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Abstract 
 

 

The results section of this thesis includes three chapters (Chapter 2, 3 and 4). 

The first two chapters are on theoretical game theory. In both chapters, by 

mathematical modelling and game theoretical tools, I am predicting the 

behaviour of the players in some real world issues. 

Hoteling-Downs model plays an important role in the modern political 

interpretations. The first chapter of this study investigates an extension of 

Hoteling-Downs model to have multi-dimensional strategy space and 

asymmetric candidates. Chapter 3 looks into the inspection game where the 

inspections are not the same in the series of sequential inspections. By 

modelling the game as a series of recursive zero-sum games I find the optimal 

strategy of the players in the equilibrium. 

The forth chapter investigates direct optimization methods for large scale 

problems. Using Matlab implementations of Genetic and Nelder-Mead 

algorithms, I compare the efficiency and accuracy of the most famous direct 

optimization methods for unconstraint optimization problems based on 

differing number of variables.   
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Chapter 1 

Introduction 
 
The general theme of the first and second results sections of this study 

(Chapters 2 and 3) involve mathematical modelling analysing the 

behaviour of the players in different real world situations by game 

theoretical tools; while the third results section (Chapter 4) employs 

Matlab based experiments to investigate the direct numerical 

optimization methods. 

 

Chapter 2 extends the famous Hoteling-Downs model to the case where 

the preferences of the voters do not have to be single-peaked. Where the 

classical results show that the equilibrium point is unique, I show that the 

result is robust under small perturbations. However, the structure of the 

model and the equilibrium change when the perturbations are not small. I 

provide examples and define a criteria which describe the structure of the 

equilibrium points when the tie situation has been resolved by 

perturbation. 

In Chapter 3, I investigate a version of the Inspection game first 

introduced by Dresher (1962), where the inspector may run a mixture of 

partial and full inspections. I investigate the behaviour of players in the 

equilibrium. I show that as long as the opportunity for a full inspection 

exists, the inspector never starts his sequential inspections with a partial 

inspection. As the game has been modelled as a zero sum game, by 

investigating the value of the game we have an efficient tool to compare 

the efficiency of the full and partial inspections.     

In Chapter 4, I investigate the robust optimization methods and compare 

Nelder-Mead and Genetic algorithms. By use of experiments to address 

unconstrained optimization problems I show that Nelder-Mead algorithm 
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can be more efficient with regarding to accuracy and required time only 

when the objective function has a small number of parameters. 

Nevertheless, Nelder-Mead algorithm is sensitive to the position of the 

initial guess and may stick to a non-optimizer point or local optimum.  
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Chapter 2 

A Generalized Hoteling-Downs model with Asymmetric 

Candidates 

 

2.1 Introduction 

The Hoteling–Downs model Hotelling (1929) and Downs (1957) describes 

a two-party two-stage model of an election, where in the first stage the 

two candidates commit themselves to a policy platform and in the second 

stage voters vote for one of the two candidates. The candidates are 

assumed to be opportunistic, i.e. they only care about winning the 

election. In the classical Hoteling-Downs model voters have single-peaked 

preferences over policies in a one dimensional policy space. In 

equilibrium, voters will vote for the candidate who chooses a policy 

closest to their ideal point and candidates will choose a policy which gets 

the most votes. In an equilibrium where all voters use undominated 

strategies, both candidates propose the ideal policy of the median voter. 

By this, candidates guarantee to get at least 50 percent of the whole 

votes. Although Hotelling-Downs model has a significant role in the 

modern political interpretations, nonetheless some consider the model 

over simplistic and the restrictive assumptions on the preferences to 

guarantee existence of the equilibrium make some researchers like 

Kramer (1973) believe that the model cannot be a good model of reality. 

There may be many factors that make the model unrealistic. It is a 

recognized phenomena that the voters do not just care about the policy 

platform of a candidate. Instead charismatic behaviour, incumbency, 

reputation, etc. also influences the voter. It means that if we take a more 

realistic point of view, even with the same policy platform, one candidate 

can show some advantages over the other one. Cummings (1966) 

analysed the data of US presidential elections from 1924 to 1964. The 

result of his analyses confirms a higher chance of winning for the 

incumbents of the election. Similar analyses have been completed by R. 
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Chacrabarti et al. (2005) on the Lok Sabha elections in India. In contrast to 

the voters in US, they detect an anti-incumbency behaviour amongst the 

voters in India. However, they could not recognise any pattern for this 

behaviour which suggests that, based on the specific time and situation, 

the preference of the voter regarding incumbency may change. 

Meanwhile, they admit incumbency is always the important matter for 

voters in India. To address the asymmetry between the candidates 

theoretically in Hotelling-Downs model, Aragones and Palfrey (2002) 

analysed the classical Hotelling-Down model where one of the candidates 

can take advantages over the other one. They suppose that one of the 

candidates loses the election unless he chooses a platform quite close to 

the ideal point of the voters. The location of the median voter’s ideal point 

has a specific distribution. The authors show that in this case the pure 

strategy equilibria may fail to exist. They also discuss the characteristics of 

the mixed strategy equilibrium point.  

The other consideration about the classical Hotelling-Downs model is the 

number of the policy platforms for the candidates. It is often more 

reasonable to assume that the strategy space of the candidates is not 

unidimensional and single peaked. In fact, the empirical results of many 

studies confirm the multi-dimensional nature of real world voting 

procedures. Stockes (1963) provides some empirical observation of US 

elections which shows the electoral support of the candidates cannot be a 

single dimensional space. Several studies have been done to extend the 

strategy space of the candidates in different versions of the model. Some 

prominent works in this area are Plot (1967), Davis, Groot and Hinich 

(1972); Wendell and Thorson (1974) and McKelvey and Wendell (1976).  

In this study I suppose that voters have strong preferences over a finite 

number of policy platforms. It has been argued by Robert Dahl (1956, pp. 

37-38) that in a democratic society the only compatible rule is the majority 

preference. Hence, it is important that we analyse cases where there is 

more than one alternative and voting procedure is the majority voting.  

 Miller (1977) shows that any majority preference of the voters over finite 

number of the alternatives can be represented as a direct graph called 

“tournament”. Conversely, McGarrey (1953) and Stearns (1959) show that 

any tournament demonstrate at least one profile of voters’ preferences. 
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   The immediate result of extending the strategy space to such a 

multidimensional strategy space is a possibility of losing the Condorcet 

winner1. In fact, Miller (1977) shows that if the representing tournament 

of a majority preference of voters has cycles, then there would be no 

Condorcet winner. He considers the a case of majority voting procedure 

where the orders of the proposals are voted is also a matter. To analyse 

the undominated proposals, he introduced the Condorcet set (minimal 

undominated set) and discuss under which condition the sincere voting 

decision belongs to this set.  

In another work, Miller (1980) shows that the “uncovered sets” of the 

game have more desirable characteristics and are more beneficial to be 

investigated as the solution to the game. 

G. Laffond and J.F. Laslier (1992) viewed use tournament graphs to study 

an extension of the Hotelling-Downs model without single-peaked 

preferences. They look at the two-stage model, where first two candidates 

bindingly propose a policy play form and then an odd number of voters, 

whose majority preferences are described by the tournament, vote for 

one of the two candidates. They show that eliminating dominated 

strategies of the voters in the game leads to a zero-sum game between 

the two candidates. By employing the classical concepts of the zero-sum 

games they analysed the Maxmin strategies of the game. They show that 

the equilibrium of this so-called “Tournament Game” is unique, but will 

often involve mixed strategies. In fact, in equilibrium players are always 

mixing between an odd number of strategies2. A central assumption made 

in the paper is that if both candidates propose the same candidate 

platform, then they will have an equal chance of winning and hence the 

expected payoff is zero.  

This assumption is quite restrictive. Hence, by relaxing this assumption, 

we can model the situation where there is an incumbent in the election. In 

fact, in my model I address asymmetry among the candidates in a multi-

dimensional space. As I mentioned before, this is closer to real world 

situations. Additionally, I also analyse the case when both parties have 

                                                             
1 In a majority voting procedure, a Condorcet winner is the candidate who wins in all the pairing against 
the other candidates. 
2 D. C. Fisher and J. Ryan (1992) show the same results about the equilibrium of the tournament game 
separately and differently, without mentioning its relation to Hotelling-Downs model. 
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incentive/disincentive to choose the same platform. The 

incentive/disincentive might have occurred by a third party or collusion. In 

general, I show how the results depend on resolving the tie situation. The 

classical tournament game studied by D. C. Fisher and J. Ryan (1992) is a 

symmetric zero-sum game, so to be more specific I refer to it as a 

symmetric zero-sum tournament game. In this study the first player 

(possibly the incumbent) is called Player 1 or Candidate 1 and the other 

player is Player 2 or Candidate 2. Besides, the optimal strategy for the 

players is the Maxmin strategy. This study has been organized in seven 

sections.    

After the introduction, in Section 2.2 I provide a literature review on 

generalizing the Hotelling-Downs model which has been utilised by many 

researchers over the years. In Section 2.3, I present tournament game to 

model the Hoteling-Downs model 𝑛-dimensional strategy space. In Section 

2.4, I briefly review the main characteristics of symmetric zero-sum 

tournament game which have been studied by both D. C. Fisher and J. 

Ryan (1992) and G. Laffond and J.F. Laslier (1992). We see that the mixed 

equilibrium point in the model is unique, also in equilibrium players are 

mixing between odd number of the strategies. Adding to the previous 

knowledge about the symmetric tournament game I prove that the unique 

equilibrium point is also regular in the sense of Harsanyi. Later, in Section 

2.5 the assumption of symmetry among the candidates is relaxed. By 

employing the regularity characteristic of the equilibrium, I show that the 

uniqueness of the equilibrium will be kept if the amount of the asymmetry 

is negligible among the candidates.  

In Section 2.5, I also analyse the behaviour of the equilibrium point under 

certain large perturbations of the symmetric zero-sum tournament game, 

namely “asymmetric zero-sum tournament game” and “symmetric non 

zero-sum tournament game”. We can observe that under large values of 

perturbation the structure of the game can be very different and the game 

can have several equilibria with varying support.  A symmetric equilibrium 

does not have to exist. However, in Section 2.6 I provide sufficient 

conditions for the uniqueness of the equilibrium in these two classes of 

games. Section 2.7, investigates and analyses the equilibrium point for the 

regular tournament games. I show that the incumbency in any level does 
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not affect the equilibrium point. I also calculate the value of the game for 

a regular tournament game. 

2.2 Literature Review on Generalization of Hoteling-Downs 

Model  

Despite the significant role of the Hotelling-Downs model on modern 

political interpretations, over simplicity of the model is quite restrictive. In 

this section I review some of the studies which have generalized the 

Hoteling-Downs model with respect to asymmetry between the 

candidates and dimension of the strategy space.  

The asymmetric among the voters in the classical Hoteling-Downs model 

has been targeted in many studies. Some of the more famous studies are 

Anderson and Glomm (1991), Ingberman (1992) and  E. Aragones and T. R. 

Palfrey (2002). 

Anderson and Glomm (1991) have considered two candidates election 

where the voters care about two different features of a candidate. Firstly, 

the policy they choose and secondly the non-policy factors such as 

charismatic behaviour, incumbency or integrity. The non-policy features 

are the factors that may cause asymmetry between the candidates and 

will make one candidate gain an advantage over the other. A candidate on 

the one hand likes to choose a policy platform close to the median voter’s 

ideology; however he also does not want to compromise his ideal policy 

because of the non-policy features. The median’s voter evaluation of the 

non-policy advantages of the candidate 𝑖, is shown by 𝛼𝑖 + 𝜀𝑖 where 𝛼𝑖 is 

the scale for measuring the advantages of the candidates 𝑖 and 𝜀𝑖 is the 

standard normal distribution. Another function like 𝑓(|𝑥𝑖|) also measures 

the evaluation of the median’s voter of the candidate’s policy platform 

(𝑥𝑖). Hence, the utility of the median voter will be 𝑢(𝑥𝑖) = 𝛼𝑖 + 𝜀𝑖 −

𝑓(|𝑥𝑖|), 𝑖 = 1,2. This form of modelling gives the chance to analyse the 

Nash and Stackelberg equilibrium. Hence, the authors find that there is 

difference in behaviour of the candidates when they have simultaneous 

move or the moves in order. In fact, if I suppose that the distribution and 

the position of the median voter is common knowledge for both 

candidates, the incumbent’s equilibrium strategy is much closer to his 

ideal point.  
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Another work to address the asymmetric candidates in Hotelling-Downs 

model is E. Aragones and T. R. Palfrey (2002) where one of the candidates 

obtains advantages over another. The distribution of the median voter 

ideal policy is a common knowledge for both of candidates and they can 

select their strategy from the finite number of positions. In fact, they 

suppose the policy space as 𝑥𝑖 =
𝑖−1

𝑛−1
, 𝑖 = 1,… , 𝑛 on the interval [0,1], 

where voters have Euclidean preferences. If we call the advantaged 

candidate by Candidate A (with committed strategy 𝑥𝐴)  and the 

disadvantaged one by Candidate D (with committed strategy 𝑥𝐷) then a 

voter with strategy preference 𝑥𝑖 , has the utility  if Candidate A wins  

𝑈𝑖(𝑥𝐴) = 𝛿 − |𝑥𝑖 − 𝑥𝐴| and 𝑈𝑖(𝑥𝐷) = −|𝑥𝑖 − 𝑥𝐷| where 𝛿 > 0. The model 

is equivalent to the classical Hotelling-Downs model if 𝛿 = 0. It means that 

𝛿 determines the advantage of Candidate A over the other Candidate. In 

first step, the authors show that there is no pure strategy for the 

candidates in this game, and they always mix between their strategies. 

Later, they analyse the model for a small value of  𝛿 (0 < 𝛿 <
1

𝑛−1
) and 

large one. They discover that the behaviour of the candidates are different 

for small and large value of 𝛿. In fact, for small value of 𝛿, Candidate A 

wins if and only if his ideal policy and the ideal point are as close as 

Candidate D’s policy and ideal point. This is not a case for large value of 𝛿. 

Hence, the equilibrium is different in these cases. They also show that the 

solution depends on the even or odd number of the strategies and the 

advantaged candidates has always higher expected payoff. However for 

very large number of strategies his advantage shrinks to zero.  

The other important issue analysed in many studies is the number of 

strategies. The assumption of a one dimensional strategy space is far from 

the reality. However, multi-dimensional strategy space gives rise to a 

number of new issues such as preferences of the individuals in a group or 

combination of strategies, ordering the preferences over the strategies, 

complexity of strategy space etc. I should also mention the possibility of 

the non-existence of a Condorcet winner, which is known as Condorcet’s 

voting paradox. 

To address the multidimensional strategy space, O. A. Davis, M. H. 

GoorDeGroot and M. J. Hinich (1972) considered the each alternative of 

the voters as a point in Euclidean space. It means that a point like 
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𝑥́ = (𝑥1, 𝑥2, … , 𝑥𝑛) represents a possible alternative.  Each individual in 

the society has the same set of dimension of choice and locate the 

alternatives in the Euclidean space similarly. The space of all alternatives is 

called 𝐸𝑛. They suppose that each individual has a preferred point like 𝑥, 

hence his utility over all the other strategies is defined as follow 

𝑢𝑖(‖𝑦 − 𝑥‖) = ‖𝑦 − 𝑥‖2 = (𝑥 − 𝑦)′(𝑥 − 𝑦). 

By defining above utility function, they also define the preference relation 

over the strategies. By their definition alternative 𝑦 is preferred to 𝑧 (𝑦𝑅𝑧) 

if Pr(‖𝑦 − 𝑋‖ ≤ ‖𝑧 − 𝑋‖) ≥ 1/2. In fact, 𝑦 is preferred to 𝑧 if and only if 

at least half of the population prefers 𝑦 to 𝑧. 

This relation alone is not transitive; however the authors provide the 

necessary and sufficient condition to define a transitive relation over 𝐸𝑛 

by 𝑅. This transitive relation can completely orders the point in 𝐸𝑛. 

Besides, the same necessary and sufficient condition for the transitive 

relation can be employed to show the existence of the Condorcet point. 

In another work, R. E. Wendell and S. J. Thorson (1974) consider the point 

𝑥𝑖́ = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑛) as the position of each voter regarding the different 

strategies. By knowing the most preferred location of each voter they 

define a loss function for all the other positions. The loss function can 

define some indifferent contours3 for each voter which are equivalent to 

the concept of Norm functions4. By this mean, it is proved that if all the 

voters use the same norm then the equilibrium point is the position of the 

multidimensional median. 

Miller (1977) discusses the majority voting procedure among 𝑚 > 1 

number of proposals where voting procedure may depend on the order in 

which the proposals are voted on. First of all, he argues that the majority 

preference of the voters can be shown in a directed graph name 

“tournament”. Later, by analyse the possible availability of paths and 

cycles between the vertices, he investigates the possibility of a Condorcet 

winner in his model. He shows that when there is no undominated 

strategy then there will be a cycle between the vertices. That means when 
                                                             
3 A indifferent curve is a curve showing different bundle of strategies which the voter is indifferent.  
4 The function ‖. ‖ ∶ 𝑅𝑛 ⟶ 𝑅 is the Norm function if it satisfies following conditions for each 𝑥 ∈ 𝑅𝑛  

1) ‖𝑥‖ ≥ 0.   2) ‖𝑥‖ = 0 𝑖𝑓𝑓 𝑥 = 0.    3)  ‖𝛼𝑥‖ = 𝛼‖𝑥‖;  𝛼 > 0.  4) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.   5) 
‖−𝑥‖ = −‖𝑥‖.  
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there is no undominated strategy there will be also no Condorcet winner. 

Hence, he introduces the concept of minimal undominated set (Condorcet 

set). Condorcet set includes all the vertices which are not dominated by 

any other vertices; also any subset of this set has the same characteristics. 

The author shows that for his model represented by a tournament the 

Condorcet set exists and is unique. Hence, he also investigates the main 

characteristics of this set and shows that many binary majority voting 

processes can end up with a strategy selected in Condorcet set. However, 

despite being handy to analyse the majority voting systems, Condorcet set 

can be very large (possibly even equal to the set of the whole strategies) 

and it may include the Pareto-inefficient5 points. So, later Miller in his 

other work in 1980 introduces another possible solution for his model 

named “uncovered set”. The uncovered set is the set of all the vertices 

from which every other vertex is reachable with the path with no more 

than two vertices length. Miller (1980) shows that the uncovered set 

always exists and it is smaller than Condorcet set, however it includes all 

the Pareto-efficient points.  

G. Laffond and J.F. Laslier (1992)  are the first to use the tournaments to 

extend the Hotelling-Downs model to the set of the preferences which are 

not single peaked. Using weakly dominated strategies (and assuming that 

each candidate is elected with equal probability if they both propose the 

same policy) they reduce the model to a zero-sum game defined by a 

tournament graph. Hence, Maxmin strategies (see Neumann and 

Morgenstern (1944)) can be considered as the optimal solution of the 

game. They show that while the value of the game is zero, the optimal 

solution of the game is zero. The authors also investigate more 

characteristics of the optimal solution and show that in equilibrium 

candidates always mix between odd number of the strategies. This form of 

analysing seems to be more practical and inclusive rather than all the 

previous results. However it is still far from the reality as the main 

assumption of the model is symmetry among the candidates.  

They are some studies like McKelvey and Ordeshook (1985) and 

Ansolabehere and Snyder (2000) which are capturing both 

                                                             
5 Pareto-efficient is the state where it is impossible to increase the payoff of one player without 
decreasing the payoff another player. 
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multidimensional nature of the strategy space and asymmetry among the 

candidates, however there is no previous study to model the election with 

binary preferences over strategies with asymmetric candidates. In this 

study, I consider the model introduced first by G. Laffond and J.F. Laslier 

(1992) and relax the assumption of symmetry between the candidates.  

 

2.3 The Model 

Tournament game is introduced and analysed by D. C. Fisher and J. Ryan 

(1992) and G. Laffond and J.F. Laslier (1992). In this section I show and 

explain how these games can generalize the Hoteling-Downs model to the 

n-dimensional strategy space.  

2.3.1 The Relation between Tournament Games and Multi-

Dimensional Hotelling-Downs Model 

In this section I describe the relationship between the Hotelling-Downs 

model of two-candidate elections, where voters can have arbitrary strict 

preferences over finitely many policy platforms, and certain matrix games 

that I will call them in general, tournament matrix games.  

This extended Hotelling-Downs model is a game in extensive form whose 

players are the two candidates, Candidate 1 and Candidate 2, and an odd 

number of voters. 

There are finite numbers of policy platforms (𝑛 > 1). Voters have strict 

preferences over the 𝑛 policy platforms, i.e. a voter is never indifferent 

between any two of them. The candidates are assumed to be 

opportunistic, i.e. a candidate gets utility +1 if he wins the election and -1 

if he loses it. The timing is as follows: In the first stage each of the two 

candidates chooses simultaneously and independently a policy platform. 

The voters observe these choices and then each voter simultaneously and 

independently votes for one of the two candidates. No voter can abstain. 

Because the number of voters is odd, exactly one candidate will win the 

election by a simple majority rule. This candidate gets payoff +1, the other 

loses the election and gets payoff -1. The policy selected by the winner is 

implemented and this determines the utility of the voters. 
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  It is easy to see that a strategy of a voter is undominated if and only if for 

any pair of distinct policy platforms offered by the two candidates the 

voter votes for the candidate who adopted his preferred among the two 

platforms. Suppose the two candidates select different policies and the 

voters use only undominated strategies. Then that candidate wins the 

election whose chosen policy is preferred by a majority of voters.  

Which policy 𝑖 wins in a simple majority vote over which policy 𝑗 is usually 

summarized by a directed graph 𝑇 called a “tournament” in the literature 

(see Miller (1977)).  This graph has 𝑛 vertices. There is an arc from node 𝑖  

to node 𝑗 if a majority of voters prefer policy platform 𝑖  over policy 

platform 𝑗. I use 𝑖 → 𝑗 to show that strategy 𝑖  dominates strategy 

𝑗 (similar notation to Miller (1977)).  Alternatively, one can work with the 

associated 𝑛 × 𝑛 matrix 𝐾(𝑇) = (𝑘𝑖𝑗)𝑛×𝑛 defined as follows. The matrix 

has zeroes on the main diagonal. It has entry +1 in row 𝑖  and column 𝑗  if a 

majority of voters strictly prefer alternative 𝑖  over  𝑗  and entry -1 if it is 

the other way around. I call 𝐾(𝑇) the tournament matrix associated with 

the voter’s preferences. Example 2.2 shows a simple example of a 

tournament and the matrix game of a symmetric zero-sum tournament 

game.  

It is easy to see that in a perfect equilibrium of the game no voter will use 

a dominated strategy (see Selten (1973)). If both candidates offer the 

same policy platform, all voters are indifferent between the two 

candidates and hence every possible voting profile is optimal. Clearly, for 

any probability 0 < 𝛼 < 1 there is a voting pattern such that the first 

candidate wins with probability 𝛼. I hence have the following result. 

Theorem 2.1. Consider a Hotelling-Downs model with arbitrary 

preferences of the voters over the finitely many policy platforms. Let 𝑲 be 

the tournament matrix determined by the voters’ preferences. Hence, for 

every perfect equilibrium of this game there exists a diagonal matrix 𝑫 

with entries not exceeding 1 in absolute value such that the strategies of 

the candidates in the equilibrium form a Nash equilibrium of the matrix 

game 𝑲+𝑫. Conversely, let 𝑫 be any diagonal matrix whose entries do 

not exceed 1 in absolute value. Then every Nash equilibrium of the matrix 

game 𝑲+𝑫 can be extended to a perfect equilibrium of the Hotelling-

Downs model.    
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I call a matrix game 𝑀 = 𝐾 + 𝐷 with 𝐷 as described a general tournament 

matrix game. The papers Fisher and Ryan (1992) and Laffond et al. (1993) 

consider the special tournament matrix games where the matrix 𝐷 is zero. 

I often refer to the matrix game 𝐾 as a symmetric zero-sum tournament 

game. This corresponds to the case where each voter votes for each 

candidate with equal probability when both candidates chose the same 

platform.  In Section 2.4 I describe briefly the results of these papers. 

2.3.2 Symmetric zero-sum tournament games 

“Paper, Scissor and Stone” is the simplest form of a symmetric zero-sum 

tournament game where the player has three different strategies. The 

rules of the game can be shown with a graph (Figure 2.1) or a matrix game 

(Table 2.2). In this game two players simultaneously and independently 

choose a strategy among the three. If both choose the same strategy then 

the game has been tied otherwise scissor beats paper, paper will beat 

stone and stone beats scissor. The situation can be shown with a graph as 

follows 

Example 2. 2.6 

 
 
 
 
 
Figure 2. 1. The Graph representing  “Scissor, Paper, 
Stone game” 

 
 

 

[
0
−1
1

1
0
−1

−1
1
0
] 

 
Table 2. 2. Matrix game of “Scissor, Paper, Stone  game” 

As we can see in this game there is a cycle between strategy preferences 

of the players. Hence, there is no undominated point which means that 

there is no Condorcet winner. However, if a player mixes between his 

strategies with probability of 
1

3
, then he would assure himself the expected 

pay off of zero. In fact, this payoff is the maximal value he can assure 

                                                             
6 In general by Miller (1977)’s results we know that there is always a profile of voters that yield the tournament 

graph. However, for certain graphs we may need a certain minimum number of voters (or a specific number of 

voters). In this example, we need at least three voters to yield the graph.  

 

Stone 

Scissor Paper 

Scissor 

Paper 

Stone 

Scissor Paper Stone 
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himself. Hence, {
1

3
,
1

3
,
1

3
} is Maxmin strategy for the player. Maxmin 

strategies are also called optimal strategies for the player.  

In Example 2.2 the alternatives can present possible real world 

alternatives for candidates. For example, scissor can represent “Lower 

taxation”, paper “Free education” and stone “improve infrastructure”.   

Empirical examples of the cycling preferences over alternatives and 

Condorcet paradox has been detected in real world situations through 

different studies. One example is the work by Kurrild-Klitgard (2001) about 

a poll of Danish voters preferred prime minister in 1994. In this study, by 

paired wise comparison between three candidates the author shows that 

voters have a cycling preference over candidates.    

