when

there is no mutation. Both tables show the minimum value of the function

in each generation. In Table 4.6 (Genetic algorithm with mutation rate of

0.01), the Genetic algorithm is approaching the optimum value (which is

zero). For some generations the best value of the objective function is not

changing but the average best value from each generation is improving,

which means that the algorithm has not stuck and is in progress.

As we see in Table 4.7 (Genetic algorithm without Mutation), after a few

Iterations of the algorithm, none of the best value of the objective

function and average value are changing. This means that the algorithm

has stuck on a non-optimizer point, and cannot skip it.

11 In Section 4.3.2 Matlab implantation of Genetic algorithm is fully explained.

Generations f-count Best f(x) Mean f(x) Stall Generations
 1 40 0.1082 1.92 0
 2 60 0.1082 1.841 1
 3 80 0.1082 1.484 2
 4 100 0.1082 1.25 3
 5 120 0.1082 0.6499 4
 6 140 0.06233 0.3478 0
 7 160 0.06233 0.2185 1
 8 180 0.06233 0.2496 2
 9 200 0.06233 0.1954 3
 10 220 0.06233 0.1746 4
Optimization terminated: maximum number of generations exceeded.

Table 4. 7. Genetic algorithm implementation to find the minimum value of 𝒇(𝒙) = |𝒙𝟏| +
|𝒙𝟐|. The mutation function has been set to be Uniform with 0.01 rate and the stopping
criteria is Max Iteration less than 10. For the rest of the settings, Matlab default settings are
accepted.

Generation f-count Best f(x) Mean f(x) Stall Generations
 1 40 0.08831 0.7234 0
 2 60 0.08831 0.4706 1
 3 80 0.08831 0.2716 2
 4 100 0.08831 0.1759 3
 5 120 0.08831 0.1016 4
 6 140 0.08831 0.09862 5
 7 160 0.08831 0.09862 6
 8 180 0.08831 0.09862 7
 9 200 0.08831 0.09862 8
 10 220 0.08831 0.09862 9
Optimization terminated: maximum number of generations exceeded.

Table 4. 8. Genetic algorithm implementation to find the minimum value of 𝑓(𝑥) = |𝑥1| +

|𝑥2|, where mutation function is not applicable. The stopping criteria is Maximum number of

Iterations to be less than 10. For the rest of settings, Matlab default settings are accepted.

4.3.4 Matlab Implementation of Genetic algorithm12

In this section we explain how Genetic algorithm can be run via Matlab’s

command line and packages.

Genetic algorithm is part of the optimization package of Matlab, besides it

can be run via “ga” command in command line.

These are Matlab’s defaults regarding the population, crossover,

mutation, stopping criteria and etc. for an unconstraint optimization

problem.

12 The Matlab version used in this study is R2013b. For reviewing the optimization settings, Matlab’s
users guide is employed (see Ljung (1995)).

The populations have 20 individuals; besides the initial population are

individuals like (𝑥1, 𝑥2, … , 𝑥𝑛) which are selected uniformly and each 𝑥𝑖 is

a number between 0 and 1.

2 is the number of the individuals which is guaranteed will survive and the

reproduction operator is Roulette wheel. The crossover is scattered.

Mutation rate is 0.01. Finally, the stopping criteria are as follows: Number

of generations to be at most 100, infinity time limit, unbounded fitness

limit, stall generations13 to be at most 50, stall time limit infinity and

function tolerance to be at most 10−6.

