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Response to reviewers 
 
Many thanks for your comments and the opportunity to resubmit our article. Our responses 
are highlighted in red below.  
 
Reviewer #1: I have been asked to review the submitted manuscript entitled "Automated 
cytological detection of Barrett's neoplasia with infrared spectroscopy" by Dr. Old et al.. They 
evaluated the accuracy for cytological diagnosis of Barrett's esophagus, dysplasia, and 
adenocarcinoma using Fourier Transform infrared spectroscopy (FTIR). I agree with the clinical 
importance of automated diagnostic methods of Barrett's metaplasia and carcinoma. FTIR 
looks promising but further investigation seems to be needed. However, there are several 
concerns especially in the study design. 
 
1. The training set have to be separated from the test set. I could not clearly figure out whether 
the 17 patients in training set were included in the whole 66 patients. If the training dataset 
were included in the test set, overfitting results could be shown. Flow diagram should be added 
to explain each cohort. 
 
No spectra included in the training set were included in the test dataset, as stated in the text 
in the section headed ‘Test dataset’ in the Results: 
 
‘Cells that were included in the training dataset were excluded from the test set, to prevent 
overestimation of performance.’ 
 
I have moved this sentence to the Methods section for clarity. The following flow diagram (as 
suggested) could be added immediately after this sentence to aid understanding, however 
we have reached the limit of the number of figures allowed for this manuscript, so I cannot 
attach a further figure. This could be included as Figure 1 (with renaming of later figures) if 
the editors will allow.  
 

 

Response to Reviewers Click here to download Author's Response to Reviewers'
Comments Response to reviewers.docx
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2. Gold standard for this study should be the pathological diagnosis using biopsy samples. 
Then the diagnostic accuracy should be compared between FTIR and the classical cytological 
diagnosis. 
 
The gold standard for comparison for the test set in this study was the biopsy result, as 
suggested. We have highlighted this with a further sentence in the ‘Test dataset’ section as 
follows: 
 
‘This predicted pathology was compared against the biopsy result from the same region and 
sensitivity and specificity calculated using this gold standard.’ 
 
Not every cell was examined cytologically (there were 5,374 cells in total) as this was felt to 
be impractical. This was however used for every cell included in the training dataset as 
outlined in the ‘Training dataset’ section: 
 
‘cells whose classification on appearance by two cytopathologists was in agreement with 
contemporaneous endoscopy and biopsy from the same region were included.’  

 
3. There is no description that samples of low-grade dysplasia were included in which group. 
 
We have added the following sentence in the ‘Training dataset’ section: 
 
‘The dysplasia/adenocarcinoma group included any degree of dysplasia (low or high grade), 
but samples classified as ‘indefinite for dysplasia’ were excluded.’   

 
4. A scatter plot (like fig. 1) of the test set should be shown. 
 
The analysis of individual cells in the test dataset is more complicated than the training 
dataset: cells in the training set have a known cytological appearance that matches the 
histology taken from the same locus. Since every cell has a known pathology label, a scatter 
plot can be produced using the known label for every cell. In the test dataset, individual cells 
do not have a known pathology label. The pathology of the whole slide is known, but the 
individual cells on the slide may be a heterogeneous population. For this reason we used a 
threshold voting system to assign predicted pathology to whole slide samples based on the 
number of cells per slide of a given predicted pathology. It is not possible to present this data 
with a scatter plot in the same way as Figure 1 of the training dataset.  
 
 
5. It looks difficult to discriminate the three groups at once. Since the diagnostic accuracy for 
normal squamous cells seems to be comparably high, I recommend the diagnostic method 
should be separated into two steps: first, distinguish columnar cells from squamous cells; 
second, distinguish dysplasia/adenocarcinoma from metaplastic cells. Such physiologically 
reasonable strategy might elevate the accuracy. Even if you can achieve good performance 
only in the first step, this could be clinically useful for the screening of high risk group. 
 



