
Using Social Media to Detect and Locate Wildfires  

Chris A. Boulton 
College of Life and Environmental Sciences 

University of Exeter 
c.a.boulton@exeter.ac.uk 

Humphrey Shotton 
College of Engineering, Mathematics and 

Physical Sciences 
University of Exeter 

Hywel T. P. Williams 
College of Life and Environmental Sciences 

University of Exeter 
h.t.p.williams@exeter.ac.uk 

 
Abstract 

Methods for detecting and tracking natural hazards continue 
to increase in coverage, resolution and reliability. However, 
information on the social impacts of natural hazards is often 
lacking. Here we test the feasibility of using social media 
data (Twitter and Instagram) to detect and map an important 
class of natural hazard: wildfires. We analyse social media 
posts associated with wildfires over several time periods and 
compare them with wildfire occurrence data derived from 
satellite-based remote sensing data and on-the-ground 
observations. For the whole of the contiguous United States, 
we find significant temporal correlations between wildfire-
related social media activity and wildfire occurrence, but 
also that there is substantial variation in the strength of this 
relationship at smaller spatial scales (states and counties). 
We then explore the utility of social media for location of 
wildfire events, finding good evidence to support further 
development of such methods. We conclude by discussing 
several challenges and opportunities for application of this 
novel data resource to provide information on impacts of 
natural hazards. 

Background
Advances in measurement and remote sensing are giving 
an increasingly detailed and accurate record of natural 
hazards. Yet methods for systematically recording and 
quantifying the ways in which environmental hazards 
impact on human society are relatively sparse. There 
remains a large disparity between knowledge of the 
physical phenomena and knowledge of how these events 
will affect people. Meanwhile, the increasing digitisation 
of human behavior through online communication and the 
Web is creating rich datasets that are being successfully 
mined for insights into many different social processes 
(Lazer et al. 2009). The massive volume and global reach 
of online data flows offers an opportunity to observe the 
impacts of environmental hazards from a human-oriented 

perspective; since the data is a by-product created by the 
online communication of billions of individual webusers, it 
will inevitably reflect those aspects of natural hazards that 
have most relevance to human activity. The creation of the 
Internet and its rapid growth in use worldwide has 
inadvertently created a global sensor network that can be 
harnessed as a social observatory for environmental 
hazards and events. 
 Social media have already been successfully used to 
detect extreme weather (Kirilenko, Molodtsova, and 
Stepchenkova 2015) and earthquakes (Sakaki, Okazaki,
and Matsuo 2010), while mobile phone data have been 
used to map migratory flows following natural disasters 
(Lu, Bengtsson, and Holme 2012) and to predict disease 
spread (Wesolowski et al. 2012; 2015). Widespread social 
media use by affected individuals in disaster scenarios has 
lead to its integration into software tools for humanitarian 
response management which are now routinely used by aid 
agencies (e.g. Ushahidi http://www.ushahidi.com/). 
Various studies (e.g. (Elgesem, Steskal, and Diakopoulos 
2015; Schafer 2012; Kirilenko and Stepchenkova 2014; 
Kirilenko, Molodtsova, and Stepchenkova 2015; Olteanu et 
al. 2015; Williams et al. 2015; O’Neill et al. 2015) have 
shown a high volume of social media communication 
around the broad topic of climate change, which is 
predicted to increase the frequency and severity of several 
kinds of natural hazard. Olteanu et al. (2015) showed that 
social media can be used to detect climate-related events 
and that the events detected by social media show only 
partial overlap with those reported in mainstream news 
media. Kirilenko, Molodtsova and Stepchenkova (2015) 
showed US social media activity about climate change was 
correlated with local incidence of extreme temperatures. 
These initial findings suggest that social media may have 
utility for detecting and mapping environmental hazards 
and climate-related impacts, but a robust methodology has 
yet to be defined and validated. 

This paper explores the feasibility of creating a “social 
observatory” that uses social media data to detect and 
characterise environmental hazards and associated social 
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impacts. Focusing on wildfires in the USA as a case study, 
we demonstrate that social media activity related to 
wildfires is temporally and spatially correlated with known 
wildfire events. We then show that wildfire events can be 
located with reasonable accuracy using social media data 
alone. Together these findings establish the preconditions 
for use of social media data to augment conventional 
observations of wildfires with previously unavailable 
information on social impacts that is hard to gather 
elsewhere. 
 Below we describe the data collection, methods and 
results, followed by some discussion of various challenges 
and opportunities presented by this novel use of social 
media data. 