4.4 Comparison of Nelder-Mead algorithm and Genetic

Algorithm

Both Genetic algorithm and Nelder-Mead algorithm are considered as

direct optimization methods. However, as we briefly explained the nature

of both algorithms is quite different. In this section we aim to provide

some experiments by Matlab to show how this different nature can affect

the efficiency of the method in different ways, especially when the size of

the problem is growing. Figure 3.1 and 3.2 provides a general overview of

how both algorithms approach the optimized solution. They show the

results of the first 20 iterations of both algorithms for minimization of

𝑓(𝑋) = |𝑥1| + |𝑥2|. For Nelder-Mead algorithm the initial point is

𝑋 = (1,1) and for Genetic algorithm all the first generation elements are

considered to be 1. As we see, Nelder-Mead algorithm gradually

approaches to the optimized solution, but the Genetic algorithm quickly

gets close to the solution. However, later it fluctuates around the solution

(point [0,0]).

13 When the weighted average change in the fitness function value over all the Stall generations is less
than Function tolerance, the algorithm terminates.

Figure 3.1. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for

minimization of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The initial point for NM is 𝑋 = (1,1) and all the

elements of the first generation for GA are 1. Rest of the settings for both algorithms

are Matlab’s default.

Figure 3.2. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for

minimization of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The initial point for NM is 𝑋 = (1,1) and all the

elements of the first generation for GA are [1]𝑛×𝑛. Rest of the settings for both

algorithms are Matlab’s default.

 Nelder-Mead algorithm

 Genetic algorithm

 Nelder-Mead algorithm

 Genetic algorithm

In the next sections we design some Matlab experiments to compare the

algorithm regarding the speed and accuracy when the size of algorithm is

growing, and resilience to the initial guess.

4.4.1 Speed and Accuracy

In this section, we run an experiment on some test functions to compare

the speed and accuracy of Nelder-Mead algorithm and Genetic algorithm

when the size of the problem is growing. The algorithms are also

compared when we aim to catch a very precise solution. The experiment

will be as follows.

Experiment A

a) For Nelder-Mead algorithm the initial point is set to be 𝑋 = [1]𝑛×𝑛 ,

where 𝑛 is the size of the problem. For rest of the settings, Matlab’s

default are accepted.

b) For Genetic algorithm all the elements of the first generation are set

to be [1]𝑛×𝑛, for rest of the settings Matlab’s default are accepted.

c) Both algorithms employed to minimize the real value function

𝑓(𝑋) = 𝑦, 𝑅𝑛 → 𝑅.

d) Both algorithms will stop when the best function value gets to 10−2

and 10−4.

e) The results regarding to the required time and accuracy will be

observed.

In Example 4.3 and Example 4.4, the experiment is employed on the

functions ∑ 𝑥𝑖
2𝑛

𝑖=1 and ∑ 𝑥𝑖
4𝑛

𝑖=1 when 𝑛 is increasing. We can observe

that Nelder-Mead algorithm shows much more sensitivity to the

number of the parameters. For more than around 200 variables, the

required time for Nelder-Mead algorithm is growing exponentially and

it is much more than the Genetic algorithm.

In Example 4.5, the experiment is employed on the function ∑ |𝑥𝑖|𝑛
𝑖=1 .

We can observe that by increasing 𝑛, the accuracy of the

approximations by Nelder-Mead algorithm is questionable as it may

stick to a non-stationary point. While, for any number of the

parameters Genetic algorithm approaches to the optimized solution in

reasonable amount of time.

In Example 4.6, the experiment is employed on ∑ 𝑥𝑖
2𝑛

𝑖=1 , ∑ 𝑥𝑖
4𝑛

𝑖=1 and

∑ |𝑥𝑖|𝑛
𝑖=1 while we want to get a precise answer like 10−6. We observe

that as the size of the problem is growing, both algorithms may face

different difficulties. While Genetic algorithm is getting too slow,

Nelder-Mead algorithm may stick on a non-stationary point. When the

algorithm needs more than 12 hours to get to the answer, we stop it.

We mention this situation with “more than 12 hours” in the table.

Example 4. 3. In this experiment the objective function is ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 .

