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ABSTRACT 1 
The human sensorimotor system is routinely capable of making accurate predictions 2 
about an object’s weight, which allows for energetically efficient lifts and prevents 3 
objects from being dropped. Often however, poor predictions arise when the weight of 4 
an object can vary and sensory cues about object weight are sparse (e.g., picking up an 5 
opaque water bottle). The question arises, what strategies does the sensorimotor 6 
system use to make weight predictions when dealing with an object whose weight may 7 
vary? For example, does the sensorimotor system use a strategy that minimizes 8 
prediction error (minimal squared error) or one that selects the weight that is most likely 9 
to be correct (maximum a posteriori)? Here we dissociated the predictions of these two 10 
strategies by having participants lift an object whose weight varied according to a 11 
skewed probability distribution. We found, using a small range of weight uncertainty, 12 
that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, 13 
and load force) were consistent with a feedforward strategy that minimizes the square of 14 
prediction errors. These findings match research in the visuomotor system, suggesting 15 
parallels in underlying processes. We interpret our findings within a Bayesian framework 16 
and discuss the potential benefits of using a minimal squared error strategy. 17 
 18 
 19 
KEYWORDS 20 
Object lifting, Fingertip Force, Feedforward control, Prediction, Bayesian  21 
 22 
NEW AND NOTEWORTHY 23 
Using a novel experimental model of object lifting, we tested whether the sensorimotor 24 
system models the weight of objects by minimizing lifting errors, or by selecting the 25 
statistically most likely weight. We found that the sensorimotor system minimizes the 26 
square of prediction errors for object lifting. This parallels the results of studies that 27 
investigated visually guided reaching, suggesting an overlap in the underlying 28 
mechanisms between tasks that involve different sensory systems.  29 
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INTRODUCTION 30 
Humans are remarkably adept at lifting and manipulating the hundreds of objects they 31 
interact with on a daily basis. To do so, we rely on relatively accurate predictions of an 32 
object’s weight (Flanagan et al., 2006; Johansson and Flanagan, 2009; Johansson and 33 
Westling, 1988; Wolpert and Flanagan 2001). Prior knowledge from handling similar 34 
objects is integrated with sensory information about object size (Gordon et al, 1991a, b, 35 
c), material (Buckingham et al., 2009, 2010), shape (Jenmalm and Johansson, 1997) 36 
and density (Grandy and Westwood, 2006; Peters et al., 2016), to make a feedforward 37 
prediction of object weight (Buckingham and Goodale, 2010; Brayanov and Smith, 38 
2010; Hermsdorfer et al., 2011). Often however, feedforward prediction errors can arise 39 
from having imperfect prior knowledge (e.g., environmental uncertainty), and also from 40 
misleading or sparse current information about an object’s weight (Buckingham and 41 
Goodale, 2010; Brayanov and Smith, 2010; Buckingham et al., 2011).  42 

When lifting an object of constant weight, humans can quickly reduce prediction 43 
errors within 2-3 lifts (Johansson and Westling, 1984). However, humans often operate 44 
in highly uncertain environments, making it impossible to make an accurate feedforward 45 
prediction on every lift. For example, a baggage handler at an airport must grasp and lift 46 
luggage for which the contents are not visible. If the baggage handler underestimates 47 
the true weight of the luggage it will not leave the ground or, if lifted, may slip from their 48 
grasp. Conversely, if weight is overestimated the luggage will accelerate at a much 49 
faster rate than predicted and will be gripped too tightly, both of which are energetically 50 
inefficient. Thus, given a lack of useful visual cues, the baggage handler must rely 51 
heavily on prior knowledge of the uncertainty associated with luggage weight. This will 52 
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allow him or her to apply relatively appropriate lift and grip forces to efficiently move the 53 
luggage. In the presence of such environmental uncertainty, what strategy does the 54 
sensorimotor system employ to make a feedforward prediction? Two viable strategies to 55 
deal with environmental uncertainty are: 1) to minimize the squared error of potential 56 
feedforward predictions (Kording and Wolpert, 2004b), or 2) to select the feedforward 57 
prediction that is most likely to be correct (Peters et al., 2016).  58 

Briefly, a minimal squared error strategy applies a quadratic penalization for 59 
linear increases in error magnitude. A feedforward prediction that minimizes squared 60 
error can be accomplished in many ways. For example, a minimal squared error 61 
strategy can be achieved by averaging somatosensory information from a single 62 
(Johansson and Westling, 1984) or several (Takahashi et al., 2001; Scheidt et al., 2001; 63 
Landy et al., 2012; Hadjiosif and Smith, 2015) previous lift(s) to predict the weight of a 64 
subsequent lift. A minimal squared error strategy can also be achieved using a 65 
Bayesian framework (Kording and Wolpert, 2004b; Zhang et al., 2015). Here the 66 
nervous system would have to build a representation of environmental uncertainty 67 
based on the somatosensory information gained from many previous lifts (Kording and 68 
Wolpert, 2004a). The attractiveness of the Bayesian framework is that it can account for 69 
many more behavioural features than a model based on simply averaging previous 70 
trials (Acerbi et al., 2014), such as reduced variability with practice (Kording and 71 
Wolpert, 2004a) and explaining perceptual illusions (Peters et al., 2016). Furthermore, 72 
in this framework environmental uncertainty can be integrated with available sensory 73 
information (e.g., object size, material, shape, density and other cues) to assign a 74 
probability to each possible weight that an object may have (Peters et al., 2016). 75 
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Ultimately however, the sensorimotor system must select a single weight, or ‘point 76 
estimate’, when forming a feedforward response to attempt to lift an object. One such 77 
point estimate corresponds to that generated by a minimal squared error strategy. While 78 
minimizing squared error does well to explain many patterns of behaviour (Scheidt et 79 
al., 2001; Kording and Wolpert, 2004b; Zhang et al., 2015), there are examples in the 80 
literature that suggest a departure from this strategy. 81 

Instances in which the sensorimotor system departs from a minimal squared 82 
error strategy may occur when the controller attempts to predict the most likely 83 
occurrence. Again using a Bayesian framework, the point estimate that predicts the 84 
most likely occurrence is termed the maximum a posteriori estimate. As proposed by 85 
Wolpert (2007), there are likely many tasks in which the sensorimotor system may use a 86 
maximum a posteriori strategy, such as when maximizing externally provided reward 87 
(Trommerhausser et al., 2003), Mawase and Karniel (2010) provide evidence 88 
supporting the idea that the sensorimotor system may attempt to correctly predict the 89 
most likely weight of an object. The authors found that when participants experienced a 90 
sequential increase in object weight in a series of trials, they unconsciously and reliably 91 
predicted a heavier object weight on subsequent lifts. This predictive behaviour cannot 92 
be obtained using a model of object weight that relies on a minimal squared error 93 
estimate, but is consistent with a feedforward controller that predicts the weight of an 94 
object using a maximum a posteriori estimate (Mawase and Karniel, 2010; Karniel, 95 
2011). 96 

A challenge in attempting to determine whether a controller is using a minimal 97 
squared error or a maximum a posteriori strategy is that the optimal solutions of these 98 
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two strategies often coincide. A feedforward controller using a minimal squared error 99 
strategy would, over many trials, converge on a prediction of object weight based on the 100 
statistical mean of the environment uncertainty. A controller that uses a maximum a 101 
posteriori strategy would base its prediction on the statistical mode of the environment 102 
uncertainty. In many experimental designs the stimuli, such as visual displacement or 103 
object weight, are held constant or they vary according to a symmetrical (e.g., 104 
Gaussian, bimodal or uniform) probability distribution. With constant (Gordan et al., 105 
1993a) or Gaussian (Kording et al., 2004; Kording and Wolpert, 2004a; Hadjiosif and 106 
Smith, 2015) stimuli the mean and mode are identical, making it impossible to 107 
distinguish if the feedforward controller is using a minimal squared error or maximum a 108 
posteriori strategy. Further, another issue arises when stimuli are varied using uniform 109 
(Berg et al., 2016) or bimodal probability distributions (Scheidt et al., 2001; Kording and 110 
Wolpert, 2004a) that have an ill-defined mode. However, skewed probability 111 
distributions can be used to separate a well-defined mean and mode (Kording and 112 
Wolpert, 2004b).  113 