Data Collection and Methods  
We collected social media posts related to wildfires from 
the popular platforms Twitter and Instagram. Twitter is a 
social messaging platform with 288 million active monthly 
users sending 500 million tweets per day (Statista 2015). 
Instagram is a social photo-sharing platform with 300 
million active monthly users sharing photos from 
smartphones (Statista 2015). Both Twitter and Instagram 
offer public Application Programming Interfaces (APIs) by 
which their databases can be queried. Data collection used 
hashtags and keywords associated with wildfires. 
Instagram posts were collected using hashtags {#wildfire, 
#bushfire}. Twitter posts were collected using the Search 
API with keywords {“wildfire”, “wild fire”, “grassfire”, 
“grass fire”, “wildland fire”, “brush fire”, “bushfire”, 
“bush fire”, “forest fire”, “forestfire”, “fire science”, 
“firewise”, “fire danger”}.
 Wildfire occurrence data were derived from two sources. 
The MODIS Active Fire Detections data product supplied 
by the US Department of Agriculture (USDA) Forest 
Service Remote Sensing Applications Center 
(http://activefiremaps.fs.fed.us/) is remote sensing data 
derived from the MODIS satellites that combines imagery 
and thermal anomalies to detect fires at 1km spatial 
resolution (USDA Forest Service 2015). The Fire Program 
Analysis dataset (FPA) available from the USDA Forest 
Service Research Data Archive 
(http://www.fs.usda.gov/rds/archive/Product/RDS-2013-
0009.3/) is compiled from observational reports by federal, 
state and local fire organisations in the US and gives a 
spatial database of 1.73 million wildfires, located at 
minimum 1 mile spatial resolution, over a 22-year period 
from 1992 to 2013 (Short 2015). 
 Due to restrictions on extracting historical data from the 
Twitter API, and the time period covered by the FPA 
dataset, we compare datasets over several different time 
periods (detailed in Table 1). While fire ocurrences from  

Dataset Period 1 Period 2 Period 3
Instagram 39,564

(2,163)
114,307
(6,898)

27,883
(2,943)

Twitter - - 905,611
(2,798)

MODIS 513,451 833,276 83,443
FPA 289,652 - -

Table 1: Volumes of fire occurrences and social media posts in 
the datasets analysed. Three different time periods were studied 
due to differing data availability (Period 1: Jan 2011-Dec 2013; 
Period 2: Jan 2011-Sept 2015; Period 3: April-Sept 2015). Social 
media volumes are given as total number of posts collected; 
number in brackets indicates the number of geotagged posts 
located within the US, i.e. the number of posts used for further 
analysis. MODIS fire occurrences indicate the number of 1km 
squares where fire is detected. FPA fire occurrences are number 
of wildfires reported. 

MODIS and FPA are spatially located, only 0.51% of the 
Twitter posts and 12.04% of the Instagram posts we 
collected were geotagged, preventing the majority of these 
from being linked to specific fire activity. We restrict our 
analysis to geotagged posts originating from within the 
contiguous USA. 
 We first analyse daily frequencies of social media posts 
and fire occurrences over time. Time series were created 
for the whole US, for each state and for each county. These 
spatial scales are used since fire management strategies 
vary between administrative units at these levels, creating a 
natural scale for spatial analysis and future exploitation of 
results. We compare correlations between the derived time 
series for different datasets and spatial units.

We then focus our analysis on the California-Nevada 
region (defined here as a rectangular box with coordinate 
ranges 114-126ºW and 33-42ºN) to determine the spatial 
association of social media posts and wildfire events. We 
test the simple hypothesis that social media posts about 
wildfires are triggered by nearby wildfire events, by 
comparing the observed distances between social media 
posts and wildfires against null expectations derived from 
three different null models. For each social media post, we 
measure the distance (km) to the closest observed wildfire 
(using MODIS data) on the same day. We also calculate 
the equivalent distances when the social media posts for 
that day are randomly re-located according to each of three 
null models: 

Null Model 1: Chooses a new location for each 
post by selecting new coordinates with uniform 
probability from the whole land surface of the 
study region. 
Null Model 2: Chooses a new location for each 
post by random selection from the set of all 
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locations from which social media posts have 
originated over the whole study period. This 
controls for spatial variation in social media usage 
based on the spatial distribution of posts in our 
dataset. 
Null Model 3: Similar to Null Model 1 but uses 
population density data (CIESIN/CIAT 2005) to 
weight the probability distribution towards 
locations that have higher populations. This 
controls for spatial variation in social media usage 
based on an assumed tendency for more social 
media posts to originate in areas where there are 
more people. 

