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Simulating Airline Operational Responses to Environmental 

Constraints 

Antony David Evans 

Summary 

This dissertation describes a model that predicts airline flight network, frequency and 

fleet changes in response to policy measures that aim to reduce the environmental impact of 

aviation. Such airline operational responses to policy measures are not considered by existing 

integrated aviation-environment modelling tools. By not modelling these effects the 

capability of the air transport system to adjust under changing conditions is neglected, 

resulting in the forecasting of potentially misleading system and local responses to 

constraints.  

The model developed follows the overriding principle of airline strategic decision 

making, i.e., airline profit maximisation within a competitive environment. It consists of 

several components describing different aspects of the air transport system, including 

passenger demand forecasting, flight delay modelling, estimation of airline costs and airfares, 

and network optimisation. These components are integrated into a framework that allows the 

relationships between fares, passenger demand, infrastructure capacity constraints, flight 

delays, flight frequencies, and the flight network to be simulated. Airline competition is 

modeled by simulating a strategic game between airlines competing for market share, each of 

which maximizes its own profit.  

The model is validated by reproducing historical passenger flows and flight 

frequencies for a network of 22 airports serving 14 of the largest cities in the United States, 

using 2005 population, per capita income and airport capacities as inputs. The estimated 

passenger flows and flight frequencies compare well to observed data for the same network 

(the R2 value comparing flight segment frequencies is 0.62). After validation, the model is 

applied to simulate traffic growth and carbon dioxide and nitrogen oxide emissions within the 

same network from 2005 to 2030 under a series of scenarios. These scenarios investigate 

airline responses to (i) airport capacity constraints, (ii) regional increases in costs in the form 
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of landing fees, and (iii) major reductions in aircraft fuel burn, as would be achieved through 

the introduction of radically new technology such as a blended wing body aircraft or 

advanced open rotor engines.  

The simulation results indicate that, while airport capacity constraints may have 

significant system-wide effects, they are the result of local airport effects which are much 

greater. In particular, airport capacity constraints can have a significant impact on flight 

delays, passenger demand, aircraft operations, and emissions, especially at congested hub 

airports. If capacity is available at other airports, capacity constraints may also induce 

changes in the flight network, including changes in the distribution of connecting traffic 

between hubs and the distribution of true origin-ultimate destination traffic between airports 

in multi-airport systems. Airport capacity constraints are less likely to induce any significant 

increase in the size of aircraft operated, however, because of frequency competition effects, 

which maintain high flight frequencies despite reductions in demand in response to increased 

flight delays. The simulation results also indicate that, if sufficiently large, regional increases 

in landing fees may induce significant reductions in aircraft operations by increasing average 

aircraft size and inducing a shift in connecting traffic away from the region. The simulation 

results also indicate that the introduction of radically new technology that reduces aircraft 

fuel burn may have only limited impact on reducing system CO2 emissions, and only in the 

case where the new technology can be taken up by the majority of the fleet. The reason for 

this is that the reduced operating costs of the new technology may result in an increase in 

frequency competition and thus aircraft operations.  

In conclusion, the modelling of airline operational responses to environmental 

constraints is important when studying both the system and local effects of environmental 

policy measures, because it captures the capability of the air transport system to adjust under 

changing conditions.  
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1 Introduction 

 

The development of the powered aircraft in 1903 was to revolutionise intercity 

transportation. For the first time, the possibility arose for passengers and freight to be 

transported by air instead of over land or sea, making previously impossible trips not only 

possible, but practical and even attractive. However, it was not until after the Second World 

War, more than 40 years later, that long distance intercity travel would cease to be dominated 

by rail. It took technological innovations during and after the Second World War, most 

notably the development of the jet engine, for aircraft to become sufficiently cost effective 

for aviation to compete with rail. By the 1950s, advancements in aircraft technology along 

with government investment in aviation infrastructure (particularly airports) led to aviation 

taking over from rail to become the most important mode of transport for commercial 

intercity passenger travel in the United States (Schäfer et al., 2009). The growth of aviation in 

other industrialised countries and regions followed similar trends. Between 1960 and 2005, 

worldwide scheduled passenger air travel grew from 109 billion passenger-kilometres 

travelled to 3.7 trillion – an average growth rate of over 8% per year (ICAO, 2006-2). 

Because of the growing demand to travel as income levels rise and people can afford to travel 

more, and because of the continuing trend to shift from slower to faster modes of transport 

across all distances (Schäfer et al., 2009), forecasts for future growth in passenger air 

transport are also high. The Airbus Global Market Forecast from 2007 to 2026 (Airbus, 2007) 

and the Boeing Current Market Outlook from 2006 to 2026 (Boeing, 2007) both predict 

growth rates of around 5% per year. By 2050 conservative estimates predict a 30-110% 

growth in passenger kilometres travelled over 2005 levels (Berghof et al., 2005), while more 

aggressive estimates predict an increase of an order of magnitude (Schäfer, 2006).  

To serve this anticipated growth in demand for air travel, there must be an increase in 

air traffic (number of aircraft movements). In a deregulated system such as is in place in most 

industrialised nations and many developing economies, airlines allocate aircraft to routes in 

such a way as to maximise profit across their networks. Airline strategic planning is a 

complex process of optimising flight operations within a competitive environment in which 
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airlines try to capture market share by reducing fares and increasing flight frequencies. Hub-

and-spoke networks are a key component of such optimised operations. In hub-and-spoke 

networks airlines route passengers through central hub airports instead of on non-stop flights 

between cities. Hub-and-spoke operations thus enable airlines to serve multiple markets using 

fewer flights than can be achieved through point-to-point networks, in which all cities are 

connected by non-stop flights only. Airline hub-and-spoke operations were pioneered by 

Delta Air Lines in 1955, with a hub in Atlanta, in an effort to compete with Eastern Airlines 

(Delta Air Lines, 2009-1). After the deregulation of the U.S. airline industry in 1978, this 

model was adopted by several other airlines because of the cost savings associated with it. 

Economies of scale in servicing passengers and aircraft at the hub airports allow airlines to 

take advantage of reduced traffic servicing costs, while the greater number of passengers 

flying to and from the hub airports allow airlines to take advantage of economies of scale 

associated with the lower operating costs, per passenger kilometre, of larger aircraft types. 