We attempted this in our initial analysis and it gave similar results to the 3 group model 
presented in our paper. The results from our initial 2 group model (differentiating normal 
squamous from columnar cells, as suggested by Reviewer 1) were as follows: 
 

 
 

 
 
 
Since the values were similar to those from the 3 group model, and including a further table 
and graph lengthens the paper further, we decided not to present this additional data in our 
manuscript. We have added the following sentence to the discussion to indicate this: 
 
‘A two-stage analysis may be developed whereby cells are initially separated into squamous 
or columnar by a predictive model, and then a further analysis used to separate dysplastic 



and non-dysplastic cells. A two-stage model was attempted using the current dataset, giving 
very similar results to the 3-group model presented here (two-stage results not shown).’  

 
 
Reviewer #2: Summary  
Old et al. developed automated cytological detection of esophageal adenocarcinoma or 
dysplasia in Barrett's esophagus. This paper is a well-written interesting study. 
 
1. Although the authors discussed, reasons why the authors set small number of the training 
dataset of Barrett's esophagus are not clear. 
 
We have elaborated on this further in the Discussion section as follows: 
 
‘The major limiting factor in this study was the small number of cells in the Barrett’s training 
dataset. Small numbers of cells were seen on the Barrett’s cell slides selected for 
cytopathology analysis: this was likely due to suboptimal cell preparation for the relatively 
smaller Barrett’s cells (smaller than squamous or dysplastic cells, which tended to clump 
together on our cell preparation) – a difficulty of optimizing cell preparation and 
centrifugation for different cell types. Additionally, the small Barrett’s cells were more likely 
to be missed by our cell detection algorithm (the binary mask). This left a low number of cells 
that were identified by the binary mask, and also identified by both reporting cytopathologists 
as unequivocally representing Barrett’s cells.’ 
 
 
2. The authors should clearly state that this automated cytological detection is unsuitable for 
Barrett's esophagus screening because of low sensitivity. 
 
The following sentence has been added to the Conclusions: 
 
‘The low sensitivity for non-dysplastic Barrett’s using the present technique is not suitable as 
for screening purposes.’ 
 
 
3. What diagnosis was obtained by FITR spectroscopy in the case of misdiagnosis? 
 
We have inserted the following table as part of Table 4. This confusion matrix shows the 
diagnosis in cases of misclassification. 
 
 
 

 Predicted pathology  

True Pathology NSQ BE DYS/AC TOTALS 



NSQ 15 0 4 19 

BE 7 10 15 32 

DYS/AC 7 0 35 42 

TOTALS 29 10 44 93 

 
 
4. Higher quality of figure 3 is required. 
 
We have reproduced this figure at higher resolution (see figure file uploaded). 
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Abstract 

Background 

Development of a non-endoscopic test for Barrett’s esophagus (BE) would 

revolutionize population screening and surveillance for patients with BE. Swallowed 

cell collection devices have recently been developed to obtain cytology from the 

esophagus: automated detection of neoplasia in such samples would enable large-

scale screening and surveillance. 

Methods 

Fourier Transform infrared spectroscopy (FTIR) was used to develop an automated 

tool for detection of BE and Barrett’s neoplasia in esophageal cell samples. Cytology 

brushings were collected at endoscopy, cytospun onto slides and FTIR images 

measured. An automated cell recognition program was developed to identify 

individual cells on the slide. 

Results 

Cytology review and contemporaneous histology was used to inform a training 

dataset containing 141 cells from 17 patients. A classification model was constructed 

using principal component analysis (PCA) fed linear discriminant analysis (LDA), 

then tested using leave one sample out cross validation (LOSOCV). Applying this 

training model to whole slide samples, a threshold voting system was used to 

classify samples according to their constituent cells. Across the entire dataset of 115 

FTIR maps from 66 patients, whole samples were classified with sensitivity and 

specificity respectively as follows: normal squamous 79.0% and 81.1%, non-

dysplastic Barrett’s 31.3% and 100%, and neoplastic Barrett’s 83.3% and 62.7%.  