 The statistics used for comparison are the mean/median 
distances across the set of all closest distances (i.e. 
collating all posts on all days). We calculate these values 
for the observed data and for 100 randomisations using 
each null model. A single null randomisation is created by 
applying the chosen null model to randomly re-locate the 
social media posts for each day separately, preserving the 
number/location of wildfires and the number of social 
media posts, and then combining the derived distances for 
each day into a single set to allow calculation of 
mean/median values.

Finally, we use the spatial distribution of social media 
posts on a given day to create a “heat map” of social media 
activity about wildfires, in order to explore the utility of 
such data for locating and detecting wildfire events. To do 
this, we first compiled the frequency distribution of all 
observed closest distances between social media posts and 
observed fires (Figure 3). This distribution has a folded 
normal form since only the magnitude of the distance is 
recorded (direction is ignored). We used the standard 
deviation of this distribution to set the radius of a 
multivariate Gaussian function; a spatial density field for 
social media activity for a given day is then created by 
summing across a set of such Gaussian functions centred 
on each social media post. Peaks (hotspots) in the resulting 
activity field, which may occur between the actual 
locations of social media posts due to the summation, may 
indicate the locations of wildfire events.

Results
Over the whole of the US, social media activity is 
significantly positively correlated with fire occurrence 
(Figure 1). Instagram posts show reasonable correlations 
with fire occurrence as reported by FPA (Instagram-FPA,
2011-2013: r=0.305, p<2e-16) and by MODIS 
(Instagram-MODIS, 2011-2015: r=0.366, p<2e-16). We 
find stronger correlations in our later 
Instagram/Twitter/MODIS comparison (Instagram-
MODIS, April-Sept 2015: r=0.716, p<2e-16; Twitter-

MODIS, April-Sept 2015: r=0.529, p<2e 11). We attribute 
the weaker correlations found in the longer 2011-2013 and 
2011-2015 comparisons to the substantial increase in 
Instagram usage since 2011, which implies much lower 
numbers of users and posts in the early stages. 
Interestingly, the two fire occurrence datasets show strong, 
but not perfect, correlation (MODIS-FPA, 2011-2013: 
r=0.594, p<2e-16). This highlights uncertainties in fire 
detection and reporting. The two social media datasets also 
show strong but imperfect correlation (Instagram-Twitter, 
April-Sept 2015: r=0.520, p<4e-11), suggesting that the 
two data sources offer distinct information and are not 
redundant. 
 When we look for temporal correlations between the 
daily time series at the scale of US states, we find a mixed 
signal (Table 2 & Figure 2). Some states have strong and 
significant positive correlations between fire occurrence 
and related social media activity, while others show no 
correlation or have too few observations to calculate the 
correlation. No states showed a significant negative 
correlation. Those states that have the highest frequency of
fire occurrence in our dataset (California, Idaho, Montana, 
Oregon, Washington), which all fall in the fire-prone 
West/North-West region, also show strong correlations 
with fire-related activity on both Instagram and Twitter. 
Other states with less fire activity typically show weaker 
correlations and/or only have significant correlations for 
one of the social media platforms. At the scale of US 
counties, we find that 54 out of 336 (Twitter) and 64 out of 
298 (Instagram) counties where both fire and social media 
data was recorded show significant positive correlations 
between social media (either Instagram or Twitter) and fire 
occurrence (MODIS); these are shown in Figure 2. We 
could not calculate correlations for the remaining counties 
because they lacked social media posts and/or fire 
occurrences in our datasets. No counties showed a 
significant negative correlation. Overall we find that the 
correlation between social media activity and fire 
occurrence is strongest in fire-prone states/counties. 

We next examine the spatial localisation of social media 
activity about wildfires in relation to the positions of actual 
wildfires, using the California-Nevada region (126-114ºW, 
33-42ºN) and a comparison between Twitter and MODIS 
(April-Sept 2015) as an example. We measure the distance 
(km) between each tweet and the closest recorded fire 
event on the same day (see Data Collection and Methods). 
The distribution of observed closest distances across the 
whole study period is shown in Figure 3. This distribution 
shows that most tweets about wildfire originate from 
locations close to current wildfires, but some tweets are 
from distant locations; this is consistent with a model 
whereby tweets about wildfire events are most often made 
by users who are potentially affected by them, but where  
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Figure 1: Time series of social media activity and fire occurrence for the whole US over various time periods. Top: Instagram and MODIS 
over period 2011-2015, FPA over period 2011-2013. Bottom: Instagram, Twitter and MODIS over period April-Sept 2015. 