However, passenger travel times and distances increase because passengers are flying via a 

hub, where they must connect. Airlines also compete by increasing non-stop frequencies 

between city pairs in order to increase market share. There is therefore a trade-off between 

the benefits of hub-and-spoke operations in terms of reduced traffic servicing costs and 

aircraft operating costs per passenger kilometre on the one hand, and the benefits of point-to-

point operations in terms of reduced passenger-kilometres flown and increased market share 

on the other hand. As demand in a market increases, point-to-point operations typically 

become more profitable as airlines are able to take advantage of the economies of scale 

associated with the lower operating costs per passenger kilometre of larger aircraft types 

without the need to operate a hub-and-spoke network. Maximum profit is typically achieved 

through a combination of hub-and-spoke operations and point-to-point operations. The result 

is a complex network of flights offered by competing airlines to serve the available demand, 

which adjusts under changing conditions. 

While necessary to serve increasing passenger demand, growth in air traffic is 

expected to have a number of negative consequences, including increasing flight delays, air 

quality and noise impacts, and impact on global climate change. Flight delays result when 

traffic growth is constrained by the air traffic system capacity. Airport and airspace capacity 

already constrain flight operations at many major airports in the United States and Europe. In 
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the United States, average arrival delays were greater than 15 minutes at 23 airports in 2006, 

with LaGuardia Airport experiencing 21 minutes of average delay per flight (FAA, 2008). In 

Europe, average arrival delays were greater than 15 minutes at 10 airports in 2006, with 

London Luton Airport experiencing 18 minutes of average delay per flight 

(EUROCONTROL, 2007). In the industrialised world, where airport capacity expansion is 

limited by local community resistance and environmental restrictions, system capacity is 

likely to become an increasingly binding constraint on growth in air traffic. Flight delays are 

also increasing in developing regions, such as China (Cao, 2004) and India (Times of India, 

2008), although in these regions system capacity is expected to grow with increasing air 

traffic, at least initially.  

Of potentially greater concern is that the growth in air traffic is expected to produce a 

significant environmental impact, including air quality and noise impacts, and global climate 

change, as reported by the IPCC (1999), Cairns et al. (2006) and Reynolds et al. (2007). 

Nitrogen oxides (NOx) and particulate emissions in the vicinity of airports have significant 

impacts on local air quality, resulting in negative health effects and premature mortalities 

(Graham et al., 2009). Aircraft noise in the vicinity of airports also has negative health effects 

(Cohen et al., 1980), while also reducing property values near airports and affecting 

children’s abilities to learn (Haines et al., 2001). The climate effects of aviation are more 

complex and widespread. Carbon dioxide (CO2), the emissions of which are directly 

proportional to fuel burn, is a greenhouse gas that impacts the atmosphere for hundreds of 

years, increasing radiative forcing1 and ultimately causing the global average temperature to 

rise. Non-CO2 effects are also significant. NOx emissions at aircraft cruise altitudes lead to 

the production of tropospheric ozone, which has a warming effect, and accelerate the removal 

of methane from the atmosphere, which has a cooling effect (IPCC, 1999). Ozone and 

methane have different life times, so the warming effect is regional, while the cooling effect 

is global. Contrails from aircraft engines can increase high altitude cloud cover, which tends 

to produce a net warming effect in the region where the aircraft was flown, although there is 

significant scientific uncertainty in its overall effect.  

                                                 

1 A change in average net radiation at the top of the troposphere (IPCC,1999). 
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Policy measures to mitigate the environmental impacts of aviation are under 

consideration by a number of national and regional governing authorities. These include (i) 

new regulations for aircraft fuel burn or emissions levels to incentivise the development of 

new, more fuel efficient technology and force its adoption into airline fleets (GAO, 2009); (ii) 

economic instruments that increase costs to passengers, such as an air passenger duty, and 

result in a reduction in passenger demand growth as passengers choose to travel using 

alternative modes of transport, or choose not to travel at all (HM Revenue and Customs, 

2008); (iii) economic instruments that increase costs to airlines, such as increasing landing 

fees (House of Commons, 2003) or the inclusion of aviation in an emissions trading scheme 

(European Commission, 2006; GAO, 2009); and (iv) direct constraints on traffic growth such 

as limited airport capacity expansion (DfT, 2009).  

In order to make informed choices with regard to which of these policy measures 

should be employed, the potential impacts of each policy measure must be understood in 

detail. This requires simulation of the relevant impacts of these policies on the air transport 

system. Three integrated aviation-environment system models exist for detailed assessment 

of the environmental impact of aviation and the mitigation potential of different policy 

measures: the Aviation Emissions and Evaluation of Reduction Options Modelling System 

(AERO-MS) (Pulles et al., 2002); the Aviation Environmental Portfolio Management Tool 

(APMT) (Waitz et al., 2006-1); and the Aviation Integrated Modelling (AIM) Project 

(Reynolds et al., 2007). Using forecasts of passenger demand (either endogenous or 

exogenous) and predicted technology development, these integrated aviation-environment 

system models simulate air traffic growth and emissions at the airport level, regionally and 

globally, allowing local air quality, noise and climate impacts to be estimated. The impacts of 

policy measures are simulated by modifying demand inputs, airline operating costs, aircraft 

performance characteristics and other inputs. The models generate a partial equilibrium 

between supply and demand by simulating fare changes as a function of changes in airline 

cost, and modelling the associated demand response to these changes in fare. The response of 

sectors other than air transport is not modelled, although a general equilibrium model that 

includes the responses of other sectors is under development within APMT (PARTNER, 

2009). Further details of the modelling approaches employed in each model are presented in 

Appendix A.  
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In each of the integrated aviation-environment system models described above, the 

supply side, in terms of air traffic growth and fleet composition, is modelled according to 

observed trends in historical traffic growth as a function of demand. There is no explicit 

modelling of airline strategic decision making to capture the effects of competition or airline 

operational changes. Such modelling according to observed trends is suitable for many types 

of analysis, such as shorter term forecasting (5 to 10 years), when the primary drivers of 

growth are not likely to change significantly. However, especially over longer time horizons 

(20 to 30 years), constraints may come into play that have not historically affected aviation 

growth significantly. Similarly, policies designed to mitigate the environmental impact of 

aviation may have unexpected effects that have not been observed historically. By not 

modelling these effects, the capability of the air transport system to adjust under changing 

conditions is neglected, resulting in the forecasting of potentially misleading impacts. In 

order to capture the effect of potentially increasingly binding constraints on traffic growth 

and the impact of unexpected policy effects, airline operational responses must be simulated, 

and this must be done in a way that models the underlying principles behind airline strategic 

decision making. 