Conclusions 

Analysis of esophageal cell samples can be performed using FTIR with reasonable 
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sensitivity for Barrett’s neoplasia, though poor specificity with the current technique. 
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BACKGROUND 

The current British Society of Gastroenterology (BSG) guidelines list several future 

developments that would ‘revolutionize the care of individuals with Barrett’s 

esophagus and should be priorities for policy makers and funders’, of which the 

number one item listed is ‘a non-endoscopic test(s) for diagnosis and surveillance’ 

[1]. Development of an accurate, minimally invasive, relatively low-cost test could 

radically alter current models of endoscopic surveillance, and overcome the greatest 

obstacles to screening for Barrett’s, namely the cost, acceptability and risks of 

endoscopy.  

Swallowed cell collection devices offer a potential non-endoscopic means of 

sampling from the esophagus. Balloon collection devices have been used in eastern 

Asia for several decades as a screening tool for squamous cell carcinoma of the 

esophagus [2–4]. A balloon device has been trialed for Barrett’s-associated 

neoplasia, but challenges included inadequate cell collection and reduced sensitivity 

for dysplasia [5]. Results from the same study suggested that brush cytology has the 

potential to collect a representative sample, but the difficulty of interpretation of low 

grade dysplasia may limit the sensitivity using conventional cytological assessment. 

If a swallowed cell collection device were to be used as a screening tool for Barrett’s 

this would pose a number of challenges for conventional cytological assessment. 

Firstly, esophageal cytology is performed relatively infrequently, and expertise in this 

field is correspondingly limited. Secondly, assessment of cells may be challenging 

and shows variable correlation with histology taken contemporaneously [6–8]. 

Thirdly, a swallowed device that enters the stomach may have glandular cells from 

the stomach and these must be differentiated from esophageal glandular metaplasia. 
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Fourthly, if expert cytological assessment were required for every sample collected 

as part of population screening, this would require significant resources.  

The recently developed Cytosponge™ device aims to overcome a number of these 

challenges through immunostaining with Trefoil Factor 3 (TFF3), with promising 

results for detection of BE [9,10]. 

An alternative approach to conventional cytological cell classification uses Fourier 

Transform infrared spectroscopy (FTIR). In FTIR spectroscopy, infrared radiation is 

passed through a sample. Some of the infrared radiation is absorbed by the sample 

and some of it passes through (i.e. it is transmitted). The resulting spectrum 

represents the molecular absorption and transmission, creating a molecular 

fingerprint of the sample based on its biomolecular composition. This makes infrared 

spectroscopy useful for several types of analysis. 

Subtle variations in sample biochemistry can be detected, highlighting different 

pathology states, and FTIR spectra can be used to build classification models to 

assign pathology labels to a range of biomedical samples [11].  

To date there have been a small number of studies showing the ability of FTIR 

spectroscopy to classify BE using esophageal tissue [12–14], and only one small 

study showing feasibility in detection of BE using esophageal cells [15].  The present 

study was designed as a larger study to evaluate FTIR as a means for detecting 

Barrett’s neoplasia in esophageal cells from brush cytology samples.  
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METHODS 

Sample collection 

Although the long term goal is non-endoscopic cell collection, samples in this study 

were taken under direct vision at endoscopy to allow contemporaneous biopsy and  

rigorous inclusion criteria to inform a training dataset.  

Ethical approval was obtained for this study and all patients participating in the study 

provided informed consent. Samples were collected from patients undergoing 

scheduled endoscopy for Barrett’s surveillance. In order to enrich the sample 

population for patients with esophageal adenocarcinoma, some samples were also 

collected from patients undergoing surgery for esophageal cancer. Normal 

esophageal squamous cells, used as controls, were collected from patients 

undergoing routine endoscopy in whom no endoscopic or histological abnormality 

was identified.  

Cytology samples were collected at endoscopy using an endoscopic cytology brush 

passed down the instrument channel of an endoscope, under direct vision at 

endoscopy. The cytology brush containing the cells was then stored in formalin at 

room temperature until slide preparation.  