Example 2.37 provides another example of a symmetric zero-sum 

tournament game, which has six strategies. Similarly, to the “Paper, 

Scissor and Stone” in this game there is no Condorcet winner.  The optimal 

mixed strategies for both players are {0,
1

3
,
1

9
,
1

9
,
1

9
,
1

3
}. 

Example 2.3. 

 

 
 

Figure 2. 3. A Tournament graph with six vertices 
representing a symmetric zero-sum tournament game 
with 6 strategies. 

 

 
 

K=

[
 
 
 
 
 
0
−1
1
1
1
−1

1
0
−1
−1
−1
1

−1
1
0
−1
1
−1

−1
1
1
0
−1
−1

−1
1
−1
1
0
−1

1
−1
1
1
1
0 ]
 
 
 
 
 

 

 
Table 2. 4. A matrix game of the graph in Figure 2.3, 
representing the same symmetric zero-sum tournament 
game of Figure 2.3. 

 

 We can find the cycle in this example where 6 → 2 → 3 → 4 → 5 → 1 →

6. This means that there is no undominated strategy and therefore there 

is no Condorcet winner in the game. Besides, As we see in the “Paper, 

Scissor and Stone game” and Example 2.3;  𝐾(𝑇) is always a skew-

symmetric matrix. It means that −𝐾 = 𝐾𝑇. To analyse the tournament 

games more precisely I provide following definitions. 

                                                             
7 This example has been also analysed in D. C. Fisher and J. Ryan (1992). 

1 

3 

2 

4 

5 

6 
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Definition 2. 4. Let 𝑃 = (𝑝1, … , 𝑝𝑛) be a mixed strategy for a tournament 

game with 𝑛 strategies. Strategy 𝑖 is the support of  𝑃 if 𝑝𝑖 > 0. 𝑃 is called 

a full support mixed strategy if each 𝑝𝑖 is strictly positive. 

Definition 2. 5. Let 𝑷 = (𝒑𝟏, … , 𝒑𝒏) be an optimal strategy for a 

tournament game with 𝒏 strategies. Strategy 𝒊 is called a “bad quality” 

strategy if 𝒑𝒊 = 𝟎, (see Laffond and Laslier (1993), pp. 187). 

Hence, by Definition 2.5 Strategy 1 in Example 2.3 is bad quality strategy. 

We can observe easily that in Example 2.3 in the equilibrium, for a bad 

quality strategy the probability of winning is less than probability of losing, 

while for all the other strategies they are equal. This is the reason why 

both players play the bad quality strategy with zero probability.  

In this extension of Hoteling-Down model there is no single peak 

preferences over the voters. The variety of voter’s options makes the 

strategy space of each party multi-dimensional. For example, in Scissor, 

Paper and Stone game we see that there is no single preferred strategy 

but there is a cyclic preference over all the strategies. As the “tournament 

game” is symmetric and zero sum, to be more accurate we can refer to it 

as a “symmetric zero-sum tournament game”.  

2.4 Main Characteristics of the Model 

2.4.1. The Value and Optimal Strategy of Symmetric zero-sum 

Tournament game   

D. C. Fisher and J. Ryan (1992) and G. Laffond and J.F. Laslier (1993) in two 

separate works, discuss the value and optimal strategies of the symmetric 

zero-sum tournament games. Here, I provide the brief review of the main 

theorems and characteristics of the symmetric zero-sum tournament 

game analysed in both papers. 

 In a symmetric zero-sum tournament, 𝑇, with 𝑛 different strategies for 

both players, if Player 1 plays a mixed strategy 𝑃 and Player 2 responds 

with strategy 𝑖  (node 𝑖) then the expected payoff is ((𝐾(𝑇)𝑃)𝑖 . In a 

maxmin strategy Player 2 wants to select a strategy to minimize Player 1’s 

payoff (as it is a zero-sum game this will increase her payoff). On the other 

hand, player 1 wants to maximize his own payoff as well. Hence, if  𝑣 
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denotes the value of the game then 𝑃 is the optimal strategy of the game 

if it satisfies the following system. 

𝑣 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝐾(𝑇)𝑃 𝑖) ,  𝑃 ≥ 0,  1𝑇𝑃 = 1; 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛).             

(2.4.1.1)      

We know that in a symmetric zero sum game the value is always zero, 

hence in the system (2.4.1.1), 𝑣 = 0. As a result, the system (2.4.1.1) can 

be simplified to  

{
𝐾(𝑇)𝑃 ≥ 0,
𝑃 ≥ 0,

1𝑇𝑃 = 1.  

                                                                                        (2.4.1.2)                                                                                                 

Lemma 2. 6.  Let 𝒑 and 𝒒 be optimal strategies for a symmetric zero-sum 

tournament game on a tournament, T; then 𝒒𝒊 > 𝟎 implies (𝑲(𝑻)𝒑)𝒊 =

𝟎.  (See Fisher and Ryan (1993)). 

By Lemma 2.6 we can conclude that in a symmetric zero-sum tournament 

game for an optimal strategy all the nodes will be selected from those that 

make the other player expected payoff zero.  

Definition 2. 7. A subtournament game8, 𝑻́, is positive if the optimal 
strategy is full support.  

Following theorems and corollary show that in a symmetric zero-sum 

tournament games the optimal strategy of the players is unique. 

Theorem 2. 8. Let 𝑻 be a symmetric zero-sum tournament on 𝒏 nodes, 
Then 

𝑅𝑎𝑛𝑘(𝐾(𝑇)) = {
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Corollary 2. 9. In a positive symmetric zero-sum tournament game, in 

equilibrium players are mixing between odd number of strategies. 

Proof: 

𝐾(𝑇)𝑃 = 0 has a nonzero solution only if 𝑅𝑎𝑛𝑘(𝐾(𝑇)) < 𝑛. So 

𝑅𝑎𝑛𝑘(𝐾(𝑇)) is equal to 𝑛-1, and as a result 𝑛 is odd. 

                                                             
8 The tournament game 𝑇́ is the sub tournament game of the tournament game 𝑇, if the graph of 

tournament game 𝑇́ is the subgraph of the graph of tournament game 𝑇. 
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Theorem 2. 10. The symmetric zero-sum tournament game on n nodes 

has a unique optimal strategy, p, such that 𝒑𝒊 > 𝟎 on a positive 

subtournament (which must have an odd number of nodes). 

Proof:  

Let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛)
𝑇  and 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛)

𝑇be two solutions to (1.2). 

Let S be the subtournament of 𝑇 on those nodes where either 𝑝𝑖 > 0 or 

𝑞𝑖 > 0 (or both). Since both p and q are solutions to (1.2), by lemma 1.2.1 

we can conclude that 𝐾(𝑆)𝑝𝑆 = 𝐾(𝑆)𝑞𝑆 = 0 since 𝑝𝑆 ≠ 0 then by 

theorem 1.2.3 we know that the null space of K(S) has dimension at most 

one, ∃𝛼 ∈ ℝ; 𝑝𝑆 = 𝛼𝑞𝑆 . Since 1𝑇𝑝𝑆 = 1
𝑇𝑞𝑆 = 1, 𝑝𝑆 = 𝑞𝑆 and hence p=q. 

We know that 𝐾(𝑆)𝑝𝑆 = 0 and 𝑝𝑆 > 0, hence S is a positive 

tournament,∎. 

As the game is symmetric when one strategy is a bad quality strategy for 

one player, it will suppose bad quality strategy for other player as well. 

Hence, both players can delete that strategy from their set of strategies. 

The tournament game can be reduced to a sub tournament game where 

all the strategies are playing with positive probabilities. 

2.4.2. Regular Equilibrium in the Symmetric zero-sum Tournament Game 

In this section, I show that the unique equilibrium point in symmetric zero-

sum tournament game is regular in the sense of Harsanyi (1973). (For 

more explanation about regular equilibrium see Appendix A.4)   

Definition 2. 11.  Let 𝑮 be a matrix game of a two player zero-sum game, 

where 𝑮𝒏×𝒏 = [

𝒂𝟏
⋮
𝒂𝒏
] ; then 𝑪𝒏×𝒏 = [

(𝟏,… , 𝟏)
𝒂𝟐 − 𝒂𝟏

⋮
𝒂𝒏 − 𝒂𝟏

] is called the computational 

matrix of the matrix game 𝑮. 

Definition 2. 12. Let 𝑮 be a matrix game of a two player zero-sum game, 

where 𝑪 is its related computational matrix; then 𝑪𝒏×𝒏𝑷 = [

𝟏
𝟎
⋮
𝟎

]

𝒏×𝟏

, 𝑷 ≥ 𝟎 

is called computational system.  
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Theorem 2. 13. For a positive symmetric zero-sum tournament game, T, 

with 𝒏 strategies, computational matrix of the matrix game has full rank.  

Proof: 

We know that for a positive symmetric zero-sum tournament game , T, 

the equilibrium is unique. I denote this unique optimal solution by 

𝑃 = (𝑝1, … , 𝑝𝑛); where 𝑝𝑖 > 0. I also denote the matrix game of the game 

by 𝐾 = [

𝑆1
𝑆2
⋮
𝑆𝑛

] and its related computational matrix by 𝐶. As 𝑃 is the 

maxmin strategy, hence it should satisfy following system  

{

𝑀𝑎𝑥 𝑣
∑ −𝐾𝑃𝑇𝑛
𝑖=1 ≥ 𝑣,

∑ 𝑝𝑖 = 1,𝑛
𝑖=1

𝑝𝑖 ≥ 0.

                                                                                      (2.4.2.1) 

where 𝑣 is the value of the game. As the value of the game is equal to 

zero, and 𝑃 is the only equilibrium, hence we have                

𝑆𝑖𝑃 = 0, 𝑖 = 1. . 𝑛;    ∑𝑝𝑖 = 1; 𝑝𝑖 > 0 ;

𝑛

𝑖=1

 

(See Appendix A.3, for full description on how to find the Maxmin 

strategies for a zero-sum games). 

Hence, 𝑃 satisfy following system 𝐶𝑃𝑇 = [

1
0
⋮
0

] , 𝑃 > 0; which is the 

computational system for matrix game 𝐾. Hence, 𝐶 is invertible and has 

full rank.∎ 

Theorem 2. 14. The equilibrium point in the positive symmetric zero-sum 
tournament game is regular.  

Proof: 

Assume a positive symmetric zero-sum tournament game with set of pure 

strategies for Player 1 and Player 2 as 𝑆 = {𝑠1, … , 𝑠𝑛}; where 𝐾 =
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(𝑘𝑖𝑗)𝑛×𝑛 is the game matrix for Player 1. Hence, 𝐾𝑇 is the game matrix for 

Player 2. We also know that, 𝐾𝑇 = −𝐾. 

𝑝 = (𝑝1, … , 𝑝𝑛), 𝑞 = (𝑞1, … , 𝑞𝑛) are mixed strategy vectors, and the Nash 

equilibrium point is 𝑃 = (𝑝, 𝑞). Hence, the utility functions are 

𝑢1(𝑝, 𝑞) = 𝑝𝐾𝑞
𝑇 = ∑ 𝑝𝑖𝐾𝑖𝑗𝑞𝑗𝑖,𝑗  and 𝑢2(𝑝, 𝑞) = 𝑝𝐾𝑇𝑞𝑇 = ∑ −𝑖,𝑗 𝑝𝑖𝐾𝑖𝑗𝑞𝑗 . 

We know that the set of Nash equilibrium points is not empty.  We define  

𝐹1
(1)
, 𝐹2

(1)
, … , 𝐹𝑛

(1)
 and  𝐹1

(2)
, 𝐹2

(2)
, … , 𝐹𝑛

(2)
 as follows 

 𝐹1
(1)
= ∑ 𝑝𝑖 − 1

𝑛
𝑖=1 , 𝐹1

(2)
= ∑ 𝑞𝑖 − 1

𝑛
𝑖=1 , 

𝐹𝑖
(1) = [𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞)] × 𝑝𝑖 = [∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡

𝑛
𝑡=1 ] × 𝑝𝑖; 

𝑖 = 2,… , 𝑛. 

𝐹𝑗
(2) = [𝑢2(𝑠1, 𝑝) − 𝑢2(𝑠𝑗 , 𝑝)] × 𝑞𝑗 = [∑ ((−𝑘1𝑡) − (−𝑘𝑗𝑡))𝑝𝑡

𝑛
𝑡=1 ] × 𝑞𝑗; 

𝑗 = 2,… , 𝑛. 

In an equilibrium, all 𝐹𝑖
(1)

 and 𝐹𝑗
(2)

 are equal to zero. Because, if 𝑠𝑖  (𝑖 ≠ 1) 

is another strategy in the equilibrium, then 𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞) (or 

similarly [𝑢2(𝑝, 𝑠1) − 𝑢2(𝑝, 𝑠𝑖)]) is equal to zero. Otherwise, 𝑝𝑖 (or 

similarly 𝑞𝑗) is equal to zero.  

We define  𝐹(𝑝, 𝑞) =

[
 
 
 
 
 
 
 
 𝐹1

(1)(𝑝, 𝑞)

𝐹2
(1)
(𝑝, 𝑞)
⋮

𝐹𝑛
(1)(𝑝, 𝑞)

𝐹1
(2)(𝑝, 𝑞)
⋮

𝐹𝑛
(2)(𝑝, 𝑞)]

 
 
 
 
 
 
 
 

 ; hence we have  



 

20 
 

𝑑𝐹

𝑑𝑃
=

[
 
 
 
 
 
 
 
 
 
 
𝑑𝐹1

(1)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(1)

𝑑𝑝1

𝑑𝐹1
(2)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(2)

𝑑𝑝𝑛

 
𝑑𝐹1

(1)

𝑑𝑝2

⋮

…𝑑𝐹1
(1)

𝑑𝑝𝑛

…

 
𝑑𝐹1

(1)

𝑑𝑞1
⋯𝑑𝐹1

(1)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(1)

𝑑𝑞𝑛

𝑑𝐹1
(2)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(2)

𝑑𝑞𝑛 ]
 
 
 
 
 
 
 
 
 
 

(2𝑛)×(2𝑛)

  

We should show that 
𝑑𝐹

𝑑𝑃
≠ 0. 

We know that 
𝑑𝐹1

(1)

𝑑𝑝𝑖
= 1, 

𝑑𝐹1
(1)

𝑑𝑞𝑖
= 0. Similarly, we have 

𝑑𝐹1
(2)

𝑑𝑝𝑖
= 0, 

𝑑𝐹1
(2)

𝑑𝑞𝑖
= 1. 

For 𝑖 > 1 we have 

𝑑𝐹𝑖
(1)

𝑑𝑝𝑗
= {

∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.
 

𝑑𝐹𝑖
(1)

𝑑𝑞𝑗
=(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑝𝑖 . 

 
𝑑𝐹𝑖

(2)

𝑑𝑝𝑗
= −(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑞𝑖 .   

𝑑𝐹𝑖
(2)

𝑑𝑞𝑗
= {

∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.
 

Hence, by some elementary operations in 
𝑑𝐹

𝑑𝑃
 , we can see that the rank of 

the matrix 
𝑑𝐹

𝑑𝑃
 is equal to the rank of 𝐹̿ = [

0
𝐶2

𝐶1
0
]
(2𝑛)×(2𝑛)

, where 𝐶1 and 𝐶2 

are computational matrix of Player 1 and Player 2, (Calculations are shown 

in Appendix A.4). By Theorem 2.13 we know that 𝐶1 and 𝐶2 have full rank, 

hence 𝐹̅ has full rank as well and the equilibrium is regular in the sense of 

Harsanyi,∎. 
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Theorem 2. 15. In a symmetric zero-sum tournament game with the set of 

strategies {𝒔𝟏, 𝒔𝟐, … , 𝒔𝒏} and the matrix game 𝑲 = [
𝑺𝟏
⋮
𝑺𝒏

], if (𝑷,𝑷) 

(𝑷 = (𝒑𝟏, 𝒑𝟐, … , 𝒑𝒏)) is an equilibrium point, then for all the 𝒑𝒊 = 𝟎 we 
have 𝑺𝒊𝑷 < 𝟎. 

Proof: 

Assume that 𝐾̅𝑚×𝑚 ,𝑚 < 𝑛 is the largest positive subtournament of 𝐾. 

Hence, as 𝐾̅ is a game matrix of a positive subtournament, then 𝑚 is odd. 

If 𝑃̅ = (𝑝1̅̅ ̅, 𝑝2̅̅ ̅, … , 𝑝𝑚̅̅ ̅̅ ) is the optimal strategy then we have  𝑆̅𝑖𝑃̅
𝑇 = 0. If 

we add any bad quality strategy to 𝐾̅  (we call the new game matrix 

𝐾̿) then optimal strategy is 𝑃̿ = (𝑝1̅̅ ̅, 𝑝2̅̅ ̅, … , 𝑝𝑚̅̅ ̅̅ , 𝑝𝑚+1̅̅ ̅̅ ̅̅ ̅) where 𝑝̅𝑚+1 = 0. If 

we assume that 𝑆𝑚+1𝑃̿ = 0, as a result we have 𝐾̿𝑃̿ = 0. 𝐾̿ is a (𝑚 + 1) 

by (𝑚 + 1) matrix where (𝑚 + 1) is even. So, by Theorem 1.2.5 𝐾̿ has full 

rank, as a result 𝑃̿ = 0, which is contradiction. Hence, 𝑆𝑖𝑃̿ < 0. ∎ 

Corollary 2. 16. The equilibrium point in any symmetric zero-sum 
tournament game is regular. 

Proof:  

Let 𝑇́ be the largest positive subtournament of 𝑇 where 𝐾 and 𝐾́ are the 

matrix game of the tournaments 𝑇 and 𝑇́, respectively. By Theorem 2.14 

we know that the equilibrium in 𝑇́ is regular and therefore, it will remain 

unique under small perturbation. On the other hand, by Theorem 2.14 we 

know that the expected pay off of a “bad quality” strategy of 𝐾 is strictly 

negative. Hence, by small changes in the matrix game it will remain 

negative. So, we can conclude that the equilibrium point in the symmetric 

zero-sum tournament game is robust under small perturbations, ∎. 

Corollary 2. 17. The equilibrium point of the symmetric zero-sum 

tournament game is robust under small perturbations. 

Proof: 

By Corollary 2. 15, we know that a symmetric zero-sum tournament game 

is regular. Hence it would be robust under small perturbations, ∎. 
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2.5 Generalized Hoteling-Downs model with Asymmetric 

Candidates 

In previous sections, I reviewed the main characteristics of the symmetric 

zero-sum games. I also, provide some theorems and explanations that 

how this game can be considered as the generalization of Hotelling-Downs 

model, when the strategy space of the candidates is not single-peaked.  

In this section, I make a perturbation on the main diagonal of the matrix 

game of the symmetric zero-sum tournament game. By this method, I 

extend the symmetric zero-sum tournament game to symmetric non zero-

sum tournament game and asymmetric zero-sum tournament game 

(tournament game with incumbent).  In this new version of the 

tournament games the tie situation has been resolved; and it can model 

different political situations.  

Definition 2. 18. Let 𝑻 be a symmetric zero-sum tournament game with 

matrix game 𝑲. The game with matrix game 𝑲̅ = 𝑲 + 𝜶𝑰 for the first 

player and 𝑲̅ = 𝑲𝑻 + 𝜶𝑰 for second player is called symmetric non zero-

sum tournament game; where 𝑰 is the identity matrix. 

Definition 2. 19. Let 𝑻 be a symmetric zero-sum tournament game with 

matrix game 𝑲. The zero-sum game with matrix game 𝑴 = 𝑲 +𝜶𝑰 is 

called asymmetric zero-sum tournament (tournament game with 

incumbent); where 𝑰 is the identity matrix. 

Theorem 2. 20. Let 𝑻 be a symmetric zero-sum tournament game with 

matrix game 𝑲. The equilibrium point of both symmetric non zero-sum 

tournament game and asymmetric zero-sum tournament games 

associated to the game matrix  𝑲  are unique for all 𝟎 < 𝜶 < 𝟏 and 𝒏 < 𝟕. 

Proof:  

I designed a computer algorithm with Maple which tests the uniqueness 

of the equilibrium point of all the symmetric non zero-sum and 

asymmetric zero-sum tournament games where  −1 < 𝛼 < 1 and 𝑛 ≤ 7, 

See Appendix A.5 for the Maple code. The computer program did not find 

any multiple equilibria.  
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2.5.1 Symmetric non zero-sum Tournament Game 

Symmetric non zero-sum tournament game, describes the situation where 

by selecting the same strategy both players have the same payoff which is 

not zero. In reality, it may happen when in a tie situation both players try 

to collaborate to increase/decrease their payoff. It means that this model 

can capture the cases when there is collusion between the parties, and 

they intentionally choose the same platform.  The incentive for avoiding 

the tie situation can also be created by an external party. The results in 

Section 2.4.2 guarantee that if the amount of the perturbation is small 

enough, the equilibrium point is unique. However, by some examples I 

demonstrate that under large perturbations the structure of the game 

varies considerably and the equilibrium point is not necessary unique. 

Example 2. 21. 

Suppose the matrix game of a symmetric zero sum tournament game as 

follow 

𝐾 =

[
 
 
 
 
 
 
 
0
−1
−1
1
1
1
−1
1

1
0
−1
−1
1
−1
−1
−1

1
1
0
−1
−1
−1
1
−1

−1
1
1
0
1
1
−1
1

−1
−1
1
−1
0
−1
1
1

−1
1
1
−1
1
0
−1
−1

1
1
−1
1
−1
1
0
−1

−1
1
1
−1
−1
1
1
0 ]
 
 
 
 
 
 
 

 . We can easily calculate that the optimal 

strategy is (
1

9
,
1

9
, 0,0,

1

3
,
1

9
,
1

3
, 0) for both players. 

We define a symmetric non zero-sum tournament game by following 

matrices, 𝐾̅1 = 𝐾 + 𝛼𝐼 and 𝐾̅2 = 𝐾
𝑇 + 𝛼𝐼, where 𝐼 is the identity matrix 

and 𝛼 ≠ 0. 𝐾̅1 is the game matrix for the first player and 𝐾̅2 is the game 

matrix for second one. In this game, the equilibrium is unique when 

0 < 𝛼 < 0.27789.  In this example both players have 8 strategies. As I 

explained in Theorem 2.24, there is no such this example for the games 

with less than 8 strategies. 

 

                                                             
9 𝛼 has been calculated by employing Gambit 13 to test different games. 
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2.5.2 Asymmetric zero-sum Tournament Game 

In this section, we resolve the tie situation by considering a higher chance 

of winning for the first player in selecting the same strategy. In this case, 

the main diagonal of game matrix of symmetric zero-sum tournament 

game changes to a strictly non negative number like 𝛼. The game is still a 

zero-sum game; however it is not symmetric any more. We can also call 

the asymmetric zero-sum tournament game, the tournament game with 

incumbent. As it can describe the political situations where there is an 

incumbent who has been in power previously. The effect of the 

incumbency has been analysed by many studies. M. C. Cummings (1966) 

analysed the data of US presidential elections from 1924 to 1964. His 

analyse showed that in those elections the incumbent has more chances 

to keep the power compared to the challenging party. In contrast, in some 

societies voters may like to change the party who is in power for a long 

time. R. Chacrabarti et al. (2005)  study about the Sabha elections in India 

show the anti-incumbency behaviour among the voters. In both cases, one 

of the parties will have more chances to win when they both have chosen 

the same platform. The following example demonstrates a tournament 

game with incumbent. In this example, we have calculated the range of 

the possible positive amount of changes for 𝛼 which keep the equilibrium 

unique. 

Example 2. 22.    

If we consider the matrix game of the symmetric zero-sum tournament 

game as 𝐾 =

[
 
 
 
 
 
 
0
−1
−1
−1
1
1
−1

1
0
−1
−1
1
−1
1

1
1
0
1
1
1
1

1
1
−1
0
−1
−1
1

−1
−1
−1
1
0
1
1

−1
1
−1
1
−1
0
−1

1
−1
−1
−1
−1
1
0 ]
 
 
 
 
 
 

, then the equilibrium is unique when 

0 < 𝛼 < 1. 
If 𝛼 = 1, the game has two equilibrium points as follow, 
 

𝑃1 = {(
1

5
,
1

5
, 0,0,0,

2

5
,
1

5
) , (

1

5
,
1

5
, 0,

1

5
,
1

5
,
1

5
, 0)} and  

𝑃2 = {(
1

5
,
1

5
, 0,

1

10
,
1

10
,
3

10
,
1

10
) , (

1

5
,
1

5
, 0,

1

5
,
1

5
,
1

5
, 0)}.  
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As we see, in both equilibrium points Player 1 is mixing between even 

number of strategies; which is in contrast to the previous results in 

symmetric zero-sum tournament games. Beside, as we can observe in 

equilibrium point 𝑃1, not necessarily both players have the same bad 

quality strategies.10 

Remark 2.23. The fact that in symmetric zero-sum tournament game 

players  mix between odd number of strategies (Colloraly 2.9) coming 

from the fact that the game matrix of a symmetric zero-sum tournament 

game has full rank just when number of strategies  𝑛 are even (Theorem 

1.2.5) and otherwise rank 𝑛 − 1. In the latter case the system 𝐾𝑝 = 0, 

may have a nontrivial solution and hence an equilibrium. In the case of an 

asymmetric zero-sum tournament game and symmetric non zero-sum 

tournament game we show (Theorem 2.25) that the game matrix always 

has full rank. Hence the support of the equilibrium may vary to have an 

odd or even number of positive probabilities. 

 

2.6 Sufficient Condition for Uniqueness of the Equilibrium   

  As we observed in the Example 2.21 and Example 2.22 of the previous 

section, the equilibrium point of the symmetric non zer-sum tournament 

game and asymmetric zero-sum tournament game is not necessarily 

unique. However, in this section we provide sufficient condition for 

uniqueness of the equilibrium in both of the mentioned tournament 

games.  

Theorem 2. 23. If 𝑲 is the game matrix of symmetric zero sum tournament 

game then all the eigenvalues of 𝑲 are purely imaginary (Hoffman (1971)).  

Proof: 

We know that for the symmetric zero sum tournament game 𝐾𝑇 = −𝐾. 