Examples of policy measures for which it may be important to simulate airline 

operational responses by modelling these underlying principles include (i) limitations on 

airport capacity expansion, (ii) the introduction of regional cost increases, and (iii) the 

introduction of radically new technology into the fleet. Each of these is described in more 

detail below. 

Reynolds et al. (2007) show that, in the absence of other changes, average arrival 

delays at the 50 busiest airports in the United States could be over 1 hour per flight by 2030, 

even with the implementation of all existing airport capacity expansion plans. This estimate 

accounts for the demand-reducing effects of increased fares resulting from airlines passing on 

50% of the costs associated with flight delays directly to passengers, but assumes that airlines 

will continue to increase air traffic to match the projected growth in demand as they have in 

the past. However, as suggested by both Reynolds et al. (2007) and Kostiuk et al. (2000), 

these delays are unlikely to occur in reality as airlines would adjust their operations to 

minimise the negative impacts of the increasing costs associated with delays and reductions 

in passenger demand.  
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Changes in operations in response to flight delays may include changes in the flight 

schedules operated; changes in the flight networks operated; and changes in the aircraft types 

operated. Airlines may adjust their flight schedules by moving flights to off-peak times 

(Kostiuk et al., 2000), broadening the range of departure times into the early morning and 

later into the night (Kostiuk et al., 2000), and “flattening” the schedule – spreading out arrival 

and departure banks so that flights are more evenly distributed across the day (Evans, 2002). 

Airlines may adjust the flight networks that they operate by avoiding congested hubs and 

gateways (departure routes), and by making greater use of secondary airports in preference to 

congested primary airports (Kostiuk et al., 2000). Aircraft sizes may also be increased in 

order to serve the demand with fewer flights, and therefore lower delays (Kostiuk et al., 

2000). While each of these changes is a strategic response by the airlines to flight delays, 

changes in aircraft size must occur over longer time periods than the changes in the schedule 

and network, because of the delay between ordering new aircraft and delivery. Schedule 

changes have been observed historically (Kostiuk et al., 2000; Evans, 2002), as have network 

changes to shift to secondary airports (Bolgeri et al., 2008), but other changes in flight 

networks and changes in aircraft size have not been observed historically. 

Each of the operational responses to delays described above may significantly alter 

how future air traffic grows. In order to generate plausible estimates of air traffic growth in a 

capacity-constrained system it is therefore essential to quantify how airlines are likely to 

respond to capacity constraints. This can be achieved by identifying trends in the way that 

airlines have responded to capacity constraints in the past, or by simulating how flight delays 

affect the underlying principles behind airline strategic decision making, i.e. increases in 

flight delay causing increases in cost that reduce airline profit. This latter approach is applied 

in this dissertation because of its potential to capture airline responses that have not been 

observed historically. 

Modelling the underlying principles behind airline strategic decision making is also 

important for evaluating the impacts of environmental policies. The introduction of policy 

measures that increase regional costs to airlines, as would occur through regionally increased 

landing fees or the inclusion of aviation within a regionally applied emissions trading 

scheme, such as is planned for Europe in 2012 (European Union, 2009), may also have 

unexpected effects. There is concern that such regional increases in cost may put airlines 



 

Introduction 

 

 

7 

operating from within the region at a competitive disadvantage relative to airlines operating 

outside the region, potentially leading to a loss in traffic within the region through airlines 

shifting hub operations outside the region (Ernst & Young, 2007). Quantification of this 

effect requires modelling of airline strategic decision making regarding the choice flight 

network and hub location in response to regional changes in cost.  

The introduction of radically new technology into the fleet that reduces fuel burn and 

greenhouse gas emissions significantly may also have unexpected effects, such as enabling 

airlines to increase frequency in order to attract more market share, because of the reduced 

operating costs of the new technology. This would reduce the environmental benefits of the 

introduction of the technology. Quantification of this effect requires modelling of how airline 

competition is impacted by operating costs, requiring simulation of how airline competition 

impacts airline strategic decision making. 

In order to capture these and related effects, this thesis describes a model of airline 

operational responses to environmental constraints, including environmental policy measures 

and airport capacity constraints. This is accomplished by modelling the underlying principles 

behind airline strategic decision making. Chapter 2 provides a detailed review of the literature 

available on existing modelling approaches to forecast traffic growth, simulate airline 

responses to constraints, and model airline strategic decision making. The review identifies a 

gap in the literature in the area of simulating airline operational responses to environmental 

constraints, and in the area of applying such a model to future traffic growth under alternative 

policy scenarios. Accordingly, Chapter 3 describes the research objectives of the dissertation 

to develop, validate and apply a model that simulates airline operational responses to 

environmental constraints in the future. This is followed by a description of the research 

methodology employed to fulfil the stated objectives. The model that is developed to fulfil 

the objectives is described in Chapter 4. This includes specification of a modelling 

framework that simulates the inter-relationships between changes in cost, fares, passenger 

demand, infrastructure capacity constraints, flight delays, aircraft performance, flight 

frequencies, fleet composition, and the flight network operated. The associated individual 

sub-models are described in Chapter 5. These include a delay calculator, travel time 

calculator, operating cost calculator, average fare model, passenger demand model, flight 



 

Chapter 1 

 

 

8 

network optimisation, and emissions calculator. The iterative framework implemented to 

simulate competition between airlines is also described.  

Chapter 6 presents model validation results reproducing observed passenger and 

traffic flows for a network of 22 airports serving 14 cities in the United States in 2005. The 

model is then applied to simulate future traffic growth and emissions within the same 

network for three families of scenarios in Chapter 7. These investigate airline operational 

responses to (i) airport capacity constraints, (ii) regional increases in costs in the form of 

increased landing fees, and (iii) major reductions in aircraft fuel burn, as would be achieved 

through the introduction of radically new technology such as a blended wing body aircraft or 

advanced open rotor engines.  

The conclusions of the research are presented in Chapter 8. These suggest that the 

modelling of airline operational responses to environmental constraints is important when 

studying both system and local, airport level, effects, and to capture the capability of the air 

transport system to adjust under changing conditions. Neglecting these constraints would 

result in the forecasting of potentially misleading system and local responses to constraints. 