To our knowledge, no one has varied object weight in a lifting task using a 114 
skewed distribution. By varying an object’s weight according to a skewed probability 115 
distribution in which the mean and mode are distinct, we were able to dissociate the 116 
minimal squared error and maximum a posteriori point estimates. This dissociation 117 
allowed us to test whether the sensorimotor system uses a minimal squared error or 118 
maximum a posteriori strategy to make feedforward predictions of object weight.119 
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METHODS 120 
Participants.  121 
90 healthy participants (age: 20.3 yr, 2.7 SD) participated in this experiment. 122 
Participants reported they were right-handed, free of neuromuscular disease, and had 123 
normal or corrected vision. Each participant was paid $10.00 CAN, and provided 124 
informed consent to procedures approved by Western University’s Ethics Board.  125 
 126 
Apparatus 127 
A pair of six degree-of-freedom force transducers (ATI Industrial Automation, F/T model 128 
Nano17, North Carolina, United States) recorded forces and moments acting on three 129 
orthogonal axes. A digital computer with an A/D board (16-bit; National Instruments, 130 
model NI PCI-6033E, Texas, United States) sampled force transducer data at 770 Hz. 131 
The transducers were mounted to the top of a wooden platform that covered a hole in a 132 
table. (Fig.1A,B). A metal cable attached to the bottom of the wooden platform was 133 
positioned under the centroid of the force transducer. This cable passed vertically (in 134 
line with the gravity vector) through a hole in the table, passed under the table through 135 
two pulleys, and was attached to a removable container that held lead shot. Thus, the 136 
additive weight of the force transducers, wooden platform, metal cable, container and 137 
lead shot determined the total weight of the object to be lifted. Different amounts of lead 138 
shot were placed in each container to produce 9 different object weights. The nine 139 
weights had an ordered, incremental difference of 0.1 kg and ranged from 0.4 kg to 1.2 140 
kg. Participants were seated such that the object to lift was directly in front of them. A 141 
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plastic block (height = 10 cm) was placed in front of participants, behind the object, and 142 
was used to specify the instructed lift height.  143 
 144 
Protocol 145 
Participants were pseudo-randomly assigned to one of six groups (n = 15 per group). 146 
Participants in all groups performed object lifting. The weight of the object was selected 147 
from a discrete probability distribution. Three of these probability distributions produced 148 
varying weights and the other three produced a constant weight (Fig. 2). Each group of 149 
participants were assigned one of the following six probability distributions: 1) skewed 150 
heavy mode, 2) symmetrical, 3) skewed light mode, 4) constant heavy, 5) constant 151 
mean, and 6) constant light. See Table 1 for complete statistics of these probability 152 
distributions. 153 

Participants were instructed to use the beat of a metronome (40 beats/min) to 154 
time transitions between different phases of each lift. Pilot testing showed that this 155 
metronome frequency produced consistent and relatively quick lifts, allowing us to 156 
capture a feedforward response. Four successive metronome beats signified the 157 
following (Fig 1C): Beat 1 - a warning noise that the trial was starting; Beat 2 - grip and 158 
lift the object in one motion; Beat 3 - the object should reach and then be held at the 159 
height of the plastic block (10 cm); and Beat 4 - lower and then release the object.  160 

To practice lifting according to the beat of the metronome, participants performed 161 
ten training lifts with the weight of the object selected from their respective distribution 162 
(bin 1). Following practice, participants performed the main experiment. Participants 163 
made 21 lifts with object weight selected from their assigned probability distribution 164 
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without replacement. That is, they lifted all of the weights in a given distribution until it 165 
was depleted. This process was performed nine times (bins 2 - 10) for a total of 189 166 
lifts. By selecting object weight from a distribution without replacement, we were able to 167 
avoid random clustering of certain weights while ensuring that the statistical properties 168 
of any given probability distribution were preserved in each experimental bin. 169 

We made sure that participants in the varying probability distribution groups 170 
(skewed heavy mode, skewed light mode, and symmetrical) had no knowledge of the 171 
weight they were about to lift by (1) hiding the attached and unattached containers from 172 
our participants’ field of view and (2) when successive lifts had the same weight, we 173 
would remove the attached container, place it on the ground and then reattach the 174 
same container. 175 

As mentioned above, participants in three of the groups repeatedly lifted an 176 
object with a constant weight of 0.6, 0.8 or 1.0 kg. These weights were chosen to match 177 
important statistics, the mean and mode, of the three skewed probability distributions. 178 
More specifically, the weight of the constant heavy probability distribution (1.0 kg) 179 
matched the modal weight of the skewed heavy mode probability distribution, the weight 180 
of the constant mean probability distribution (0.8 kg) matched the mean weight of the 181 
skewed heavy mode and the skewed light mode probability distributions, and the weight 182 
of the constant light probability distribution (0.6 kg) matched the modal weight of the 183 
skewed heavy mode probability distribution. 184 

The inclusion of constant weight groups served two purposes. First, it allowed us 185 
to directly compare the sensorimotor system’s feedforward response when participants 186 
lifted an object of varying weight relative to when they lifted an object of constant 187 
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weight. That is, we were able to test whether feedforward responses in the context of 188 
skewed weight distributions would match those observed for constant weight 189 
distributions, where the constant weights were aligned with the mean or mode of the 190 
skewed probability distributions. Second, it allowed us to determine whether the 191 
dependent measures commonly used as indexes of a feedforward prediction during 192 
object lifting studies were sensitive enough to detect the weight difference between the 193 
mean and mode (Δ0.2 kg) of the skewed probability distributions weights. In this study, 194 
we used four dependent measures as indexes of the sensorimotor system’s 195 
feedforward prediction. These dependent measures were grip force rate, grip force, load 196 
force rate, and load force, which were all taken at the time point that corresponded to 197 
the peak load force rate. This time point occurred several hundred milliseconds before 198 
object lift off. 199 

The symmetrical group acted as a control to test whether load force variance 200 
alone influences the feedforward response of the sensorimotor system. Participants in 201 
this group lifted an object whose weight was selected from a symmetrical probability 202 
distribution (i.e., mean, median and mode were identical). This symmetrical probability 203 
distribution had very similar load force variance and identical complexity (discrete 204 
entropy) to the skewed light mode and skewed heavy mode probability distributions. 205 

The skewed light mode and skewed heavy mode probability distributions had the 206 
same mean and variance, but opposite skew. As such, the mode of the skewed light 207 
mode distribution and skewed heavy mode distribution were on opposite sides of the 208 
mean at 0.6 kg and 1.0 kg, respectively. We designed these skewed distributions such 209 
that the mode had a much higher relative frequency (42.8%) than the other six weights 210 
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(9.5%). This difference in frequency increased the possibility that the sensorimotor 211 
system would be able to distinguish the modal weight from the other weights. Critically, 212 
the separation of the mean and mode in both of the skewed probability distributions 213 
allowed us to test whether the sensorimotor system uses a minimal squared error 214 
strategy (mean) or a maximum a posteriori strategy (mode). 215 

 In the context of a Bayesian framework, the predictions of minimal squared error 216 
and maximum a posteriori strategies are found by taking a point estimate (i.e., the mean 217 
and mode, respectively) from a posterior distribution. In this study, we have manipulated 218 
the prior probability distribution by imposing environmental uncertainty via the object 219 
weight distributions described above. During the time course of any given lift, 220 
participants obtain current somatosensory information of an object’s weight. This current 221 
information (i.e., likelihood function) is then integrated with previously acquired 222 
somatosensory information (i.e., prior probability distribution) from past lifts. A point-223 
wise multiplication of the prior probability distribution with the likelihood function results 224 
in a posterior probability distribution. Thus, at the start of a subsequent lift, a 225 
feedforward controller could draw upon this posterior (which is now the new prior) to 226 
select a set of motor commands. A minimal squared error feedforward strategy would 227 
select a set of motor commands that aligns with the mean of the posterior (i.e., the 228 
average weight of the imposed weight distribution). In contrast, a maximum a posteriori 229 
strategy would select a set of motor commands that aligns with the model weight (i.e., 230 
the most frequent) of the posterior.  231 