𝑛

The ratio of required time for NM
and GA to get 10−2 (NM/GA)

The ratio of required time for NM and
GA to get 10−4 (NM/GA)

2 0.26

0.12
0.14

0.6071
0.3606
0.2083
0.1539
0.1969

31.3008
1.5214
1.8668

0.1104
0.0791
0.1696
0.1016
0.0278
0.1490
0.1662
 0.2649
12.3427
2.4187
 17.44

5
10
20
40
60
80

100
200
300
400

Table 4. 9. Experiment A is applied on ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 . As we see when the number of parameter in
objective function is more than 200 the required time for Nelder-Mead algorithm is much
more than Genetic algorithm.

Example 4. 4. In this experiment the objective function is ∑ 𝑥𝑖
4𝑛

𝑖=1 .

𝑛

The ratio of required time for NM
and GA to get 10−2 (NM/GA)

The ratio of required time for NM
and GA to get 10−4 (NM/GA)

2 0.2661

 0.2051
0.1636
 2.3894
0.8215
0.3607
0.7691
0.0910

31.9097
45.6721
70.4575

0.05449
0.0215
0.0758
2.8241

32.3044
 0.3835
0.4408
 0.2917

 10.8511
15.7904
53.8360

5
10
20
40
60
80

100
200
300
400

Table 4. 10. Experiment A is applied on ∑ 𝑥𝑖
4𝑛

𝑖=1 . As we see when the number of parameter in

objective function is more than 200 the required time for Nelder-Mead algorithm is much

more than Genetic algorithm.

Example 4. 5. In this experiment the objective function is ∑ |𝑥𝑖|𝑛
𝑖=1 .

 𝑛

Required time to get 10−2
NM GA

Required time to get 10−4
NM GA

2 0.019254 0.326261 0.039635 0.259384
5 Sticks on 0.047 3.686796 Sticks on 0.047 36.998387

10 Sticks on 5.521 14.558425 Sticks on 5.521 91.690288
20 Sticks on 14.2314 50.627152 Sticks on 14.2314 433.756074
40 Sticks on 35.6911 1058.645011 Sticks on 35.6911 8788.1212
60 Sticks on 53.3124 3656.672690 Sticks on 53.3124 11393.1479

Table 4. 11. Experiment A is applied on ∑ |𝒙𝒊|
𝒏
𝒊=𝟏 . As we see when number of parameters are

more than 5 the Nelder-Mead algorithm sticks at some non-optimized point and it cannot go
further, while Genetic algorithm approaches to the optimized solution in a reasonable amount
of time.

Example 4. 6.

 𝑛

Required time to get 10−6

for ∑ 𝑥𝑖
2𝑛

𝑖=1
NM GA

Required time to get 10−6

for ∑ 𝑥𝑖
4𝑛

𝑖=1
NM GA

Required time to get 10−6

for ∑ |𝑥𝑖|𝑛
𝑖=1

NM GA

2 0.0257 2.5617 0.0356 0.8056 Sticks on
0.047

4863.2788

5 0.0682 14.7180 0.0788 6.7447 Sticks on
5.521

More than 12
hours

10 0.2794 38.8972 0.2932 81.3114 Sticks on
14.2314

More than 12
hours

20 2.0646 473.2614 26.0608 11.8491 Sticks on
35.6911

More than 12
hours

40 Sticks on
1.284e-04

1943.6764 807.5236 28.7380 Sticks on
53.3124

More than 12
hours

60 3190.1431 7021.4342 12.2927 52.9163 Sticks on
72.5001

More than 12
hours

80 5242.4003 16169.5863 7.7829 45.4004 Sticks on
105.20

More than 12
Hours

100 5764.9515 25086.7694 5448.6296 28009.0235 Sticks on
271.05

More than 12
Hours

200 3693.0811 2048.2406 3358.2581 2254.4718 Sticks on
541.07

More than 12
Hours

300 Sticks on
1.236e-04

More than 12
Hours

14756.7279 6318.6862 Sticks on
1155.22

More than 12
Hours

400 Sticks on
1.560e-04

More than 12
Hours

Sticks on
1.421e-04

More than 12
Hours

Sticks on
7802.43

More than 12
Hours

Table 4. 12. Experiment A is ran for functions ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 , ∑ 𝒙𝒊
𝟒𝒏