Chapter 9 concludes with recommendations for future research, including integration of a 

passenger choice model and fleet turnover model into the modelling framework, and 

application of the model to other regions, such as India, which is likely to see greater growth 

than developed regions and thus greater network change as the system shifts from a strong 

hub-and-spoke network to more point-to-point operations. 
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2 Literature Review 

 

This chapter presents a review of the existing approaches for simulating airline 

operational responses to environmental constraints. As described in Chapter 1, such 

operational responses, which are driven by the underlying principles behind airline strategic 

decision making, may have a significant impact on future aircraft operations. In Section 2.1 a 

literature review is presented of existing approaches to forecasting future aircraft operations, 

which shows that airline operational responses to constraints are not explicitly simulated in 

any of the approaches. Section 2.2 then presents a review of existing approaches to model 

airline operational responses to specific constraints, including airport capacity constraints and 

other constraints that increase airline costs. This is followed, in Section 2.3, by a summary of 

approaches in the literature to model airline strategic decision making, which drives the 

airline responses to constraints. Conclusions are drawn in Section 2.4. 

2.1 Existing Approaches to Forecasting Future Aircraft Operations 

Approaches to forecasting future aircraft operations typically estimate future air 

traffic growth based on observed trends in historical air traffic growth, as a function of 

forecast passenger (and in some cases freight) demand (Pulles et al., 2002; Hancox and 

Lowe, 2000; Bhadra, 2003; Bhadra et al., 2003; Waitz et al., 2006-2; Reynolds et al., 2006; 

ICAO, 2006-1). In the majority of cases, the distribution of aircraft types operated on each 

flight segment is estimated first, according to observed trends in historical data (Pulles et al., 

2002; Hancox and Lowe, 2000; Bhadra, 2003; Bhadra et al., 2003; Reynolds et al., 2006). 

This is followed by estimation of the frequency of flights on each segment, either according 

to observed trends in historical data or by making key assumptions about aircraft load factors. 

The types of aircraft operated on each flight segment then define the number of seats 

available, which is a determinant of the number of aircraft required to serve the projected 

demand.  

Bhadra (2003), Bhadra et al. (2003) and Reynolds et al. (2006) model the distribution 

of aircraft types operated on each flight segment using a multi-nomial logit function that 

captures the likelihood of specific aircraft choices. The parameters of this function are 
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estimated through regression on historical data. The independent variables in this approach 

are the number of passengers on the flight segment, the flight segment length, and two 

dummy variables for whether the origin and destination airports are hubs or not. As the 

number of passengers on a flight segment increases, a greater percentage of larger aircraft 

types is typically operated. This is also the case as flight segment length increases, and when 

a flight segment connects to a hub airport. The approach is as follows: With a series of 

aircraft size choices, y = j (1,2,...,J), the probability of each aircraft size choice Pj 

(P1,P2,...,PJ), given segment passenger demand, flight segment length, and traffic type 

defined by the vector x, is defined as follows: 
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where βj is a vector of the estimated slope parameters, as specified by: 
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The intercept (α) and slope parameters (β) are estimated by regression on historical 

flight segment length (StageLength), passenger demand (Demand), and traffic type data 

(OrigHubDummy and DestHubDummy) using maximum likelihood estimation. With a 

doubling of passenger demand on a route and all else being equal, the estimated parameters 

predict a 25% to 50% increase in average aircraft size (in seats per flight), while a doubling 

of flight segment length predicts a 10% to 20% increase. On average, a flight to a hub airport 

has 5% to 15% more seats than a flight between spoke airports. Pulles et al. (2002) and 

Hancox and Lowe (2000) use a similar approach by identifying how the average number of 

seats offered per flight varies as a function of the number of passengers on the flight segment 

and the flight segment length. This relationship is also identified from historical data. 

Different approaches are used in the literature to forecast flight segment frequencies 

as a function of forecast passenger segment demand. Pulles et al. (2002) and Hancox and 
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Lowe (2000) forecast flight segment frequencies by assuming a constant elasticity of flight 

frequency with number of passengers on the flight segment, as shown by equation 2-4 

(Hancox and Lowe, 2000).  















baseyr

forecastyr

baseyr

forecastyr

Pax

Pax

Fltfreq

Fltfreq

 (2-4) 

where Fltfreq represents flight segment frequency, and Pax represents passenger demand by 

flight segment. The subscripts baseyr and forecastyr refer to the base year and forecast year 

respectively. The constant elasticity is η, which is estimated from historical flight segment 

frequency and passenger demand data. Different elasticities are derived for a series of flight 

segment length categories, ranging from 0.88 to 0.96. The assumption of a constant elasticity 

of flight frequency with number of passengers on the flight segment was found to be 

reasonable when the number of passengers on a flight segment is high, but was found to 

under-predict flight frequencies for flight segments with low numbers of passengers.  

A slightly different approach, as used by Bhadra (2003) and Bhadra et al. (2003), 

predicts flight segment frequencies by assuming that load factors remain at base year levels. 

Flight segment frequencies are then forecast based on forecast passenger demand and average 

aircraft size, calculated directly from the forecast distribution of aircraft types operated on 

each flight segment.  

A related approach to forecasting future aircraft operations, described by ICAO 

(2006-1), is to assume that airlines will provide additional seats to serve projected passenger 

demand increases partly by increasing the frequency of flights operated, and partly by 

increasing aircraft seating capacity. The split between increased frequency and increased 

aircraft size can be calculated according to historical trends as a function of flight segment 

passenger demand and flight segment length. This approach is used in the Airbus Global 

Market Forecast (Airbus, 2007). Other details of the methodology used to make this forecast 

are proprietary, as are the methodologies used by Boeing to produce their Boeing Current 

Market Outlook (Boeing, 2007). 

An alternate approach to forecasting future aircraft operations is to predict air traffic 

growth by airport according to historical trends in airport activity. Flight segment traffic 

growth can then be extracted from the estimated forecasts of airport activity growth by 
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making assumptions about the flight network operated. This is the approach used by the U.S. 

Federal Aviation Administration (FAA) Terminal Area Forecast (TAF) (Waitz et al., 2006). 