In order to be certain that cells included in the training dataset were representative of 

the specified pathology, a biopsy was taken from the area after cell collection, and 

only those cells whose cytological appearance was consistent (on review by two 

cytopathologists) with the contemporaneous endoscopy and biopsy results were 

included. In cases where the cytology and histology results did not agree, the cells 

were not included in the training model.  

For later analysis of whole samples included in the test dataset, the classification of 

the whole sample was based on the endoscopy and biopsy result as the gold 
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standard. To remove further the possibility of misclassification, patients were only 

included in the test dataset if they had no history of more advanced disease i.e. to be 

included as a normal control they must have no history of BE, and to be included as 

a BE case they must have no history of esophageal dysplasia/adenocarcinoma.  

 

Sample measurement 

Cell samples were transferred to calcium fluoride slides for measurement; a detailed 

protocol of this procedure is included in Appendix A of the Electronic Supplementary 

Material.  

Samples were measured at the Biophotonics Unit at Gloucestershire Royal Hospital 

using a Perkin Elmer Spectrum One FTIR spectrometer with a Perkin Elmer 

Spotlight 400 imaging system. Infrared absorption maps were obtained in 

transmission mode, raster scanning at 6.25m per pixel, using 4cm-1 spectral 

resolution across a wavenumber range of 750-4000cm-1. An initial background 

reading was taken using 120 scans per pixel from an acellular region of the slide. 

Maps of infrared absorption were collected across a 4mm x 2mm region of each 

slide, measuring 2 scans per pixel.  

 

Data processing: automated identification of cells 

Our intention was to develop a system that used mapping to measure large areas 

and then automatically identify cells within the measured region.  An automated 

measurement system could then be used to analyze cells on a slide without having 

to visually identify and measure each cell individually.  
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Initial data processing steps were applied to enhance signal to noise ratios in the 

measured cell spectra, and prepare spectra for further analysis.  

A post-processing algorithm was developed to detect cellular regions and extract the 

spectra from this region, assigning it to a particular cell. The spectra measured from 

each individual cell could then be analyzed and a classification label assigned to that 

particular cell. The pre-processing steps and post-processing algorithm are 

described further in Appendix B of the Electronic Supplementary Material. Similar 

techniques have been described previously by a number of authors [16–18]. 

 

Developing a training dataset 

The training dataset was composed of cells from a preliminary group of patients. 

After identification by the binary mask algorithm, cells whose classification on 

appearance by two cytopathologists was in agreement with contemporaneous 

endoscopy and biopsy from the same region were included. The 

dysplasia/adenocarcinoma group included any degree of dysplasia (low or high 

grade), but samples classified as ‘indefinite for dysplasia’ were excluded.   

Multivariate analysis was then performed to identify spectral differences between 

cells from the different pathology groups to enable classification based on cell 

spectra. Principal component analysis (PCA) was used to identify variance between 

the spectra and reduce the complexity of the dataset. Linear discriminant analysis 

(LDA) was then used to incorporate information about which pathology groups the 

spectra came from, and build diagnostic classification models. Diagnostic 

classification models were then tested using leave-one-sample-out-cross validation 
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(LOSOCV): each sample is sequentially tested in training models that contains data 

from every sample except the one being tested.  

Classification models developed using the training dataset could then be applied to 

the full dataset, to classify whole samples from individual patients. Cells that were 

included in the training dataset were excluded from the test set, to prevent 

overestimation of performance.  

Since not every cell on a slide would necessarily have the same classification, a 

‘threshold voting’ system was used to assign a classification to a given sample. For 

example, a 30% threshold per cell would mean that, if 30% or more spectra from that 

cell were classified as dysplastic, the entire cell is classified as dysplastic. Similarly, 

if 30% of cells on a slide are found to be dysplastic the sample is classified as 

dysplastic. This is a higher threshold than that used by cytologists, whereby the 

presence of any dysplasia is sufficient for classification as dysplastic, but aimed to 

ensure higher specificity when very large numbers of cells were being tested for 

each patient.  