Hence, we have 

𝐾𝑣 = 𝜆𝑣   ⇒  𝐾𝑣̅̅ ̅̅ = 𝜆𝑣̅̅ ̅    ⇒   𝐾𝑣̅ = 𝜆̅𝑣̅   , as the elements of 𝐾 are real. 

                                                             
10 𝑃1 and 𝑃2 have been calculated by “enumerating extreme points” method in Gambit 13. As the game is a 

zero-sum game, 𝑃1 and 𝑃2 are the extreme points of a convex set of equilibrium points. 
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(𝐾𝑣 )̅̅ ̅̅ 𝑇𝑣 = (𝜆̅𝑣̅ )
𝑇
 𝑣   ⇒  (𝑣̅)𝑇𝐾𝑇𝑣 = 𝜆̅ (𝑣̅ )𝑇  𝑣 ⇒   (𝑣̅)𝑇(−𝐾) 𝑣 =

𝜆̅ (𝑣̅ )𝑇  𝑣 ⇒  (𝑣̅)𝑇(−𝜆) 𝑣 = 𝜆̅ (𝑣̅ )𝑇  𝑣  ⇒  −𝜆 ‖𝑣‖2 = 𝜆̅‖𝑣‖2  ⇒    

Eigenvalues of 𝐾 are purely imaginary,∎. 

Theorem 2. 24. The matrix A with eigenvalues as 𝝀𝟏, … , 𝝀𝒏 and the 

eigenvectors as 𝒗𝟏, … , 𝒗𝒏 has the same eigenvectors as the matrix 

 𝛼𝑚𝐴
𝑚 + 𝛼𝑚−1𝐴

𝑚−1 +⋯+ 𝛼1𝐴 + 𝛼1 

but the eigenvalues of the latter will be 

 𝛼𝑚𝜆
𝑚 + 𝛼𝑚−1𝜆

𝑚−1 +⋯+ 𝛼1𝜆 + 𝛼1. (see Hoffman (1971)). 

By Theorem 2. 8 we know that the matrix game of a symmetric zero-sum 

game has full rank just when the number of the strategies are even. 

Following theorem explain the rank of the matrix game of an asymmetric 

zero-sum tournament game. 

Theorem 2. 25. Let 𝑲 be the matrix game of a symmetric zero-sum 

tournament game. If 𝑴 = 𝑲 +𝜶𝑰 (𝜶 ≠ 𝟎) then 𝑴 has full rank. 

Proof:  

By theorem 3.1.1 we know that all the eigenvalues of 𝐾 are in the form of 

𝑏𝑖, where 𝑏 is a real number and 𝑖 is the imaginary number. On the other 

hand, we know 𝑀 = 𝐾 + 𝛼𝐼 (𝛼 ≠ 0) where 𝐾 is the game matrix of 

symmetric zero sum tournament game. As a result by theorems 3.1.2 we 

know that all the eigenvalues of 𝑀 are in form of 𝑏𝑖 + 1. 𝑏𝑖 + 1 cannot be 

zero, so all the eigenvalues of 𝑀 are non- zero. Hence 𝑀 has full rank, ∎. 

Theorem 2. 26. Let 𝑲 be the game matrix of a symmetric zero-sum 

tournament game. If 𝑴 = 𝑲 +𝜶𝑰 (𝜶 ≠ 𝟎) the computational matrix of 𝑴 

has full rank. 

Proof: 

If we denote the row vectors of 𝑀 by 𝑎𝑖, we want to show that 

𝐶 = [

(1,1,… ,1)
𝑎2 − 𝑎1

⋮
𝑎𝑛−𝑎1

] has full rank. By Theorem 2.25 we know that 𝑀 has full 
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rank for 𝛼 ≠ 0. Hence 𝑎𝑖 − 𝑎1 are linearly independent for 2 ≤ 𝑖 ≤ 𝑛; 

which means that 

∑𝜆𝑖(𝑎𝑖 − 𝑎1) = 0,

𝑛

𝑖=2

 

would imply 

−(∑𝜆𝑖)𝑎1 +

𝑛

𝑖=2

∑𝜆𝑖𝑎𝑖 = 0,

𝑛

𝑖=2

 

By linear independence of 𝑎𝑖 we obtain 𝜆2 = ⋯ = 𝜆𝑛 = 0. 

Suppose 𝐶 does not have full rank. Hence, the first row of 𝐶, 𝑒́ =

(1,1, … ,1), is the non-trivial combination of other rows.  

𝑒́ = ∑ 𝑝𝑖(𝑎𝑖 − 𝑎1)
𝑛
𝑖=2 , 

with 𝑝𝑖0 ≠ 0 for some 2 ≤ 𝑖0 ≤ 𝑛. Suppose 𝑝1 = −∑ 𝑝𝑖
𝑛
𝑖=2 , hence we 

have 

𝑒́ =∑𝑝𝑖(𝑎𝑖 − 𝑎1)

𝑛

𝑖=2

=∑𝑝𝑖𝑎𝑖 − (∑𝑝𝑖)𝑎1

𝑛

𝑖=2

=

𝑛

𝑖=2

𝑝1𝑎1 +∑𝑝𝑖𝑎𝑖 =∑𝑝𝑖𝑎𝑖

𝑛

𝑖=1

𝑛

𝑖=2

 

whereby 

∑ 𝑝𝑖
𝑛
𝑖=1 = 0, 

and 𝑝𝑖0 ≠ 0 for some 2 ≤ 𝑖0 ≤ 𝑛. 

We can write this in matrix notation as  

𝑒́ = 𝑝́𝑀 and 𝑒́𝑝 = 0 

where 𝑝́ = (𝑝1, … , 𝑝𝑛) and 𝑝́ ≠ 0.  

However, this leads to the following contradiction for 𝛼 ≠ 0.  

We know that 𝑝́𝐾𝑝 = ∑ 𝑘𝑖𝑗𝑝𝑖
2𝑛

𝑖=1 + ∑ (𝑘𝑖𝑗 + 𝑘𝑗𝑖)𝑝𝑖𝑗𝑗>𝑖 = 0, as 𝐾 is a skew-

symmetric matrix. 

0 = 𝑒́𝑝 = 𝑝́𝑀𝑝 = 𝑝́(𝐾 + 𝛼𝐼)𝑝 = 𝑝́𝐾𝑝 + 𝛼𝑝́𝐼𝑝 = 0 + 𝛼∑ 𝑝𝑖
2𝑛

𝑖=1 ≠ 0, 
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where by 𝐼 we denotes the identity matrix.  Hence, 𝐶 must have full rank, 

∎. 

Theorem 2. 27. Let 𝑲 be a matrix game of a symmetric zero-sum game. In 

an asymmetric zero-sum tournament game where the matrix game is 

𝑴 = 𝑲+ 𝜶𝑰 and 𝜶 ≠ 𝟎, in equilibrium, when one player plays with a full 

support mixed strategy the other player has a unique optimal strategy.  

Proof: 

By applying Theorem 2.26, we can show that in an asymmetric zero-sum 

tournament game the computational matrices of the game matrix of first 

and second player have full rank when 𝛼 ≠ 0. It means that when one of 

the players mixes between all of his strategies with positive probability, 

the computational system for calculating the optimal strategies of the 

other player have to have a unique solution, ∎. 

Theorem 2.28. In Symmetric non zero-sum tournament games, in 
equilibrium, when one player plays with a full support mixed strategy the 
other player has a unique optimal strategy. 

Proof: 

The proof is the same of Theorem 2.28, ∎.  

 In fact, Theorem 2.28 and Theorem 2.29 provide sufficient condition for 

uniqueness of the equilibrium.  

 

2.7 Regular Tournament Game in the sense of Laffond et al. 

In previous sections we saw that for a symmetric zero-sum tournament 

game the value is zero. However there is no theorem to provide the 

amount of the value for asymmetric zero-sum tournament game. For 

different number of strategies we may have different games with different 

values. In this section we first provide an example to show how the 

amount of the values can be different for the asymmetric zero-sum 

tournament games with the same number of strategies. Later, I will 

analyse the special case of regular tournaments in sense of Laffond et al. 

where not only we can predict the amount of the value also we can 
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guarantee the unique, uniform distribution optimal strategy for both 

players. 

Example 2. 29.  

Let 𝐾𝑛×𝑛 be a matrix game of a symmetric zero-sum tournament game 

with 𝑛 strategies. Suppose the asymmetric zero-sum tournament game 

with matrix game 𝑀 = 𝐾 + 𝐼 and 𝑛 number of strategies. Following table 

shows the possible values of the value of the game, for different number 

of strategies. 

𝒏 Value 
 

3 {1,1/3} 
4 {1,1/3} 

 

5 {1,
1

3
,
1

4
,
1

5
 } 

6 
{1,
1

3
,
1

4
,
1

5
 } 

7 
{1,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
2

11
,
3

13
,
3

17
 } 

8 
{1,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
2

11
,
3

13
,
3

17
,
3

19
,
5

21
,
5

29
,
5

31
,
5

33
,
7

41
,
7

45
 } 

  
Table 2. 5. Possible amount of the value of the asymmetric zero-sum tournament game for 𝜶 = 𝟏. 

Definition 2. 29. A symmetric zero-sum tournament is regular in the sense 

of Laffond et al if all its vertices have similar score. 

Theorem 2. 30.  A symmetric zero-sum tournament is regular if and only if 

in the equilibrium players mixes between all the strategies with uniform 

distribution. 

Proof: 

Suppose that 𝐾 is the matrix game of a symmetric zero-sum tournament 

game. If we suppose that the all the vertices have similar score, then 

obviously players will be indifferent between all the strategies. 

On the other hand, in equilibrium players are mixing between the 

strategies with the uniform strategy 𝑃 = (𝑝, 𝑝, … , 𝑝). Hence we will have 

𝐾𝑃𝑇 = [0]𝑛×1; which means that 𝐾[1]𝑛×1 = [0]𝑛×1. So, in each row of 𝐾 
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we should have equal number of 1 and −1. This means that the score of 

all vertices in the tournament game is equal, ∎.  

Following theorem explain the optimal strategy and value of the game for 

the regular asymmetric zero-sum games. 

Theorem 2. 31. Let 𝑻 be a symmetric zero-sum tournament game with the 

game matrix 𝑲, and 𝑻̅ an asymmetric zero-sum tournament game with 

game matrix 𝑲̅̅̅ = 𝑲 + 𝜶𝑰, 𝜶 ≠ 𝟎. In the equilibrium, in the tournament 

game 𝑻 players are mixing between all of the strategies uniformly if and 

only if the players in the tournament game 𝑻̅ do the same. 

Besides, in this case the value for the asymmetric zero-sum tournament 

game 𝑇̅ would be 
𝛼

𝑛
 , where 𝑛 is the number of the strategies. 

Proof: 

Suppose that in the tournament game 𝑇̅, players mix between all of the 

strategies uniformly. 

Let  𝐸 = [

1 1…1
𝑒1
⋮

𝑒𝑛−1

] and 𝐸̅ = [

1 1…1
𝑒̅1
⋮

𝑒̅𝑛−1

] be the computational matrices of 𝐾 

and 𝐾̅, respectively. In each 𝑒̅𝑖 we have “-1-𝛼 and 𝛼-1”  or “1- 𝛼 and 𝛼 +1”. 

Hence, as players are mixing between all the strategies uniformly the 

computational system  𝐸̅𝑞 = [

1
⋮
0
0

], will have the same answer as  

computational system 𝐸𝑞 = [

1
⋮
0
0

].  

Suppose that in the tournament game 𝑇, players mix between all of the 

strategies uniformly. If 𝑞 is the unique optimal strategy then it would be 

the solution of following computational system, 𝐸 [

1 1…1
𝑒1
⋮

𝑒𝑛−1

] 𝑞 = [

1
⋮
0
0

]. We 

add a -𝛼 to the the first element and an 𝛼 to the 𝑖 + 1th element of 𝑒𝑖. So, 
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the system will change to 𝐸̅ [

1 1…1
𝑒̅1
⋮

𝑒̅𝑛−1

] 𝑞 = [

1
⋮
0
0

], where the solution has 

been not changed. 

Hence, tournament games 𝑇 and 𝑇̅ have the same optimal solutions. As a 

result, the value for 𝑇̅ would be 
𝛼

𝑛
 where 𝑛 is the number of the 

strategies,∎. 

Example 2. 32. For the regular symmetric zero-sum tournament game 
with matrix game   

𝐾 =

 

, the optimal strategy for both players is 

{
1

5
,
1

5
,
1

5
,
1

5
,
1

5
}.  

 
In the asymmetric zero-sum tournament game with matrix game 

𝐾̅ = 𝐾 + 𝛼𝐼, 𝛼 ≠ 0 the optimal strategy for both players is {
1

5
,
1

5
,
1

5
,
1

5
,
1

5
} 

and the value of the game is 
𝛼

5
 . 

Corollary 2. 33. Let 𝑻 be a symmetric zero-sum tournament game with 

matrix game 𝑲 and 𝑻̅ be an asymmetric zero-sum tournament game with 

matrix game 𝑲̅ = 𝑲 + 𝜶𝑰, 𝜶 ≠ 𝟎.  

In tournament game 𝑇̅, in the equilibrium players cannot mix between all 

of their strategies uniformly when the number of the strategies are even. 

Proof: 

We know that in the tournament game 𝑇, in the equilibrium players are 

mixing between odd number of the strategies. Hence, they cannot have 

the uniform full support optimal strategies. As a result by Theorem 1, 

players in tournament game 𝑇̅ cannot have uniform full support 

equilibrium point as well.   
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2.8 Conclusion 

I analyse the tournament game (named as symmetric zero-sum 

tournament game in this study). Previous results have shown that it has a 

unique solution; I demonstrate that the uniqueness is robust under small 

perturbation. However, the structure of the solution changes significantly 

when the amount of perturbation is greater than a certain threshold 

dependent on each game. I analyse the tournament game with incumbent 

as the case of a perturbed tournament game. By providing several 

examples I show that the structure of the equilibrium point is 

fundamentally different from the standard tournament game. While there 

is no general criteria to describe the value and optimal strategies of the 

game I provide a partial criteria which is a sufficient condition for 

uniqueness of equilibrium. This work enables future studies on 

determining the threshold of perturbations and general criteria for 

optimal strategies in perturbed games. 
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A. Appendix to Chapter 2 

This appendix provides mathematical background for the models and 

theorems in this chapter. 

 

A.1. Graphs and Subgraphs 

Graphs are the structures that connect some set of vertices with some 

specific rules. Despite the simple structures graphs have wide application 

in mathematical modelling.    

In this Appendix, the concepts and definitions of graphs and subgraphs 

used in the models and theorems of this study are explained, (See 

Trudeau (2013)).  

Definition A. 1. 1. A graph 𝐺 consists of two sets. First a non-empty set 

𝑉(𝐺) (set of vertices) and secondly, 𝐸(𝐺)  (set of edges).  
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Following example shows a simple graph with four vertices and three 

edges.  

Example A. 1. 2. 

𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4}. 

 
 
 
 
 

Figure A. 1. 3. A simple graph with four vertices and three edges 

Definition A. 1. 4. A directed graph 𝐷 consists of two sets. First a non-

empty set 𝑉(𝐷) (set of vertices) and secondly a finite set of ordered pair 

of elements of 𝐷 (𝐴(𝐷)), each ordered pair is called arc.  

Following example shows a simple directed graph with four vertices and 

three arcs.  

 

Example A. 1. 5. 

𝑉(𝐷) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐴(𝐷) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4}. 

 
 
 
 
 

Figure A. 1. 6. A simple graph with four vertices and three edges 

Definition A. 1. 6. In a directed graph like 𝐷, two vertices like 𝑣1, 𝑣2 are 

adjacent if 𝑣1𝑣2𝜖𝐴(𝐷). 

Definition A. 1. 7. In a directed graph like 𝐷, there is a path from vertex 𝑣1 

to 𝑣𝑛 ,if there is a finite sequence of arcs of the form 

𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑛−1𝑣𝑛 between 𝑣1 and 𝑣𝑛.  

Definition A. 1. 8. In a directed graph like 𝐷, there is a path with the 

length of  𝑚 from vertex 𝑣1 to 𝑣𝑛 if the shortest path between 𝑣1 to 𝑣𝑛 

has exactly 𝑚 arcs. 

𝑣1 𝑣2 

𝑣4 𝑣3 

 

𝑣2 

𝑣4 𝑣3 

𝑣1 
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Definition A. 1. 9. A directed graph like 𝐷 has a cycle, if we can find a path 

starting from a vertex like 𝑣1 and ending to 𝑣1 with the length of |𝑉(𝐺)|. 

Example A. 1. 10. 

𝑉(𝐷) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐴(𝐷) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1, 𝑣3𝑣1}. 

 
 
 
 
 

 
- There is a path of length two between 𝑣1 and 𝑣3 (𝑣1𝑣2, 𝑣2𝑣3). 
- The graph has a cycle (𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1). 

 
Figure A. 1. 11. A simple directed graph with four vertices and four edges 

Definition A. 1. 11. A directed graph 𝐷̅ is a subgraph of directed graph 𝐷, 

if  𝑉(𝐷̅) ⊆ 𝑉(𝐷) and 𝐴(𝐷̅) ⊆ 𝐴(𝐷). 

A.2. Zero-sum games 

In this appendix, I review the definition and characteristics of the zero-

sum games which is the base of the model in Section 2. In this appendix, 

the notations and definitions are the same of Maschler, Solan and Zamir 

(2013). 

Definition A. 2. 1. A two player game is a zero-sum game if for each pair of 

strategies (𝑠𝐼 , 𝑠𝐼𝐼) one has 

𝑢𝐼(𝑠𝐼 , 𝑠𝐼𝐼) + 𝑢𝐼𝐼(𝑠𝐼 , 𝑠𝐼𝐼) = 0. 

Where 𝑢𝐼 and 𝑢𝐼𝐼 are the utility functions of the first and second player. 

Typically, the concepts of maxmin and minmax strategy are useful in 

analysing the zero-sum games. 

Maxmin value is the value that first player guarantees that he will get, and 

minmax value is the value that second player guarantees he will lose no 

more than. For a zero-sum game the maxmin and minmax values can be 

found by following equations 

𝑣 = max
𝑠𝐼𝜖𝑆𝐼

min
𝑠𝐼𝐼𝜖𝑆𝐼𝐼

𝑢(𝑠𝐼 , 𝑠𝐼𝐼), 

𝑣1 

𝑣2 

𝑣3 𝑣4 
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𝑣 = min
𝑠𝐼𝐼𝜖𝑆𝐼𝐼

max
𝑠𝐼𝜖𝑆𝐼

𝑢(𝑠𝐼 , 𝑠𝐼𝐼), 

where 𝑢𝐼 = −𝑢𝐼𝐼 = 𝑢 and 𝑆𝐼 and 𝑆𝐼𝐼 are the set of strategies for first and 

second player respectively. For zero-sum games, maxmin and minmax 

values are equal (𝑣 = 𝑣 = 𝑣), where 𝑣 is called value of the game. Any 

maxmin and minmax strategies of the game are called optimal strategy.   

Maxmin strategies and Nash equilibrium are two different concepts. 

However, for the case of zero-sum games they are equivalent. 

 

 

 

 

 

A.3 Calculating Optimal Strategies in Zero-Sum Games 

There are some theorems which can predict the value and optimal 

strategies of certain zero-sum games. However, here I briefly review two 

different methods for calculating the optimal strategies of a zero-sum 

game.  

 A.3.1 Indifferent Strategies 

In a mixed strategy equilibrium for a zero-sum game, we know that a 

player will mix between two (or more) strategies if he is indifferent 

between them. If we know that the player is mixing between all of his 

strategies, we can use this fact to find the optimal strategies.  

Suppose a zero-sum game 𝐺̅ with two players. The matrix game of the 

game can be denoted as 𝐺 = (𝑔𝑖𝑗)𝑛×𝑛 = [

𝑎1
⋮
𝑎𝑛
]. 

If Player 1, mixes between all of his strategies then we can find the 

optimal strategies for second player by solving the following system   
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𝐶1𝑞 = [

1
0
⋮
0

]

𝑛×1

 𝑤ℎ𝑒𝑟𝑒 𝑞 ≥ 0, 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛);              (A.3.1.1) 

where 𝐶1 = [

(1,… ,1)
𝑎2 − 𝑎1

⋮
𝑎𝑛 − 𝑎1

].   

Similarly, if second player mixes between all of his strategies then we can 

find the optimal strategies of first player by solving the following system 

𝐶2𝑝 = [

1
0
⋮
0

]

𝑛×1

𝑤ℎ𝑒𝑟𝑒 𝑝 ≥ 0, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛);         (A.3.1.2) 

where −𝐺 = [
𝑏1
⋮
𝑏𝑛

] and 𝐶2 = [

(1,… ,1)

𝑏2 − 𝑏1
⋮

𝑏𝑛 − 𝑏1

].   

This is not an efficient method to find all of the equilibriums of a zero-sum 

game. Obviously, there might be some equilibriums that a player is not 

mixing between all of his strategies. 

A.3.2  Linear Programing  

Luce and Raiffa (1957) introduced a linear programing system to calculate 

the optimal strategies of a zero-sum game. In comparison with Indifferent 

strategies method described in A.3.1, this method is computationally 

more costly. However, it is more efficient as it can calculate all of the 

optimal strategies of a player. 

For a zero-sum game with matrix game 𝐺 = (𝑔𝑖𝑗)𝑛×𝑛, the following 

system can give us all the possible optimal strategies (minmax strategies) 

for Player 1. 

{

𝑀𝑎𝑥 𝑣
(𝐺𝑇𝑥)𝑗 ≥ 𝑣    ∀𝑗

∑ 𝑥𝑖 = 1𝑛
𝑖=1

𝑥𝑖 ≥ 0.

                                                                                 (A.3.2.1) 



 

39 
 

 

To change System (A.3.2.1) to a LP program, initially we add a large 

enough positive number to all the entries of 𝐺 to make them all positive. 

 ∃𝑎 > 0; 𝐺́ = (𝑔𝑖𝑗 + 𝑎)𝑛×𝑛 ⇒ 𝐺́ > 0. 

If we rewrite System (A.3.2.1) for the new matrix, 𝐺́, we have 

{
 

 
𝑀𝑎𝑥 𝑣

(𝐺́𝑇𝑥)𝑗 ≥ 𝑣    ∀𝑗

∑ 𝑥𝑖 = 1𝑛
𝑖=1

𝑥𝑖 ≥ 0.

                                                                                (A.3.2.2) 

By solving the system (A.3.2.2) we can find optimal strategies. However, 

the calculated value in (A.3.2.2) is the value of the game with matrix game 

𝐺, added by 𝑎. we denote the new value by 𝑣∗. We know that as 𝐺́ > 0 

then 𝑣∗ > 0. Hence, as 𝑣∗ > 0, then by letting 
𝑥𝑖

𝑣∗
= 𝑢𝑖 and dividing 

∑ 𝑔𝑖𝑗́  𝑝𝑖 ≥ 𝑣∗𝑛
𝑖=1  to 𝑣∗ the system (A.3.2.2) changes to 

{
 

 
min∑ 𝑢𝑖

𝑛
𝑖=1   

(𝐺́𝑇𝑢)𝑗 ≥ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝑢𝑖 ≥ 0.
                                                                      (A.3.2.3). 

By solving the LP system (A.3.2.3), we can find all the optimal strategies of 

the first player. 

Similarly we can find optimal strategies for the second player by solving 

the following problem.  

{
 
 
 

 
 
 

𝑀𝑎𝑥 𝑣

∑−𝐺𝑞

𝑛

𝑖=1

≥ 𝑣

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

⇒

{
 
 
 

 
 
 

𝑀𝑖𝑛 𝑣́

∑𝐺𝑞

𝑛

𝑖=1

≤ 𝑣́

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

 ⇒

{
 
 
 

 
 
 

𝑀𝑖𝑛 𝑣∗

∑𝐺́𝑞𝑖

𝑛

𝑖=1

≤ 𝑣∗

∑𝑞𝑖 = 1

𝑛

𝑖=1

𝑞𝑖 ≥ 0.

 ⇒ 

(A.3.2.4)                  (A.3.2.5)                   (A.3.2.6) 
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(𝑏𝑦  
𝑞𝑖
𝑣∗
= 𝑣𝑖)  

{
  
 

  
 𝑀𝑎𝑥 ∑𝑣𝑖

𝑛

𝑖=1

∑𝐺́𝑣𝑖

𝑛

𝑖=1

≤ 1

𝑣𝑖 ≥ 0.

 

(A.3.2.7). 

LP Systems (A.3.2.3) and (A.3.2.7) are dual. 

 

 

 

 

 

A. 4 Regular Equilibrium  

In this appendix, I briefly review the concept of the regular equilibrium in 

the sense of Harsanyi (1973). Later, I provide the detailed calculation of 

the Theorem 2. 14, which investigates the regular equilibrium in 

perturbed asymmetric zero-sum games. 

A.4.1. Regular equilibria in normal form games 

The concept of regular equilibria is defined by Harsanyi (1973) to do more 

refinements with the concept of Nash equilibrium. In this section I review 

the concept of regular equilibrium for finite normal form games. For this 

matter I follow the definitions and notations by Van Damme (1991), which 

are slightly different from the definitions given by Harsanyi (1973). 

However, with both definitions we can conclude the strong stability 

characteristics. 

In this section, first I provide the definition of the 𝑛-person normal form 

game, and then I provide some notations and formulations needed to 

introduce the regular equilibrium. 

Definition A. 4. 1. A finite 𝑛-person normal form game is a 2𝑛-tuple 

Γ(Φ1, Φ2, … ,Φ𝑛, 𝑅1, … , 𝑅𝑛) where  Φ𝑖 is a finite non-empty set and 𝑅𝑖 is a 
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mapping 𝑅𝑖:∏ Φ𝑗 → ℛ𝑛
𝑖=1 .  Φ𝑖 is the set of pure strategies of the player 𝑖, 

and 𝑅𝑖 is the payoff function of this player.  

We also define 𝑚𝑖 = |Φ𝑖|. The generic element of Φ𝑖 is denoted by 𝜙𝑖. 

We also assumed that the elements of Φ𝑖 are numbered, hence we can 

talk about the 𝑘𝑡ℎ pure strategy of player 𝑖. So, the generic element of Φ𝑖 

can also be denoted by 𝑘.  