There were a total of 8 a priori comparisons per dependent measure (32 232 
comparisons in total) that could be made to assess whether the sensorimotor system 233 
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uses a minimal squared error strategy or a maximum a posteriori strategy. For a visual 234 
representation of all predictions made by each strategy, please refer to Fig. 3. As an 235 
example, if the feedforward controller were using a minimal squared error strategy (Fig. 236 
3A), we would expect grip force rate, grip force, load force rate, and load force to be the 237 
same between the skewed heavy mode group and the constant mean group. 238 
Contrastingly, if the feedforward controller were attempting to use a maximum a 239 
posteriori strategy (Fig. 3B), we would expect the skewed heavy mode and the constant 240 
mean groups to have a significantly different grip force rate, grip force, load force rate, 241 
and load force. 242 
 243 
Data Reduction and Analysis  244 
Raw force and moment signals were smoothed using a dual low-pass, 2nd order, 14 Hz 245 
cut-off (Flanagan et al., 2003; Buckingham and Goodale, 2010), critically damped filter 246 
(Dowling, Robertson, 2000). Grip force (N) was calculated by averaging the normal 247 
forces recorded from the two force transducers (Flanagan et al, 2003; Fig. 1A). Load 248 
force (N) was calculated by summing the vertical forces recorded from the two force 249 
transducers. Grip force rate (N/s) and load force rate (N/s) are the time derivatives of 250 
grip force and load force, respectively, and were calculated using a 4th order, central-251 
difference method. Grip force rate, grip force, load force rate, and load force before 252 
object lift off often serve as an index of the sensorimotor system’s feedforward 253 
prediction of object weight (Flanagan and Beltzner, 2000; Buckingham and Goodale, 254 
2010). 255 

To capture only a feedforward response, we analyzed grip force rate, grip force, 256 
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load force rate, and load force at the time point that corresponded to peak load force 257 
rate (Johansson and Westling, 1988; Flanagan and Beltzner, 2000; Flanagan et al., 258 
2008; Baugh et al., 2012). In the last bin of trials, for each participant and trial we 259 
estimated object lift off from the load force traces recorded by the force transducers. 260 
Specifically, for each trial we found the point in time where the load force magnitude had 261 
just exceeded the current weight of the object. Further, we inspected the data to be 262 
assured that the four dependent measures were representative of a feedforward 263 
response and were taken before any online feedback corrections. 264 
 265 
Error analysis 266 
An error analysis was performed to assess whether the behavioural data was better 267 
explained by a minimal squared error strategy or a maximum a posteriori strategy. The 268 
main advantage of this approach is that it considers all of the experimental data of a 269 
particular measure, allowing for a single comparison to be made between the two 270 
strategies. To do this, we used a bootstrap procedure that allowed us to simultaneously 271 
contrast several groups to one another. 272 

Briefly, for each group, this bootstrap procedure involved the random resampling 273 
without replacement (n resamples = group size) of a recorded measure (i.e., grip force, 274 
grip force rate, load force, or load force rate), taking the average of each group’s 275 
resampled data, and from these averages summing the absolute error (i.e., difference) 276 
between several key groups. The predictions of each strategy dictated which groups 277 
were contrasted to one another. This process was repeated a total of 10 000 times and 278 
performed for each strategy. If a particular strategy has significantly less absolute error 279 
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than a competing strategy, this indicates it better explains the behavioural data.  280 
Here we provide an example group contrast made during the bootstrap 281 

procedure. The maximum a posteriori strategy predicts that the skewed light mode 282 
group would have the same grip force, grip force rate, load force, and load force rate as 283 
the constant light group. Therefore, if a maximum a posteriori strategy were dictating the 284 
feedforward response, we would expect a small amount of absolute error between 285 
these groups. However, instead of considering just one individual prediction like the 286 
example above, this error analysis simultaneously considers several of the a priori 287 
predictions depicted in Fig. 3. For complete details of this error analysis, we refer the 288 
reader to the Appendix. 289 
 290 
Statistical Analysis 291 
Our research question was focused on the stable behaviour of the feedforward 292 
controller, after learning had occurred, during an object-lifting task. That is, we were 293 
interested in the state of the feedforward controller after it had reached some stable 294 
pattern of behaviour in response to the imposed environmental uncertainty. As such, we 295 
performed statistical analyses on bin 10 (the last bin of the main experimental trials). 296 
We performed four separate one-way Analyses of Variance (ANOVA) on the four 297 
dependent measures of grip force rate, grip force, load force rate and load force. In 298 
these four ANOVA the independent variable was group (skewed light mode, skewed 299 
heavy mode, symmetrical, constant light, constant mean, and constant heavy).  300 

All post-hoc pairwise comparisons and error analysis comparisons (4 in total) 301 
were computed using a nonparametric bootstrap hypothesis test [resamples = 302 
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1,000,000] (Gribble and Scott, 2002; Good, 2005). This test provides a more reliable p-303 
value estimate than traditional parametric tests (e.g., t-tests). Briefly, they make no 304 
parametric assumptions (e.g., Normality), are less biased by samples with unequal 305 
sample size or unequal variance, and are better suited to analyse heteroscedastic data 306 
that is present in several commonly recorded biological measures (e.g., neural activity, 307 
electromyography and force production) due to sensorimotor noise (Gribble and Scott, 308 
2002; Faisal et al., 2008; Cashaback et al., 2014). Holm-Bonferroni corrections were 309 
used to correct for inflated Type-I error due to multiple comparisons (Holm, 1979). 310 
Reported p-values are Holm-Bonferroni adjusted. The effect size for each main effect 311 
was calculated using partial eta squared (η ). Statistical significance was set to p < 0.05.  312 
 313 
RESULTS 314 
Individual Data 315 
Fig. 4 shows the average traces of grip force rate, grip force, load force rate and load 316 
force trial traces, taken from the last bin of trials, of a participant from the constant light 317 
group and another participant from the skewed light mode group. For all dependent 318 
measures, both participants had similarly shaped force and force rate traces that 319 
differed only in magnitude before object lift off. Based on the load force traces, the 320 
average object lift off time across participants occurred at 0.134 (± 0.036 SD) seconds 321 
after peak load force rate (Figures 4D, 5D). After lift off, the displayed participant in the 322 
constant light group maintains relatively consistent traces for all dependent measures, 323 
indicating that their feedforward response was well aligned to the force requirements of 324 
the constant weight they repeatedly lifted during the experiment. In contrast, for all 325 
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measures, the displayed skewed light mode participant had a large amount of variability 326 
beyond object lift off in response to experiencing weights that varied on a trial-to-trial 327 
basis. This reflects a shift from feedforward to feedback control that, importantly, 328 
occurred well after our recorded dependent measures of the feedforward response. 329 
These patterns of behavior were consistent across participants.  330 
 331 
Group Data 332 
Fig. 5 shows the average traces of each group, from their last bin of trials, of grip force 333 
rate, grip force, load force rate and load force. For all measures, these traces are similar 334 
in terms of shape, but not necessarily magnitude, for participants experiencing either a 335 
constant or varying object weight on a trial-to-trial basis. 336 

Fig. 6 shows each group’s average grip force rate, grip force, load force rate and 337 
load force, taken at the time point corresponding to peak load force rate, across the ten 338 
different bins of trials. Qualitatively, we found that both load force rate and load force 339 
reached a stable pattern of behaviour during bin 1 (practice), while grip force rate and 340 
grip force took longer (~ bin 5 or 6) to reach a stable pattern of behaviour. 341 

In bin 10 (Fig. 7), we found that all four dependent measures were inline with the 342 
predictions of a feedforward controller that uses a minimal squared error strategy, rather 343 
than a maximum a posteriori strategy, to predict object weight. Compare Fig. 7 to Fig. 3 344 
for a visualization of the data relative to each of the strategy predictions. 345 
 346 
Grip Force Rate 347 
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We found a significant effect of group on grip force rate (Fig. 7A) in the final bin of trials 348 
[F(5, 84) = 8.321, p < 0.001, η = 0.331]. For grip force rate, eight pairwise comparisons 349 
were made to determine how the sensorimotor system makes a feedforward prediction. 350 
We found that four of the comparisons matched the predictions of a minimal squared 351 
error strategy (Table 2A). The remaining four comparisons did not match the 352 
predictions of a maximum a posteriori strategy (Table 2B). Thus, taken together the 353 
eight pairwise comparisons support the idea that the sensorimotor system uses a 354 
minimal squared error strategy to make feedforward predictions about object weight.  355 
 356 
Grip Force 357 
For grip force (Fig. 7B), we found a significant effect of group in the final bin of trials 358 
[F(5, 84) = 5.955, p < 0.001, η = 0.262 ]. Again, we made eight pairwise comparisons 359 
to test whether the sensorimotor system uses a minimal squared error or maximum a 360 
posteriori strategy. Three of four comparisons matched the predictions of a minimal 361 
squared error strategy (Table 2A). Of the remaining four comparisons, only one 362 
matched the maximum a posteriori prediction (Table 2B). In other words, six of the eight 363 
pairwise comparisons were consistent with the idea that the sensorimotor system uses 364 
a minimal squared error strategy to make feedforward predictions of object weight.  365 