 

RESULTS 

Training dataset 

The training dataset was developed using 141 cells from 17 patients (8 normal 

squamous, 4 BE, 5 dysplasia/adenocarcinoma), with a total of 1,480 spectra. The 

data included in the training dataset are shown in Table 1.  

A classification model was constructed using PCA-fed LDA. The linear discriminant 

functions are shown in Figure 1. LDA achieves good grouping and separation of 

each of the pathology groups, but there remains a cluster of BE datapoints close to 
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the other two groups. Every one of these outlying datapoints was from a single 

sample.  

 

Table 1 Summary of data included in the training dataset. 

 No. of patients No. of cell regions No. of spectra for 

analysis 

NSQ 8 22 726 

BE 4 12 76 

DYS/AC 5 22 678 

TOTAL 17 56 1,480 

NSQ normal squamous; BE Barrett’s esophagus; DYS/AC 

dysplasia/adenocarcinoma 

 

 

TAKE IN FIGURE 1 

 

Figure 1 Scatter plot of all spectra in training dataset, plotted by linear discriminant 

(LD) function. NSQ = normal squamous, Barrett’s = Barrett’s esophagus, Adenoca. = 

adenocarcinoma. 

The performance of the training dataset classification model was then tested using 

LOSOCV: the results are shown in Table 2.  
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Table 2 Performance of the training cells 3 group classification model 

 NSQ BE DYS/AC 

Sensitivity % (SD) 83.6 (5.2) 62.8 (0.8) 69.5 (4.5) 

Specificity % (SD) 70.8 (3.8) 97.5 (0.9) 87.8 (3.5) 

SD standard deviation; NSQ normal squamous; BE Barrett’s esophagus; DYS/AC 

dysplasia/ adenocarcinoma. 

 

The sensitivity of the model for individual spectra is reasonably good for normal 

squamous cells at 83.6%, but only moderate for the Barrett’s and 

dysplasia/adenocarcinoma cells. The standard deviation was largest for the normal 

squamous cells, as would be expected since the cells chosen were different for each 

iteration. The size of the variation in the sensitivity for the dysplasia/adenocarcinoma 

group reflects the overlap with the normal squamous cells and hence this varies 

depending on which cells are included. There was very little variation in the Barrett’s 

result, with a small standard deviation.  

 

Spectral differences between pathology groups 

The mean spectra from each of the three pathology groups are shown in Figure 2 

below. The spectra are presented as second derivatives in order to clarify the 

position of spectral peaks and highlight differences between the groups.  

 
TAKE IN FIGURE 2 
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Figure 2 Second derivative of the mean spectra from A) NSQ B) BE C) DYS/AC, 

with the text color indicating the likely biomolecule mainly responsible for that peak. 

NSQ normal squamous; BE Barrett’s esophagus; DYS/AC 

dysplasia/adenocarcinoma. Green = glycogen, blue = glycoprotein, red = DNA, Black 

= amino acid/protein, Purple = mixed contributions/multiple possibilities. 

 

Assigning biochemical labels to spectral peaks is tentative, as there are frequently 

multiple possible bond vibrations that can give a spectral peak at a given 

wavenumber. However, based on previous studies in esophageal tissue [12–14] and 

previous work by the group in esophageal tissue [19], there are a number of 

important differences seen between the pathology groups in this study. 

The BE and dysplasia/adenocarcinoma groups have an additional spectral peak at 

969cm-1 that probably represents DNA, and may reflect a higher DNA content in 

these cell types.  

At one of the key glycoprotein regions around 1080cm-1, the BE group shows a 

doublet with peaks at 1067 and 1084cm-1, whereas the normal squamous and 

dysplasia/adenocarcinoma groups have a single peak at 1077cm-1. This may be due 

to differences/increase in mucin content within the BE cells.  