A mixed strategy 𝑠𝑖  of player 𝑖 is a probability distribution on Φ𝑖. I denote 

the probability which 𝑠𝑖  assigns to pure strategy 𝑘 of player 𝑖 by 𝑠𝑖
𝑘 . 

Hence, the set of all mixed strategies of player 𝑖 is  

𝑆𝑖 = {𝑠𝑖𝜖𝑓(Φ𝑖 , 𝑅); ∑𝑠𝑖
𝑘 = 1,

𝑘

𝑠𝑖
𝑘 ≥ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘𝜖Φ𝑖}. 

If 𝑠𝑖𝜖𝑆𝑖  then we define 𝐶(𝑠𝑖) as follows 

𝐶(𝑠𝑖) = {𝑘𝜖Φ𝑖;  𝑠𝑖
𝑘 > 0}. 

Φ and 𝑆 are defined as follow.  

Φ =∏Φ𝑖  

𝑛

𝑖=1

, 𝑆 =∏𝑆𝑖

𝑛

𝑖=1

.   

A generic element of Φ is denoted by 𝜙. So, we can define 𝐶(𝑠) as 

𝐶(𝑠) = {𝜙; 𝑠(𝜙) > 0} =∏𝐶(𝑠𝑖)

𝑛

𝑖=1

. 

In a finite normal form game, players choose their strategy independently, 

therefore the probability 𝑠(𝜙) that 𝜙 = (𝑘1, . . , 𝑘𝑛) occurs if 𝑠 =

(𝑠1, . . , 𝑠𝑛) is played, is given by 

𝑠(𝜙) = ∏ 𝑠𝑖
𝑘𝑛

𝑖=1 . 

Hence if 𝑠 is played, the expected payoff of player 𝑖 is 

𝑅𝑖(𝑠) =∑𝑠(𝜙)𝑅𝑖(𝜙).

𝜙

 

If 𝑠 = (𝑠1, . . , 𝑠𝑛) then  𝑠\𝑠̅𝑖  means replacing strategy 𝑠𝑖  with 𝑠̅𝑖 .   
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Let Γ(Φ1, Φ2, … ,Φ𝑛 , 𝑅1, … , 𝑅𝑛) be an 𝑛-person normal form game. 𝑋𝑖 is 

the set of all mappings from Φ𝑖 to ℛ and we have 𝑆𝑖 ⊂ 𝑋𝑖. The generic 

element of 𝑋𝑖 is denoted by 𝑥𝑖  and 𝑥𝑖
𝑘  denotes value of 𝑥𝑖  at 𝑘. Besides, 

𝑋 = ∏ 𝑋𝑖
𝑛
𝑖=1  and generic element of 𝑋 is 𝑥. 

We define 𝑅𝑖 as follows 

𝑅𝑖(𝑥) = ∑ 𝑥(𝜙)𝑅𝑖(𝜙)𝜙𝜖Φ ; 𝑥(𝜙) = ∏ 𝑥
𝑗

𝑘𝑗𝑛
𝑗=1  if 𝜙 = (𝑘1, … , 𝑘𝑛). 

Let 𝐹(𝑥|𝜙) be a mapping defined precisely as follow 

𝐹𝑖
𝑘(𝑥|𝜙) = 𝑥𝑖

𝑘(𝑅𝑖(𝑥|𝑘) − 𝑅𝑖(𝑥|𝑘𝑖)) for 𝑖𝜖𝑁, 𝑘𝜖Φ𝑖 , 𝑘 ≠ 𝑘𝑖, 

𝐹𝑖
𝑘𝑖(𝑥|𝜙) = ∑ 𝑥𝑖

𝑘
𝑘 − 1  for 𝑖𝜖𝑁. Then Jacobian matrix is 𝐽(𝑠|𝜙) =

𝜕𝐹(𝑥|𝜙)

𝜕𝑥
|𝑥=𝑠 . 

We can easily see that if 𝑠 is an equilibrium of Γ with 𝜙𝜖𝐶(𝑠), then 

𝐹(𝑠|𝜙) = 0. Hence, we can expect that the Jacobian matrix may have also 

some nice properties (such as being locally invertible). Following definition 

employed the Jacobian matrix to define the regular equilibrium. 

Definition A. 4. 2. An equilibrium 𝑠 of Γ is a regular equilibrium if 𝐽(𝑠|𝜑) is 

nonsingular for some 𝜑𝜖𝐶(𝑠). 

Theorem A. 4. 3. Every regular equilibrium is strongly stable. 

Strongly stable equilibrium means that by small perturbation in the data 

of the game, the equilibrium will not change.   

A.4.2. Calculations of Theorem 2.14. 

As we see in proof of the Theorem 2.14 of section 2.4.2  

We define  𝐹(𝑝, 𝑞) =

[
 
 
 
 
 
 
 
 𝐹1

(1)(𝑝, 𝑞)

𝐹2
(1)(𝑝, 𝑞)
⋮

𝐹𝑛
(1)(𝑝, 𝑞)

𝐹1
(2)(𝑝, 𝑞)
⋮

𝐹𝑛
(2)
(𝑝, 𝑞)]

 
 
 
 
 
 
 
 

 ; where  

𝐹1
(1)
= ∑ 𝑝𝑖 − 1

𝑛
𝑖=1 , 𝐹1

(2)
= ∑ 𝑞𝑖 − 1

𝑛
𝑖=1 , 
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𝐹𝑖
(1) = [𝑢1(𝑠1, 𝑞) − 𝑢1(𝑠𝑖 , 𝑞)] × 𝑝𝑖 = [∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡

𝑛
𝑡=1 ] × 𝑝𝑖; 

𝑖 = 2,… , 𝑛. 

𝐹𝑗
(2) = [𝑢2(𝑠1, 𝑝) − 𝑢2(𝑠𝑗 , 𝑝)] × 𝑞𝑗 = [∑ ((−𝑘1𝑡) − (−𝑘𝑗𝑡))𝑝𝑡

𝑛
𝑡=1 ] × 𝑞𝑗; 

𝑗 = 2,… , 𝑛. 

Hence, we have  

𝑑𝐹

𝑑𝑃
=

[
 
 
 
 
 
 
 
 
 
 
𝑑𝐹1

(1)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(1)

𝑑𝑝1

𝑑𝐹1
(2)

𝑑𝑝1

⋮
𝑑𝐹𝑛

(2)

𝑑𝑝𝑛

 
𝑑𝐹1

(1)

𝑑𝑝2

⋮

…𝑑𝐹1
(1)

𝑑𝑝𝑛

…

 
𝑑𝐹1

(1)

𝑑𝑞1
⋯𝑑𝐹1

(1)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(1)

𝑑𝑞𝑛

𝑑𝐹1
(2)

𝑑𝑞𝑛

⋮
𝑑𝐹𝑛

(2)

𝑑𝑞𝑛 ]
 
 
 
 
 
 
 
 
 
 

(2𝑛)×(2𝑛)

  

We know that 
𝑑𝐹1

(1)

𝑑𝑝𝑖
= 1, 

𝑑𝐹1
(1)

𝑑𝑞𝑖
= 0. Similarly, we have 

𝑑𝐹1
(2)

𝑑𝑝𝑖
= 0, 

𝑑𝐹1
(2)

𝑑𝑞𝑖
= 1. 

For 𝑖 > 1 we have 

𝑑𝐹𝑖
(1)

𝑑𝑝𝑗
= {

∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.
 

𝑑𝐹𝑖
(1)

𝑑𝑞𝑗
=(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑝𝑖 . 

 
𝑑𝐹𝑖

(2)

𝑑𝑝𝑗
= −(𝑘1𝑗 − 𝑘𝑖𝑗) 𝑞𝑖 .   

𝑑𝐹𝑖
(2)

𝑑𝑞𝑗
= {

∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡
𝑛

𝑡=1
, 𝑖𝑓 𝑖 = 𝑗,

0, 𝑖𝑓 𝑖 ≠ 𝑗.
 

 

Hence, 
𝑑𝐹

𝑑𝑃
= [

𝐴 𝐵
𝐶 𝐷

] where 

 



 

44 
 

𝐴 =

[
 
 
 
 
 
 (𝑘1𝑡

𝐸1𝑘2𝑡)𝑞𝑡
0

0
⋮
0

1

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

0
⋮
0

1
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

…
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

1
0

⋮

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1 ]
 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 

0
(𝑘11−𝑘21)𝑝2
(𝑘11−𝑘31)𝑝3

⋮
(𝑘11−𝑘𝑛1)𝑝𝑛

0
     (𝑘12−𝑘22)𝑝2
     (𝑘12−𝑘31)𝑝3

⋮
      (𝑘12−𝑘𝑛2)𝑝𝑛

 

0
   (𝑘13−𝑘23)𝑝2
   (𝑘13−𝑘33)𝑝3

⋮
   (𝑘13−𝑘𝑛3)𝑝𝑛

⋯

⋮
…

0
(𝑘1𝑛−𝑘2𝑛)𝑝2
(𝑘1𝑛−𝑘3𝑛)𝑝3

⋮
(𝑘1𝑛−𝑘𝑛𝑛)𝑝𝑛]

 
 
 
 
 

 

 

𝐶 = −

[
 
 
 
 
 

0
(𝑘11−𝑘21)𝑞2
(𝑘11−𝑘31)𝑞3

⋮
(𝑘11−𝑘𝑛1)𝑞𝑛

0
     (𝑘12−𝑘22)𝑞2
     (𝑘12−𝑘31)𝑞3

⋮
      (𝑘12−𝑘𝑛2)𝑞𝑛

 

0
   (𝑘13−𝑘23)𝑞2
   (𝑘13−𝑘33)𝑞3

⋮
   (𝑘13−𝑘𝑛3)𝑞𝑛

⋯

⋮
…

0
(𝑘1𝑛−𝑘2𝑛)𝑞2
(𝑘1𝑛−𝑘3𝑛)𝑞3

⋮
(𝑘1𝑛−𝑘𝑛𝑛)𝑞𝑛]

 
 
 
 
 

 

 

𝐷 = −

[
 
 
 
 
 
 (𝑘1𝑡

𝐸1𝑘2𝑡)𝑞𝑡
0

0
⋮
0

1

∑(𝑘1𝑡 − 𝑘2𝑡)𝑝𝑡

𝑛

𝑡=1

0
⋮
0

1
0

∑(𝑘1𝑡 − 𝑘3𝑡)𝑝𝑡

𝑛

𝑡=1

⋮
0

…
0

∑(𝑘1𝑡 − 𝑘2𝑡)𝑞𝑡

𝑛

𝑡=1

⋮
0

1
0

⋮

∑(𝑘1𝑡 − 𝑘𝑛𝑡)𝑝𝑡

𝑛

𝑡=1 ]
 
 
 
 
 
 

 

In equilibrium, ∑ (𝑘1𝑡 − 𝑘𝑖𝑡)𝑞𝑡
𝑛
𝑡=1  and ∑ −(𝑘1𝑡 − 𝑘𝑖𝑡)𝑝𝑡

𝑛
𝑡=1  are zero. 

Hence, in equilibrium  
𝑑𝐹

𝑑𝑃
=

[
 
 
 
 
 
 
 

1
0
⋮

0
−(𝑘11 − 𝑘21)𝑞2

⋮
−(𝑘11 − 𝑘𝑛1)𝑞𝑛

1

0

…
…

…
…
…

1
0
⋮

0
−(𝑘1𝑛 − 𝑘2𝑛)𝑞2

⋮
−(𝑘1𝑛 − 𝑘𝑛𝑛)𝑞𝑛

0
(𝑘11 − 𝑘21)𝑝2

⋮
(𝑘11 − 𝑘𝑛1)𝑝𝑛

1

0

⋮

0

0

1
0

0

…
…

…

…

0
(𝑘1𝑛 − 𝑘2𝑛)𝑝2

⋮
(𝑘1𝑛 − 𝑘𝑛𝑛)𝑝𝑛

1

0

⋮

0 ]
 
 
 
 
 
 
 

 

If change the first row and (𝑛 + 1)th row, then we have matrix 𝐹̅ which 

has a similar rank to 
𝑑𝐹

𝑑𝑃
. On the other hand, we can see that  
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𝐹̅ =

[
 
 
 
 
 
 
 

0
0
⋮

1
−(𝑘11 − 𝑘21)𝑞2

⋮
−(𝑘11 − 𝑘𝑛1)𝑞𝑛

0

1

…
…

…
…
…

0
0
⋮

1
−(𝑘1𝑛 − 𝑘2𝑛)𝑞2

⋮
−(𝑘1𝑛 − 𝑘𝑛𝑛)𝑞𝑛

1
(𝑘11 − 𝑘21)𝑝2

⋮
(𝑘11 − 𝑘𝑛1)𝑝𝑛

0

0

⋮

0

1

0
0

0

…
…

…

…

1
(𝑘1𝑛 − 𝑘2𝑛)𝑝2

⋮
(𝑘1𝑛 − 𝑘𝑛𝑛)𝑝𝑛

0

0

⋮

0 ]
 
 
 
 
 
 
 

  

We know that 𝑝𝑖 > 0 and 𝑞𝑗 > 0. If we divide the 𝑖th row to  𝑝𝑖 where 

1 ≤ 𝑖 ≤ 𝑛 and to 𝑞𝑖 where  𝑛 + 1 ≤ 𝑖 ≤ 2𝑛, then we will have 𝐹̿ which has 

a similar rank to 𝐹̅. On the other hand, 𝐹̿ = [
0
𝐶2

𝐶1
0
]
(2𝑛)×(2𝑛)

, where 𝐶1 is 

the computational matrix of 𝐾 and 𝐶2 computational matrix of -𝐾. By 

Theorem 2.13 we know that both 𝐶1 and  𝐶2 have full rank.  Hence, 𝐹̿ have 

full rank. 

 

A.5 Maple Code for Computing the Equilibrium point in 

Tournament Games 

Following Maple code has been designed to receive the number of 

strategies and 0 ≤ 𝛼 ≤ 1, to calculate optimal strategies of the 

asymmetric zero-sum tournament game and symmetric zero-sum 

tournament game with matrix game 𝑀 = 𝐾 + 𝐼. Optimal strategies can be 

calculated by linear programing method (LP_method_maxmin ) or making 

all the strategies indifferent (Indifference_row). There is also couple of 

other modules which can test different characteristic of the equilibrium 

point.  full_support test if the optimal strategy has full support and 

Uniform_dis test if the optimal strategy has uniform distribution. 

 
> restart; 

with(LinearAlgebra): 

with(Optimization): 

with(simplex): 
>  

Matrices:=proc(a,t) 

global C,B,N,N2; 

local A,i,j,temp2,check,count3,s; 
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##for i from 1 to (2^N2) do 

B[t]:=Matrix(N): 

##end do: 

A:=Matrix(N): 

C:=Matrix(N): 

 

##for t from 1 to (2^N2) do 

#print(t); 

 

temp2:=0; 

while temp2=0 do 

 

A:=RandomMatrix(N,N,generator=0..1,shape=triangular[upper])

: 

 

for i from 1 to N do 

 for j from 1 to N do 

 B[t][i,j]:=A[i,j];   

 end do: 

end do: 

 

 

for i from 1 to N do 

 for j from 1 to N do 

  if i<j and B[t][i,j]=0 then B[t][i,j]:=-1; end if: 

  if i<j and B[t][i,j]=1 then B[t][i,j]:=1; end if: 

  if i=j then B[t][i,j]:=a; end if; 

  if i<j then B[t][j,i]:=(-1)*B[t][i,j] end if;    

 end do: 

end do: 

 

check:=0; 

for s from 1 to t-1 while check=0 do 

 

count3:=0;  

for i from 1 to N do 

 for j from 1 to N do 

  if s<>t and B[t][i,j]=B[s][i,j] then count3:=count3+1; 

end if:  

 end do: 

end do: 

###print("Comparison with",s,t,count3); 

if count3=N*N then check:=1; end if; 

end do: ###end of checking 

 

if check=1 and t>1 then temp2:=0; else temp2:=1; end if; 

 

end do; ###end of while loop 

###print(t,B[t],Determinant(B[t])); 

 

for i from 1 to N do 

 for j from 1 to N do 

  C[i,j]:=B[t][i,j]; 
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 end do: 

end do: 

 

 

end proc: 

 

################################### 

 

> Indifference_row:=proc(A) 

global q,D1,Equ; 

local Equ_b,i,j; 

 

Equ:=Matrix(N): 

 

Equ_b:=Matrix(N,1): 

Equ_b[1,1]:=1; 

for i from 2 to N do 

 Equ_b[i,1]:=0; 

end do: 

 

##print(Equ_b,"RHS"); 

q:=Matrix(N,1): 

 

 

for i from 1 to N do 

 Equ[1,i]:=1; 

end do: 

 

for i from 2 to N do 

for j from 1 to N do 

 Equ[i,j]:=-(A[i,j]-A[1,j]); 

end do: 

end do: 

 

###print(Equ); 

##print(Rank(Equ)); 

D1:=Determinant(Equ); 

q:=LinearSolve(Equ,Equ_b); 

##print("probability",q); 

 

 

end proc: 

 

######################## 

 
> LP_method_maxmin:=proc(A) 

global Y; 

local i,j,q,A1,Equ,cnsts,obj,set1; 

 

for i from 1 to N do 

 for j from 1 to N do 

  A1[i,j]:=A[i,j]; 

 end do: 
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end do: 

 

for i from 1 to N do 

 for j from 1 to N do 

  A1[i,j]:=A1[i,j]+2; 

 end do: 

end do: 

 

 

Equ:=Matrix(N+1); 

 

for i from 1 to N+1 do 

 for j from 1 to N+1 do 

 if i<N+1 and j<N+1 then Equ[i,j]:=A1[i,j]; end if; 

 if i=N+1 and j<N+1 then Equ[i,j]:=-1; end if; 

 if i<N+1 and j=N+1 then Equ[i,j]:=-1; end if; 

 if i=N+1 and j=N+1 then Equ[i,j]:=0; end if; 

 

 end do: 

end do: 

 

##print(Equ); 

 

for i from 1 to N+1 do 

q[i]:=0; 

end do: 

 

for j from 1 to N+1 do 

for i from 1 to N+1 do 

 q[j]:=Equ[j,i]*y[i]+q[j]; 

end do: 

end do: 

 

for i from 1 to N do 

  cnsts[i]:=q[i]<=0; 

end do: 

cnsts[N+1]:=q[N+1]<=-1; 

 

set1:={seq(cnsts[i],i=1..N+1)}; 

##print(set1); 

 

 

obj := -y[N+1]: 

Y:=maximize(obj,set1,NONNEGATIVE); 

##print(Y); 

 

end proc: 
> LP_method_minmax:=proc(A) 

global Y; 

local i,j,q,A1,Equ,cnsts,obj,set1; 

 

for i from 1 to N do 

 for j from 1 to N do 
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  A1[i,j]:=A[i,j]; 

 end do: 

end do: 

 

for i from 1 to N do 

 for j from 1 to N do 

  A1[i,j]:=A1[i,j]+2; 

 end do: 

end do: 

 

 

Equ:=Matrix(N+1); 

 

for i from 1 to N+1 do 

 for j from 1 to N+1 do 

 if i<N+1 and j<N+1 then Equ[i,j]:=A1[i,j]; end if; 

 if i=N+1 and j<N+1 then Equ[i,j]:=-1; end if; 

 if i<N+1 and j=N+1 then Equ[i,j]:=-1; end if; 

 if i=N+1 and j=N+1 then Equ[i,j]:=0; end if; 

 

 end do: 

end do: 

 

##print(Equ); 

 

for i from 1 to N+1 do 

q[i]:=0; 

end do: 

 

for j from 1 to N+1 do 

for i from 1 to N+1 do 

 q[j]:=Equ[i,j]*y[i]+q[j]; 

end do: 

end do: 

 

for i from 1 to N do 

  cnsts[i]:=q[i]>=0; 

end do: 

cnsts[N+1]:=q[N+1]>=-1; 

 

set1:={seq(cnsts[i],i=1..N+1)}; 

##print(set1); 

 

 

obj := -y[N+1]: 

Y:=minimize(obj,set1,NONNEGATIVE); 

#print(Y); 

 

 

end proc: 
>  

full_support:=proc(Y1) 
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local count1,i;  

global check; 

 

check:=0; count1:=0; 

 

 for i from 1 to N do 

 if op(2,Y1[i])>0 then count1:=count1+1; end if; 

 end do: 

 if count1=N then print("*************** This game is Full 

Support***************"); check:=1; end if; 

 

end proc: 

> 

Uniform_dis:=proc(Y1) 

 local count1, I; 

 global check2; 

check2:=0;count1:=0; 

for I from 1 to N do 

 if (op(2,Y1[i]))=(1/N) then count1:=count1+1; end if; 

 end do: 

if count1=N then print(“the Optimal strategy is Uniform”); 

check2:=1; end if; 
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Chapter 3 

Inspection game with Partial Inspections 

3.1 Introduction 

An inspection game is a mathematical model for a game between two 

players, where one (the inspectee / potential violator) has enough 

potential to violate a certain legal act. The other player (the inspector) 

tries to verify the inspectee’s adherence to those legal acts by carrying out 

inspections over a certain period of time. 

Dresher (1962) has studied the case where the inspectee can commit at 

most one violation during 𝑚 periods of times, while the number of 

inspections is limited to a fixed number 𝑛. Dresher supposed that if the 

inspector inspects when the inspectee violates, the violation would be 

detected with probability of 𝑃 = 1. In each stage both players know how 

many inspection and time periods are left. So, if 𝑛 ≥ 𝑚 then the inspectee 

will not violate as he knows that he will be caught for certain. Due to lack 

of usually 𝑛 < 𝑚. Dresher has determined the value and optimal 

strategies for these cases. Various version of the Inspection game 

introduced by Dresher’s paper, have been analysed in several studies; 

such as in the works by, B. von Stengel (1991), M. J. Canty et al. (2000) and 

Rothenstein and Zamir (2002). 

In this study, I assume that the inspector may run some “partial 

inspections” where the probability of detection is not equal to one. The 

inspections with the probability of detection equal to one would be called 

a “full inspection”.  

The assumption of partial inspection is a more realistic representation of 

real world problems as full inspection can be too costly or time 

consuming. Hence, instead of a full inspection the inspector may run some 

partial inspections with lower cost and effort. Hence, by conducting a 

partial check the probability of detection would be 𝑃, which is not 

necessarily equal to one. A famous form of partial inspections a famous 
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form of partial inspections applies to airplane safety checks. The full safety 

check of the plane typically takes more than two days, which is a long and 

costly ground time for the airplanes, making partial inspections much 

more favourable. However, it is critical that effective inspections 

guarantee the safety of the flight.  I model the situation as a non-

cooperative zero sum game and  describe the value and optimal strategies 

of the game using recursive formulae. In particular, I compare the value of 

the game for inspection games with full and partial inspections only and 

hence determine the opportunity costs for using these technologies. In a 

number of cases I provide closed form solutions for the values of the game 

and the optimal strategies.  

In Section 3.2 of this study I review the literature regarding Inspection 

game, of which the classical form was originally proposed by Dresher 

(1962). In Section 3.4 I introduce the concept of partial inspections and 

also I analyse the inspection with just partial inspections. By providing a 

formula for calculating the value of this game, we can have a tool to make 

a comparison between full inspections and partial inspections.  

In the next section, I investigate the case where the inspector can choose 

between full inspection, partial inspection and no control in each period of 

time. I show that in equilibrium the inspector always mixes between full 

inspections and no control. It means that as long as the opportunity for a 

full inspection exists, the inspector never starts his sequential inspections 

with a partial inspection. I also provide a way to calculate the values. This 

could offer a useful tool for comparison of partial and full inspection, 

resulting in a classical result of inspection game with full inspections.  

 

3.2 Literature review 

The inspection game is a mathematical model where one player verifies 

the commitment of the other player to the certain legal agreements. An 

example of this could be a customs officer and smuggler at the border 

control. The customs officer knows that smugglers have enough potential 

to illegally carry some goods across a border line. However, because of the 

perishable nature of the goods, the smuggler will choose one of the 1 to 𝑚 

possible time units to carry out the violation. A further example is arm 
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control treaties, when the there is enough potential that the treaty is 

violated. Hence, the game is between an inspector and a potential violator 

which is called inspectee. The problem that typically arises within this 

situation is because of a lack of inspector’s budget to run an inspection in 

all the events. The amount of the inspection which is left and period of 

time is common knowledge for both players. Hence, the inspectee knows 

that there is a chance to violates without being detected.  

Seemingly the first genuine inspection game was introduced and analysed 

by Dresher (1962)1. In Dresher’s study, the inspector has 𝑛 number of 

inspections, where there is 𝑚 period of time. He models the situation as 

some sequential zero-sum games. In his model the inspector’s payoff for 

the detected violation is +1, and -1 for the undetected violation. If the 

inspector can inspect all events then the inspectee knows that he will 

definitely be caught if he violates. He will therefore not violate, and the 

payoff for both players will be 0. If we show the value of the game by 

𝑣(𝑛, 𝑚), where 𝑚 is the number of events and 𝑛 is number of available 

inspections we have following boundary conditions. 

𝑣(𝑛, 0) = −1,   𝑣(𝑛, 𝑛) = 0. 

Dresher found the closed form of the value and optimal strategies. 

Different versions of the game have been analysed so far. Maschler (1966) 

analysed the inspection game with different boundary conditions. He 

shows that the expected payoff of inspector and inspectee by 𝑣(𝑛, 𝑚) and 

𝑤(𝑛, 𝑚) where 𝑚 is the number of events and 𝑛 is number of available 

inspections, the boundary conditions are 

𝑣(𝑛, 𝑛) = 𝛼, 𝑤(𝑛, 𝑛) = 𝛽 where 𝛼 > 1, 0 < 𝛽 < 1. 

𝑣(𝑛, 𝑛) = 0, 𝑤(𝑛, 𝑛) = 1. 

Similar to the Dresher paper, Maschler calculates the closed form of 

𝑣(𝑛, 𝑚) and 𝑤(𝑛, 𝑚). Further works by Maschler (1967) analyses the 

inspection game as a non-constant-sum game, where each event can 

produce a special signal to indicate if it is natural or violated.  