Pairwise comparisons that did not match with a minimal squared error strategy 366 
involved the skewed heavy mode and constant heavy groups. Consistent with the 367 
maximum a posteriori strategy predictions, the skewed heavy mode group did not have 368 
a significantly different grip force from the constant heavy group (p = 0.466, two-tailed). 369 
 370 
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Load Force Rate 371 
We found a significant effect of group on load force rate (Fig. 7C) in bin 10 [F(5, 84) = 372 
9.348, p < 0.001, η = 0.357]. Six of the eight pairwise comparisons were consistent 373 
with the idea that the sensorimotor system uses a minimal squared error strategy (see 374 
Tables 2A and 2B).  For load force rate, pairwise comparisons that did not support a 375 
minimal squared error strategy involved the skewed light mode and constant light 376 
groups. Consistent with the maximum a posteriori strategy, the load force rate was not 377 
significantly different between the skewed light mode group and constant light group (p 378 
= 0.075, two-tailed). 379 
 380 
Load Force 381 
For load force (Fig. 7D), we found a significant effect of group [F(5, 84) = 16.756, p < 382 
0.001, η = 0.499]. We found that four pairwise comparisons matched the predictions of 383 
a minimal squared error strategy (Table 2A). The remaining four tests did not follow the 384 
predictions of a maximum a posteriori strategy (Table 2B). Thus, for load force, all eight 385 
pairwise comparisons were consistent with the idea that the sensorimotor system uses 386 
a feedforward controller that minimizes squared error. 387 
 388 
Error Analysis  389 
For each dependent measure, the error analysis provided a single, comprehensive 390 
comparison between the two candidate strategies (minimize squared error versus 391 
maximum a posteriori). The results of the error analysis are shown in Fig. 8. For all four 392 
dependent measures, a model based on minimizing squared error explained 393 
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significantly more of the behavioural data (i.e., had less error) compared to the 394 
maximum a posteriori model (p < 0.001 for all four comparisons). Across measures, the 395 
model based on minimizing squared error had 56.8% less absolute error relative to the 396 
model based on maximum a posteriori estimates of object weight. 397 
 398 
Sensitivity of Dependent Measures to Different Weights 399 
We found the four dependent measures were sensitive to object weight differences of 400 
0.2 kg, which matched the weight difference between the mean and mode of the 401 
skewed probability distributions. We found that mean values of each dependent 402 
measure were significantly greater for the constant mean group compared to the 403 
constant light group (Table 3). Similarly, for three of the four dependent measures we 404 
found that mean values for the constant heavy group were significantly greater than 405 
those for the constant mean group (Table 3). The only non-significant comparison 406 
between these two groups was for load force rate (p = 0.054, one-tailed). 407 
 408 
Influence of Load Force Variance  409 
For all four dependent measures, we found that mean values for the symmetrical group 410 
were not significantly different from those of the constant mean group (Table 4). This 411 
was predicted by both the minimal squared error and maximal a posteriori strategies. 412 
More importantly, this shows that the load force variance alone, at least within the range 413 
as dictated by our probability distributions, did not significantly influence the 414 
sensorimotor system’s feedforward controller for object lifting. 415 
DISCUSSION 416 
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An important feature of our experimental task was the randomization of object weights 417 
from trial to trial using skewed probability distributions. This allowed us to dissociate the 418 
predictions of minimal squared error and maximum a posteriori strategies for predicting 419 
object weight. We found that for object lifting, the sensorimotor system minimizes the 420 
square of prediction errors in the presence of environmental uncertainty. This finding is 421 
consistent with results found in studies of visually guided reaching (Kording and 422 
Wolpert, 2004b). Below we discuss how minimizing the square of feedforward errors 423 
may be beneficial in terms of the interplay between feedback and feedforward systems 424 
for sensorimotor control. 425 
 The finding that the sensorimotor system uses a minimal squared error strategy 426 
was supported by all four dependent measures that we used as indexes of the 427 
feedforward response (grip force rate, grip force, load force rate and load force). The 428 
results of twenty-eight of the thirty-two pairwise comparisons made among these four 429 
measures were consistent with a minimal squared error strategy. Further, for each of 430 
the four dependent measures, our error analysis showed that a minimal squared error 431 
feedforward strategy explained significantly more behaviour than a maximum a 432 
posteriori feedforward strategy. 433 

In our task, we found that the sensorimotor system used a minimal squared error 434 
strategy to make a feedforward prediction of object weight. This strategy could be 435 
accomplished by predicting the weight of a subsequent lift by using somatosensory 436 
information from a previous lift (Johansson and Westling, 1984), or by taking an 437 
unweighted (Takahashi et al., 2001; Scheidt et al., 2001) or weighted (e.g., exponential 438 
decay: Landy et al., 2012; Hadjiosif and Smith, 2015) moving average of 439 
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somatosensory information over several previous lifts. The use of a single previous lift, 440 
or averaging several previous lifts to make weight predictions, is often termed 441 
‘sensorimotor memory’ (Chouinard et al., 2005). However, the concept of sensorimotor 442 
memory in itself is unable to explain phenomena such as reduced variability with 443 
practice (Kording and Wolpert, 2004a; Acerbi et al., 2014), explaining perceptual 444 
illusions (Peters et al., 2016) or incorporating sensory cues (Trampenau et al., 2015). A 445 
Bayesian framework is able to account for all these phenomena.  446 

If participants used a Bayesian-like process they would build a prior 447 
representation of the environmental uncertainty. Similar to the sensorimotor memory 448 
strategy, they would use somatosensory information from previous lifts to build up a 449 
prior. However, where the Bayesian framework and sensorimotor memory strategies 450 
differ relates to how the somatosensory information from previous lifts is weighted. The 451 
sensorimotor memory strategy would suggest a constant weighting scheme while the 452 
Bayesian approach uses an adaptive weighting process due to the evolving prior over 453 
the course of learning. For example, decreases in movement variability in the presence 454 
of environmental uncertainty noise can be explained by an adaptive (un)weighting 455 
process that places less emphasis on trial-by-trial perturbations as a prior 456 
representation of environmental uncertainty is built (Kording and Wolpert, 2004a).  457 

In the context of our task it would be difficult to track the prior over time, since 458 
these weightings would be convoluted with the safety margin that took time to stabilize 459 
(see Figure 6). However, we were still able to answer our research question because 460 
we used a small range of object weight uncertainty and analyzed only the last bin of 461 
trials after the safety margin stabilized. While previous work has tracked the evolution of 462 
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a prior with learning (Berniker et al., 2010), an interesting direction would be exploring 463 
how previously acquired sensorimotor information becomes adaptively (un)weighted in 464 
a Bayesian, statistically optimal way during the course of learning. 465 

Our finding that the sensorimotor system uses a minimal squared error strategy 466 
during object lifting parallels research that examined visually guided reaching (Kording 467 
and Wolpert, 2004b; Zhang et al., 2015). We recently examined how the visuomotor 468 
system deals with environmental uncertainty during an implicit learning task (Cashaback 469 
et al., submitted). We found that the visuomotor system uses a minimal squared error 470 
strategy when updating where to aim reaches when using visual error feedback (i.e., the 471 
visual distance from a target), but can also switch to a maximum a posteriori strategy 472 
when using only binary reinforcement feedback (visual, auditory and monetary reward 473 
per target hit). Surprisingly, when both error and reinforcement feedback were made 474 
available the visuomotor system used a minimal squared error strategy, as opposed to 475 
a maximum a posteriori strategy that maximized both target hits and reward. This 476 
suggests during implicit learning that the visuomotor system heavily weights error 477 
feedback over reinforcement feedback when updating where to aim reaches. Likewise, 478 
it is possible that the sensorimotor system may be able to perform a maximum a 479 
posteriori feedforward prediction when using reinforcement feedback, but perhaps only 480 
in the absence of sensorimotor error feedback. Future research involving individuals 481 
with peripheral nerve deafferentation (Buckingham et al., 2016), or the blocking of 482 
ascending tactile (Johansson and Westling, 1984) and proprioceptive (Buffenoir et al., 483 
2013) signals in healthy individuals would likely provide valuable insights into how the 484 
sensorimotor system uses error and reinforcement feedback to update feedforward 485 
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predictions. Nevertheless, with error feedback available, the sensorimotor system 486 
appears to use a minimal squared error strategy when lifting objects and making 487 
visually guided reaches. This parallel in behaviour may be explained by the use of 488 
common brain areas to represent uncertainty or similar neuronal features, such as 489 
individual neuronal firing rates (Ma et al., 2006; Schultz, 2013) and neural population 490 
coding (Vilares et al., 2012; Pouget et al., 2013). Some reported brain areas that may 491 
represent environmental uncertainty include the putamen, amygdala, insula, 492 
orbitofrontal cortex, posterior parietal cortex, and the anterior cingulate cortex (Vilares et 493 
al., 2012; O’Reilly et al., 2013). However, theories and empirical studies on how the 494 
brain represents either sensorimotor noise or environmental uncertainty are currently 495 
sparse (Faisel et al., 2008; Kording, 2014).  496 