As described by the U.S. Department of Transport (DOT) and FAA (DOT and FAA, 2006), 

the TAF forecasts airport activity, including aircraft operations and enplanements, using 

historical relationships between airport passenger demand, measures of airport activity, and 

local and national factors that may influence aviation activity. These forecasts are then 

compared to historical trends in airport activity for reasonableness and consistency, and if 

they deviate from expected trends, other statistical techniques are used instead, such as 

regression analysis and the use of growth rates developed separately. Key airports receive a 

more in-depth review by FAA economists, including consideration of local income and 

employment, growth of true origin-ultimate destination (O-D)1 and connecting traffic, the 

cost of operating from the airport, and seating capacity and load factors of aircraft operating 

at the airport. The TAF assumes unconstrained demand, which is estimated based on local 

and national economic conditions and conditions within the aviation industry. Thus, airport 

capacity constraints are not considered in the development of the forecast. However, if 

airports historically operate under constrained conditions, these constraints will be reflected 

in the forecast because they are embedded in the historical data.  

Future aircraft operations can also be forecast directly from projections of economic 

data using statistical relationships. This is the approach used for airport air traffic forecast by 

the International Civil Aviation Organisation (ICAO) Committee on Aviation and 

Environmental Protection (CAEP) Forecasting and Emissions Support Group (FESG) (ICAO, 

2006-1; Waitz et al., 2006-2). In this approach, experts in the aerospace industry form a 

consensus on the key economic parameters required for the forecast, such as Gross Domestic 

Product (GDP) and aircraft retirement curves. The future growth in air traffic and its fleet 

requirements are then estimated accordingly from projections of world economic data. This 

analysis is completed at the global level and then decomposed into regional traffic projections 

by airline based on historical relationships between traffic and market share. The result is 

                                                 

1 A true origin-ultimate destination market is the market from a traveller’s initial origin city to their final 

destination city, irrespective of route (including both non-stop routes and routes through intermediate points). 
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forecast Revenue Passenger Miles (RPM) for 22 major domestic and international route 

groups. 

Waitz et al. (2006-2) describe a capability that modifies the TAF and FESG airport air 

traffic forecasts to account for supply and capacity constraints according to changes in 

operating costs, assumptions about fares, and assumptions about air transport demand.  

In conclusion, each of the approaches described predicts future aircraft operations 

based on historical trends. These approaches do not explicitly model airline operational 

responses to environmental constraints, or airline strategic decision making. Literature does 

exist, however, describing approaches to modelling airline operational responses to different 

constraints and changes in operating cost. Literature also exists describing approaches to 

model airline strategic decision making. These are reviewed in Sections 2.2 and 2.3 

respectively. 

2.2 Existing Approaches to Modelling Airline Responses to Constraints  

As described in Chapter 1, policy measures under consideration to mitigate the 

environmental impacts of aviation include more stringent regulations for aircraft emissions; 

economic instruments that increase costs to passengers; economic instruments that increase 

costs to airlines; and direct constraints on traffic growth such as limited airport capacity 

expansion. Airlines are likely to limit the negative impacts of these policy measures on airline 

costs and passenger demand by making operational changes: changing the types of aircraft 

they operate and changing the way in which they operate those aircraft.  

Shorter term airline operational responses include “parking” aircraft, where aircraft 

are removed from service but not sold, and modifying the allocation of aircraft in the fleet to 

specific flights. Other short term responses may include adjusting the shape of the schedule 

operated at specific airports; adjusting the frequency of flights operated on specific routes; 

and making small changes to the flight network operated, such as shifting some hub-and-

spoke operations to point-to-point service. Each of these responses is, however, limited by the 

available fleet that is operated by the airline, and by the airports at which it has operations. 

Longer term responses include the retirement of older aircraft and the purchase or leasing of 

new aircraft (leasing new aircraft can be done on a shorter time scale than purchasing new 

aircraft); the introduction of operations at new airports; and the shifting of hub operations 
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between airports. The purchase or leasing of new aircraft enables greater changes in airline 

schedules, flight frequencies, and the flight network operated because the fleet constraint is 

removed, while the introduction of operations at new airports and the shifting of hub 

operations between airports enables greater changes in the flight network operated 

specifically.  

There are many examples of airlines making significant operational changes in 

response to specific policy measures or events. As a result of the introduction of 

progressively more stringent noise regulations in Europe and the United States from 1976, 

airlines retired older, noisier equipment and purchased new, quieter aircraft (de Neufville and 

Odoni, 2003, p182). Similarly, airlines responded to the sharp increases in oil prices in 2008 

by retiring older, less fuel efficient aircraft (Clark, 2008; Schofield, 2008), as they did 

following the sharp decline in passenger demand following the events of 11 September, 2001 

(Tomlinson, 2002). Decreases in demand and increases in operating costs have also led 

airlines to adjust their flight networks. US Airways closed a hub airport in Pittsburgh in 2004 

because of poor economics and competition from low cost carriers, shifting traffic to their 

other hubs in Philadelphia and Charlotte (Grossman, 2007; Fitzpatrick, 2007). Lufthansa has 

threatened to respond to the inclusion of aviation within the European Union (EU) Emissions 

Trading Scheme (ETS), which would require CO2 credits for all flights connecting to the EU, 

by shifting its hub operations to Zürich, which is outside the EU (Turner, 2007). Airlines 

have also responded to airport capacity constraints by adjusting daily schedules to minimise 

delays, examples including Continental Airlines’ operations at Newark Liberty International 

Airport and United Airlines’ operations at San Francisco International Airport (Evans, 2002). 

A further response to airport capacity constraints is growth at secondary airports in favour of 

primary airports, which has been observed at numerous locations (London, New York, 

Tokyo, Chicago, Boston, Paris, San Francisco, Los Angeles, Milan, Miami, Washington, etc.) 

(Bolgeri et al., 2008). Growth at secondary airports is sometimes also driven by reduced 

operating costs, with airport authorities offering low landing fees to incentivize growth.  

The extent and diversity of examples describing airline responses to make operational 

changes illustrates the complexity of airline strategic decision making. In the sections below, 

literature is reviewed that describes approaches to model airline operational responses to 

specific constraints. Airline operational responses to airport capacity constraints, which cause 
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flight delays, have been examined extensively in the literature. This specific issue is therefore 

discussed in detail. It is followed by a review of the more limited available literature 

describing approaches to modelling airline responses to other constraints – specifically 

inclusion of aviation within an emissions trading scheme, and the effect of increased landing 

fees to induce a shift to larger aircraft.  

Kostiuk et al. (2000) state that the large flight delays predicted in the United States 

and Europe as a result of forecast passenger demand will only happen if airlines attempt to 

meet future demand by increasing the number of flights they operate while maintaining the 

same scheduling practices and other operating methods in use today. As stated by Kostiuk et 

al. (2000), this is not likely to be the case, however. Instead, airlines would respond by 

avoiding congested hubs and gateways (departure routes), using secondary airports, moving 

flights to off-peak times, broadening the range of departure times, and increasing aircraft size. 