There are three peaks corresponding to glycogen in the normal squamous cells at 

995, 1024 and 1153cm-1: these peaks are either smaller or show different 

configurations in the BE and dysplasia/adenocarcinoma groups, which may reflect a 

lower glycogen content in these cell, as might be expected with their pathological 

state. 

 

Test dataset 
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The classification model developed from the training dataset was then applied to the 

full dataset. The steps involved are illustrated in Figure 3: first the binary mask 

algorithm was used to identify individual cells on each slide, then the classification 

model applied to assign a pathology label to each cell on the slide based on its FTIR 

spectra, then an overall pathology classification given to each slide. This predicted 

pathology was compared against the biopsy result from the same region and 

sensitivity and specificity calculated using this gold standard.  

 

TAKE IN FIGURE 3 

Figure 3 Steps involved in assigning pathology labels to every cell A) unstained 

slide, B) binary mask identifies cell regions, C) training model applied to cells to 

assign pathology label.  

The number of samples and spectra included in the test dataset (after the same pre-

processing steps as those applied to the training dataset) are shown in Table 3.  

 

Table 3 Total number of samples included in the test dataset 

 No. of 

patients 

No. of FTIR 

maps 

No. of cell 

regions 

No. of spectra 

for analysis 

NSQ 18 19 722 27,662 

BE 21 32 1,891 48,322 

DYS/AC 25 42 2,620 54,418 

TOTAL 64 93 5,233 130,402 

NSQ normal squamous; BE Barrett’s esophagus; DYS/AC dysplasia/ 

adenocarcinoma. 
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The results from application of the training model to this test dataset are shown in 

Table 4.  

 

Table 4 Classification performance of the training model applied to the whole 

samples as a test dataset. A voting threshold was used for classifying each 

individual cell on a slide (30% threshold) and for classifying the sample overall (30% 

threshold). Table 4A shows the sensitivity and specificity, whilst Table 4B shows the 

confusion matrix, showing the prediction for every sample. NSQ normal squamous; 

BE Barrett’s esophagus; DYS/AC dysplasia/ adenocarcinoma. 

A 

 NSQ BE DYS/AC 

Sensitivity % 79.0 31.3 83.3 

Specificity % 81.1 100 62.7 

 

B 

 Predicted pathology  

True Pathology NSQ BE DYS/AC TOTALS 

NSQ 15 0 4 19 

BE 7 10 15 32 

DYS/AC 7 0 35 42 

TOTALS 29 10 44 93 
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Overall, the detection of normal squamous and dysplasia/adenocarcinoma samples 

was reasonably good, with a sensitivity of 79.0% and 83.3% respectively. Specificity 

for dysplasia/adenocarcinoma was low at 62.7%, and detection of Barrett’s was 

poor, with only 31.3% of samples classified correctly.  

 

DISCUSSION 

FTIR was investigated as a means of identifying Barrett’s esophagus and associated 

neoplasia in esophageal cells, for potential use in conjunction with a non-endoscopic 

cell collection device. In this study, a good classification performance was seen for 

normal squamous samples (sensitivity 79.0%), and dysplasia/ adenocarcinoma 

(83.3%), but the identification of BE samples was poor (sensitivity 31.3%). 

This was based on the application of a training model with the ability to classify 

individual spectra from the training dataset with sensitivity (after cross-validation) 

83.6% for normal squamous cells, 62.8% for BE, and 69.5% for dysplasia/ 

adenocarcinoma.  

Certain key differences were seen between the mean spectra from the different 

pathology groups, that were consistent with possible biochemical differences 

between the cells. These included a higher glycogen content in normal squamous 

cells, altered mucin content in BE cells, and higher DNA content in both BE and 

dysplastic/ adenocarcinoma cells compared to normal squamous cells.  