Kording and Wolport (2004b) also examined the effects of environmental 497 
uncertainty in a visuomotor task. They had participants operate a virtual peashooter. 498 
When shot, the peas were visually displaced by an amount drawn from a skewed noise 499 
distribution. On separate trials, the authors also manipulated the amount of uncertainty 500 
(variance) of these skewed noise distribution. Participants were required to move a 501 
cursor to a location such that the shot peas were “on average as close to the target as 502 
possible”. With low variance skewed noise, that is, when visual displacements were less 503 
than approximately ±1.5 cm, Kording and Wolpert found that the visuomotor system 504 
minimized approximately squared error. However, as visual displacement variance 505 
increased beyond this range, they found the visuomotor system shifted away from a 506 
minimal square error strategy and became less sensitive to larger errors (Kording and 507 
Wolpert, 2004b; Wolpert, 2007). In our task, both the skewed light mode and skewed 508 
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heavy mode probability distributions that we used to determine object weight on a trial-509 
to-trial basis each had a standard deviation of ±0.22 kg. With this relatively low level of 510 
uncertainty, participants used a feedforward response that was closely aligned with the 511 
mean (0.8 kg) of these skewed probability distributions. That is, with this amount of load 512 
force variance, the sensorimotor system used the same feedforward response as if it 513 
was lifting an object with a constant weight of 0.8 kg. This shows that the amount of 514 
load force variance associated with the two skewed distributions had little or no 515 
influence on the feedforward response. This was further supported by no behavioural 516 
differences between participants in the constant mean and symmetrical (no skew) 517 
groups. Thus, given that the variance of the probability distributions used to vary object 518 
weight did not influence behaviour, and that the sensorimotor system was sensitive to 519 
weight differences of 0.2 kg, we were able to directly assess whether the sensorimotor 520 
system was using a minimal squared error or maximum a posteriori strategy to deal with 521 
environmental uncertainty. With low amounts of load force variance, we found that the 522 
sensorimotor system used a minimal squared error strategy to make feedforward 523 
predictions of object weight. 524 

Our finding that the sensorimotor system was not influenced by load force 525 
variance differs from research by Hadjiosif and Smith (2015). However, these 526 
differences are likely caused by difference in experimental design. We used a task 527 
where the load forces were acceleratory (gravitational) in nature and had relatively low 528 
amounts of load force variance relative to the mean (i.e., coefficient of variation = 529 
standard deviation / mean x 100.0 = 27.5%). In contrast, Hadjiosif and Smith (2015) had 530 
participants pinch grip a force transducer that was mounted on a robotic arm. 531 
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Participants then made reaching movements to a target in a velocity dependent 532 
(viscous) force field. The strength of this force field was either held constant or varied 533 
according to a Gaussian distribution. For the different blocks of trials where the force-534 
field strength varied, the corresponding coefficient of variation ranged from 40% to 535 
250%. Hadjiosif and Smith (2015) found that participants applied larger grip forces with 536 
greater variability in force field strength. The authors relate this finding to the idea of a 537 
‘flexible safety margin’. Briefly, a safety margin refers to the finding that individuals grip 538 
with a higher force than is required to prevent an object from slipping, in the event of an 539 
inaccurate feedforward prediction. This safety margin is present when repeatedly lifting 540 
an object with a constant weight (Westling and Johansson, 1984), and is ‘flexible’ in the 541 
sense that it scales with environmental uncertainty (Hadjiosif and Smith, 2015). In our 542 
task, given the relatively low coefficient of variation (27%), the safety margin used for a 543 
constant weight of 0.8 kg may have been sufficient to absorb the majority of the load 544 
force variance. This load force variance was dictated by the spread of the three 545 
probability distributions (skewed heavy mode, skewed light mode, and symmetrical) 546 
used to vary object weight. However, with greater load force variance, as seen in 547 
Hadjiosif and Smith (2015), a feedforward response aligned with the mean of the 548 
environmental uncertainty may be unable to absorb the whole range of the load force 549 
variability. Taking into account both our current work and that of Hadjiosif and Smith 550 
(2015), it is possible that with larger amounts of load force variability that the 551 
sensorimotor system becomes sensitive to environmental uncertainty and places less 552 
emphasis on using a minimal squared error strategy.  553 



 

 26

A change in emphasis from using a minimal squared error strategy to becoming 554 
sensitive to environmental uncertainty may occur when the sensorimotor system is 555 
unable to fully compensate for high levels of load force variability. In other words, the 556 
feedback response may not have enough time to respond to the larger prediction errors, 557 
which in some instances could be detrimental to task success (e.g., dropping an object). 558 
An inability of the feedback system to respond quickly enough to the whole range of 559 
load force variability may explain the finding of Berg and colleagues (2016). They found 560 
in their ball catching experiment that the sensorimotor system seems to use a 561 
feedforward response aligned with the heaviest object. This may represent an upper 562 
bound of how the sensorimotor system deals with very high levels of weight uncertainty, 563 
where the feedforward response seems to scale its motor commands to the greatest 564 
weight that is lifted or caught. Nevertheless, in our experiment the safety factor seemed 565 
able to absorb the relatively small range of load force variability, providing the feedback 566 
system sufficient time to make small corrections in response to feedforward prediction 567 
errors. 568 

Currently we do not know why the sensorimotor system uses a minimal squared 569 
error strategy, or how this strategy is implemented by the nervous system. Regardless, 570 
there are instances where a minimum squared error strategy is advantageous. As 571 
mentioned above, a minimum squared error strategy corresponds to the mean of the 572 
environmental uncertainty. From a computational point of view, the mean is always 573 
defined unlike other point estimate statistics. For example, unlike the mean, the mode 574 
and median become ill-defined when the environmental uncertainty follows a uniform 575 
(Berg et al., 2016) or certain bimodal probability distributions (Scheidt et al., 2001; 576 
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Kording and Wolpert, 2004a). Thus, using the mean may ensure an efficient updating of 577 
internal models when using noisy error-based feedback.  578 

Another potential advantage of a minimal squared error strategy relates to how 579 
errors are penalized. This strategy considers all potential errors, but applies a greater 580 
penalization to large errors relative to smaller ones. As a result, a minimal squared error 581 
strategy will produce a feedforward response that protects against large feedforward 582 
prediction errors. By using a feedforward response that protects against large errors, 583 
this would allow the feedback system to respond more quickly to potentially detrimental 584 
feedforward prediction errors. For example, consider participants experiencing weights 585 
selected from the skewed light distribution. If the participants had used a maximum a 586 
posteriori strategy, they would have used a feedforward response corresponding to the 587 
lightest weight of 0.6 kg. However, this would place the feedforward grip and load forces 588 
far from the appropriate force magnitudes required to lift and grasp the maximum weight 589 
(1.2 kg) of the skewed light mode probability distribution. However, the minimum 590 
squared error strategy that participants used aligned them with the mean (0.8 kg) of the 591 
skewed light mode probability distribution, which was closer to the maximum weight of 592 
this distribution. As such, the feedback system would be able to respond more rapidly to 593 
the heaviest weight, since the required corrective adjustments would be smaller. 594 
Although a feedforward controller using maximum a posteriori strategy would predict the 595 
correct object weight at a higher frequency, this comes at the potential cost of having 596 
larger prediction errors with inaccurate feedforward responses. Conversely, the minimal 597 
squared error strategy would have a higher frequency of prediction errors, but these 598 
errors would be smaller and would subsequently allow for a more rapid feedback 599 
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response. Thus, by using a minimum squared error strategy, it is possible that the 600 
feedforward system hedges against larger errors in order to setup the feedback system 601 
for success. To test this idea, future work should manipulate both the magnitude of 602 
feedforward prediction errors and the time the feedback system has to respond to such 603 
errors. Such work would improve our understanding on the interplay between the 604 
feedback and feedforward system. 605 