Kostiuk et al. (2000) also predict that there will be an increase in flight block times (more 

padding of flight schedules), creation of new hub airports, and greater use of slot-control at 

airports. 

Evans (2002) also describes a number of airline responses to airport capacity 

constraints, focusing particularly on changes in the shape of the schedule operated at airports. 

As airports become more capacity constrained, Evans (2002) identifies a clear shift in the 

degree to which the airports operate a banked, or peaked, schedule. With low delays, airlines 

operating hub airports typically schedule a high number of arrivals in a small period – an 

arrival “bank”, followed by a high number of departures – a departure “bank”. This reduces 

passenger connecting times, reducing passenger travel times. Under airport capacity 

constraints, these banks of flights can experience high delays, even when average daily traffic 

is well below the airport capacity. In the periods between banks, flight delays can be 

recovered, preventing propagation of delays through the day. However, when capacity 

constraints become more limiting, and delays cannot be recovered in the periods between 

banks, a banked scheduled can lead to very high delays propagating through the day. Delays 

can be reduced by broadening the range of flight times, or “flattening” the schedule – 

spreading out banks so that flights are more evenly distributed across the day. This results in 

higher average connecting times, but reduces delays. Such an airline response is only 

effective under certain conditions, however. If an airport is not dominated by a single carrier, 



 

Chapter 2 

 

 

16 

for example, competition effects make such a response unlikely. This is described in detail by 

Evans (2002), who develops a metric to describe the degree to which a schedule is banked, 

but does not develop a model to correlate the metric with flight delays.  

Two approaches were identified in the literature to model airline operational 

responses to airport capacity constraints: (i) a scenario-based approach in which different 

known airline responses are applied exogenously, followed by simulation of the effect that 

they have on the system, and (ii) modelling of specific airline decision making processes, and 

simulating how airport capacity constraints affect them. Forms of the scenario based 

approach are applied by Kostiuk et al. (2000), Long et al. (1999-1) and Long et al. (1999-2). 

Kostiuk et al. (2000) and Long et al. (1999-1) describe an approach to estimate what 

percentage of forecast air traffic can be served by available airport capacity, making specific 

operational changes, while maintaining flight delays at acceptable levels. The approach 

employs the LMINET flight delay model, which, given forecast air traffic, estimates delays 

across a network of airports. Where delays at an airport exceed a specified airport delay 

tolerance value, air traffic is adjusted by moving flights to off-peak times, and broadening the 

range of departure times. If delays continue to exceed the delay tolerance value, demand is 

shaved off, and the percentage of air traffic that can be served, given the capacity of the 

airport, is reported. The airport delay tolerance is identified from the average padding in 

current schedules. Long et al. (1999-2) describe a similar approach assuming a greater 

number and variety of airline operational responses to flight delays, including increasing 

fares, establishing new hubs, shifting operations to include more direct services, flattening 

schedules, and increasing night time operations. The approach models unconstrained air 

traffic growth, based on the FAA TAF forecast of aircraft movements, and then adjusts 

variables in this model to simulate the effects of each airline response. Each airline response 

is specified exogenously. 

In contrast to these scenario-based approaches, Elhedhli and Hu (2005) endogenously 

model how congestion impacts airline strategic decision making, specifically in reference to 

hub-and-spoke network design. A model is developed that extends typical network 

optimisation models, based on airline profit maximisation, by inclusion of a non-linear cost 

term that models the impact of congestion on airline cost as a function of flight frequencies. 

The cost term is a convex function that increases exponentially as more flights are assigned to 
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an airport. The resulting non-linear large-scale mixed integer program is solved by 

linearisation and subsequent application of a Lagrangean heuristic. This model allows the 

effects of capacity constraints on network design to be simulated. The model only simulates 

airline decision making in terms of flight network optimisation, and does not simulate other 

effects impacting airline decision making, such as competition and passenger demand effects.  

Other studies investigate the airline response to other constraints and policy measures. 

A particular policy that is currently receiving attention is the inclusion of aviation in the EU 

ETS, which is planned for 2012 (European Union, 2009). Literature was reviewed that 

simulates how airlines would respond to such a scheme (European Commission, 2006; Ernst 

& Young, 2007; Scheelhaase and Grimme, 2007; Albers et al., 2009). The airline responses 

simulated in these studies differ significantly from those described above, as they focus on 

changes in fares that would result from changes in costs introduced by the scheme. The 

impact of these fares on passenger demand is then simulated. In a study by the European 

Commission (2006), airlines are assumed to pass on to passengers the majority, if not all, the 

cost increases associated with the inclusion of aviation in the scheme. This is done because 

passenger demand is assumed to be inelastic, and thus that increases in fares would have little 

effect on demand. The assumption is also made that competition between airlines would not 

be significantly affected by the scheme. In contrast, Ernst & Young (2007) and Scheelhaase 

and Grimme (2007) assume higher demand elasticities, meaning that only one third of the 

cost is likely to be recovered from passengers because significant increases in fare would 

result in significant decreases in demand. Neither the European Commission (2006), Ernst & 

Young (2007), nor Scheelhaase and Grimme (2007) examine airline responses beyond 

changes in fare. Albers et al. (2009) examines the specific question of whether the EU ETS 

will instigate airline network reconfigurations, including airlines moving hub airports outside 

the EU. A full network analysis is not completed though. Instead, specific routes are 

compared in detail in terms of costs and demand, allowing identification of potential 

alternative routings for connecting traffic that is impacted by the inclusion of aviation in the 

EU ETS.  

Another policy that has been studied is the increase of airport landing fees in order to 

induce a shift to larger aircraft and fewer flight frequencies, which has benefits in reducing 

airport congestion and aviation emissions. While statistical analysis has been used to identify 
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the relationship between costs and aircraft size (Wei and Hansen, 2003; Givoni and Rietveld, 

2009), the modelling of airline strategic decision making has been applied specifically to 

identify the impact of landing fees on airline choice of aircraft size and flight frequency (Wei, 

2006). In this analysis there is explicit consideration of competition effects, but it is limited to 

duopoly markets only, and does not account for full network effects, as described below in 

the section on modelling airline competition. 