Nonetheless there are several reasons why the results for the BE cells may have 

been poor. The major limiting factor in this study was the small number of cells in the 

Barrett’s training dataset. Small numbers of cells were seen on the Barrett’s cell 

slides selected for cytopathology analysis: this was likely due to suboptimal cell 
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preparation for the relatively smaller Barrett’s cells (smaller than squamous or 

dysplastic cells, which tended to clump together on our cell preparation) – a difficulty 

of optimizing cell preparation and centrifugation for different cell types. Additionally, 

the small Barrett’s cells were more likely to be missed by our cell detection algorithm 

(the binary mask). This left a low number of cells that were identified by the binary 

mask, and also identified by both reporting cytopathologists as unequivocally 

representing Barrett’s cells.  

Not only did the Barrett’s group have the smallest number of cells, but these tended 

to be small, isolated cells (rather than a cluster of cells of the same type), and thus 

contained very few total spectra (76 in this group, versus 678 in the dysplasia group, 

and 726 in the normal squamous). The training model is therefore skewed away from 

classifying spectra into the Barrett’s group, and the Barrett’s group can also more 

readily be affected by a small number of outlying spectra. This makes the Barrett’s 

dataset prone to strong influence from differences due to individual samples or 

patients rather than true biochemical differences due to pathology.  

High numbers of squamous cells were noted on many samples taken only from 

glandular regions of esophagus. It is possible that this resulted from sampling only 

the most superficial cells, which may include squamous cells that originated more 

proximally in the esophagus that have sloughed off and been deposited more distally 

over a glandular region.  

Given the presence of squamous cells seen on many slides, the relative 

homogeneity of the results is perhaps surprising.  Whilst it is possible that artefact in 

the form of ‘between-patient’ differences (as opposed to true pathological 

differences) contribute to this, the small number of patients in the training model 

relative to the test dataset makes this explanation insufficient. A further possibility is 
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that biochemical changes precedes a morphological change in cell appearance. If a 

region of dysplasia or adenocarcinoma underwent a field change (probably reflecting 

genetic change) that preceded phenotypic change in the cells, there may be a 

detectable biochemical difference in cells that appear squamous. Thus spectroscopy 

may be able to provide insights into biochemical changes not detectable with 

conventional microscopy.  

Interestingly, a similar finding was reported in the largest study to date of IR 

spectroscopy for cell classification in cervical samples: Gajjar et al. [20] found that 

their results correlated poorly with conventional cytology, but showed better 

correlation with contemporaneous histology from the same region. This paper cites 

poor cytology sensitivity and specificity as the reason for this, but an analogous 

explanation of field change that has not occurred in every cell (and again, particularly 

in the superficial cells), is another possibility.  

This finding is corroborated by the only previous study of FTIR using esophageal 

cells [15], in which cells that appeared squamous classified according to the 

underlying tissue histology. This consistent finding therefore supports the theory that 

genetic and biochemical change may precede morphological change in some cells.  

In this small study of 10 samples, Townsend et al. reported very high accuracy for 

classification of Barrett’s and dysplasia. They reported a sensitivity to detect Barrett’s 

versus normal squamous of 95.5%, normal squamous versus dysplasia 93.4%, and 

Barrett’s versus dysplasia 88.7%. However, spectra from the same patients were 

included in both test and training datasets, and since these results are drawn from a 

very small number of patients it is possible that ‘between patient’ differences (as 

opposed to ‘between pathology’ differences) contributed to this result.  
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The discriminatory spectral features seen in the work by Townsend et al. are similar 

to the findings seen in the inverse second derivative spectra in our study and also 

correlate with the findings from our tissue mapping study [19] and previous FTIR 

work in the esophagus [12–14]. For example, the amide I peak at around 1650cm-1 

is strongest in the normal squamous group, the DNA peak at 1235cm-1 is strongest 

in the dysplastic cells, and the glycogen peak at 1020cm-1 is strongest in the normal 

squamous cells and almost absent in the dysplasia group. This strengthens the 

findings in their study, and lends further weight to an argument for an underlying 

biochemical difference between the pathology groups, as seen in our analysis of the 

inverse second derivative spectra.  