                                                             
1 Dresher’s game is fully explained and discussed in Section 3.2. 
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More recent works include Von Stengel (1991) and Von Stengel (2016), 

where it is suggested that the inspectee violate more than one time and 

collect different values of rewards by each violation.  The common feature 

of these works is expecting a one hundred percent accurate result from an 

inspection. It means that when there is simultaneous inspection and 

violation the violation is detected for sure. However, in real world this is 

not always the case.  

To my knowledge, the first paper to model the situation between  custom 

officer and smuggler, where the custom officer’s inspections are  

imperfect is Thomas and Nisgav (1976). Similarly to Dresher they assume 

that there are 𝑚 periods of time and due to lack of budget the inspector 

can just run 𝑛 < 𝑚 inspections. However, the inspections can detect the 

violation with probability of 𝑃. This means that in a simultaneous 

inspection and violation, the payoff for the inspector will be 2𝑃 − 1. 

Besides, if we show the value of the game by 𝑔(𝑛, 𝑚), where 𝑚 is the 

number of events and 𝑛 is number of available inspection, we will have 

following boundary conditions 

𝑔(𝑛, 0) = −1,   𝑔(𝑛, 𝑛) = 2𝑃 − 1. 

By all these assumptions they calculate the value of the game and optimal 

strategies of the players.  They also introduce the case where the customs 

officer can use two of his inspections in a night to increase the probability 

of detection. Moreover, they introduce the situation where the customs 

officer has two different type of inspection with different probabilities of 

detection, and he can choose to run both in a night to achieve a higher 

probability of detection, or separately to cover more of the events as 

inspected. They model both scenarios as a recursive zero-sum game; 

however, they are unable to find the closed form of the value and optimal 

strategies as the equations are getting too complicated. 

Later, Baston and Bostock (1991) investigate the problem introduced by 

Thomas and Nisgav (1976) one more time. In their model, the customs 

officer can have 𝑘1 number of inspections with probability of detection 𝑃1 

and  𝑘2 number of inspections with probability of detection 𝑃2. Customs 

officers can run these two type of inspections separately or together. The 

probability of detection in a joint inspection is 𝑝 > 𝑚𝑎𝑥{𝑃1, 𝑃2}.   
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They also suppose that when there is no any violation, the customs 

officer’s payoff is  1. It means that customs officer is indifferent between a 

detected violation and no violation. This is also assumed by Thomas and 

Nisgav (1976). This assumption is different from Dresher’s model where 

inspectee will not violate if he is sure that he will be detected. However, 

this difference will not change the closed form of value found by  Thomas 

and Nisgav (1976) for the case of one kind of inspection and 𝑚 number of 

period of times (only the boundary condition will change). 

In the games analysed by Baston and Bostock (1991) the assumption plays 

a critical role. They modelled the situation as a zero-sum game and 

calculated the value of the game. However, they mention that the game 

with the same assumption as Dresher includes much more complicated 

equations even if even the probability of detection is supposed to be 1.   

Further models where they include an inspection game with probability of 

detection less than 1 are inspection games with imperfect inspections. The 

concept of imperfect inspection differs from the kind of inspection (partial 

inspection) that I am analysing in this study. Imperfect inspection is the 

inspection with two different types of error. Type One Error means that 

the inspector may call a false alarm (with probability of 𝛼), and Type Two 

Error means that the inspector may fail to detect the violation (with 

probability of 𝛽). In an imperfect inspection, an error has happened. 

However in partial inspection the inspector intentionally chooses the 

partial inspection, despite the fact he knows its probability of detection is 

not equal to 1. 

In industries such as aviation, the kind of the inspection used is partial 

inspections, since the full inspection (inspection with probability of 

detection equal to 1) is too costly and time consuming. For example, a full 

safety check of the airplane may take more than three days which imposes 

a significant monetary cost to the airlines. Hence, the safety inspectors 

intentionally run some partial inspections. There may be some occasions 

which they switch to full inspections, but partial inspection is always one 

of the methods of inspection. 

Imperfect inspection has been analysed in different version of inspection 

game. Some of the papers include Rothenstein and Zamir (2002) and 
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Avenhaus and Canty (2005). However, there are not many studies 

investigating the concept of partial inspection. 

The kind of inspections in Thomas and Nisgav (1976) and Baston and 

Bostock (1991) can also be considered as “Partial inspection”. However, 

these studies have different assumptions of the classical inspection 

games, which makes the equations slightly easier. Besides, the case of 

mixing between different types of inspections is not considered.  

In this study, I investigate the concept of “partial inspection” in a model 

with the same assumptions of classical inspection games (similar to 

Dresher paper), also I analyse the case where in optimal strategy the 

inspector is mixing between full inspection and partial inspection. 

 

3.3 Classical Inspection Game 

Dresher (1962) introduced a sequential zero-sum game with two players. 

One of the players committed to certain legal act. However he has enough 

potential to violate if he is sure that he is not going to be caught. The 

other player runs some inspections to ensure that the inspectee does not 

violate.  There are 𝑚  number of events that the violation can happen, and 

the number of the inspections is limited to 𝑛. Because of lack of budget 

usually 𝑛 < 𝑚. The inspector cannot run more than one inspection in each 

period of time. However, he still cannot cover all the suspicious events. 

The inspectee may run at most one violation, and after violation the game 

will be ended. The Number of the inspections and events left is the 

common knowledge for both players in any stage of the game. The payoff 

of a detected violation for inspector is +1 and no detection is -1. If no 

violation happens in the whole the game, the payoff for both players will 

be 0. At the beginning of each event (period of time) the inspectee will 

decide to act legally or violate. Dresher (1962) models the game as a 

dynamical zero-sum game. He denoted the value of the game by 𝑉(𝑛, 𝑚), 

where 𝑛 is the number of inspections and m is the period of times. Hence, 

he describes the game by the following table. 
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                Inspectee 

Inspector 

   Legal act                   violation 

Inspection 

 

No Control  

𝑉(𝑛 − 1, 𝑚 − 1)             +1 

 

𝑉(𝑛, 𝑚 − 1)                     -1 
Table 3. 1. Inspection game modelled by Dresher. 

If 𝑛 ≥ 𝑚, then 𝑉(𝑛, 𝑚 − 1) = 0. Also, 𝑉(𝑛, 0) = 0 and 𝑉(0, 𝑚) = −1 

where 𝑚 > 0. 

As we know that −1 ≤ 𝑉(𝑛, 𝑚) ≤ 1, the players mix between their 

strategies. If 𝑝, is the probability of running an inspection then we have 

𝑝. 𝑉(𝑛 − 1, 𝑚 − 1) + (1 − 𝑝). 𝑉(𝑛, 𝑚 − 1) = 𝑝. 1 + (1 − 𝑝). (−1).  

Besides if in equilibrium we denote the probability of violation by 𝑞, then 

we have 

𝑉(𝑛 − 1, 𝑚 − 1). 𝑞 + (1 − 𝑞). (1) = 𝑉(𝑛, 𝑚 − 1). 𝑞 + (1 − 𝑞). (−1). 

Hence, we can find the value of the game by following recursive formulas 

𝑉(𝑛, 𝑚) =
𝑉(𝑛,𝑚−1)+𝑉(𝑛−1,𝑚−1)

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
 .                                                        (3.3.1) 

Besides, in equilibrium the probability of inspection is  

𝑝 =
𝑉(𝑛−1,𝑚)+1

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
  ,                                                                   (3.3.2) 

And the probability of violation is 

𝑞 =
2

𝑉(𝑛−1,𝑚)+2−𝑉(𝑛−1,𝑚−1)
  ,                                                                    (3.3.4) 

Dresher (1962) shows that explicit formula for recursive formula (3.3.1) 

can be given by 

𝑉(𝑛, 𝑚) = −
(

𝑚−1
𝑛

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

  (𝑛 < 𝑚).                                                          (3.3.5) 

As, we see by know the explicit formula for the value of the game we can 

find the probability of inspection and probability of violation as well. 
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3.4 Full Inspection vs. Partial Inspection 

In this study, I assume that the inspector may run some partial inspections 

as well as full inspections. As I mentioned in the literature review, by 

partial inspection I mean an inspection which can detect the violation by 

probability 𝑃. That is not because of any possible mistake by the inspector 

and is just the nature of the inspection. The inspection in any form (full or 

partial) is always necessary as it is the only means to prevent the 

inspectee performing a violation. Similar to Dresher’s paper, we have 

modelled the situation as a zero sum game. I denote the value of the 

game by 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃), where 𝑛1 is the number of full inspections (which 

have the probability of detection equal to one), 𝑛2 is the number of the 

partial inspections, 𝑚 is the number of the period of times and 𝑃 is the 

probability of the detection in partial inspections. 𝑛1, 𝑛2, 𝑚 and 𝑃 are fixed 

through the whole game. In each stage of the game the inspector and 

inspectee both know how many inspections and time periods have been 

left. Also, in each stage of the game, the inspector can run just one 

inspection which can be full or partial.  

The payoffs are similar to those in Dresher’s paper. The only difference 

arises when the inspectee violates and the inspector partially inspects. In 

this case the inspector wins with probability 𝑃 while he loses with 

probability 1 − 𝑃. So the expected payoff to the inspector is 2𝑃 − 1. In 

any case, the game ends because the inspectee either achieves his aim or 

gets caught. 

Obviously, when 𝑛2 is equal to zero, the game is completely similar to 

Dresher game and we would have following conditions. 

𝑣(𝑛1, 0, 𝑚, 𝑃) = 0; 𝑛1 ≥ 𝑚,  0 ≤ 𝑃 ≤ 1.  𝑚 ≥ 1.    

𝑣(0,0, 𝑚, 𝑃) = −1;  0 ≤ 𝑃 ≤ 1. 

And also we assume 𝑣(𝑛1, 𝑛2, 0, 𝑃) =0; which means when no time period 

has been left of course there would be no detection and not violation. 

In our analysis, we exclude the cases of 𝑃 = 0 and 𝑃 = 1. As obviously, if 

we denote the value of Dresher’s game by 𝑉 then 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =

𝑉(𝑛1, 𝑚) and 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) = 𝑉(𝑛1 + 𝑛2, 𝑚) where 𝑃 = 0 and P=1; 

respectively. 
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Additional to the initial conditions discussed before, we have following 

initial conditions: 

𝑣(0, 𝑚, 𝑚, 𝑃) = 2𝑃 − 1, 0 < 𝑃 <
1

2
, 𝑚 ≥ 1; (As the probability of 

detection is not so high, hence in equilibrium the inspectee will choose to 

violate in a Nash equilibrium). 

𝑣(0, 𝑚, 𝑚, 𝑃) = 0,
1

2
≤ 𝑃 ≤ 1, 𝑚 ≥ 1; (As the probability of detection is 

high, in equilibrium the inspectee will not violate). 

Theorem 3. 1. 2 In an inspection game, 𝒗(𝟎, 𝟏, 𝒎, 𝑷), 𝒎 > 𝟎 where 𝑷 is 

the probability of detection in the partial inspection, the value of the 

game is as follows 

a) If 0 < 𝑃 < 1/2 then 𝑣(0,1, 𝑚, 𝑃) =
2𝑃

𝑚
− 1, 𝑚 > 0, 

b) If 1/2 < 𝑃 < 1 then (0,1, 𝑚, 𝑃) = −
𝑚−1

𝑚−1+2𝑃
, 𝑚 > 0. 

Proof: 

For 𝑣(0,1, 𝑚, 𝑃) we have following table 

                Inspectee 

Inspector 

   Legal act                   Violation 

Partial Inspection 

 

No Control  

𝑣(0,0, 𝑚 − 1, 𝑃)          2 𝑃 − 1 

 

𝑣(0,1, 𝑚 − 1, 𝑃)                 -1 
Table 3. 2. The inspection game with one partial inspections and 𝒎 period of times. 

We know that 𝑣(0,0, 𝑚 − 1, 𝑃) = −1. Hence, players are mixing between 

their strategies. By employing the formula in Appendix B.1 we have 

𝑣(0,1, 𝑚, 𝑃) =
−1+(2𝑃−1)𝑣(0,1,𝑚−1,𝑃)

𝑣(0,1,𝑚−1,𝑃)+2𝑃+1
 .                                                (3.4.1)        

Besides, we have following initial conditions 𝑣(0,1,1) = 2𝑃 − 1 for 

0 < 𝑃 < 1/2,  and 𝑣(0,1,1) = 0 for 1/2 < 𝑃 < 1. As we see, the initial 

conditions satisfy part a and b respectively. Hence, they can be used as the 

start point of an induction.  

                                                             
2 The formula of the part a of this theorem has been also found by Thomas and Nisgav (1976), for a 
model which is slightly different. In their model, in the case of no violation Inspector’s payoff is 1. This 
change just affect the border condition and not the general formula.     
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We can easily see that 
2𝑃

𝑚+1
− 1 =

−1+(2𝑃−1)(
2𝑃

𝑚
−1)

2𝑃

𝑚
−1+2𝑃+1

 and −
𝑚−1

𝑚−1+2𝑃
=

−1+(2𝑃−1)(−
𝑚

𝑚+2𝑃
)

−
𝑚

𝑚+2𝑃
+2𝑃+1

 . Hence, we prove the theorem inductively, ∎.   

Theorem 3. 2.  In an inspection game, 𝑣(0, 𝑛2, 𝑚, 𝑃) where 𝑛2 < 𝑚, 

where 𝑃 is the probability of detection in the partial check, the value of 

the game is as follows 

a) 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1, 0 <  𝑃 < 1/2; 

b) 𝑣(0, 𝑛2, 𝑚, 𝑃) = −
(𝑚−1

𝑛2
)

∑ (
𝑚
𝑖 )(2𝑃−1)𝑛2−𝑖𝑛2

𝑖=0

 , 1/2 <  𝑃 < 1.3 

 Proof: 

For 𝑣(0, 𝑛2, 𝑚) we have following table 
 

                Inspectee 

Inspector 

   Legal act                   Violation 

Partial Inspection 

 

No Control  

𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃)      2𝑃 − 1 

 

𝑣(0, 𝑛2, 𝑚 − 1, 𝑃)                     -1 

Table 3. 3. The inspection game with just partial inspections. 

 

Hence, we can calculate the value by the following recursive formulae, 

𝑣(0, 𝑛2, 𝑚, 𝑃) =
(2P−1)𝑣(0,𝑛2 ,𝑚−1,𝑃)+𝑣(0,𝑛2−1,𝑚−1,𝑃)

𝑣(0,𝑛2,𝑚−1,𝑃)+2P−𝑣(0,𝑛2−1,𝑚−1,𝑃)
,                               (3.4.2) 

We know that 𝑣(0, 𝑛2, 𝑛2, 𝑃) = 2𝑃 − 1 for 0 < 𝑃 < 1/2 and 

𝑣(0, 𝑛2, 𝑛2, 𝑃) = 0 for 
1

2
< 𝑃 < 1, which they both satisfy (3.4.2). 

For part a, suppose that 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1 we should prove that 

𝑣(0, 𝑛2, 𝑚 + 1, 𝑃) =
2𝑛2𝑃

𝑚+1
− 1. We can easily see that 

2𝑛2𝑃

𝑚+1
− 1 =

(2P−1)(
2𝑛2𝑃

𝑚
−1) +

2(𝑛2−1)𝑃

𝑚
−1

2𝑛2𝑃

𝑚
−1+2P−

2(𝑛2−1)𝑃

𝑚
+1

 . Hence, 𝑣(0, 𝑛2, 𝑚 + 1, 𝑃) =
2𝑛2𝑃

𝑚+1
− 1.  

                                                             
3 While calculating 𝑣(0,1, 𝑚, 𝑃) we can see in the Table 3.2 that when players are mixing, then the crucial value is 𝑃 = 1/2,  as in 
this case 2𝑃 − 1 = 0. We have modelled the game as a recursive game hence 𝑃 = 1/2 will be the crucial value for 𝑣(0, 𝑛2, 𝑚, 𝑃) 
in Theorem 3.2 as well. 
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For part b4, let 𝑠(𝑛2, 𝑚) = ∑ (
𝑚
𝑖

) (2𝑝 − 1)𝑛2−𝑖𝑛2
𝑖=0 . Hence, we will have  

𝑠(𝑛2, 𝑚 − 1) = (2𝑃 − 1). 𝑠(𝑛2 − 1, 𝑚 − 1) + (
𝑚 − 1

𝑛2
) and  

𝑠(𝑛2, 𝑚) = 𝑠(𝑛2, 𝑚 − 1) + 𝑠(𝑛2 − 1, 𝑚 − 1). We can see that 

𝑣(0, 𝑛2, 𝑚, 𝑃) = −
(𝑚−1

𝑛2
)

𝑠(𝑛,𝑘)
  satisfies the recursive formulae (3.4.2), ∎. 

Theorem 3.1 and Theorem 3.2 can provide the efficient tool to compare 

full inspections with partial inspections. Not only can we compare the 

different inspection games, we can also easily calculate how many partial 

inspections are required to achieve a certain probability of detection 

similar to that gained from a full inspection (classical inspection game). 

The following examples show different kind of useful comparisons that we 

can make.   

Example 3.3. Figure 3.4 demonstrates the value of three different 

inspection games when the number of events is changing. The first game 

which is shown by red dots is the inspection game with just one full 

inspection. The other inspection games which are shown by green and 

blue dots are inspection games with just one partial with probability of 

detection equal to 2/3 and 1/3, respectively. As we could predict, in Figure 

3.4 we can see that for any value of 𝒎, 𝒗(𝟏, 𝟎, 𝒎, 𝑷) ≥ 𝒗(𝟎, 𝟏, 𝒎, 𝟐/𝟑) ≥

𝒗(𝟎, 𝟏, 𝒎,
𝟏

𝟑
). We can also observe that, as 𝒎 is getting larger the value of 

the all the games is approaching -1.  

                                                             
4 This part of the proof is similar to the proof in Rinderle (1996). 
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Figure 3. 4.  Comparison between the value of the inspection game with just one full 

inspection, or one partial inspection where the probability of detection is 1/3 and 2/3. 

Example 3. 4.  Figure 3.5 compares the value of the inspection games with 

just one and two full inspections with the inspection game with one and 

two partial inspections, where probability of detection is 2/3. We can see 

that for any value of 𝒎, 𝒗(𝟐, 𝟎, 𝒎, 𝟏) ≥ 𝒗(𝟎, 𝟐, 𝒎, 𝟐/𝟑) ≥ 𝒗(𝟏, 𝟎, 𝒎, 𝟐/

𝟑) ≥ 𝒗(𝟎, 𝟏, 𝒎, 𝟐/𝟑). 

 

Figure 3. 5. The comparison between Inspection games with just full inspections, and 

inspection games with just partial inspections. 
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As I mentioned, by employing Theorem 3.1 and Theorem 3.2 we can find 

out how many partial inspection are required to have the same value a full 

inspection. The following example provides a comparison between value 

of the inspection game with just full inspections and just partial 

inspections.  

Example 3. 5. Suppose an inspection game with 2 full inspections and 6 

periods of time. Hence by the Dresher formula (formula 3.3.5) we know 

that 𝑣(2,0,6, 𝑃) = 𝑉(2,7) = −0.3125. If the inspector decides to, instead 

of full inspection, run partial inspections with probability of detection 

equal 2/5, he will need at least five partial inspections. As we know that 

𝑣(0,4,7,2/5) < −0.3125 < 𝑣(0,5,7,2/5). 

Example 3. 6. Figure 3.6 demonstrates that if we have 100 period of times, 

for different numbers of full inspections (𝒏𝟏) how many partial inspections 

(𝒏𝟐) are required to get the same value. In this example, the probability of 

detection for the partial inspection is 2/3. The blue line is the relation 

between the number of full and partial inspections, and the red line is 

when 𝒏𝟏 = 𝒏𝟐. Hence we can easily see that relation between the 

number of full and partial inspections is not linear. 

 

 

 Figure 3. 6. The relation between number of full inspections and partial inspections to 

guarantee the same value. 
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The following theorem explains the results in Example 3.6 theoretically. 

Theorem 3. 7. For an inspection game with 𝒏𝟏 number of full inspections, 

we need at least [(−
(

𝒎−𝟏
𝒏𝟏

)

∑ (
𝒎
𝒊

)𝒏
𝒊=𝟎

+ 𝟏) (
𝒎

𝟐𝑷
)] + 𝟏 partial inspections with a 

probability of detection 𝑷 to achieve the same value, if < 𝑷 < 𝟏/𝟐 . 

Proof: 

By Dresher formula we know that the value of an inspection game with n 

full inspection is  −
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

 . Besides, by Theorem 3.2 we know that 

when 0 <  𝑃 < 1/2, the value of the inspection game with 𝑛2 number of 

partial inspections is  
2𝑛2𝑃

𝑚
− 1. 

2𝑛2𝑃

𝑚
− 1 = −

(
𝑚−1

𝑛1
)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

⇔ 𝑛2 = (−
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

+ 1) (
𝑚

2𝑃
), 

Hence, we need  𝑛2 = [(−
(

𝑚−1
𝑛1

)

∑ (
𝑚
𝑖

)𝑛
𝑖=0

+ 1) (
𝑚

2𝑃
)] + 1, ∎. 

We cannot have a kind of similar theorem for 1/2 <  𝑃 < 1, as it is not 

possible to find the explicit formula for 𝑛2.  

Theorem 3. 8.  Consider an inspection game with no full inspection, 𝑛2 

number of partial inspections and 𝑚 period of time, where 𝑃 is the 

probability of detection in partial inspections. If 𝑝 is the probability of 

assigning a partial check and 𝑞 is the probability of selecting one of the 

times to violate, then for 0 < 𝑃 < 1/2 we have 

 𝑝 =
𝑛2

𝑚
 (probability of assigning a partial check), 

       𝑞 = 1 −
1

𝑚
 (probability of selecting one of the times to violate). 

For 1/2 < 𝑃 < 1 we have 

𝑝 =

(2𝑃)𝑛2−1 + (2𝑃)𝑛2−2 (𝑚 − 𝑛2
1

) + ⋯ + (
𝑚 − 2
𝑛2 − 1

)

(2𝑃)𝑛2 + (2𝑃)𝑛2−1 (
𝑚 − 𝑛2

1
) + ⋯ + (2𝑃) (

𝑚 − 2
𝑛2 − 1

) + (
𝑚 − 1

𝑛2
)

  , 
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𝑞 = 1 −
2𝑃

−
(

𝑚−2
𝑛2

)

∑ (𝑚−1
𝑖

)(2𝑃−1)𝑛2−𝑖𝑛2
𝑖=0

+
(

𝑚−2
𝑛2−1)

∑ (𝑚−1
𝑖

)(2𝑃−1)𝑛2−𝑖−1𝑛2−1
𝑖=0

  . 

Proof: 

By employing Table 3.3 we know that in the equilibrium we have  

𝑝𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃) + (1 − 𝑝)𝑣(0, 𝑛2, 𝑚 − 1, 𝑃)

= 𝑝(2𝑃 − 1) + (1 − 𝑝)(−1) 

and 

𝑞(2𝑃 − 1) + (1 − 𝑞)𝑣(0, 𝑛2 − 1, 𝑚 − 1, 𝑃)

= −𝑞 + (1 − 𝑞)𝑣(0, 𝑛2, 𝑚 − 1, 𝑃) 

 

𝑝 =
𝑣(0,𝑛2,𝑚−1,𝑃)+1

𝑣(0,𝑛2,𝑚−1,𝑃)+2P−𝑣(0,𝑛2−1,𝑚−1,𝑃)
  ,                                               (3.8.1) 

1 − 𝑞 =
2𝑃

𝑣(0,𝑛2,𝑚−1,𝑃)−𝑣(0,𝑛2−1,𝑚−1,𝑃)+2P
  .                                       (3.8.2)                       

For 0 < 𝑃 < 1/2, by the Theorem 3.2 we know that 𝑣(0, 𝑛2, 𝑚, 𝑃) =
2𝑛2𝑃

𝑚
− 1. Hence, by formula 3.8.1 and 3.8.2 we can see that 𝑝 =

𝑛2

𝑚
 and 

𝑞 = 1 −
1

𝑚
 . 

For 1/2 < 𝑃 < 1, by the Theorem 3.2 we know that 𝑣(0, 𝑛2, 𝑚, 𝑃) =

−
(𝑚−1

𝑛2
)

∑ (
𝑚
𝑖 )(2𝑃−1)𝑛2−𝑖𝑛2

𝑖=0

 . Hence, by employing formula 3.8.1 and 3.8.2 we can 

show the result, ∎. 

 

3.5 Inspection Game with Partial Inspection 

In this section I consider a version of Inspection game, that the inspector 

can employ both of the inspection technologies. In other words, 𝑛1 and 𝑛2 

are both positive. We can describe the 𝑣(𝑛1, 𝑛2 , 𝑚, 𝑃) by following table 
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                Inspectee 

Inspector 

   Legal act                   violation 

Full   Inspection 

 

Partial Inspection 

 

No Control  

 𝑣(𝑛1 − 1, 𝑛2 , 𝑚 − 1, 𝑃)                      +1                   

 

𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃)             2 𝑃 − 1 

 

𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃)                                  -1 

Table 3. 7. Inspection game with Partial Inspection 

We know that  

𝑣(𝑛1 − 1, 𝑛2 , 𝑚 − 1, 𝑃) < 𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃) < 𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃). 

Besides, for all value of 𝑛1, 𝑛2 and 𝑚 −1 ≤ 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) ≤ 1. On the 

other hand, as 0< 𝑃 < 1 we know that 0< 2𝑃 − 1 < 1. Hence, we can 

easily observe that there is a mixed strategy equilibrium. To analyse the 

equilibrium three cases may happen. 

Case 1: In equilibrium inspector mixes between No Control and Full 

inspection. 

Case 2: In equilibrium inspector mixes between No Control and Partial 

inspection. 

Case 3: In equilibrium inspector mixes between Full-inspection and Partial 

inspection. 

These cases are shown in the following figures. In all the following graphs 

horizontal line shows the probability of the violation (𝑞) by the inspectee 

and the vertical line shows the expected pay off for the inspector.   
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Green line denotes Not- check strategy, while inspectee is mixing between violate and not violate. 

Blue line denotes Full- check strategy, while inspectee is mixing between violate and not violate.  

Grey line denotes Partial- check strategy, while inspectee is mixing between violate and not violate.   