It is noteworthy that many authors make the assumption of a maximum a 606 
posteriori strategy, often termed as maximum likelihood (equivalent to maximum a 607 
posteriori estimate when using a non-informative, flat prior). A convenient advantage of 608 
using maximum a posteriori estimates is that they are more readily calculated with 609 
explicit equations, making it easier to solve the optimal solution(s). Some examples of 610 
where authors have assumed a maximum a posteriori strategy include performing state 611 
estimation (Crevecoeur and Scott, 2013; Diedrichson, 2007), integrating information 612 
from multiple senses (Angelaki et al., 2009), making a choice in a forced decision-613 
making task (Resulaj et al., 2009; Wolpert and Landy, 2012; Acuna et al., 2015), making 614 
feedforward predictions with the aid of visual cues (Trampenau et al., 2015), and 615 
predicting the weight of novel objects (Peters et al., 2016). While these studies have 616 
provided valuable information about how the sensorimotor system generates predictions 617 
in the presence of noise, the present study addresses a different question. Namely, how 618 
are humans able to generate feedforward predictions in the presence of asymmetrical 619 
noise? In the current study we separated the optimal solutions of a maximum a 620 
posteriori strategy and a minimum squared error strategy by using skewed probability 621 
distributions. We found that the sensorimotor system uses a minimal squared error 622 
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strategy in the presence of a small range of environmental uncertainty, and that the 623 
maximum a posteriori estimate was inferior in predicting our behavioral measures. 624 
However, we do not argue that the sensorimotor system never uses a maximum a 625 
posteriori strategy (Mawase and Karniel, 2010). Rather, we propose that the chosen 626 
strategy is likely task and goal dependent. Nevertheless, our work highlights the 627 
importance of determining the underlying processes that drive the control of our 628 
movements.  629 

In summary, in the presence of a relatively narrow range of object weight 630 
uncertainty we found that the sensorimotor system minimizes the square of potential 631 
prediction errors during object lifting. This finding parallels previous research that 632 
examined visually guided reaching. The apparent overlap in strategy when lifting objects 633 
and making visually guided reaches suggests common underlying mechanisms to deal 634 
with environmental uncertainty. These mechanisms may include an overlap in brain 635 
areas that integrate environmental uncertainty or similarities in neuronal features (e.g., 636 
firing rate properties and population coding). Finally, we propose that the sensorimotor 637 
system may use a minimum squared error strategy to hedge against potentially large 638 
prediction errors. Such error hedging may maximize the probability of a successful 639 
feedback response. Future work testing this hypothesis may provide important insights 640 
on the interplay between feedforward and feedback components of the sensorimotor 641 
system.642 



REFERENCES 643 
 644 
Acerbi L, Vijayakumar S, Wolpert DM. On the origins of suboptimality in human 645 
probabilistic inference. PLoS Comput Biol 10(6): e1003661, 2014. 646 
Acuna DE, Berniker M, Fernandes HL, Kording KP. Using psychophysics to ask if the 647 
brain samples or maximizes. J Vision 15(3)7: 1-16, 2015. 648 
Angelaki DE, Gu Y, DeAngelis GC. Multisensory integration: psychophysics, 649 
neurophysiology, and computation. Curr Opin Neurobiol 19(4): 452-458, 2009. 650 
Baugh LA, Kao M, Johansson RS, Flanagan JR. Material evidence: Interaction of well-651 
learned priors and sensorimotor memory when lifting objects. J Neurophysiol 108(5): 652 
1262-1269, 2012. 653 
Berg WP, Richards BJ, Hannigan AM, Biller KL, Hughes MR. Does load uncertainty 654 
affect adaptation to catch training? Exp Brain Res :1-13, 2016. 655 
Berniker M, Voss M, Kording K. Learning Priors for Bayesian Computations in the 656 
Nervous System. PLoS ONE 5(9), e12686, 2010. 657 
Brayanov JB, Smith MA. Bayesian and “anti-Bayesian” biases in sensory integration for 658 
action and perception in the size-weight illusion. J Neurophysiol 103(3): 1518-1531, 659 
2010. 660 
Buckingham G, Cant JS, Goodale MA. Living in a material world: how visual cues to 661 
material properties affect the way that we lift objects and perceive their weight. J 662 
Neurophysiol 102: 3111-3118, 2009.  663 
Buckingham G, Goodale MA. Lifting without seeing: the role of vision in perceiving and 664 
acting upon the size weight illusion. PLoS ONE 5: e9709, 2010.  665 
Buckingham G, Michelakakis EE, Cole J. Perceiving and acting upon weight illusions in 666 
the absence of somatosensory information. J Neurophysiol 115(4): 1946-1953, 2016. 667 
Buckingham G, Ranger NS, Goodale MA. The Role of Vision in Detecting and 668 
Correcting Fingertip Force Errors During Object Lifting. J Vision 11(1): 2011. 669 
Buffenoir K, Decq P, Lambertz D, Perot C. Neuromechanical assessment of lidocaine 670 
test block in spastic lower limbs. Appl Physiol Nutr Me 38(11): 1120-1127, 2013. 671 
Cashaback JGA, Fewster K, Potvin JR, Pierrynowski MR. Musculotendon translational 672 
stiffness and muscle activity are modified by shear forces. Clin Biomech 29: 494:499, 673 
2014.  674 
Cashaback JGA, McGregor HR, Mohatarem A, Gribble PL. Dissociating Error-Based 675 
and Reinforcement-Based Loss Functions During Implicit Learning, submitted. 676 



 

 31

Chouinard PA, Leonard G, Paus T. Role of the Primary Motor and Dorsal Premotor 677 
Cortices in the Anticipation of Forces During Object Lifting. J Neurosci 25(9): 2277–678 
2284, 2005. 679 
Crevecoeur F, Scott SH. Priors engaged in long-latency responses to mechanical 680 
perturbations suggest a rapid update in state estimation. PLoS Comput Biol 9(8): 681 
e1003177, 2013. 682 
Diedrichsen J. Optimal task-dependent changes of bimanual feedback control and 683 
adaptation. Curr Biol 17(19): 1675-1679, 2007. 684 
Faisal AA, Selen LP, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci 9(4): 685 
292-303, 2008. 686 
 687 
Flanagan JR, Beltzner MA. Independence of perceptual and sensorimotor predictions in 688 
the size-weight illusion. Nat Neurosci 3(7): 737-741, 2000. 689 
 690 
Flanagan JR, Bittner JP, Johansson RS. Experience can change distinct size-weight 691 
priors engaged in lifting objects and judging their weights. Curr Biol 18(22): 1742-1747, 692 
2008. 693 
 694 
Flanagan JR, Bowman MC, Johansson RS. Control strategies in object manipulation 695 
tasks. Curr Opin Neurobiol 16: 650–659, 2006. 696 
Flanagan JR, Vetter P, Johansson RS, Wolpert DM. Prediction precedes control in 697 
motor learning. Curr Biol 13:146-150, 2003. 698 
Good PI. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical 699 
Guide to Resampling Methods for Testing Hypotheses, 2005. 700 
Gordon AM, Forssberg H, Johansson RS, Westling G. Integration of sensory 701 
information during the programming of precision grip: comments on the contributions of 702 
size cues. Exp Brain Res 85(1): 226–229, 1991a. 703 
Gordon AM, Forssberg H, Johansson RS, Westling G. The integration of haptically 704 
acquired size information in the programming of precision grip. Exp Brain Res 83(3): 705 
483–488, 1991b. 706 
Gordon AM, Forssberg H, Johansson RS, Westling G. Visual size cues in the 707 
programming of manipulative forces during precision grip. Exp Brain Res 83(3): 477–708 
482, 1991c. 709 
Grandy MS, Westwood DA. Opposite Perceptual and Sensorimotor Responses to a 710 
Size-Weight Illusion. J Neurophysiol 95(6): 3887–3892, 2006. 711 
Gribble PL, Scott SH. Overlap of internal models in motor cortex for mechanical loads 712 
during reaching. Nature 417: 938-941, 2002. 713 



 