𝒊=𝟏 and ∑ |𝒙𝒊|
𝒏
𝒊=𝟏 to get 𝟏𝟎−𝟔 for

the objective function. As we see, for large value of 𝒏 Nelder-Mead has more chance to stick at
a non-optimized point. Meanwhile, the Genetic algorithm slows down.

4.4.2 Resilience

In this section we run an experiment to show the dependency of the

Nelder-Mead algorithm on the initial point and it can provide an

estimation for a local optimum not a global one. However, regardless of

the position of the initial point the Genetic algorithm can estimate the

global optimum.

The experiment is as follow.

Experiment B

a) Consider the functions

 𝑓0(𝑥) = min(|𝑥|, |0.8 − 𝑥| + 0.5),

𝑓1(𝑥) = min(|𝑥|, |0.4 − 𝑥| + 0.2) and

𝑓2(𝑥) = min(|𝑥|, |0.2 − 𝑥| + 0.1).

b) Run the Nelder-Mead algorithm to minimize 𝑓0, 𝑓1 and 𝑓2 several

times with different initial values. The initial point are 𝑥 =

1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3 and 0.1. For rest of the settings

Matlab’s default settings are accepted.

c) Run the Genetic algorithm to minimize 𝑓0, 𝑓1 and 𝑓2 several times

with different initial populations. We suppose all the member of the

first population are equal 𝑥 where

 𝑥 = 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3 and 0.1. For rest of the settings

Matlab’s default settings are accepted.

Figure 4.12 shows the graph of the 𝑓0, 𝑓1 and 𝑓2 when −1 ≤ 𝑥 ≤ 1. As we

can see, the global minimum of all the functions are at 𝑥 = 0. Where they

have a local minimum at (0.8, 0.5), (0.4, 0.2) and (0.2, 0.1), respectively.

Table 4.13 shows the results of the Experiment B on these three functions.

As we can see in Table 4.13 based on the place of the initial guess, the

Nelder-Mead algorithm may approximate a local minimum instead of

global minimum, while Genetic algorithm always provides a reasonable

estimation for the global minimizer.

Figure 4. 13. 𝒇𝟎, 𝒇𝟏 and 𝒇𝟐 are shown with red, blue and green lines respectively, when
−𝟏 ≤ 𝒙 ≤ 𝟏. The global minimum value of all the functions is 0, while they have local
minimum at (𝟎. 𝟖, 𝟎. 𝟓), (𝟎. 𝟒, 𝟎. 𝟐) and (𝟎. 𝟐, 𝟎. 𝟏) respectively.

Initial
point

Best function value for 𝑓0(𝑥)
NM GA

Best function value for 𝑓1(𝑥)
NM GA

Best function value for 𝑓2(𝑥)
NM GA

1.5 0.5000 0.001824477 3.5527×

10−15

0.00798839 3.5527×

10−15

0.0238

1.3 0.5000 0.004202643 1.1102×

10−15

0.00795729 1.1102×

10−15

0.0051

1.1 0.5000 0.00184088 3.1086×

10−15

0.0051631 3.1086×

10−15

0.0124

0.9 0.5000 8.4947×
10−4

0.20000 0.001339320 3.3306×
10−16

0.0033

0.7 0.5000 0.0047894 2.8865×

10−15

0.0029093 2.8865×

10−15

0.0050

0.5 4.4408×
10−16

0.0055141 0.2000 6.2638×
10−4

4.4408×
10−16

0.0084

0.3 8.3266×
10−16

0.003045794 0.2000 0.0068190 0.1000 0.0089

0.1 1.9428×
10−16

0.0092903 1.9428×
10−16

0.001012 1.9428×
10−16

2.0888×
10−4

Table 4. 14. Nelder-Mead Algorithm and Genetic algorithm are applied for 𝒇𝟎, 𝒇𝟏 and 𝒇𝟐
when the initial point for Nelder-Mead algorithm is changing and the element of the first
generation in Genetic algorithm are all equal to the initial point of Nelder-Mead algorithm. As
we can see, where Genetic algorithm always provides a reasonable estimation of the global
minimum, Nelder-Mead algorithm may approach to the local optimum.