The explicit modelling of airline strategic decision making, such as by Elhedhli and 

Hu (2005) and Wei (2006), has a distinct advantage over other approaches because it captures 

the fundamental drivers behind airline responses, and is therefore able to capture effects that 

may not be observable in historical data. Literature exists that describes approaches to 

modelling different elements of airline strategic decision making specifically. Literature 

focusing on airline strategic decision making impacting airline operations is reviewed in 

Section 2.3. 

2.3 Existing Approaches to Modelling Airline Strategic Decision Making  

Airline strategic decision making impacting airline operational responses to 

environmental constraints includes primarily decisions on the flight network operated, flight 

scheduling, and fleet allocation. Approaches to modelling these decision making processes 

are described below. Competition between airlines has a significant impact on airline 

decision making, and for this reason approaches to model airline competition are also 

reviewed. 

Flight Network, Scheduling and Fleet Allocation  

Two approaches were identified in the literature for optimisation of airline flight 

networks and schedules: one on a flight-by-flight basis which has an application in airline 

schedule planning, and a second that is based on an aggregate optimisation which has its 

principle application in research. Lohatepanont and Barnhart (2004) describe an approach to 

optimise an airline schedule planning process, including schedule design, which involves 

determining when and where an airline should offer individual flights, and fleet assignment, 

which involves assigning aircraft types to the individual flight segments, given an existing 

fleet. The optimisation is designed to maximise airline profits by simultaneously optimising 

the selection of flight segments and the assignment of aircraft types to those segments. The 
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approach described improves on historical airline practices whereby schedules were 

developed by compartmentalising key decisions and optimising sequentially. Key decisions 

included route development, frequency planning, timetable development, and fleet 

assignment.  

A detailed objective function, with constraints, is specified by Lohatepanont and 

Barnhart (2004), followed by an algorithm for the solution of the problem. The objective 

function includes a number of revenue terms, which are expressed by itinerary, as opposed to 

by flight segment, because passengers pay fares based on their O-D market, and not the flight 

segments that they fly. Careful attention is given to changes in demand as a function of flight 

frequency, with some demand being lost to competition when flights are dropped, and some 

being reallocated to other flights operated by the same airline. The cost function includes 

individual flight operating costs, and may be extended to include passenger carrying costs 

(such as meals and luggage handling) and costs per revenue dollar (such as reservation 

commissions). The operating cost modelled does not explicitly include costs associated with 

flight delays or environmental policy measures, but it may be extendable to include them.  

An alternative approach to the flight-by-flight optimisation of an airline schedule is a 

more aggregated approach which optimises total flight frequencies over specified time 

periods. Lederer and Nambimadom (1998) and Harsha (2005) investigate choices of flight 

networks and schedules defined by time period instead of by flight. Lederer and 

Nambimadom (1998) examine a simplified problem of 6 origin-destination airports equally 

spaced around a central hub airport. Four network alternatives are examined – a point-to-

point network, a hub-and-spoke network, a tour network (in which each airport is visited by 

each aircraft consecutively), and an alternative tour network including the hub. Harsha (2005) 

investigates optimisation of a flight schedule under an airport arrival slot auction, with the 

purpose of identifying which slots an airline should bid on. In both cases an objective 

function is solved to maximise airline profit across the network and schedule. The objective 

function solved by Lederer and Nambimadom (1998) accounts for airline costs and passenger 

costs, including ticket price, a travel time factor, and a flight frequency factor (accounting for 

how close flights are to a passenger’s desired departure time). Analytic, closed form 

expressions are derived for airline costs and passenger costs as a function of flight 

frequencies. The objective function described by Harsha (2005) accounts for fare revenues, 
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costs to the airline, prices of slots, and revenues obtained through reselling unwanted slots. 

The costs of arrival slots are defined by a model of an arrival slot auction. Revenues are 

modelled assuming constant fare information, so the impact of increases in cost on revenues 

and demand is not simulated. Revenues are also specified by flight segment, and not 

itinerary, although the objective function and added constraints for an alternative model with 

revenues specified by itinerary are also described. 

Airline Competition 

Airlines compete by fare and frequency (Schipper et al., 2003; Carlsson, 2002). 

Frequency competition, in which airlines increase flight frequencies between cities in order to 

increase their market share, can have a particularly significant impact on airline operations, 

increasing frequencies well above the levels required to serve the demand. Three approaches 

to modelling airline competition were identified in the literature: (i) derivation of a simple 

closed form equation specifying flight frequencies by making simplifying assumptions and 

analytically solving a game between airlines for a single market; (ii) simulation of a game 

between airlines, again for a single market; and (iii) simulation of a game between airlines 

across a complete network of markets.  

Schipper et al. (2003) and Carlsson (2002) model the effects of competition on 

average fares and flight frequencies, by flight segment, by analytically solving a two stage 

game. In the first stage of the game, airlines simultaneously choose flight frequencies, and in 

the second stage, after having observed the other airlines’ chosen frequencies, the airlines 

simultaneously choose fares. The game is solved analytically by market, as a function of 

passenger value of time, airline costs and passenger demand. This is done by defining the 

flight schedule as an address (or spatial) model with flights evenly distributed across the day, 

defining passenger utility as a simple function of fare, passenger value of time and schedule 

delay2, and defining airline cost as a simple function including a cost per flight term and a 

cost per passenger term. The formulation assumes that passenger demand in the market 

remains constant. This assumption is relaxed and the formulation modified by Evans et al. 

                                                 

2 Schedule delay refers to the time between when a passenger wants to fly and when the nearest available flight 

departs. 
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(2008) for variable passenger demand, which is modelled using a gravity type equation as a 

function of a generalized cost term including fares. Both formulations apply to individual 

flight segments or markets, and do not account for network effects.  

Wei (2006) models the effect of competition on flight frequency in a single non-stop 

duopoly market by solving a one-shot simultaneous game in which profit is maximised for 

each of the two airlines serving the market. This approach is used to identify the impact of 

landing fees on airline choice of aircraft size and flight frequency, within a competitive 

environment. The game theoretical model applied includes a cost function relating aircraft 

size to airline cost, derived by econometric analysis, and a market share model, that applies a 

nested logit model to capture how aircraft size, flight frequency and fares affect market share. 

No network effects are accounted for. 

Adler (2005) models the network effects of competition by solving a non-linear 

network optimisation within a simulation of a two-stage, Nash best-response game to identify 

flight frequencies and average O-D market fares for different passenger types. The impact of 

competition between airlines on fares and frequency within the network is modelled 

explicitly. To aid tractability, the airline operating cost function is defined as a simple 

equation with constant elasticity with respect to frequency. 