 32

Hadjiosif AM, Smith MA. Flexible control of safety margins for actions based on 714 
environmental variability. J Neurosci 35(24): 9106-9121, 2015. 715 
Hermdorfer J, Li Y, Randerath J, Goldenberg G, Eidenmuller S. Anticipatory scaling of 716 
grip forces when lifting objects of everyday life. Exp Brain Res 212(1): 19–31, 2011. 717 
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat: 65-70, 718 
1979. 719 
Jenmalm P, Johansson RS. Visual and somatosensory-motor information about object 720 
shape control manipulative fingertip forces. J Neurosci 17(11): 4486-4499, 1997. 721 
Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in 722 
object manipulation tasks. Nat Rev Neurosci 10: 345–359, 2009.  723 
Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory 724 
in automatic control of precision grip when lifting rougher or more slippery objects. Exp 725 
Brain Res 56(3): 550-564, 1984. 726 
Johansson RS, Westling G. Coordinated isometric muscle commands adequately and 727 
erroneuously programmed for the weight during lifting task with precision grip. Exp Brain 728 
Res 71: 59–71, 1988.  729 
Karniel A. Open questions in computational motor control. J Integr Neurosci 10(3): 391-730 
417. 2011. 731 
Körding KP. Bayesian statistics: relevant for the brain? Curr Opin Neurobiol 25: 130-732 
133, 2014. 733 
Körding KP, Ku SP, Wolpert DM. Bayesian integration in force estimation. J 734 
Neurophysiol 92(5): 3161-3165, 2004. 735 
Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature 736 
427(6971): 244-247, 2004a. 737 
Körding KP, Wolpert DM. The loss function of sensorimotor learning. PNAS 101(26): 738 
9839-9842, 2004b. 739 
Landy MS, Trommershäuser J, Daw ND. Dynamic estimation of task-relevant variance 740 
in movement under risk. J Neurosci 32(37): 12702-12711, 2012. 741 
Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic 742 
population codes. Nat Neurosci 9(11): 1432-1438, 2006. 743 
Mawase F, Karniel A. Evidence for predictive control in lifting series of virtual objects. 744 
Exp Brain Res 203(2): 447-452, 2010. 745 
O’Reilly JX, Schuffelgen U, Cuell SF, Behrens TE, Mars RB, Rushworth MF. 746 



 

 33

Dissociable effects of surprise and model update in parietal and anterior cingulate 747 
cortex. PNAS 110(38): E3660-E3669, 2013. 748 
Peters MAK, Wei JM, Shams L. The size-weight illusion in not anti-bayesian after all: a 749 
unifying Bayesian account. Peer J 4: e2124, 2016. 750 
Pouget A, Beck JM, Ma WJ, Latham PE. Probabilistic brains: knowns and unknowns. 751 
Nat Neurosci 16(9): 1170-1178, 2013. 752 
Resulaj A, Kiani R, Wolpert DM, Shadlen MN. Changes of mind in decision-making. 753 
Nature 461(7261): 263-266, 2009. 754 
Robertson DGE, Dowling JJ. Design and responses of Butterworth and critically 755 
damped digital filters. J Electromyogr Kines 13(6): 569-573, 2003. 756 
Scheidt RA, Dingwell JB, Mussa-Ivaldi FA. Learning to move amid uncertainty. J 757 
Neurophysiol 86(2): 971-985, 2001. 758 
Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol 23(2): 229-238, 759 
2013. 760 
Takahashi CD, Scheidt RA, Reinkensmeyer DJ. Impedance control and internal model 761 
formation when reaching in a randomly varying dynamical environment. J Neurophysiol 762 
86(2): 1047-1051, 2001. 763 
Trommerhausser J, Maloney LT, Landy MS. (2003). Statistical decision theory and the 764 
selection of rapid, goal-directed movements. J Opt Soc Am A 20(7): 1419-1433, 2003. 765 
Trampenau L, Kuhtz-Buschbeck JP, van Eimeren T. Probabilistic information on object 766 
weight shapes force dynamics in a grip-lift task. Exp Brain Res 233(6): 1711-1720, 767 
2015. 768 
Vilares I, Howard JD, Fernandes HL, Gottfried JA, Körding KP. Differential 769 
representations of prior and likelihood uncertainty in the human brain. Curr Biol 22(18): 770 
1641-1648, 2012. 771 
Wolpert DM. Probabilistic models in human sensorimotor control. Hum Movement Sci 772 
26(4), 511-524. 773 
Wolpert DM, Flanagan JR. Motor prediction. Curr Biol 11: R729–R732, 2001.  774 
Wolpert DM, Landy MS. Motor control is decision-making. Curr Opin Neurobiol 22(6): 775 
996-1003, 2012. 776 
Zhang H, Daw ND, Maloney LT. Human representation of visuo-motor uncertainty as 777 
mixtures of orthogonal basis distributions. Nat Neurosci 18(8): 1152-1158, 2015. 778 
  779 



 

 34
  780 



 

 35

  781 



 

 36

  782 



 