There have been a small number of other studies using FTIR to classify cell 

pathology with similar methodology. These have shown the ability to classify 

squamous cell samples from the cervix, urinary tract and head and neck 

[16,17,20,21], although this work focused on proof of concept and spectral 

differences, and did not publish equivalent figures for sensitivity and specificity. 

The first trial data (BEST2) from use of the Cytosponge™ found overall sensitivity for 

detecting Barrett’s 79.9%, with this figure increasing to 87.2% in those with ≥3cm of 

circumferential Barrett’s, and a specificity of 92.4% [9]. This is comparable to the 

sensitivity seen in our study for normal squamous (79.0%) or 

dysplasia/adenocarcinoma (83.3%). The BEST2 study did not attempt to 

discriminate dysplasia, but there are plans for future work to incorporate risk 

stratification using DNA analysis for p53 mutations.   

Identification of Barrett’s/dysplasia in combination is sufficient if used solely as a 

screening tool to identify those who require endoscopy. However, reliable detection 
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of dysplasia could potentially replace endoscopic surveillance. The results of our 

study suggest that this may be achievable with FTIR spectral analysis of cells. 

However, this is a multistep technique which requires further optimization and 

validation in combination with a non-endoscopic collection device such as 

Cytosponge™. 

The major source of variability in this study was the widely varying cell density in 

slide samples. Further optimization of techniques for brushing, fixative and 

centrifugation may improve this [22].  

There is much potential to refine the binary mask with a combination of further 

spectral information and size criteria to give a highly accurate cell identification tool. 

One approach could use a spectral marker of DNA (e.g. the 1234cm-1 peak) to 

identify cell nuclei, in combination with associated cell cytoplasm (represented by the 

1650cm-1 peak). This could be used in combination with size criteria to quantify the 

amount of nuclear material present.  

A two-stage analysis may be developed whereby cells are initially separated into 

squamous or columnar by a predictive model, and then a further analysis used to 

separate dysplastic and non-dysplastic cells. A two-stage model was attempted 

using the current dataset, giving very similar results to the 3-group model presented 

here (two-stage results not shown).  

Whilst this study used samples collected at endoscopy in order to enable histological 

and endoscopic validation, there may be further challenges using a non-endoscopic 

cell collection device that collects from the stomach and entire esophagus. The issue 

of differentiating pathological glandular cells from stomach cells was not examined in 

the present study. 
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Another obstacle to clinical implementation is the time needed for sample 

measurement. If a faster automated cell detection process could be used prior to 

infrared measurement, this would avoid measuring large regions that do not contain 

cells, and focus solely on collecting useful spectra.  

Cytopathology review is a further potential source of error. In this study it was 

performed by two cytopathologists together, not independently. Additionally, 

cytopathologists are not used to reviewing single cells in isolation, but more usually 

look at a whole sample for assessment. Presentation of cells in isolation could mean 

the decision is affected by variable staining between slides, which might be 

accounted for by taking the slide as a whole.  

One of the major obstacles to future work in this area is obtaining a reliable gold 

standard against which to test the training model. The poor sensitivity and specificity 

in comparable fields (e.g. cervical cytology) suggests that this may limit the 

usefulness of cytology as a gold standard. Comparing against histology (as in the 

whole sample test dataset) may be more accurate.  

Although the relatively poor sensitivity and specificity of cytology causes problems 

for testing, this supports an argument for developing spectral cytopathology since 

this an area in which diagnostic performance could readily be improved. This 

technology could potentially be applied in a range of different pathologies and organ 

systems. 

 

Conclusions 

FTIR offers a potential automated method of identifying Barrett’s neoplasia in 

esophageal cell samples. Accurate identification of neoplasia could augment or 
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replace current models of endoscopic surveillance. High sensitivity for neoplasia 

would be a key feature if used in clinical practice, but further work is needed to 

optimize the current technique and improve specificity prior to clinical translation. 

The low sensitivity for non-dysplastic Barrett’s using the present technique is not 

suitable for screening purposes.   
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