Table 2: US States showing significant positive correlation (p<0.05) between social media post frequency and fire occurrence (April-Sept 
2015). There were no states showing significant negative correlations. 

State Instagram Twitter MODIS Instagram-MODIS
            r                  p

Twitter-MODIS
           r                 p

Instagram-Twitter
             r                p   

Arizona 72 106 978 0.195 0.020 0.194 0.021 0.292 <5e-4
California 778 678 12450 0.522 <3e-11 0.381 <3e-6 0.550 <2e-12
Colorado 53 301 107 0.305 <3e-4 0.067 0.426 -0.006 0.943
Florida 39 71 1759 0.249 <3e-3 0.099 0.240 0.102 0.023
Idaho 108 92 11274 0.683 <2e-16 0.636 <2e-16 0.524 <3e-11
Maine 1 3 16 -0.021 0.801 0.182 0.030 -0.012 0.884
Massachusetts 6 34 31 -0.016 0.849 0.191 0.023 -0.026 0.756
Montana 165 112 4780 0.623 <2e-16 0.483 <2e-9 0.587 <2e-14
New Jersey 14 11 75 0.220 <9e-3 -0.055 0.517 -0.007 0.930
New Mexico 0 17 177 - - 0.305 <3e-4 - -
Oregon 317 132 10139 0.367 <8e-6 0.610 <9e-16 0.707 <2e-16
South Dakota 2 4 54 0.303 <3e-4 0.060 0.471 0.341 <4e-5
Texas 39 160 1959 -0.063 0.459 0.279 <8e-4 0.007 0.930
Utah 44 12 161 0.303 <3e-4 -0.030 0.723 0.165 <5e-9
Washington 387 224 25688 0.707 <2e-16 0.379 <4e-6 0.467 0.003
Wisconsin 10 26 238 0.242 <4e-3 0.084 0.321 0.180 0.504
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Figure 2: Spatial variation in temporal correlation between social media and fires (April-Sept 2015). Colour scale shows the strength of 
significant correlations. White indicates a correlation that is not significant (p>0.05). Black indicates a lack of data (zero social media 
posts and/or zero fire occurrences) such that correlations could not be calculated. Top: Correlation between MODIS fire occurrence and 
Instagram activity. Middle: Correlation between MODIS fire occurrence and Twitter activity. Bottom: Correlation between MODIS fire 
occurrence and summed Instagram/Twitter activity. 

long-distance tweets sometimes occur due to media 
reporting of large wildfires and subsequent social media 
commentary from distant locations.
 We confirm the spatial correlation of social media posts 
with wildfire events by comparing the observed closest 
distances from posts to fires to distances generated by three 
null models (Figure 4; see Data Collection and Methods). 
For Twitter, the mean observed distance to the closest fire 
is 201.5km and the median distance is 162.4 km, with a 
standard deviation of 166.8 km. Interestingly, we find that 
Instagram posts, which require an image to be uploaded, 
are closer on average than Twitter posts (mean 140.4 km, 
median 73.7 km and standard deviation 157.5 km). With 

respect to the null distributions of closest distances derived 
from the three null models, we find that mean/median 
observed distances are significantly smaller than expected, 
for both Instagram and Twitter (p<0.01 in all cases). This 
is perhaps unsurprising for Null Model 1, which re-locates 
social media posts with uniform probability across the 
whole study region (including desert areas). However, the 
strong signal seen with Null Models 2 and 3, which control 
for social media usage and population density, confirms 
that social media activity about wildfires is spatially 
correlated with actual wildfire events. 
 Our final analysis concerns the ability of social media 
data to effectively locate wildfire events in the absence of  
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Figure 3: Distribution of distances between Twitter posts and the 
closest fire to each post on the same day, based on MODIS fire 
occurrence data, for the period April-Sept 2015. 

other information. We created heat maps of Twitter 
activity in relation to wildfires in the California-Nevada 
region (see Data Collection and Methods). Example 
heatmaps are shown in Figure 5. Using a simple heuristic 
whereby hotspots of Twitter activity predict the locations 
of wildfires, we find that some fires are well predicted (e.g. 
hotspots are close to fires) while others are not. These 
mixed results suggest that this method has potential but 
needs further refinement. 