For more illustrations, Table 4.14 and Table 4.15 show the iterations of the

Nelder-Mead algorithm and Genetic algorithm for 𝑓0(𝑥) = min (|𝑥|, |0.8 −

𝑥| + 0.5). The initial guess for Nelder-Mead algorithm is 𝑥 = 1. All the

individuals in the first generation of the Genetic algorithm is also 1. For

the rest of the settings, Matlab’s defaults are accepted.

As we see in Table 4.14, Nelder-Mead algorithm approaches the local

minimum (0.5). In fact, after some iterations the algorithm approaches to

the local minimum and then by repeatedly inside contracting it makes a

smaller simplex were the best vertex is always 0.5. There is no operation

embedded in Nelder-Mead algorithm which makes it able to skip the local

minimum.

In Table 4.15, we see that initially the algorithm shows the amount of the

local optimum. However, quickly it gets closer to the global optimum.

Both the best value of and average of values of a generation can increase

in one specific generation (for example iteration 40), but in general the

algorithm is proving an approximation for the global optimum. In fact,

mutation operator embedded in Genetic algorithm makes it able to jump

another area of feasible solutions; as a result it will explore a wider area.

Iteration Func-count min f(x) Procedure
 0 1 0.7
 1 2 0.7 initial simplex
 2 4 0.6 expand
 3 6 0.5 reflect
 4 8 0.5 contract inside
 5 10 0.5 contract inside
 6 12 0.5 contract inside
 7 14 0.5 contract inside
 8 16 0.5 contract inside
 9 18 0.5 contract inside
 10 20 0.5 contract inside
 11 22 0.5 contract inside
 12 24 0.5 contract inside
 13 26 0.5 contract inside
 Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

Table 4. 15. Nelder-Mead algorithm is applied for the objective function 𝒇𝟎(𝒙) =

𝐦𝐢𝐧 (|𝒙|, |𝟎. 𝟖 − 𝒙| + 𝟎. 𝟓). The start point is 𝒙 = 𝟏 and the stopping criterion is 𝟏𝟎−𝟒
Function-tolerance. As we see the algorithm sticks on the local minimum 𝒇(𝒙) = 𝟎. 𝟓.

Generation f-count Best f(x) Mean f(x)
 1 40 0.5 0.5587
 2 60 0.5 0.6039
 5 120 0.2795 0.75
 10 220 0.06749 0.3312
 15 320 0.0286 0.2483
 20 420 0.0286 0.2859
 30 620 0.009367 0.1583
 40 820 0.00797 0.2894
 50 1020 0.00797 0.1568
 51 1040 0.00797 0.2081
Optimization terminated: average change in the fitness value less than options.TolFun.

Table 4. 16. Genetic algorithm is applied for the objective function 𝒚 = 𝐦𝐢𝐧 (|𝒙|, |𝟏 − 𝒙| +

𝟎. 𝟓). The stopping criteria is 𝟏𝟎−𝟒 Function-tolerance, the first generation is 𝒙 = 𝟏. The
algorithm provides the reasonable approximation of the global minimum point 𝒙 = 𝟎.

Conclusion

Nelder-Mead and Genetic algorithms are widely used in different fields of

science as robust optimization methods. In this study, we compare these

two methods in the sense of required time, accuracy and dependency to

the initial guess for the problem with large scale. All the experiments show

that Nelder-Mead algorithm can be efficient just when the objective

function has a small number of parameters. Mutation operator within

Genetic algorithm is a strong tool for the efficient progress of the

algorithm, and its approach to the global optimum point.