The equilibrium point (Minmax strategy) has been denoted by a circle.  

Figure 3. 8. Three possible cases for the equilibrium in inspection game with partial inspection 

By knowing the initial condition of the value and the fact that the 

equilibrium is one of the cases in Figure 3.8, we can design a computer 

program to calculate the 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃). The Maple code for computing 

the equilibrium point and its description are provided in Appendix B.1. The 

value of the game with one full inspection and one partial inspection is 

shown in the following two tables. Some other examples are provided in 

Appendix B.2  

 

 

 

 

 

 

 

 

 

 

 

 

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃) 

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃) 

𝑣(𝑛1, 𝑛2 − 1, 𝑚, 𝑃) 

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃) 

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃) 

+1 +1 +1 

-1 -1 -1 

2P-1 
2P-1 

2P-1 
𝑞 𝑞 𝑞 

Case 1 Case 2 Case 3 

𝑣(𝑛1 − 1, 𝑛2, 𝑚, 𝑃) 
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𝑚 𝑣(1,1, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of 

the Case 

2 
 

3 
 

4 
 

5 
 

6 

 

 

 

 

 

Case 3 

 

Case 1 

 

Case 1 

 

Case 1 

 

Case 1 

Table 3. 9. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟎 < 𝑷 < 𝟏/𝟐. 

 

𝑚 𝑣(1,1, 𝑚, 𝑃), 1/2 < 𝑃 < 1 

 

Type of 

the Case 

2 

3 
 

4 
 

5 

 

6 

0 

 

 

 

 

Case 1 

Case 1 

 

Case 1 
 

Case 1 

 
Case 1 

Table 3. 10. 𝒗(𝟏, 𝟏, 𝒎, 𝑷) for 𝟐 ≤ 𝒎 ≤ 𝟔 where 𝟏/𝟐 < 𝑷 < 𝟏. 
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Employing computer programing is computationally costly and slow. The 

following theorems help to find the value and optimal strategies much 

quicker. 

Theorem 3. 8. For the Inspection game 𝒗(𝟏, 𝟏, 𝒎, 𝑷), when 𝒎 > 𝟐, in the 

equilibrium the inspector is mixing between Full-inspection and Not-

inspection. 

Proof: 

We can describe the game by the following graph. 

 

 

 

 

 

Figure 3. 11. Inspection game with one full inspection and one partial inspection 

  is the connection of Full check line and Not check line.  

  is the connection of Partial check line and Not check line.  

  is the connection of Partial check line and Full check line. 

    is the line passing the intersection of Partial check line and Full check line, and (1,-1). 

In the Graph 2.3 we know that 𝑣(1,1, 𝑚, 𝑃) > 𝑣(1,0, 𝑚, 𝑃) > 𝑣(0,1, 𝑚, 𝑃); 

however we do not know if 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚. 

If 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 then the equilibrium point is at intersection of Full 

inspection and No control; on the other hand, if 𝑣(1,1, 𝑚, 𝑃) < 𝑋𝑚 then 

the equilibrium point is at intersection of Partial inspection and No 

control. 

We want to show that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚, ∀ 𝑚 > 2; and as a result the 

equilibrium point is the intersection of full inspection and not inspection. 

We know that 𝑣(0,1,1, 𝑃) = 0, 𝑣(1,0,1, 𝑃) = 0 and 𝑣(1,1,1, 𝑃) = 0 for 
1

2
< 𝑃 < 1; as a result 𝑣(1,1,2, 𝑃) = 0 for 

1

2
< 𝑃 < 1 where in equilibrium 

the inspector is mixing between all of his strategies. Besides, as we know  

𝑣(1,1, 𝑚, 𝑃)? 

 

𝑣(1,1, 𝑚, 𝑃)? 

 
𝑣(1,0, 𝑚, 𝑃) 

 
𝑣(0,1, 𝑚, 𝑃) 

 

+1 

 2𝑃 − 1 

 

−1 

 

 𝑌𝑚+1 
 𝑋𝑚 𝑞 
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𝑣(1,1,2, 𝑃) = 0, 𝑣(1,0,2, 𝑃) = −
1

3
 and 𝑣(0,1,2, 𝑃) = −

1

2𝑃+1
 ; as a result 

we can easily calculate that 𝑣(1,1,3, 𝑃) = −
1

4𝑃+3
 where in equilibrium 

inspector is mixing between full inspection and no control. 

Suppose that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚; we have to show that 𝑣(1,1, 𝑚 +

1, 𝑃) ≥ 𝑋𝑚+1.  

We know that 𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 if and only if 𝑣(1,1, 𝑚 + 1, 𝑃) ≥ 𝑌𝑚+1; 

hence if we show that 𝑌𝑚+1 ≥ 𝑋𝑚+1 then it will implies that 𝑣(1,1, 𝑚 +

1, 𝑃) ≥ 𝑋𝑚+1. 

Full inspection line is the line passing two following points 

(0, 𝑣(0,1, 𝑚, 𝑃)) and (1, 1). By Theorem 3.1 we know that  𝑣(0,1, 𝑚, 𝑃) =

−
𝑚−1

𝑚−1+2𝑃
 . So the full inspection line is

. 

Partial inspection line is the line passing two following points 

(0, 𝑣(1,0, 𝑚, 𝑃)) and (1, 2𝑃 − 1). By the Dresher formula (formula 3.3.5) 

we know that  𝑣(0,1, 𝑚, 𝑃) = −
𝑚−1

𝑚+1
 . So the partial inspection line is 

. 

Hence, the intersection of full inspection and partial inspection line is 

𝑥1 = , 𝑦1 = . 

. 

Hence,  𝑌𝑚+1 = −
(𝑚−1)𝑚

2𝑃𝑚+𝑚2+2𝑃+𝑚−2
 . 

 

On the other hand, the line between (𝑥1, 𝑦1) and (1,-1) is 

 
𝑥−𝑥1

𝑦−𝑦1
=

1−𝑥1

−1−𝑦1
. If 𝑥 = 0, then 𝑦 = (

1−𝑦1

−1−𝑥
) (−𝑥1) + 𝑦1. 

 Hence, 𝑋𝑚 = . 

As a result, 𝑌𝑚+1 − 𝑋𝑚+1 = , 

which is positive for 𝑚 > 2 and 𝑃 >
1

2
. Hence, if 1/2 < 𝑃 < 1 in 

equilibrium the inspector is mixing between full inspection and no control. 
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We know that for 0 < 𝑃 < 1/2, in the game 𝑣(1,1,3, 𝑃) in equilibrium the 

inspector is mixing between full inspection and no control (Case 1). Hence, 

similar to the induction we made for 1/2 < 𝑃 < 1 we suppose that 

𝑣(1,1, 𝑚, 𝑃) ≥ 𝑋𝑚 and we have to show that 𝑣(1,1, 𝑚 + 1, 𝑃) ≥ 𝑋𝑚+1, 

which is equivalent to show 𝑌𝑚+1 − 𝑋𝑚+1 ≥ 0.   

Full inspection line is the line passing two following points 

[(0, 𝑣(0,1, 𝑚, 𝑃)), (1, 1)]. We know by Theorem 3.1 that (0,1, 𝑚, 𝑃) =
2𝑃

𝑚
− 1 , so the Full check line is . 

Partial inspection line is the line passing two following points 

[(0, 𝑣(1,0, 𝑚, 𝑃)), (1, 2𝑃 − 1)]. By the Dresher formula we know that  

𝑣(1,0, 𝑚, 𝑃) = −
𝑚−1

𝑚+1
 , so the Partial inspection line is 

. 

 

The Intersection between the full inspection and partial inspection line is 

𝑥1 =
  

 

 

𝑦1 =  

 

Hence,  𝑌𝑚+1 =  . 

 

On the other hand, the line between (𝑥1, 𝑦1) and (1,-1) is 

 
𝑥−𝑥1

𝑦−𝑦1
=

1−𝑥1

−1−𝑦1
. If 𝑥 = 0, then 𝑦 = (

−1−𝑦1

−1−𝑥
) (−𝑥1) + 𝑦1. 

 

Hence, 𝑋𝑚 =  

As a result, 𝑌𝑚+1 − 𝑋𝑚+1 = 

−
2𝑃(𝑃𝑚 + 2𝑃 − 𝑚 − 1)

(𝑃𝑚2 + 2𝑃𝑚 − 𝑚2 + 𝑃 − 2𝑚)(𝑚 + 1)(𝑃𝑚 + 2𝑃 − 𝑚 − 2)
 

We know that 𝑃𝑚2 + 2𝑃𝑚 − 𝑚2 + 𝑃 − 2𝑚 = 𝑚2(𝑃 − 1) +

𝑚(2𝑃 − 2) + 𝑃 which is always negative. On the other hand, (𝑃𝑚 + 2𝑃 −
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𝑚 − 1) and (𝑃𝑚 + 2𝑃 − 𝑚 − 2) are both negative. Hence, 𝑌𝑚+1 − 𝑋𝑚+1 ≥ 0. 

Which means that for 0 < 𝑃 < 1/2 and 𝑚 > 2 in equilibrium the 

inspector mixes between full inspection and no control, ∎. 

Corollary 3. 9. For the inspection game with 1 full inspection and 1 partial 

inspection, if in equilibrium 𝒑(𝟏, 𝟏, 𝒎, 𝑷) is the optimal probability of 

assigning the full inspection, and 𝒒(𝟏, 𝟏, 𝒎, 𝑷) is probability of violation 

and 𝒗(𝟏, 𝟏, 𝒎, 𝑷) is the value of the game then they can be calculated by 

following recursive formulas.   

𝑣(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+𝑣(0,1,𝑚−1,𝑃)

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
                                          (3.5.1) 

 

𝑝(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+1

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
                                          (3.5.2) 

 

𝑞(1, 1, 𝑚, 𝑃) =
2

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
                                          (3.5.3) 

 

Proof: 

We know that we can describe the 𝑣(1, 1, 𝑚, 𝑃) by the following table. 

 

               Inspectee 

Inspector 

Not Violate                              Violate 

Full Inspection  

 

Partial Inspection 

 

No Control 

𝑣(0, 1, 𝑚 − 1, 𝑃)                       +1                    
 

 

𝑣(1, 0, 𝑚 − 1, 𝑃)                     2P-1 

 
 

𝑣(1, 1, 𝑚 − 1, 𝑃)                     -1 

Table 3. 12. Inspection game with 1 full inspection and 1 partial inspection. 

  

Besides, by Theorem 3.8 we know that in equilibrium the inspector is 

mixing between the full inspection and no control. Hence, as it has been 

explained in Appendix B.1 the value is equal to  

𝑣(1, 1, 𝑚, 𝑃) =
𝑣(1,1,𝑚−1,𝑃)+𝑣(0,1,𝑚−1,𝑃)

𝑣(1,1,𝑚−1,𝑃)+2−𝑣(0,1,𝑚−1,𝑃)
.             

 

𝑝(1, 1, 𝑚, 𝑃) and 𝑞(1, 1, 𝑚, 𝑃) can also be calculated by the formulas 

provided in Appendix B.1, ∎. 
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Theorem 3. 10. In an inspection game with 𝑛1 number of full inspections, 

𝑛2 number of partial inspection and 𝑚 period of times, for 𝑛1 + 𝑛2 ≤ 50 

in the equilibrium we have 

a) For 0 < 𝑃 < 1/2, the inspector mixes between partial inspection 

and full inspection (Case 3) if 𝑛1 + 𝑛2 = 𝑚; and the inspector mixes 

between full inspection and no control (Case 1) if 𝑛1 + 𝑛2 < 𝑚. 

b) For 1/2 < 𝑃 < 1, the inspector mixes between full inspection and 

no control. 

 Proof: 

  By employing the Maple code provided in Appendix B.2 we have 

analyzed all the inspection games with 𝑛1 number of full inspections and 

𝑛2 number of partial inspections and 𝑚 period of times where 𝑛1 + 𝑛2 ≤

𝑚 ≤ 50. The results of the computations are the same with the claim in 

the Theorem, ∎. 

Theorem 3.10 is providing a general guess for the behavior of the players 

in the equilibrium. It seems that except when 𝑛1 + 𝑛2 = 𝑚 and 

0 < 𝑃 < 1/2 which is Case 3, in all the other situations in equilibrium the 

inspector is mixing between full inspection and partial inspection. It means 

that the inspector never starts his sequential inspections with a partial 

inspection. In other words, as long as any opportunity exists for running a 

full inspection, the inspector will not run any partial inspections. Partial 

inspections will be used when no remaining full inspections are available. 

 The other benefit, application of Theorem 3.10 is finding an efficient way 

to determine the value and optimal strategies of the game. The following 

theorem explains how Theorem 3.10 may help to find the more efficient 

way to calculate the value of the game and optimal strategies. 

Theorem 3. 11. If in an inspection game with partial inspection there are a 

number of full inspections, a number of partial inspection and m period of 

times; if we know that in equilibrium the inspector is mixing between full 

inspection and no control then the value of the game can be calculated by 

the values of the previous level by following formula 

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)

𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+2−𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)
 .                         (3.5.4) 
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If we know that in equilibrium the inspector is mixing between partial 

inspection and no control then the value of the game can be calculated by 

the values of the previous level by following formula 

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
(2𝑃−1)𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)

𝑣(𝑛1,𝑛2,𝑚−1,𝑃)+2𝑃−𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)
.                   (3.5.5) 

If we know that in equilibrium the inspector is mixing between partial 

inspection and full inspection then the value of the game can be 

calculated by the values of the previous level by following formula 

𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) =
𝑣(𝑛1,𝑛2−1,𝑚−1,𝑃)−(2𝑃−1)𝑣(𝑛1−1,𝑛2,𝑚−1,𝑃)

𝑣(𝑛1 ,𝑛2−1,𝑚−1,𝑃)+(2−2𝑃)−𝑣(𝑛1−1,𝑛2 ,𝑚−1,𝑃)
 .                 (3.5.6) 

Conclusion 

I investigate the classical inspection game while not all the inspections can 

fully detect the violation. For some cases I show that the inspector always 

applies a full inspection at the beginning of the series of inspections. This 

characteristic leads to find a recursive formula for calculating the value of 

the game. The recursive formulae and its explicit solution computationally 

would be less costly, comparing to the computer programing method. 

Values of the games with a different number of full and partial inspection 

can provide a robust tool to compare the different type of the inspections.   
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B Appendix to Chapter 3 

B.1   The value and optimal strategies for a 2×2 zero-sum 

game 

Let following table be the matrix game of a two player zero-sum game 

(See Von Stengel (1991)). 

      Player 2 
Player 1 

Strategy C         Strategy D 

Strategy A 
          
Strategy B 

      a                         b 
 
      c                         d 

 

If 𝑎 ≤ 𝑏,    𝑐 > 𝑑,        𝑎 ≤ 𝑐,       𝑏 > 𝑑, then we can easily observe that in 

equilibrium players are mixing between their strategies. We denote the 

probability of playing Strategy A by Player 1 with 𝑝, the probability of 

playing Strategy C by Player 2 and the value of the game with 𝑣. As the 

players are indifferent between their strategies then we have 

𝑣 = 𝑝. 𝑎 + (1 − 𝑝). 𝑐 = 𝑝. 𝑏 + (1 − 𝑝). 𝑑, 

𝑣 = 𝑞. 𝑎 + (1 − 𝑞). 𝑏 = 𝑞. 𝑐 + (1 − 𝑞). 𝑑. 

Hence, we have  

𝑝 =
𝑐−𝑑

𝑐−𝑑+𝑏−𝑎
  ,                     (B.1.1) 

𝑞 =
𝑏−𝑑

𝑐−𝑎+𝑏−𝑑
  ,                     (B.1.2) 

𝑣 =
𝑏.𝑐−𝑎.𝑑

𝑐−𝑑+𝑏−𝑎
  .                     (B.1.3) 

 

B.2   Maple code for finding the equilibrium point for the 

inspection game with partial inspection 

The maple code provided in this section finds the equilibrium point and 

calculates the value of the inspection game with partial game for different 

value of full inspection, partial inspection and period of times. The user 

can set the code to work for small (0 < 𝑃 < 1/2) or large (
1

2
< 𝑃 < 1) 
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probability of detection for the partial inspection. The program calculates 

the value of all the games 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) 𝑛1 ≤ 𝑁1, 𝑛2 ≤ 𝑁2, 𝑚 ≤ 𝑀  

where 𝑁1, 𝑁2 and 𝑀 can be set by user. 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) where 𝑛1 + 𝑛2 ≤

𝑚 are calculated in following orders.  

First 𝑣(1,1,1, 𝑃) to 𝑣(1,1, 𝑀, 𝑃), then 𝑣(1,2,3, 𝑃) to 𝑣(1,2, 𝑀, 𝑃). This 

continue to 𝑣(1, 𝑁2, 𝑁2 + 1, 𝑃) to 𝑣(1, 𝑁2, 𝑀, 𝑃). Finally, 𝑣(2, 𝑁2, 𝑀, 𝑃) to 

𝑣(2, 𝑁2, 𝑀, 𝑃); which will continue to 𝑣(𝑁1, 2,1, 𝑃) to 𝑣(𝑁1, 2, 𝑀, 𝑃). 

The program runs following steps 

a) Calculating 𝑣(𝑛1, 0, 𝑚, 𝑃) by Dresher formula for 𝑛1 ≤ 𝑁1 and 

𝑚 ≤ 𝑀. 

b) Calculating 𝑣(0, 𝑛2, 𝑚, 𝑃) 𝑛2 ≤ 𝑁2 and 𝑚 ≤ 𝑀  by the formulas 

provided in Theorem 3.2 for small or large value of 𝑃 (Depends on 

user to select which of them) 

c) Setting 𝑣(𝑛1, 𝑛2, 𝑚, 𝑃) = 0 for 𝑛1 ≥ 𝑚. 

d) For a given 𝑛1, 𝑛2 and 𝑚, the program calculates the equation of 

following 3 lines given the coordination of their start point and end 

point:  

No control line [(0, 𝑣(𝑛1, 𝑛2, 𝑚 − 1, 𝑃)), (1, −1)]. 

Partial inspection line [(0, 𝑣(𝑛1, 𝑛2 − 1, 𝑚 − 1, 𝑃)), (1, 2 ∗ 𝑃 − 1)]. 

Full inspection line [(0, 𝑣(𝑛1 − 1, 𝑛2, 𝑚 − 1, 𝑃)), (1, 1)]. 

e) The program calculates the intersection of each two different lines 

in part e). Hence, we will have the coordination of the following 

point. 

NP= intersection of no control line and Partial inspection line. 

FP= intersection of full inspection line and Partial inspection line. 

FN= intersection of full inspection line and no control line. 

f) The program compares the height of the calculated points for all the 

values of 𝑃. If NP had the greatest height among the others, it 

means that NP is the optimal strategy (Minmax).  Otherwise, the 

equilibrium point is FP or FN. If height of FP is smaller than height of 

FN then the equilibrium point is FP, otherwise it is FN.  
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The following maple codes calculate the value of the game (𝑛1, 𝑛2, 𝑚, 𝑃) 

𝑛1 ≤ 2, 𝑛2 ≤ 2, 𝑚 ≤ 5. The results of the code are shown by blue.  

 
> restart; 

>  

>  

>  

>  

P := proc(n, k) 

RETURN(product(n-j, j=0..(k-1))) 

end: 

 

> C := proc(n, k) 

RETURN(P(n,k)/k!) 

end: 

 

>  

Value1:=proc(i,m) 

global Value; 

local j,b,A,AA; 

 

if m<=i then Value[i,0,m]:=0; else 

#print(i,m); 

#print(C(m-1,i)); 

A:=C(m-1,i); 

##print("A is",A); 

 

AA:=0; 

for j from 0 to i do 

 b:=C(m,j): 

AA:=AA+b: 

end do: 

#print(AA); 

Value[i,0,m]:=-A/AA; 

end if; 

#print("Value is",i,m,Value[i,0,m]); 

end proc: 

>  

for i from 1 to BB do 

for m from 1 to BB do 

 Value1(i,m-1); 

end do: 

end do: 
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> ##################### for large P 

Vlarge:=proc(n1,n2,m1) 

 global Value; 

 local temp1,i,temp2; 

 temp1:=0; 

for i from 0 to n2 do 

 temp1:=((2*P)^(i))*binomial(m1-1-i,n2-i)+temp1: 

end do: 

 temp2:=binomial(m1-1,n2); 

 Value[0,n2,m1]:=-temp2/temp1; 

 #print(Value[0,n2,m1]); 

 

end proc: 

>  

> for n2 from 1 to BB do 

 for m from 1 to BB do 

Vlarge(0,n2,m); 

 end do: 

end do: 

>  

>  

>  

>  

> ######### for small P, 0<P<1/2 

Value[1, 1, 1] := 0; 

for i1 from 1 to 10 do 

 for i2 from 1 to 10 do 

  for m from 1 to 10 do 

 if i2>= m then Value[0, i2, m]:=2*P-1;  end if; 

 if i1>= m then Value[i1, i2, m]:=0;  end if; 

   end do: 

  end do: 

 end do: 

  

 

>####### for small P 

for n2 from 1 to 10 do 

for m from 1 to 10 do 
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 Value[0,n2,m]:=((2*P*n2)/(m))-1; 

 #print(0,n2,m,Value[0,n2,m]); 

end do: 

end do: 

 

>  

for n1 from 1 to 2 do 

for n2 from 1 to N2 do 

for m from 2 to M do 

 

print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&",n1,n2,m); 

 

#print(Value[n1,n2,m-1]); 

geometry[point](e,0,Value[n1,n2,m-1]): 

geometry[point](f,1,-1): 

 

 

#print(n2-1,m-1,Value[n1,n2-1,m-1]); 

geometry[point](c,0,Value[n1,n2-1,m-1]): 

geometry[point](d,1,2*P-1): 

 

aa:=n2; 

if n2>(m-1) then aa:=m-1; end if; 

Value1(aa,m-1); 

Value[0,n2,m-1]:=Value[0,aa,m-1]; 

 

#print(Value[n1-1,n2,m-1]); 

geometry[point](a,0,Value[n1-1,n2,m-1]): 

geometry[point](b,1,1): 

geometry[line](l1,[a,b]): 

#if m=8 then print("full check"): end if: 

F:=geometry[Equation](l1,[x,y]); 

#print("full check",F): 

 

 

geometry[line](l2,[c,d]): 

P1:=geometry[Equation](l2,[x,y]); 

#print("partial check",P1): 

 

 

geometry[line](l3,[e,f]): 

N:=geometry[Equation](l3,[x,y]); 

#print("Not check",N); 

 

 

#print("Full & Not"); 
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FN:=solve({F,N},{x,y}); 

#print("Full & Partial"); 

FP1:=solve({F,P1},{x,y}); 

#print("Partial & Not"); 

NP1:=solve({N,P1},{x,y}); 

 

 

 

FN:=op(2,op(2,FN)); 

FP1:=op(2,op(2,FP1)); 

NP1:=op(2,op(2,NP1)); 

 

temp1:=minimize(FN-FP1,P=a1..b1); 

temp2:=minimize(FN-NP1,P=a1..b1); 

 

check:=1; 

if temp1>=0 and temp2>=0 then 

print("Case1:Value is intersection of Not-Check and Full-

Check");  

value1:=FN; 

print("the value is",value1); 

check:=1; 

else 

  check:=0; 

  print("It is not Case 1",n1,n2,m); 

  temp3:=minimize(NP1-FP1,P=a1..b1); 

    if temp3<0 then 

    print("Case2:Value is intersection of Not-Check and 

Partial-Check");  

    value1:=NP1; 

    print("the value is",value1); 

    else 

    print("Case3:Value is intersection of Full-Check and 

Partial-Check");  

    value1:=FP1; 

    print("the value is",value1); 

    end if;  

end if; 

 

Value[n1,n2,m]:=value1: 

#print(n1,n2,m); 

#print(Value[n1,n2,m]); 

#if check=0 then print("The plot of intersections"); 

plot([FN,FP1,NP1],P=0..1/2,color=[red,green,blue]); end if: 
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end do: 

end do: 

end do: 
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B.3   The value of game for 𝒗(𝟏, 𝟐, 𝒎, 𝑷) and 𝒗(𝟐, 𝟏, 𝒎, 𝑷)  

for all the values of  𝑷 

 

𝑚 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of the 

Case 

2 

 

3 
 

4 
 

5 
 

6 

 

 

 

 

 

 

Case 3 

 

Case 3 

 

Case 1 
 

 

Case 1 
 

Case 1 

Table B.2.1. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2. 

 

𝑚 𝑣(1,2, 𝑚, 𝑃), 1/2 < 𝑃 < 1 Type of the 

Case 
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2 

3 

4 

 

5 

 

6 

0 

0 

 

 

 

 

Case 1, 2 & 3 

Case 1, 2 & 3 

Case 1 

 

Case 1 

 

 

Case 1 

Table B.2.2. 𝑣(1,2, 𝑚, 𝑃), 1/2 < 𝑃 < 1. 

 

 

 

 

 

 

 

𝑚 𝑣(2,1, 𝑚, 𝑃), 0 < 𝑃 < 1/2 Type of the Case 

2 

3 

 

4 

 

5 
 

6 

0 

 

 

 

 

 

Case 1, 2 & 3 

Case  3 

 

Case 1 
 

 

Case 1 
 

Case 1 

Table B.2.3. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2. 

 

𝑚 𝑣(2,1, 𝑚, 𝑃), 1/2 < 𝑃 < 1 Type of the Case 
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2 

3 

4 
 

5 
 

6 

0 

0 

 

 

 

 

Case 1, 2 & 3 

Case 1, 2 & 3 

Case 1 

 

Case 1 

 

Case 1 

Table B.2.4. 𝑣(1,2, 𝑚, 𝑃), 0 < 𝑃 < 1/2. 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 4 

A Comparison between Nelder-Mead and Genetic Algorithm for 

Large Scale Optimization Problems 

4.1 Introduction  

Optimization problems can appear in a wide range of sciences where we 

are interested in finding the best solution to a problem after exploring all 

feasible solutions. In this study we aimed to compare the most popular 

direct numerical optimisation methods: the Nelder-Mead algorithm and 

the Genetic algorithm. 