Discussion  
Here we have shown that social media activity about 
wildfires is both temporally and spatially correlated with 
wildfire events. These findings establish the preconditions 
for further research that seeks to derive information on 
social impacts of wildfires from social media datasets, to 
augment and complement more conventional observations 
that focus on the physical aspects, and to support decision 
making by fire managers and public agencies. Our results 
show the promise of social media as a sensor for natural 
hazards and highlight some of the methodological 
challenges associated with this kind of analysis. 
 Our methods could be improved in a number of ways. 
Firstly, here we analysed all data returned by the Twitter 
and Instagram APIs based on our search terms, meaning 
that our datasets contain an amount of irrelevant content. 
Filtering our social media datasets for relevance using 
some kind of automated classifier is likely to strengthen 

the observed correlations. In particular, inspection shows 
that our datasets contain a small number of irrelevant posts 
that occurred a long distance away from any fires; we 
retained these in our analysis in order to show the quality 
of the unfiltered datasets, but note that their presence 
reduces the apparent spatial correlation between posts and 
wildfire events. Secondly, detrending the Instagram and 
Twitter datasets for changes in overall usage of these 
platforms over time would likely improve the temporal 
correlations we observed. Instagram in particular has seen 
a large increase in usage during the 2011-2015 time period 
studied here, which affects the level of wildfire-related 
activity we might expect to observe. Third, application of 
automated methods to infer the locations of non-geotagged 
social media posts might increase the size of our datasets. 
While use of estimated locations may carry associated
methodological challenges, it is possible that the overall 
performance of the social media datasets at detecting and 
locating wildfire events would be improved. We are 
addressing some of these improvements in ongoing work. 
 So far our research on the relationship between social 
media and wildfires has focused on measuring their spatial 
and temporal correlation. However, if social media is to 
become a useful data source with which to document and 
characterise wildfires and other natural hazards, it is 
necessary to perform more rigorous evaluations. If the 
challenge is framed as using social media to detect wildfire 
events, then we might judge performance in terms of 
precision (detection only of genuine wildfire events and 
avoidance of Type 1 “false positive” errors) and recall 
(detection of all wildfire events and avoidance of Type 2 
“false negative” errors). While a perfect correlation 
between wildfire occurrence and social media reporting of 
wildfire would deliver both precision and recall, imperfect 
correlation (as reported here) may be driven by failure in 
either aspect. Our data exhibits days without social media 
posts where wildfires occurred (false negatives), as well as 
days where social media posts occur but there are no fires 
(false positives). These errors may arise from temporal lags 
(e.g. posts about fires that have ended on the previous day) 
or from inaccuracies in wildfire observations (e.g. 
uncertainties in satellite detection of fires or failure to 
record a wildfire event in a remote area). Our methods here 
currently do not attempt to measure precision and recall 
directly, but future development will address this aspect, 
beginning with development of content-based methods for 
associating social media posts with particular fire events, 
beyond simple spatial co-location as used here. 

An important factor with any geographical “social 
sensing” tool using social media data is population density. 
We note that the California-Nevada region we chose to 
analyse in more depth shows high variation in population 
density (containing large Californian cities as well the 
Nevada desert). When we control for this aspect using null  
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Figure 4: Social media location to closest fire distance mean (red or grey) and median (yellow or white) values are compared to 3 null 
models (see Data Collection and Methods). Distributions of mean and median distance to closest fire from each null model on each social 
media dataset are shown as semi-transparent histograms with the values of the mean and median from the actual datasets shown as 
red/grey and black dotted lines respectively.
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Figure 5: Heat map showing Twitter activity (contour plots) in relation to observed fire events (black points) for the California-Nevada 
region, using MODIS fire occurrence data. Two examples are shown of typical days in our dataset. Contour plots are normalised such that 
a single tweet will have a peak height of 1 unit. 

models that take into account social media usage and 
population density, the statistical significance of the results 
we achieve is affected. While all null models show that
social media posts are closer to wildfire events than the 
null expectation, the variation in “effect size” between 
different null models suggests that this form of population 
density bias is likely to affect efficacy of social sensing and 
needs to be carefully corrected. Other biases may be harder 
to control. 
 It seems intuitively likely that social media posts are 
more likely to mention fires which are bigger and have a 
larger impact on society, than smaller fires which are far 
from populated areas. This relationship could be explored 
by utilising data on wildfire impacts. Fire trackers (such as 
at http://firetracker.scpr.org/) provide further information 
on fire events in California, such as how many structures 
were damaged and how many injuries occurred, and also 
provide names for larger fires. While such data is not 
always available, careful historical analysis of available 
data could reveal which kinds of fires create most social 
media activity. Names of fires could also provide 
additional search terms with which to collect social media 
data. However, it should be remembered that one of the 
most important properties of social media data for 
providing information to fire managers and the public lies 
in its timeliness; historical analysis may help to model the 
underlying interaction of society with wildfires, but is less 

useful for planning management actions around ongoing 
events. 
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