References

Chen, P.-H. and H.-C. Chang (1995). 'Large-scale economic dispatch by
genetic algorithm', IEEE transactions on power systems, vol. 10(4),
pp. 1919-1926.

Dorsey, R. E. and W. J. Mayer (1995). 'Genetic algorithms for estimation
problems with multiple optima, nondifferentiability, and other
irregular features', Journal of Business & Economic Statistics, vol.
13(1), pp. 53-66.

Fogel, L., A. Owens and M. Walsh (1966). 'Artificial Intelligence Through
Simulated Adaptation', in (Editor Ed.)^Eds.), Book Artificial
Intelligence Through Simulated Adaptation, City: Wiley, New York.

Hartley, H. O. (1961). 'The modified Gauss-Newton method for the fitting
of non-linear regression functions by least squares', Technometrics,
vol. 3(2), pp. 269-280.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence: U Michigan Press.

Huggett, M., G. Ventura and A. Yaron (2006). 'Human capital and earnings
distribution dynamics', Journal of Monetary Economics, vol. 53(2),
pp. 265-290.

Huggett, M., G. Ventura and A. Yaron (2011). 'Sources of lifetime
inequality', The American Economic Review, vol. 101(7), pp. 2923-
2954.

Klein, K. and J. Neira (2014). 'Nelder-Mead Simplex Optimization Routine
for Large-Scale Problems: A Distributed Memory Implementation',
Computational Economics, vol. 43(4), pp. 447-461.

Lagarias, J. C., J. A. Reeds, M. H. Wright and P. E. Wright (1998).
'Convergence properties of the Nelder--Mead simplex method in
low dimensions', SIAM Journal on optimization, vol. 9(1), pp. 112-
147.

Ljung, L. (1995). System identification toolbox: user's guide: Citeseer.
Marquardt, D. W. (1963). 'An algorithm for least-squares estimation of

nonlinear parameters', Journal of the society for Industrial and
Applied Mathematics, vol. 11(2), pp. 431-441.

McKinnon, K. I. (1998). 'Convergence of the Nelder--Mead Simplex
Method to a Nonstationary Point', SIAM Journal on optimization,
vol. 9(1), pp. 148-158.

Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.
Nelder, J. A. and R. Mead (1965). 'A simplex method for function

minimization', The computer journal, vol. 7(4), pp. 308-313.

Pereira, R. (2000). 'Genetic Algorithm Optimisation for Finance and
Investments'.

Press, W., B. Flannery, S. Teukolsky and W. Vetterling (1992). 'Numerical
recipes in C (II) Cambridge University Press', in (Editor Ed.)^Eds.),
Book Numerical recipes in C (II) Cambridge University Press, City:
Cambridge.

Rechenberg, I. (1965). 'Cybernetic solution path of an experimental
problem'.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung:
Technische Universität Berlin.

Schwefel, H.-P. (1977). Numerische optimierung von computer-modellen
mittels der evolutionsstrategie: Birkhäuser, Basel Switzerland.

Yugeng, X. (1996). 'CHAI Tianyou and YUN Weimin (Research Center of
Automation, Northeastern University. Shenyang, 110006, PRC);
Survey on Genetic Algorithm [J]', CONTROL THEORY &
APPLICATIONS, vol. 6.

Appendix C

In this appendix, we explain more about the operators in Genetic

algorithm. In general, the algorithm has three operators which are:

Selection and reproduction, Crossover and Mutation. While the general

format of the algorithm is the same, the operator may vary in different

problems (see Mitchell (1998)).