Numerical optimization methods have wide application in many 

optimization problems arisen in different field of science. Instead of 

focusing on exact solution of the problem, they provide an approximation 

of the solution with reasonable accuracy. Hence, they can cover a wider 

range of the complex problems. There are many different numerical 

methods which are compatible with different types of problems and their 

associated characteristics. However, numerical methods can broadly be 

divided into two main categories: gradient methods and direct methods. 

Gradient methods are a form of numerical method which use the special 

features of the objective function such as continuity or gradient to 

establish an iterative method to approximate the solution. These methods 

are usually fast to converge. However, they are not compatible with 

irregular objective functions1 and they may just provide the local optimum 

of the problem. One of the most famous examples of gradient method is 

Newton method which needs differentiation in each iteration. As a result, 

it can be computationally costly and also it is only applicable for 

continuous differentiable functions. As other example of a gradient 

                                                             
1 A function is irregular, if its derivative is not well-defined or does not exist.    



method we can mention Gauss-Newton method introduced by Harley 

(1961) and another algorithm introduced by Marquardt (1977).  

In contrast, direct methods of optimization can be applied with a wider 

range of objective functions as they just require the value of the objective 

function. Convergence is almost surely slower compared to gradient 

methods in any form of the application, but overall there is no general 

criterion for the objective function. The Nelder-Mead simplex algorithm2 

(See Nelder and Mead (1965)) and the Genetic algorithm (see Holland 

(1975)) are two of the most widely used direct methods to deal with 

optimization problems.  

The Nelder-Mead simplex method has been widely used in optimization 

problems. It is also an efficient tool for the optimization problems arising 

in Economics. Hugget, Ventura, Yaron (2011) employ the Nelder-Mead 

algorithm in a Macroeconomics problem when they are investigating 

sources of lifetime inequality. 

Because of the important role of the algorithm in optimization problems it 

appears in many numerical methods handbooks like the one by Press, 

Flannery, Teukolsky and Vettering (1992), beside it is part of the MATLAB’s 

optimization package. However, the method still does not have a 

satisfactory convergence theory. Not only is there a chance of 

approaching and sticking to a local optimum point instead of the global 

one, but also the algorithm may converge to a non-stationary point3. 

McKinnon (1998) provides a number of the examples which cause the 

algorithm to converge a non-stationary point.  

 The inefficiency of the method for higher dimension problems has been 

also observed and analysed in some studies. Byatt (2000) and Torczon 

(1989) provide some results for minimization of the function 𝑓(𝑥) =

∑ 𝑥𝑖
2𝑛

𝑖=1  for different value of 𝑛. They observe in their numerical 

implementation of the method, that it is working inefficiently when 𝑛  is 

moderately large (approximately more than 32). Hans and Neumann 

(2006) provide some theoretical aspects for employing Nelder-Mead 

simplex algorithm for the mentioned function and they show that the 

                                                             
2 Nelder-Mead simplex algorithm should not be mix with Dantzing simplex method (see Dantzing (1947)) 
which is an optimization method in linear programming. 
3 A point with non-zero gradient, which is obviously is not candidate to be a optimum point. 



algorithm is inherently become inefficient by increasing the number of 

parameters. The mentioned works provide an example for the effect of 

the dimensionality4 on the Nelder-Mead simplex algorithm, which means 

that we can expect the same problem for some other unconstraint 

optimization problems as well.  

Genetic Algorithm is another direct optimization method which also has 

been widely used for optimization in many different fields like 

electromagnetics (see Weile and Michielssen (1997)), water distribution 

systems (van Zyl and Savic(2004)) and economic predictions (see Shin and  

Lee (2002)). It is also employed in economics and finance optimization 

problems. Pereira (2000) presents the Genetic algorithm as a strong tool 

in finance problems like choosing the optimized parameters for a specific 

trading rule. Another example is Chen and Chang (1995)  which employ 

the Genetic algorithm to solve the economic dispatch problem in large 

scale systems.   

This method starts from the set of initial solutions and iterates toward 

more optimized set of solutions using techniques inspired by natural 

evolution and Darwinian process5. Beside the flexibility to deal with many 

ranges of the optimization problem, Genetic algorithm can also be easily 

coded to solve the unconstraint optimization problems where the 

objective function is not necessarily differentiable.   

Many studies show that Genetic algorithm is working well for big and 

complex problems; however it might be slow to achieve a very precise 

answer (see Yugeng, Tianyou and Weimin (1996)).  

In this study, we briefly compare the Nelder-Mead and Genetic algorithms 

with respect to speed, accuracy and the resilience as the problem 

increases in size. For this matter, by Matlab implementation of both 

algorithms we perform experiments.  

We observe that Nelder-Mead algorithm with regards to the number of 

iterations required and processing time is efficient only when the number 

of parameters is small. We provide an example which shows that, 

regardless of the number of parameters, Nelder-Mead algorithm can stick 

                                                             
4 The effect of large number of parameters on efficiency of the method is called dimensionality. 
5 Full process of Genetic algorithm and its operators are provided in Section 4.3. 



to a local optimum point based on the position of the starting point. 

Genetic algorithm shows faster approaching to the global optimum point 

and also can skip the local optimum points by mutation functions.  

It is obvious that changing parameters or employing hybrid methods may 

improve the final results for some specific problems; however we choose 

to use the default parameters within Matlab for a pure comparison.  

This study has been organized in four sections. In Section 4.2 and 4.3 we 

briefly review the Nelder-Mead and Genetic algorithms and their special 

characteristics. In Section 4.4, we introduce some experiments to compare 

both methods with regarding to accuracy and required time. In Section 

4.4, we provide an experiment to see dependency of Nelder-Mead 

algorithm on the place of the initial guess. We also show this problem can 

be skipped by Genetic Algorithm. 

The Matlab version used to perform the experiments in this study is 

R2013b, and as mentioned, implements the default parameters for 

Genetic and Nelder-Mead algorithm otherwise specified6. 

 

4.2 Nelder-Mead Simplex Algorithm7 

In this section we explain the Nelder-Mead simplex algorithm and its main 

characteristics.  

The Nelder-Mead simplex algorithm is based on iteratively constructing 

sequence of simplices, where the amount of the objective function for the 

vertices of the simplex evaluated and sorted in each iteration. The 

algorithm applies four possible operators of reflection, expansion, 

contraction and shrinks to construct a new simplex which has improved 

evaluated functions on its vertices in general. The algorithm terminates 

when the vertices of the simplex meet the stopping criteria. 

For minimizing a real valued function like 𝑓: ℛ𝑁 → ℛ;   𝑓(𝑋) = 𝑦, Nelder-

Mead algorithm is starting with a simplex defined in 𝑁 + 1 dimension. The 

algorithm also can start with just one initial point, where we define a 

                                                             
6 Matlab’s default settings for Nelder-Mead algorithm and Genetic algorithm have fully provided and 
discussed in section 4.2.2 and 4.3.2. 
7 The algorithm is also called Nelder-Mead algorithm. 



function which can construct a simplex in N+1 dimension based on that 

point. Each vertex of the simplex is defined by function values at a 

different point. Having ranked the vertices of the simplex, we aim to move 

the worst performing vertex of the simplex around the centroid to update 

the simplex. In updating procedure four operators of Reflection, 

Expansion, Contraction, and Shrink are used. If we define the centroid of 

the simplex as average of all the vertices of the simplex to expect the 

worst one, then Nelder-Mead operators are as follow.  

a) Reflection: reflect the worst vertex around the centroid. The 

function for finding the reflected point (𝑥𝑟) is 𝑥𝑟 = 𝑐 + 𝛼(𝑐 − 𝑥ℎ) 

where 𝛼 > 0. Figure 4.1 shows the reflection function for a 2-

dimensional simplex. 

 
Figure 4. 1. Reflection operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and 
𝒄 is the centroid. 

b) The contraction operator makes the simplex smaller by making the 

worst vertex closer to the centroid. There can be two forms of 

contraction, contraction inside and contraction outside. The 

contracted point can be calculated by 𝑥𝑐 = 𝑐 + 𝛽(𝑥𝑟 − 𝑐) for 

outside contraction or 𝑥𝑐 = 𝑐 + 𝛽(𝑥ℎ − 𝑐) for inside contraction 

where 𝑥𝑟  is the reflection of 𝑥ℎ  and 0 < 𝛽 < 1. Figure 4.2 shows 

the contraction function in a 2-dimentional simplex.   

  
Figure 4. 2. Contraction operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) 
and 𝒄 is the centroid. The left image shows outside contraction and right image shows inside 
contraction. 

c) Expansion operator, expand the simplex by multiply the distance of 

the worst vertex and the centroid by a coefficient greater than 𝛼. 

The function for finding the expanded point (𝑥𝑒) is 𝑥𝑒 = 𝑐 + 𝛾(𝑥𝑟 −



𝑐) where 𝑥𝑟  is the reflected point of the worst vertex and 

𝛾 > 1, 𝛾 > 𝛼. Figure 4.3 shows the expansion function for a 2-

dimensional simplex. 

 
Figure 4. 3. Expansion operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍) and 
𝒄 is the centroid. 

d) Shrink operator, for a N+1 dimensional simplex calculates the N new 

vertices where all of them are closer to the best vertex. The location 

of the best vertex is kept fixed. The new vertices are calculated by 

𝑥𝑗 = 𝑥𝑙 + 𝛿(𝑥𝑗 − 𝑥𝑙). Figure 4.4 shows the Shrink function for a 2-

dimensional simplex. 

 
Figure 4. 4. Shrink operator in Nelder-Mead algorithm, where 𝒇(𝒙𝒔) < 𝒇(𝒙𝒉) < 𝒇(𝒙𝒍). 

𝛼, 𝛽, 𝛾 and 𝛿 can have different values, however in standard Nelder-Mead 

algorithm it always suppose that 𝛼 = 1, 𝛽 =
1

2
 , 𝛾 = 2 and =

1

2
 .  

The steps of the Nelder-Mead algorithm for minimization of a real value 

function with N variables are as follows: 

Step 1: The algorithm starts with the first simplex which has N+1 vertex. 

Nelder-Mead algorithm can also start with just one start point. We can 

define a rule that after receiving the initial guess it will make the other 

vertices of the algorithm. Suppose that 𝑋0, 𝑋1, … , 𝑋𝑛 are the vertices of 

the first simplex.  

Step 2: The vertices of the simplex are sorted in increasing order. Hence 

we have 𝑓(𝑋0) < 𝑓(𝑋1) < ⋯ < 𝑓(𝑋𝑛). We suppose that 𝑋𝑢 is the best 

vertex, 𝑋𝑣  is the second worst vertex and 𝑋𝑤 is the worst vertex. By 

employing all the vertices except the worst one, we calculate the Centroid 

point (𝐶). 



Step 3: In general, this step updates the worst vertex of the simplex or it 

will shrink the whole simplex. The algorithm first tries the Reflection 

operator. The worst vertex is reflected around the centroid, and value of 

the reflected vertex is evaluated. If we show the reflected point by 𝑋𝑅, 

then 

a) If 𝑋𝑅 is better than the best vertex (𝑓(𝑋𝑅) < 𝑓(𝑋𝑢)), then the 

simplex experience expansion. If the expanded point (𝑋𝑠) was 

better than reflected point, then we accept 𝑋𝑠 and the algorithm 

goes to Step 2. Otherwise, we accept 𝑋𝑅.  

b) If 𝑋𝑅 is just better than the second worst vertex (𝑓(𝑋𝑢) ≤ 𝑓(𝑋𝑅) <

𝑓(𝑋𝑣)), then the worst vertex replaced with 𝑋𝑅, and the algorithm 

goes to Step 2;  

Otherwise, the algorithm runs Contraction in following way. We show the 

inside contracted point by 𝑋𝐶1, and outside contracted point by 𝑋𝐶2.  

a) If 𝑓(𝑋𝑅) < 𝑓(𝑋𝑤) then algorithm calculated outside contracted 

point (𝑋𝐶2), if 𝑓(𝑋𝐶2) < 𝑓(𝑋𝑅) then algorithm accept 𝑋𝐶2 and goes 

to Step 2. Otherwise, the simplex shrinks and the algorithm goes to 

Step 2. 

b) If 𝑓(𝑋𝑅) ≥ 𝑓(𝑋𝑤) then algorithm calculates inside contracted point 

(𝑋𝐶1), if 𝑓(𝑋𝐶1) < 𝑓(𝑋𝑅) then algorithm accept 𝑋𝐶1 and goes to 

Step 2. Otherwise, the simplex shrinks and the algorithm goes to 

Step 2. 

The algorithm is repeated until the time, it gets to one of the stopping 

criteria. The most common stopping criteria are number of Iterations, 

number of function evaluations, X tolerance or function tolerance.  

Example 4.1 briefly explains the steps of the Nelder-Mead algorithm for 

minimization of 𝑓(𝑥) = |𝑥1| + |𝑥2|, where the starting point is [1,1].  

Example 4. 1. In this example we follow few iterations of the Nelder-Mead 

algorithm to find minimizer of 𝑓(𝑥) = |𝑥1| + |𝑥2|, where the starting 

point is [1,1]. The coefficients of the Nelder-Mead functions supposed to 

be the standard one.  

As the initial point is [1,1], by assigning a function to [1,1] we make two 

other vertices. In this example we suppose that the other vertices are 



[3,1] and [1,2]. Hence, we can sort the vertices as 𝑋3
(0)

= [1,3], 𝑋2
(0)

=

[2,1] and 𝑋1
(0)

= [1,1] where 𝑓 (𝑋1
(0)

) < 𝑓 (𝑋2
(0)

) < 𝑓(𝑋3
(0)

). The 

centroid of the simplex is 𝐶 = [1,1.5]. The reflection of the worst vertex is 

𝑋𝑅
(0)

= [−1,3], which is worse than the worst vertex so algorithm runs 

contract inside witch is [2, 1.5] and better than the worst vertex. Hence 

new simplex is 𝑋3
(1)

= [2,1.5], 𝑋2
(1)

= [2, 1] and 𝑋1
(1)

= [1,1].  

Figure 4.3 shows the some of the first sequential simplices that Nelder-

Mead algorithm makes to find the minimizer of the objective function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 1. Three first sequential simplices that Nelder-Mead algorithm makes to find the 
minimizer of 𝒇(𝒙) = |𝒙𝟏| + |𝒙𝟐|.    

4.2.1 Convergence of the Nelder-Mead algorithm 

Despite the wide application of the Nelder-Mead algorithm in 

optimization problems, still there is lack of a global convergent theorem. 

The method is dependent on position of the initial guess. It means that 

based on the position of the initial guess the algorithm may approaches a 

local optimum. There is no way to be sure that the method will show the 

global optimizer of the problem. Adding to the problem of the position of 

the initial guess, in general there is no guarantee the method converge. 

Lagarias, Reeds, Wright and Wright (1998) investigate the convergent 

properties of Nelder-Mead algorithm for the one dimensional functions. 

They show that the method is convergent for the one dimensional strictly 

Solution 



convex functions as long as the expansion function in the Nelder-Mead 

method is genuine. McKinnon (1998) also proves that the method is 

convergent for functions with more than three continuous derivations.  

However, he also provide couple of examples where the Nelder-Mead 

algorithm produce simplices elongate of each other where the best vertex 

is not changing. In fact, he shows that for functions like 

𝑓(𝑥, 𝑦) = {
𝜃𝜙|𝑥|𝜏 + 𝑦 + 𝑦2; 𝑥 ≤ 0

𝜃|𝑥|𝜏 + 𝑦 + 𝑦2; 𝑥 ≥ 0
                                                       (4.1.1)                                                    

Nelder-Mead algorithm repeatedly runs inside contraction while the best 

vertex is not changing. This situation is shown in Figure 4.2. 

 

Figure 4. 2. Sequential simplices made by Nelder-Mead algorithm to solve function 4.1.1, 
where 𝝉 = 𝟐, 𝜽 = 𝟔 and 𝝓 = 𝟔𝟎 (see McKinnon (1998)). 

 

4.2.2. Matlab implantation of Nelder-Mead algorithm8 

The Nelder-Mead algorithm is widely used in optimization problems, so it 

is part of the optimization package of many mathematical programing 

softwares like Matlab and Mathematica.  

In Matlab, the method accessible via optimization app and also can be run 

by FMINSEARCH command, on the command line. The initial guess should be 

                                                             
8 The Matlab version used in this study is R2013b. For reviewing the optimization settings, Matlab’s 
users guide is employed (see Ljung (1995)). 



input by the user, then the N+1 vertices for producing the initial simplex is 

made by adding 0.05 to each component of the initial guess. The 

coefficients of the Nelder-Mead algorithm are equivalent to the standard 

Nelder-Mead algorithm. The default stopping criteria are maximum 

iterations of less than 200×number of the variables, maximum  function 

evaluations to be less than 200×number of the variables, and also both X 

tolerance and function tolerance to be less than 10−4.  X tolerance 

specifies the termination tolerance for X. Function tolerance specifies the 

termination tolerance for the objective function value. As an example, if 

the best function value of the previous iteration is 1.10001 and current 

best function value is 1.00000 the algorithm will stop as |1.10001 − 1| <

0.0001. 

Table 4.1, shows the Matlab implementation of Nelder-Mead algorithm 

for finding the minimum value of 𝑓(𝑥) = |𝑥1| + |𝑥2|. The starting point is 

set to be 𝑥 = [1,1], and stopping criteria is Max Iterations less than 10. 

For the rest of the settings, Matlab’s default parameters were employed. 

Iteration   Func-count     min f(x)         Procedure 
     0            1                         2          
     1            3                         2                   initial simplex 
     2            5                        1.975            expand 
     3            7                        1.8625          expand 
     4            9                        1.75625        expand 
     5           11                       1.47812        expand 
     6           13                       1.37187        reflect 
     7           15                       1.14375        reflect 
     8           17                       1.14375        contract inside 
     9           19                       1.01445        expand 
    10           21                     1.01445         contract outside 
  
Exiting: Maximum number of iterations has been exceeded 
         - increase MaxIter option. 
         Current function value: 1.014453 

Table 4. 3. Matlab implementation of the Nelder-Mead algorithm to find the minimum value 

of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The start point is 𝑋 = (1,1), the stopping is Maximum number of 

Iterations less than 10, with the remaining settings being Matlab’s default for Nelder-Mead 

algorithm. The minimum value of the objective function is shown in each iteration of the 

algorithm.  

4.3 Genetic Algorithm and Mathematical Optimization 

4.3.1 History of the Genetic algorithm 

The Genetic algorithm is an optimization method which has been inspired 

by evolution in nature and Darwinian process. The initial idea of 



employing evolution to find optimised solutions appears in the works of 

Rechenberg (1965) and Schwefel (1975, 1977). By employing evolution 

they optimize some real valued parameters which had applications in 

designing devices such as airplane wings. Later, some others scientists like 

Fogel, Owens and Walsh (1966) developed evolutionary programming for 

optimizing a way of allocating candidates to some tasks, by repeatedly 

changing in the allocation. 

Genetic algorithm, as the famous optimization method which nowadays 

we know, was first invented by Holland (1960). He initially was looking for 

a method not to find the optimized solution of a specific problem, but a 

method compatible to the wide range of problems. In his method, the set 

of initial solutions (initial population) is evolving to the next set of 

solutions (next generation) by some functions similar to the “natural 

selection” in Darwinian theory. The algorithm repeatedly produces 

solutions (one generation after another) and will finish when it gets to 

some stopping criteria.     

 

4.3.2 Genetic algorithm for optimization of the real valued functions 

In general, Genetic algorithm first designates a fitness function to a 

problem. A fitness function estimates how much a solution is close to the 

optimum one. In the next step, the algorithm starts with a set of feasible 

solutions called “first generation”. Then, three operators of Selection of 

the fittest, Crossover and Mutation are employed to make another set of 

solutions. Selection chooses the most fitted solutions in the first 

generation and by duplicating them gives them greater chance to produce 

offspring. Crossover produces the next set of solution by fitted solutions 

provided in the previous step. Later, the Mutation function randomly 

chooses one or more of the elements of the current generation and makes 

a random change in which is then present in the next generation. The 

algorithm repeatedly makes one generation after another. Each 

generation is in general more fitted. 

Genetic algorithm’s operators (Selection, Crossover, Mutation) can be 

applied on a population in different ways. The famous methods of 

Selection are Roulette wheel, tournament and uniform. The famous 

crossover methods are single point crossover, two point crossover and 



scattered crossover. The famous way of mutation is Uniform. All these 

operators have been fully explained and discussed in Appendix C. 

The Genetic algorithm can be employed for a wide range of the problems 

with different types of solution sets. In this study we focus on the 

application of Genetic algorithm to find the optimized solution of real 

valued functions. For minimizing a real valued function, first we set the 

suitable fitness function for a program. Besides, following constants are 

set to be fixed through the all the iterations: 

Number of individuals in each chromosome, Length of each chromosome, 

number (or percentage) of best fitted individuals who are going to survive 

in each iteration, selection and crossover methods and mutation rate.  

To optimize a real valued function like 𝑓(𝑋), Genetic algorithm runs 

following steps.  

Step 1: Randomly generate a set of 𝑁 feasible solutions which will be the 

first population. Each number in the set is called an individual 

(Chromosome). To run the operators on these numbers, Genetic algorithm 

changes them to the binary form. It means that each individual in the 

population will be a sequence of 0 and 1. Each 0 or 1 is called a gene. 

Step 2: Calculate the fitness of each individual in the population, based on 

the fitness function. 

Step 3: Based on the fitness scaling, the fittest individuals survive and the 

worst ones are deleted from the population. Best individuals reproduce 

and have a greater chance to produce offspring.  

Step 4: Crossover operator makes a new generation, which should be 

more fitted in general. 

Step 5: Based on the probability of mutation, some percentage of the 

genes are randomly mutated from 1 to 0, or 0 to 1.  

Step 6: Replace the new population with the previous one. 

Step 7: If the stopping criteria has not been met, go to Step 2. 

To illustrate, Example 4.2 applies genetic algorithm to find the minimum 

of 𝑓(𝑥) = 𝑥2. The first iteration of the method is fully explained, where 



the number of individuals is 5, length of each chromosome is 9, individuals 

have 80 percent chance of survival, selection method is Roulette wheel, 

crossover method is single point and the probability of mutation is 0.03. 

Example 4. 2.  

Step 1: To find the minimum of 𝒇(𝒙) = 𝒙𝟐, 𝒇𝒕(𝒙) = (
𝟏

𝟏+𝒙𝟐
)

𝟐

 can be a 

suitable scaling function. Genetic algorithm first produces 5 randomly 
numbers which can be -14.5, -10.7, -3.13, 3.5, 4.7. We consider following 
binary format for the individuals in each generation. 

-14.5 → [011101000], 

-10.7→[010100111], 

-3.13→ [000111101],  

3.5→[101000111], 

4.7→[101000111]. 

In this form of binary format, the first digit shows the sign of the number; 

the next four digits show the integer part of the number, and last four 

digit show the fraction part of the number. 

Step 2: Fitness of each individual is calculated. Hence, we will have 

𝑓𝑡 (-14.5)=0.000022, 𝑓𝑡 (-10.7)=0.000074, 𝑓𝑡 (-3.13)=0.008578, 𝑓𝑡 

(3.5)=0.005695, 𝑓𝑡 (4.7)=0.001875. 

Step 3: As there is 80 percent chance of survival, all the individuals pass to 

the next generation. Roulette wheel operator chooses 5 random numbers 

between 0 and 5 (𝑅𝑖), also it calculates 𝑃𝑖 =
𝑓𝑡(𝑥𝑖)

∑ 𝑓𝑡(𝑥𝑖)𝑛
𝑖=1

 , 𝑖 = 1. .5. Table 4.5 

shows all the 𝑃𝑖  and cumulative probability 𝐶𝑖 (𝐶𝑖 = ∑ 𝑃𝑗
𝑖
𝑗=1 ) and 𝑅𝑖. 

𝑖 𝑃𝑖  𝐶𝑖 𝑅𝑖 
1 0.001293108453 0.001293108453 0.041 
2 0.004326529042 0.005619637495 0.003 
3 0.4950285284 0.5006481659 0.014 
4 0.3286976729 0.8293458388 0.688 
5 0.1706541617 1 0.328 

Table 4. 4. Roulette wheel method and probability of selection of individuals. 



For 𝑗𝜖𝑁;  0 ≤ 𝑗 ≤ 4 and 𝐶0 = 0; if 𝐶𝑗 < 𝑅𝑖 < 𝐶𝑗+1 then 𝑥𝑖+1 will be kept in 

the population. Hence, the population will be updates to -3.13, -10.7, -

3.13, 3.5, -3.13. As we can see, the algorithm gives more chances to -3.13 

to produce offspring.  

Step 4: Crossover operator produces a new population by crossover 

between -3.13 and -10.7; -10.7 and -3.13; -3.13 and 3.5; 3.5 and -3.13. For 

single point crossover, first a number between 1 to 8 is randomly selected 

(crossover point). Secondly, the digits of the two numbers are swapped 

based on the crossover point. Figure 4.7 illustrates the single crossover 

between -3.13 and -10.7, if the cross over point is 4. 

 

                [000111101] 

                [010100111]    

Figure 4. 5. Single crossover between -3.13 and -10.7, when the crossover point is 4. 

Hence, if we calculate all the other crossovers then the new generation is  

-4.7, 11.5, 2.8, -3.5, 1.6.  

Step 5: There are 5 chromosomes in the population each have 9 genes, as 

the probability of mutation is 0.03, 1 gene ([3 × 5 × 9/100]9) from one of 

the individuals is randomly selected to mutate. Figure 4.5 illustrates a 

possible mutation on -4.7. 

               −4.7 = [000100111]              [100100111] = 4.7 

Figure 4. 6. A mutation on -4.7. 

Step 6: The new generation is 4.7, 11.5, 2.8, -3.5, and 1.6. This new 

population is replaced with previous one.  

Step 2 to 6 will be repeated until the time we get to one of the stopping 

criteria. The most common stopping criteria are number of generations, 

number of function evaluations, function tolerance10 and time limit. 

                                                             
9 The [ ] shows the integer part of a number. 
10 Function tolerance has a same definition as the one in Nelder-Mead algorithm, however here the 
average fitness value of the previous generation is compared to the current average fitness value.  