 37

FIGURE CAPTIONS 783 
Figure 1: Experimental Apparatus and Protocol. A) Participants used a pinch grip when 784 
grasping the transducers. Grip forces were perpendicular to the contact surfaces of the 785 
transducers. Load forces acted vertically and were parallel with the contact surfaces of 786 
the transducers. B) The force transducers were mounted to the top of a wood platform 787 
that covered a hole in the table. A cable was attached to the wood platform, passed 788 
through two pulleys and held up a container containing lead shot. There were a total of 789 
nine possible containers that participants could lift. Each container was filled with 790 
different amounts of lead shot (0.1 kg increments), such that the total object weight 791 
varied from 0.4–1.2 kg. C) The beginning of the trial was signaled by a warning noise 792 
timed to a metronome beat (40 bpm). On the second beat, participants were instructed 793 
to grip and lift the object in a single motion. At the time of the following beat, the 794 
participant was to lift the object to the height of a block (10 cm). They held the object 795 
there until the fourth and final beat, at which time they would lower and then release the 796 
object. For each new trial, the experimenter would attach a container that was selected 797 
according to the participant’s assigned probability distribution. 798 
 799 
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Figure 2: Discrete probability distributions that describe the different object weights to 805 
be lifted (x-axis) and the frequency count of a particular weight (y-axis). Participants 806 
were assigned one of the displayed distributions. There were three probability 807 
distributions that resulted in a constant weight (A = constant heavy, B = constant 808 
mean, C = constant light) and three probability distributions that resulted in a varying 809 
weight (D = skewed heavy mode, E = symmetrical, F = skewed light mode). Each 810 
distribution had a total frequency count of 21 weights, matching the number of lifts per 811 
bin of trials. On each trial, object weight was randomly drawn from a distribution until its 812 
depletion. This process was performed 9 times (bins 2-10) for a total of 189 813 
experimental lifts (bin 1 was a set of 10 practice trials). For each distribution, the thin 814 
solid line, thin dashed line, and thin dotted line correspond to its mean, median, and 815 
mode, respectively. The constant light distribution had a weight of 0.6 kg that was 816 
aligned to the mode of the skewed light mode. The constant mean had a weight of 0.8 817 
kg that was aligned to the mean of the skewed light mode, symmetrical and skewed 818 
heavy mode probability distributions. The constant heavy had a weight of 1.0 kg that 819 
was aligned to the mode of the skewed heavy mode. The symmetrical distribution had 820 
variance, no skew (mean, median, and mode identical) and acted as a control to see if 821 
load force variance alone influenced feedforward predictions. Both the skewed light 822 
mode and skewed heavy mode had their mean and mode separated (by 0.2 kg), 823 
allowing us to investigate whether the sensorimotor feedforward system attempts to 824 
minimize the square of prediction errors (feedforward response aligned with the mean 825 
weight of a distribution) or attempts to select the most likely weight (feedforward 826 
response aligned with the modal weight of a distribution).  827 
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Figure 3: Predictions of feedforward controller that uses a: A) minimal squared error 828 
strategy or B) maximum a posteriori strategy. These predictions apply to the four 829 
dependent measures, grip force rate, grip force, load force rate and load force, which 830 
we used to characterize the feedforward response of the sensorimotor system. Under 831 
the heading, ‘Predictions’, we summarize the expected outcome of group mean 832 
comparisons for a minimal squared error strategy (3A: light blue text) and a maximum a 833 
posteriori strategy (3B: dark blue text). Black text (i.e., S = CM) indicates an identical 834 
prediction between the two strategies. Here, =, <, and > indicate whether we expect the 835 
dependent measures of a group to be equal to, significantly less than, or significantly 836 
greater than another group, respectively. 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 
 847 
 848 
 849 
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Figure 4: Individual participant traces, averaged across the last bin of trials, of A) grip 850 
force rate (N/s), B) grip force (N), C) load force rate (N/s), and D) load force (N) from a 851 
participant in the constant light group and a participant in the skewed light mode group. 852 
For all measures, individual trial traces were aligned to peak load force rate. Dashed 853 
vertical lines represent the time of peak load force rate, which intercepts the x-axis at 854 
0.0 s. Both participants had consistently shaped force and force rate traces before 855 
object lift off, which on average occurred at 0.134 ± 0.036 s, differing only in magnitude. 856 
By recording all four measures at the peak load force rate (0.0 s), before object lift off, 857 
we were able to capture each participant’s feedforward response. Beyond object lift off, 858 
the increased trace variability of the skewed light mode participant reflects feedback 859 
modulation in response to lifting weights that varied on a trial-to-trial basis. Contrastingly, 860 
the constant light participant showed more consistent traces throughout the entire trial, 861 
indicating that their feedforward response was well matched to the force requirements 862 
of the constant weight they repeatedly lifted throughout the experiment. Shaded regions 863 
represent ±1 standard deviation.  864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
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 873 
Figure 5: Average group traces, using the last bin of trials, of A) grip force rate (N/s), B) 874 
grip force (N), C) load force rate (N/s), and D) load force (N). For all measures, 875 
individual trial traces were aligned to peak load force rate. Dashed vertical lines 876 
represent the time of peak load force rate, which intercepts the x-axis at 0.0 s. The 877 
shape, but not necessarily the magnitude, of all four measures was quite consistent 878 
across groups. For all four measures that were recorded at the dashed line, 879 
representing an index of the feedforward response, there were no significant differences 880 
between the groups whose participants lifted varying weights (skewed heavy mode, 881 
symmetrical, skewed light mode) and the constant mean group. This finding aligns with 882 
the prediction of a feedforward response using a minimal squared error strategy. 883 
Beyond the time of object lift off, which on average occurred at 0.134 ± 0.036 s, there 884 
appears to be slight separation of grip force between the constant mean group 885 
compared to the skewed heavy mode, symmetrical, skewed light mode groups. This 886 
separation likely represents feedback modulation in response to lifting weights that 887 
varied on a trial-to trial basis (see Figure 4B). Shaded regions represent ±1 standard 888 
error.  889 
 890 
Figure 6: Average A) grip force rate (N/s), B) grip force (N), C) load force rate (N/s), 891 
and D) load force (N) of each group across separate bins of trials. Error bars represent 892 
±1 standard error. 893 
 894 
 895 
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 896 
 897 
 898 
Figure 7: Average A) grip force rate (N/s), B) grip force (N), C) load force rate (N/s), 899 
and D) load force (N) of each group in the final, 10th bin of trials. Under the heading 900 
‘Comparisons’, we summarize key group mean comparisons that relate to how the 901 
sensorimotor system makes a feedforward prediction (for an exhaustive list, see Table 902 
1, 2 and 3). For any dependent measure, =, <, and > indicate whether one group was 903 
equal to, less than, or greater than another group, respectively. Dark blue lettering 904 
indicates the comparison is aligned with a maximum a posteriori strategy, while light 905 
blue lettering indicates a comparison that supports a minimize squared error strategy. 906 
Black lettering indicates an identical prediction between the two strategies. As can be 907 
seen across dependent measures, the vast majority of comparisons support a minimal 908 
squared error strategy. Error bars represent ±1 standard error. p < 0.05. 909 
 910 
Figure 8: For each dependent measure (x-axis), the resulting magnitude of error (y-911 
axis) when predicting the data with a minimal squared error strategy (light blue) or 912 
maximum a posteriori strategy (dark blue). Error bars represent ±1 standard deviation. p 913 
< 0.05. 914 
  915 
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TABLE CAPTIONS 916 
Table 1: Descriptive statistics of the six probability distributions that dictated the trial-by-917 
trial weight of the object to be lifted. Participants were pseudorandomly assigned to one 918 
of the six probability distributions.  919 
  920 
Table 2: For each measure, the adjusted p-values of each group mean comparison. 921 
The second row, leftmost four entries show the groups being compared and indicates 922 
the predicted results (i.e., equal to, greater than, less than) of a A) minimal squared 923 
error strategy and B) maximum a posteriori strategy. These predictions match those 924 
visually seen in Fig. 3. We have bolded comparisons where the p-value supports a 925 
specific prediction (corresponding to the cell above in the second row). When a strategy 926 
predicts two groups to be equal to one another (e.g., skewed heavy mode equal to 927 
constant mean), for the prediction to be true then the p-value would have to be greater 928 
than or equal to 0.05 (i.e., no difference between groups). In contrast, if the prediction 929 
expects one group to be significantly different from another group (e.g., skewed heavy 930 
mode less than constant heavy mode), then p-value has to be less than 0.05 for the 931 
prediction to be true. As can be seen in 1A, 14 out of 16 comparisons are aligned with a 932 
minimal squared error strategy. Conversely, only 2 of 16 comparisons in 1B are aligned 933 
with a maximum a posteriori strategy. Taken together, 28 of the 32 total comparisons 934 
support the idea of a sensorimotor system that minimizes the square of prediction errors. 935 
 936 
 937 
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Table 3: For each dependent measure, the corresponding adjusted p-values when 938 
comparing whether the constant light was significantly less than the constant mean 939 
group, and whether the constant mean group was less than the constant heavy group. 940 
Bold indicates significant differences between the specified group mean comparisons. 941 
All but one of the comparisons was insignificant, albeit trending towards a difference (p 942 
= 0.054). The results of these comparisons suggest that the dependent measures were 943 
sensitive to weight changes of 0.2 kg, which is the difference between the mean and 944 
mode in both the skewed light mode and skewed heavy mode probability distributions. 945 
 946 
Table 4: For each dependent measure, the corresponding adjusted p-value when 947 
comparing the symmetrical and constant mean groups. Bold indicates significant 948 
differences between groups. As expected, all comparisons were insignificant, indicating 949 
that the dependent measures were not sensitive to the low range of load force variance 950 
used in this study. 951 
 952 



















Table 1

Probability Distribution Statistics

Probability Distribution mean (kg) mode (kg) median (kg) range (kg) standard deviation (kg) skew (kg) discrete entropy (bits)

Constant Heavy 1.0 1.0 1.0 [1.0] 0.0 0.0 0.0

Constant Mean 0.8 0.8 0.8 [0.8] 0.0 0.0 0.0

Constant Light 0.6 0.6 0.6 [0.6] 0.0 0.0 0.0

Skewed Heavy Mode 0.8 1.0 0.9 [0.4, 1.0] 0.22 -0.6 1.7

Symmetrical 0.8 0.8 0.8 [0.5, 1.1] 0.16 0.0 1.7

Skewed Light Mode 0.8 0.6 0.7 [0.6, 1.2] 0.22 0.6 1.7



Table 2A

Minimal Squared Error - Predicted Comparisons

skewed heavy mode skewed light mode skewed heavy mode skewed light mode
Measure equal to equal to less than greater than

constant mean constant mean constant heavy constant light

Grip Force Rate (N/s) p > 0.999 p = 0.490 p = 0.002 p = 0.003

Grip Force (N) p = 0.565 p = 0.598 p = 0.330 p = 0.022

Lift Force Rate (N/s) p = 0.294 p = 0.633 p = 0.001 p = 0.051

Lift Force (N) p > 0.999 p > 0.999 p = 0.007 p = 0.002

Table 2B

Maximum a Posteriori - Predicted Comparisons

skewed heavy mode skewed light mode skewed heavy mode skewed light mode
Measure equal to equal to greater than less than

constant heavy constant light constant mean constant light

Grip Force Rate (N/s) p = 0.003 p = 0.008 p > 0.999 p > 0.999

Grip Force (N) p = 0.466 p = 0.040 p = 0.424 p = 0.565

Lift Force Rate (N/s) p = 0.002 p = 0.075 p > 0.999 p = 0.424

Lift Force (N) p = 0.012 p = 0.004 p = 0.967 p > 0.999



Table 3

Sensitivity to Weight

constant light constant mean
Measure less than less than

constant mean constant heavy

Grip Force Rate (N/s) p = 0.009 p < 0.001

Grip Force (N) p = 0.019 p = 0.020

Lift Force Rate (N/s) p = 0.024 p = 0.054

Lift Force (N) p < 0.001 p = 0.004



Table 4
Sensitivity to Load Force Variance

symmetrical
Measure equal to

constant mean

Grip Force Rate (N/s) p = 0.249

Grip Force (N) p = 0.796

Lift Force Rate (N/s) p > 0.999

Lift Force (N) p > 0.999
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