C.1 Selection

Selection can have different forms like Roulette wheel, Tournament or

Elite count (Elitism). Each method has its own characteristics and it is

suitable for specific type of problems. It may happen also that first Elitism

operator is run and then another selection method also is employed.

a) Roulette wheel Selection

In this operator, first based on the fitness function (𝑓𝑡(𝑥)) all the

individual’s fitness are evaluated. Then 𝑃𝑖 =
𝑓𝑡(𝑥𝑖)

∑ 𝑓𝑡(𝑥𝑖)𝑛
𝑖=1

 , 𝑖 = 1. . 𝑛 and

𝐶𝑖 = ∑ 𝑃𝑖
𝑖
𝑗=1 (𝐶0 = 0) are calculated where 𝑛 is the number of individuals

in the population. Obviously the more fitted individual will have higher

probability (𝑃𝑖). We can demonstrate the situation in following graph,

where area 3 is for the most fitted area 1 is for less fitted individuals.

Figure C. 1. The Roulette wheel Selection operator.

𝑛 numbers between 0 and 1 are randomly selected. For 𝑗𝜖𝑁; 0 ≤ 𝑗 ≤

𝑛 and 𝐶0 = 0; if 𝐶𝑗 < 𝑅𝑖 < 𝐶𝑗+1 then 𝑥𝑖+1 will be kept in the population.

Obviously by this method the more fitted individuals has more chance to

reproduce.

b) Tournament Selection

In this operator, first based on the fitness function (𝑓𝑡(𝑥)) all the

individual’s fitness are evaluated. If you want to pass 𝑙 < 𝑛 (𝑙 is called

𝐶1

𝐶2

𝐶3

1 − 0

1

2

3

4

tournament size) number of individuals to the next generation; first, 𝑗 < 𝑙

number of individuals are randomly (uniform distribution) selected and

the best individual is kept in the population. This procedure will be

repeated until the time that there is 𝑙 number of individuals in the

population.

c) Elitism Selection

Selection operators determines in each generation how many of the less

fitted individuals will die (will be deleted from the population). It can be in

the form of exact number of individuals or percentage.

C.2 Crossover

Crossover produces a new generation by parents being selected by

Selection operator. Single point cross over, two point cross over and

scattered crossover are the most methods of crossover.

a) Single point crossover

For single point cross over between chromosome A and B, first a number

like 𝑗 between 1 and 𝑚 (length of the chromosome) is randomly selected.

Then for the offspring the first 𝑗 genes are copied from chromosome A

and rest of the genes from chromosome B.

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6].

Then single crossover is as follow if the crossover point is 4.

 [a,b,c,d,e,f,g,h]

 [1,2,3,4,5,6,7].

Figure C. 2. A single point Crossover.

b) Two point Crossover

It is similar to single point crossover, however two numbers are selected

randomly between 1 and 𝑚 (length of the chromosome).

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6].

Then two point crossover is as follow if the crossover point is 4 and 6.

[a,b,c,d,5,6,7]

 [a,b,c,d,e,f,g,h]

 [1,2,3,4,5,6,7].

Figure C. 3. A two point Crossover.

c) Scattered Crossover

It first generates a random binary vector with the same length of the

chromosomes. Then wherever in the vector is 1, the gene is selected from

parent chromosome A and wherever in the vector is 0, the genes is

selected from parent chromosome B.

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6].

Then scattered crossover is as follow if the crossover vector is

 [1 0 1 1 0 0 1].

 [a,b,c,d,e,f,g,h]

 [1,2,3,4,5,6,7].

Figure C. 4. A Scattered Crossover.

C.3 Mutation

The Mutation operator randomly changes some genes/ chromosomes in

the population. The typical way of mutation is first calculating A=[number

of individuals in the population×length of each chromosome×mutation

rate]14. Then randomly A number of the genes in a population are selected

to be changed.

14 [] calculates the integer part of a number.

[a,b,c,d,5,6,h]

[a,2,c,d,5,6,h]
[1 0 1 1 0 0 1]