[000100111] =-4.7 



In each iteration of the Genetic algorithm a new set of individuals is 

produced, the new set has a better fitness in general. This does not mean 

that all the new individuals are better than the previous generation. There 

might be some individuals with less fitness compared to individuals in 

previous generations. This is mostly because of the mutation operator 

which may produce a not fitted solution. We show in Section 4.3.1 that 

how much mutation operator is important part for Genetic algorithm. In 

fact, the efficiency of this method to explore the wider area of feasible 

solution is coming from mutation.  

4.3.3 Mutation function in Genetic algorithm 

In this section we investigate some special features of the Genetic 

algorithm, which make it different from the other algorithms. The most 

different and important operator in Genetic algorithm is Mutation. By 

Mutation we intentionally may produce some less fitted individuals, 

however in general this operator has important role in efficiency and 

accuracy of the Genetic algorithm. We run the following experiment to 

show how mutation function increases the efficiency of the Genetic 

algorithm.   

In this example, the objective function is 𝑓(𝑥) = |𝑥1| + |𝑥2| , where we 

want to estimate its minimum. The ”ga” command in Matlab11 is applied 

where the stopping criteria is the number of generations (to be at most 

10). The defaults within Matlab are accepted for other settings. Table 2.2 

shows the results where the mutation function is Uniform with the rate of 

0.01 in each generation. In contrast, Table 4.6 shows the result when 

there is no mutation. Both tables show the minimum value of the function 

in each generation. In Table 4.6 (Genetic algorithm with mutation rate of 

0.01), the Genetic algorithm is approaching the optimum value (which is 

zero). For some generations the best value of the objective function is not 

changing but the average best value from each generation is improving, 

which means that the algorithm has not stuck and is in progress.  

As we see in Table 4.7 (Genetic algorithm without Mutation), after a few 

Iterations of the algorithm, none of the best value of the objective 

function and average value are changing.  This means that the algorithm 

has stuck on a non-optimizer point, and cannot skip it. 

                                                             
11 In Section 4.3.2 Matlab implantation of Genetic algorithm is fully explained.  



Generations      f-count       Best  f(x)          Mean f(x)   Stall Generations 
    1                        40            0.1082              1.92                   0 
    2                        60            0.1082              1.841                 1 
    3                        80            0.1082              1.484                 2 
    4                        100          0.1082              1.25                   3 
    5                        120          0.1082              0.6499               4 
    6                        140          0.06233            0.3478               0 
    7                        160          0.06233            0.2185               1 
    8                        180          0.06233            0.2496               2 
    9                        200          0.06233            0.1954               3 
   10                       220          0.06233            0.1746               4 
Optimization terminated: maximum number of generations exceeded. 

Table 4. 7. Genetic algorithm implementation to find the minimum value of 𝒇(𝒙) = |𝒙𝟏| +
|𝒙𝟐|. The mutation function has been set to be Uniform with 0.01 rate and the stopping 
criteria is Max Iteration less than 10. For the rest of the settings, Matlab default settings are 
accepted. 

 

Generation      f-count     Best f(x)         Mean f(x)     Stall Generations 
    1                       40           0.08831          0.7234                      0 
    2                       60           0.08831          0.4706                      1 
    3                       80           0.08831          0.2716                      2 
    4                     100           0.08831          0.1759                      3 
    5                     120           0.08831          0.1016                      4 
    6                     140           0.08831          0.09862                    5 
    7                     160           0.08831          0.09862                    6 
    8                     180           0.08831          0.09862                    7 
    9                     200           0.08831          0.09862                    8 
   10                    220           0.08831          0.09862                    9 
Optimization terminated: maximum number of generations exceeded. 

Table 4. 8. Genetic algorithm implementation to find the minimum value of 𝑓(𝑥) = |𝑥1| +

|𝑥2|, where mutation function is not applicable. The stopping criteria is Maximum number of 

Iterations to be less than 10. For the rest of settings, Matlab default settings are accepted.  

 

4.3.4 Matlab Implementation of Genetic algorithm12 

In this section we explain how Genetic algorithm can be run via Matlab’s 

command line and packages.  

Genetic algorithm is part of the optimization package of Matlab, besides it 

can be run via “ga” command in command line.   

These are Matlab’s defaults regarding the population, crossover, 

mutation, stopping criteria and etc. for an unconstraint optimization 

problem.  

                                                             
12 The Matlab version used in this study is R2013b. For reviewing the optimization settings, Matlab’s 
users guide is employed (see Ljung (1995)). 



The populations have 20 individuals; besides the initial population are 

individuals like (𝑥1, 𝑥2, … , 𝑥𝑛) which are selected uniformly and each 𝑥𝑖  is 

a number between 0 and 1.  

2 is the number of the individuals which is guaranteed will survive and the 

reproduction operator is Roulette wheel. The crossover is scattered. 

Mutation rate is 0.01. Finally, the stopping criteria are as follows: Number 

of generations to be at most 100, infinity time limit, unbounded fitness 

limit, stall generations13 to be at most 50, stall time limit infinity and 

function tolerance to be at most 10−6.  

 

4.4 Comparison of Nelder-Mead algorithm and Genetic 

Algorithm 

Both Genetic algorithm and Nelder-Mead algorithm are considered as 

direct optimization methods. However, as we briefly explained the nature 

of both algorithms is quite different. In this section we aim to provide 

some experiments by Matlab to show how this different nature can affect 

the efficiency of the method in different ways, especially when the size of 

the problem is growing. Figure 3.1 and 3.2 provides a general overview of 

how both algorithms approach the optimized solution. They show the 

results of the first 20 iterations of both algorithms for minimization of 

𝑓(𝑋) = |𝑥1| + |𝑥2|. For Nelder-Mead algorithm the initial point is 

𝑋 = (1,1) and for Genetic algorithm all the first generation elements are 

considered to be 1. As we see, Nelder-Mead algorithm gradually 

approaches to the optimized solution, but the Genetic algorithm quickly 

gets close to the solution. However, later it fluctuates around the solution 

(point [0,0]). 

                                                             
13 When the weighted average change in the fitness function value over all the Stall generations is less 
than Function tolerance, the algorithm terminates. 



 

Figure 3.1. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for 

minimization of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The initial point for NM is 𝑋 = (1,1) and all the 

elements of the first generation for GA are 1. Rest of the settings for both algorithms 

are Matlab’s default. 

 

Figure 3.2. The results of 20 first iterations for Nelder-Mead and Genetic algorithm for 

minimization of 𝑓(𝑋) = |𝑥1| + |𝑥2|. The initial point for NM is 𝑋 = (1,1) and all the 

elements of the first generation for GA are [1]𝑛×𝑛. Rest of the settings for both 

algorithms are Matlab’s default. 

     Nelder-Mead algorithm 

     Genetic algorithm 

 

     Nelder-Mead algorithm 

     Genetic algorithm 

 



In the next sections we design some Matlab experiments to compare the 

algorithm regarding the speed and accuracy when the size of algorithm is 

growing, and resilience to the initial guess.  

 

4.4.1  Speed and Accuracy 

In this section, we run an experiment on some test functions to compare 

the speed and accuracy of Nelder-Mead algorithm and Genetic algorithm 

when the size of the problem is growing. The algorithms are also 

compared  when we aim to catch a very precise solution. The experiment 

will be as follows. 

Experiment A 

a) For Nelder-Mead algorithm the initial point is set to be 𝑋 = [1]𝑛×𝑛 , 

where 𝑛 is the size of the problem. For rest of the settings, Matlab’s 

default  are accepted. 

b) For Genetic algorithm all the elements of the first generation are set 

to be [1]𝑛×𝑛, for rest of the settings Matlab’s default are accepted. 

c) Both algorithms employed to minimize the real value function 

𝑓(𝑋) = 𝑦, 𝑅𝑛 → 𝑅.  

d) Both algorithms will stop when the best function value gets to 10−2 

and 10−4.  

e) The results regarding to the required time and accuracy will be 

observed. 

In Example 4.3 and Example 4.4, the experiment is employed on the 

functions ∑ 𝑥𝑖
2𝑛

𝑖=1  and  ∑ 𝑥𝑖
4𝑛

𝑖=1  when 𝑛 is increasing. We can observe 

that Nelder-Mead algorithm shows much more sensitivity to the 

number of the parameters. For more than around 200 variables, the 

required time for Nelder-Mead algorithm is growing exponentially and 

it is much more than the Genetic algorithm. 

In Example 4.5, the experiment is employed on the function ∑ |𝑥𝑖|𝑛
𝑖=1 . 

We can observe that by increasing 𝑛, the accuracy of the 

approximations by Nelder-Mead algorithm is questionable as it may 

stick to a non-stationary point. While, for any number of the 

parameters Genetic algorithm approaches to the optimized solution in 

reasonable amount of time. 



In Example 4.6, the experiment is employed on ∑ 𝑥𝑖
2𝑛

𝑖=1  ,  ∑ 𝑥𝑖
4𝑛

𝑖=1  and 

∑ |𝑥𝑖|𝑛
𝑖=1  while we want to get a precise answer like 10−6. We observe 

that as the size of the problem is growing, both algorithms may face 

different difficulties. While Genetic algorithm is getting too slow, 

Nelder-Mead algorithm may stick on a non-stationary point. When the 

algorithm needs more than 12 hours to get to the answer, we stop it. 

We mention this situation with “more than 12 hours” in the table. 

Example 4. 3. In this experiment the objective function is ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 . 

 
𝑛 

The ratio of required time for NM 
and GA to get 10−2 (NM/GA) 

                                           

The ratio of required time for NM and 
GA to get 10−4 (NM/GA) 

 
2   0.26 

0.12 
0.14 

0.6071 
0.3606 
0.2083 
0.1539 
0.1969 

31.3008 
1.5214 
1.8668 

0.1104 
0.0791 
0.1696 
0.1016 
0.0278 
0.1490 
0.1662 
 0.2649 
12.3427 
2.4187 
 17.44 

5 
10 
20 
40 
60 
80 

100 
200 
300 
400 

Table 4. 9. Experiment A is applied on ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 . As we see when the number of parameter in 
objective function is more than 200 the required time for Nelder-Mead algorithm is much 
more than Genetic algorithm. 

Example 4. 4. In this experiment the objective function is ∑ 𝑥𝑖
4𝑛

𝑖=1 . 

 
𝑛 

The ratio of required time for NM 
and GA to get 10−2 (NM/GA) 

 

The ratio of required time for NM 
and GA to get 10−4 (NM/GA) 

 
2   0.2661 

 0.2051 
0.1636 
 2.3894 
0.8215 
0.3607 
0.7691 
0.0910 

31.9097 
45.6721 
70.4575 

0.05449 
0.0215 
0.0758 
2.8241 

32.3044 
 0.3835 
0.4408 
 0.2917 

 10.8511 
15.7904 
53.8360 

5 
10 
20 
40 
60 
80 

100 
200 
300 
400 

Table 4. 10. Experiment A is applied on ∑ 𝑥𝑖
4𝑛

𝑖=1 . As we see when the number of parameter in 

objective function is more than 200 the required time for Nelder-Mead algorithm is much 

more than Genetic algorithm. 

 



Example 4. 5. In this experiment the objective function is ∑ |𝑥𝑖|𝑛
𝑖=1 . 

  
 𝑛 

Required time to get 10−2 
NM                        GA 

Required time to get 10−4 
NM                    GA 

2 0.019254 0.326261 0.039635 0.259384 
5 Sticks on 0.047 3.686796 Sticks on 0.047 36.998387 

10 Sticks on 5.521 14.558425 Sticks on 5.521 91.690288 
20 Sticks on 14.2314 50.627152 Sticks on 14.2314 433.756074 
40 Sticks on 35.6911 1058.645011 Sticks on 35.6911 8788.1212 
60 Sticks on 53.3124 3656.672690 Sticks on 53.3124 11393.1479 

Table 4. 11. Experiment A is applied on ∑ |𝒙𝒊|
𝒏
𝒊=𝟏 . As we see when number of parameters are 

more than 5 the Nelder-Mead algorithm sticks at some non-optimized point and it cannot go 
further, while Genetic algorithm approaches to the optimized solution in a reasonable amount 
of time. 

Example 4. 6. 

 
  𝑛 

Required time to get 10−6 

for ∑ 𝑥𝑖
2𝑛

𝑖=1  
NM                        GA 

Required time to get 10−6 

for ∑ 𝑥𝑖
4𝑛

𝑖=1  
NM                        GA 

Required time to get 10−6 

for ∑ |𝑥𝑖|𝑛
𝑖=1  

NM                        GA 

2 0.0257 2.5617 0.0356 0.8056 Sticks on 
0.047 

4863.2788 

5 0.0682 14.7180 0.0788 6.7447 Sticks on 
5.521 

More than 12 
hours 

10 0.2794 38.8972 0.2932 81.3114 Sticks on 
14.2314 

More than 12 
hours 

20 2.0646 473.2614 26.0608 11.8491 Sticks on 
35.6911 

More than 12 
hours 

40 Sticks on 
1.284e-04 

1943.6764 807.5236 28.7380 Sticks on 
53.3124 

More than 12 
hours 

60 3190.1431 7021.4342 12.2927 52.9163 Sticks on 
72.5001 

More than 12 
hours 

80 5242.4003 16169.5863 7.7829 45.4004 Sticks on 
105.20 

More than 12 
Hours 

100 5764.9515 25086.7694 5448.6296 28009.0235 Sticks on 
271.05 

More than 12 
Hours 

200 3693.0811 2048.2406 3358.2581 2254.4718 Sticks on 
541.07 

More than 12 
Hours 

300 Sticks on 
1.236e-04 

More than 12 
Hours 

14756.7279 6318.6862 Sticks on 
1155.22 

More than 12 
Hours 

400 Sticks on 
1.560e-04 

More than 12 
Hours 

Sticks on 
1.421e-04 

More than 12 
Hours 

Sticks on 
7802.43 

More than 12 
Hours 

Table 4. 12. Experiment A is ran for functions ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 , ∑ 𝒙𝒊
𝟒𝒏

𝒊=𝟏  and ∑ |𝒙𝒊|
𝒏
𝒊=𝟏  to get 𝟏𝟎−𝟔 for 

the objective function. As we see, for large value of 𝒏 Nelder-Mead has more chance to stick at 
a non-optimized point. Meanwhile, the Genetic algorithm slows down. 

 

4.4.2  Resilience 

In this section we run an experiment to show the dependency of the 

Nelder-Mead algorithm on the initial point and it can provide an 

estimation for a local optimum not a global one. However, regardless of 



the position of the initial point the Genetic algorithm can estimate the 

global optimum.  

The experiment is as follow. 

Experiment B 

a) Consider the functions 

 𝑓0(𝑥) = min(|𝑥|, |0.8 − 𝑥| + 0.5),   

𝑓1(𝑥) = min(|𝑥|, |0.4 − 𝑥| + 0.2) and 

𝑓2(𝑥) = min(|𝑥|, |0.2 − 𝑥| + 0.1). 

b) Run the Nelder-Mead algorithm to minimize 𝑓0, 𝑓1 and 𝑓2 several 

times with different initial values. The initial point are  𝑥 =

1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3 and 0.1. For rest of the settings 

Matlab’s default settings are accepted. 

c) Run the Genetic algorithm to minimize 𝑓0, 𝑓1 and 𝑓2 several times 

with different initial populations. We suppose all the member of the 

first population are equal 𝑥 where 

 𝑥 = 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3 and 0.1. For rest of the settings 

Matlab’s default settings are accepted. 

Figure 4.12 shows the graph of the 𝑓0, 𝑓1 and 𝑓2 when −1 ≤ 𝑥 ≤ 1. As we 

can see, the global minimum of all the functions are at 𝑥 = 0. Where they 

have a local minimum at  (0.8, 0.5), (0.4, 0.2) and (0.2, 0.1), respectively. 

Table 4.13 shows the results of the Experiment B on these three functions. 

As we can see in Table 4.13 based on the place of the initial guess, the 

Nelder-Mead algorithm may approximate a local minimum instead of 

global minimum, while Genetic algorithm always provides a reasonable 

estimation for the global minimizer.   

 



 

Figure 4. 13. 𝒇𝟎, 𝒇𝟏 and 𝒇𝟐 are shown with red, blue and green lines respectively, when 
−𝟏 ≤ 𝒙 ≤ 𝟏. The global minimum value of all the functions is 0, while they have local 
minimum at (𝟎. 𝟖, 𝟎. 𝟓), (𝟎. 𝟒, 𝟎. 𝟐) and (𝟎. 𝟐, 𝟎. 𝟏) respectively.  

 

Initial 
point 

Best function value for 𝑓0(𝑥) 
NM                         GA 

Best function value for  𝑓1(𝑥) 
NM                           GA 

Best function value for 𝑓2(𝑥) 
NM                    GA 

1.5 0.5000 0.001824477 3.5527×

10−15 

0.00798839 3.5527×

10−15 

0.0238 

1.3 0.5000 0.004202643 1.1102×

10−15 

0.00795729 1.1102×

10−15 

0.0051 

1.1 0.5000 0.00184088 3.1086×

10−15 

0.0051631 3.1086×

10−15 

0.0124 

0.9 0.5000 8.4947×
10−4 

0.20000 0.001339320 3.3306×
10−16 

0.0033 

0.7 0.5000 0.0047894 2.8865×

10−15 

0.0029093 2.8865×

10−15 

0.0050 

0.5 4.4408×
10−16 

0.0055141 0.2000 6.2638×
10−4 

4.4408×
10−16 

0.0084 

0.3 8.3266×
10−16 

0.003045794 0.2000 0.0068190 0.1000 0.0089 

0.1 1.9428×
10−16 

0.0092903 1.9428×
10−16 

0.001012 1.9428×
10−16 

2.0888×
10−4 

Table  4. 14. Nelder-Mead Algorithm and Genetic algorithm are applied for 𝒇𝟎, 𝒇𝟏 and  𝒇𝟐 
when the initial point for Nelder-Mead algorithm is changing and the element of the first 
generation in Genetic algorithm are all equal to the initial point of Nelder-Mead algorithm. As 
we can see, where Genetic algorithm always provides a reasonable estimation of the global 
minimum, Nelder-Mead algorithm may approach to the local optimum. 

For more illustrations, Table 4.14 and Table 4.15 show the iterations of the 

Nelder-Mead algorithm and Genetic algorithm for 𝑓0(𝑥) = min (|𝑥|, |0.8 −

𝑥| + 0.5). The initial guess for Nelder-Mead algorithm is 𝑥 = 1. All the 



individuals in the first generation of the Genetic algorithm is also 1. For 

the rest of the settings, Matlab’s defaults are accepted.   

As we see in Table 4.14, Nelder-Mead algorithm approaches the local 

minimum (0.5). In fact, after some iterations the algorithm approaches to 

the local minimum and then by repeatedly inside contracting it makes a 

smaller simplex were the best vertex is always 0.5. There is no operation 

embedded in Nelder-Mead algorithm which makes it able to skip the local 

minimum. 

In Table 4.15, we see that initially the algorithm shows the amount of the 

local optimum. However, quickly it gets closer to the global optimum. 

Both the best value of and average of values of a generation can increase 

in one specific generation (for example iteration 40), but in general the 

algorithm is proving an approximation for the global optimum. In fact, 

mutation operator embedded in Genetic algorithm makes it able to jump 

another area of feasible solutions; as a result it will explore a wider area.     

Iteration   Func-count     min f(x)    Procedure 
     0            1                     0.7          
     1            2                     0.7         initial simplex 
     2            4                     0.6         expand 
     3            6                     0.5         reflect 
     4            8                     0.5         contract inside 
     5           10                    0.5         contract inside 
     6           12                    0.5         contract inside 
     7           14                    0.5         contract inside 
     8           16                    0.5         contract inside 
     9           18                    0.5         contract inside 
    10           20                   0.5         contract inside 
    11           22                   0.5         contract inside 
    12           24                   0.5         contract inside 
    13           26                   0.5         contract inside 
 Optimization terminated: 
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04  
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04 

Table 4. 15. Nelder-Mead algorithm is applied for the objective function 𝒇𝟎(𝒙) =

𝐦𝐢𝐧 (|𝒙|, |𝟎. 𝟖 − 𝒙| + 𝟎. 𝟓). The start point is 𝒙 = 𝟏 and the stopping criterion is 𝟏𝟎−𝟒 
Function-tolerance. As we see the algorithm sticks on the local minimum 𝒇(𝒙) = 𝟎. 𝟓.   

 

 

 

 



Generation  f-count       Best f(x)          Mean f(x)     
    1                  40                 0.5                  0.5587                
    2                  60                 0.5                  0.6039                
    5                 120              0.2795             0.75                     
   10                220              0.06749          0.3312                 
   15                320              0.0286             0.2483                
   20                420              0.0286             0.2859                
   30                620              0.009367         0.1583               
   40                820              0.00797           0.2894               
   50               1020             0.00797           0.1568              
   51               1040             0.00797           0.2081              
Optimization terminated: average change in the fitness value less than options.TolFun. 

Table 4. 16. Genetic algorithm is applied for the objective function 𝒚 = 𝐦𝐢𝐧 (|𝒙|, |𝟏 − 𝒙| +

𝟎. 𝟓). The stopping criteria is 𝟏𝟎−𝟒 Function-tolerance, the first generation is 𝒙 = 𝟏. The 
algorithm provides the reasonable approximation of the global minimum point 𝒙 = 𝟎. 

 

Conclusion 

Nelder-Mead and Genetic algorithms are widely used in different fields of 

science as robust optimization methods. In this study, we compare these 

two methods in the sense of required time, accuracy and dependency to 

the initial guess for the problem with large scale. All the experiments show 

that Nelder-Mead algorithm can be efficient just when the objective 

function has a small number of parameters. Mutation operator within 

Genetic algorithm is a strong tool for the efficient progress of the 

algorithm, and its approach to the global optimum point.  
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Appendix C 

In this appendix, we explain more about the operators in Genetic 

algorithm. In general, the algorithm has three operators which are: 

Selection and reproduction, Crossover and Mutation. While the general 

format of the algorithm is the same, the operator may vary in different 

problems (see Mitchell (1998)). 

C.1 Selection  

Selection can have different forms like Roulette wheel, Tournament or 

Elite count (Elitism). Each method has its own characteristics and it is 

suitable for specific type of problems. It may happen also that first Elitism 

operator is run and then another selection method also is employed. 

a) Roulette wheel Selection  

In this operator, first based on the fitness function (𝑓𝑡(𝑥)) all the 

individual’s fitness are evaluated. Then 𝑃𝑖 =
𝑓𝑡(𝑥𝑖)

∑ 𝑓𝑡(𝑥𝑖)𝑛
𝑖=1

 , 𝑖 = 1. . 𝑛 and 

𝐶𝑖 = ∑ 𝑃𝑖
𝑖
𝑗=1  (𝐶0 = 0) are calculated where 𝑛 is the number of individuals 

in the population. Obviously the more fitted individual will have higher 

probability (𝑃𝑖). We can demonstrate the situation in following graph, 

where area 3 is for the most fitted area 1 is for less fitted individuals. 

 

 

 

 

 

Figure C. 1. The Roulette wheel Selection operator. 

𝑛 numbers between 0 and 1 are randomly selected. For 𝑗𝜖𝑁;  0 ≤ 𝑗 ≤

𝑛 and 𝐶0 = 0; if 𝐶𝑗 < 𝑅𝑖 < 𝐶𝑗+1 then 𝑥𝑖+1 will be kept in the population. 

Obviously by this method the more fitted individuals has more chance to 

reproduce. 

b) Tournament Selection 

In this operator, first based on the fitness function (𝑓𝑡(𝑥)) all the 

individual’s fitness are evaluated. If you want to pass 𝑙 < 𝑛 (𝑙  is called 

 

𝐶1 

𝐶2 

𝐶3 

1 − 0 

1 

2 

3 

4 



tournament size) number of individuals to the next generation; first,  𝑗 < 𝑙 

number of individuals are randomly (uniform distribution) selected and 

the best individual is kept in the population. This procedure will be 

repeated until the time that there is  𝑙 number of individuals in the 

population. 

c) Elitism Selection 

Selection operators determines in each generation how many of the less 

fitted individuals will die (will be deleted from the population). It can be in 

the form of exact number of individuals or percentage. 

C.2 Crossover 

Crossover produces a new generation by parents being selected by 

Selection operator. Single point cross over, two point cross over and 

scattered crossover are the most methods of crossover.   

a) Single point crossover 

For single point cross over between chromosome A and B, first a number 

like 𝑗 between 1 and 𝑚 (length of the chromosome) is randomly selected. 

Then for the offspring the first 𝑗 genes are copied from chromosome A 

and rest of the genes from chromosome B.  

 

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6]. 

Then single crossover is as follow if the crossover point is 4. 

                       [a,b,c,d,e,f,g,h]  

                       [1,2,3,4,5,6,7]. 

Figure C. 2. A single point Crossover. 

b) Two point Crossover 

It is similar to single point crossover, however two numbers are selected 

randomly between 1 and 𝑚 (length of the chromosome). 

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6]. 

Then two point crossover is as follow if the crossover point is 4 and 6. 

 

[a,b,c,d,5,6,7] 



                       [a,b,c,d,e,f,g,h]  

                       [1,2,3,4,5,6,7]. 

Figure C. 3. A two point Crossover. 

c) Scattered Crossover 

It first generates a random binary vector with the same length of the 

chromosomes. Then wherever in the vector is 1, the gene is selected from 

parent chromosome A and wherever in the vector is 0, the genes is 

selected from parent chromosome B. 

If we show the parents chromosomes by [a,b,c,d,e,f,g] and [1,2,3,4,5,6]. 

Then scattered crossover is as follow if the crossover vector is 

 [1 0 1 1 0 0 1]. 

                       [a,b,c,d,e,f,g,h]  

                       [1,2,3,4,5,6,7]. 

Figure C. 4. A Scattered Crossover. 

 

C.3 Mutation 

The Mutation operator randomly changes some genes/ chromosomes in 

the population. The typical way of mutation is first calculating A=[number 

of individuals in the population×length of each chromosome×mutation 

rate]14. Then randomly A number of the genes in a population are selected 

to be changed. 

 

 

                                                             
14 [ ] calculates the integer part of a number. 

[a,b,c,d,5,6,h] 

[a,2,c,d,5,6,h] 
[1 0 1 1 0 0 1] 