In summary, although they are not typically applied to forecasting the impact of 

environmental constraints on future aircraft operations, approaches have been developed to 

model airline strategic decision making which can be applied to simulate airline responses to 

environmental constraints.  

2.4 Conclusions 

The studies reviewed in this chapter suggest that modelling the response of the 

aviation system to environmental constraints is still in its infancy. In each of the studies 

reviewed, future aircraft operations are not modelled according to the underlying principles 

of airline strategic decision making, but are instead modelled according to trends in historical 

data only (Pulles et al., 2002; Hancox and Lowe, 2000; Bhadra, 2003; Bhadra et al., 2003; 

Waitz et al., 2006-2; Reynolds et al., 2006; ICAO, 2006-1). These models are therefore not 

capable of capturing many airline operational responses to environmental policy measures 

and constraints. By not modelling these airline responses, the capability of the air transport 
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system to adjust under changing conditions is neglected, resulting in the forecasting of 

potentially misleading system and local responses to constraints.  

However, approaches do exist to model airline operational responses to specific 

constraints, such as airport capacity constraints (Evans, 2002; Kostiuk et al., 2000; Long et 

al., 1999-1; Long et al., 1999-2; Elhedhli and Hu, 2005), and changes in operating costs 

introduced by policies such as emissions trading (European Commission, 2006; Ernst & 

Young, 2007; Scheelhaase and Grimme, 2007; Albers et al., 2009) and increased landing fees 

(Wei and Hansen, 2003; Wei, 2006; Givoni and Rietveld, 2009). Most studies use a scenario-

based approach to model airline operational responses to constraints (Long et al., 1999-1; 

Long et al., 1999-2; Kostiuk et al., 2000), and do not explicitly simulate airline strategic 

decision making. Only two of the studies reviewed model airline strategic decision making 

explicitly (Elhedhli and Hu, 2005; Wei, 2006). In one case the model is only applied to hub-

and-spoke networks, and does not account for other effects such as airline competition or 

impact on passenger demand. In the other case the model does not simulate full network 

effects.  

Other studies exist that specifically describe approaches to model airline strategic 

decision making in different ways and for different functions (Lederer and Nambimadom, 

1998; Lohatepanont and Barnhart, 2004; Adler, 2005; Harsha, 2005). These approaches are 

not applied to simulate airline responses to environmental policies and constraints, but could 

be used to develop such a model.  

The literature review therefore suggests that there is a significant potential benefit to 

developing a model that simulates airline operational responses to environmental constraints 

specifically. Even if the resulting effect of including airline responses in such models is 

small, it would still be valuable to arrive at that conclusion. Such a model should ideally be 

based on explicitly modelling airline strategic decision making, including airline competition 

effects, while capturing the fundamental drivers behind cost changes and passenger responses 

to the service provided by the airlines. This would allow evaluation of environmental policies 

while capturing airline operational responses that enable the air transport system to adjust 

under changing conditions. Such a model would avoid the forecasting of potentially 

misleading system and local responses. The research objectives identified for this dissertation 

as a result of this literature review are described in the following chapter, Chapter 3. 
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3 Research Objectives  

 

The literature review in Chapter 2 concludes that there could be significant benefits to 

developing a model that simulates airline operational responses to environmental constraints. 

In order to better reflect airline behaviour, such a model should explicitly simulate airline 

strategic decision making within a competitive environment, while explicitly modelling the 

mechanisms by which environmental constraints impact airline cost and passenger demand. 

This approach would allow a more realistic evaluation of environmental policies than is 

possible with existing approaches, as it simulates how the air transport system may adjust in 

response to changing conditions. Such a model would also avoid the forecasting of 

potentially misleading system and local responses.  

The key research objectives of this dissertation are presented in Section 3.1 below, 

along with a description of the key benefits of the research in light of the literature review 

presented in Chapter 2. The research methodology employed to fulfil the stated objectives is 

presented in Section 3.2.  

3.1 Key Research Objectives 

The key objective of this dissertation is to develop a model that simulates airline 

operational responses to environmental constraints. This model, henceforth referred to as the 

Airline Response Model, is intended to simulate airline strategic decision making within a 

competitive environment, while capturing the mechanisms by which environmental 

constraints impact airline cost and passenger demand. In order to make this effort manageable 

and the results interpretable, but still informative, such a model should strike the appropriate 

balance between level of detail and computational efficiency. Operational responses 

modelled should specifically include changes in the flight network operated, changes in flight 

frequencies, and changes in the sizes of aircraft operated on each flight segment. Although 

other operational responses exist, such as adjusting the shape of flight schedules and 

introducing operations at new airports, they have only limited impact on flight delays at high 

traffic levels, and are not considered here in order to limit the scope of the research.  
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The modelling approach developed to fulfil the above objective is able to simulate 

airline operational responses to the application of a wide range of policy measures. The 

approach captures how different effects combine to define airline responses to policies by 

modelling the underlying principles behind airline strategic decision making. Specifically, by 

modelling the effects of frequency competition to increase frequencies well above system 

optimal levels, the effect of competition on how airlines are able to respond to constraints and 

policy measures is also captured. The modelling approach significantly improves on existing 

approaches to model future aircraft operations according to historical trends by capturing 

effects that do not follow historical trends or have not been observed historically. 

In order to validate the Airline Response Model developed, passenger flows and flight 

frequencies are simulated for a network of real airports and cities using a minimum of 

historical input data. The simulation results are then compared to observed data for the same 

network.  

Once validated, the Airline Response Model is used to generate plausible and 

internally consistent forecasts of air traffic growth from 2005 to 2030 under different policy 

scenarios, which may affect infrastructure capacity, regional cost increases, and the 

introduction of radically new technology that reduces aircraft fuel burn significantly. For 

each policy scenario, the environmental impact of aviation is quantified in terms of local 

airport landing and take-off (LTO)1 cycle NOx emissions, and network-wide CO2 emissions. 

A comparison of the policy analyses also reveals the relative importance of modelling airline 

operational responses to different environmental constraints. Particularly, the policy 

questions that, if airline operational responses to the policies were neglected, would result in 

the forecasting of misleading system and local responses to the policies, are also identified.  

3.2 Research Methodology 

The methodology employed to fulfil the research objectives described in Section 3.1 

can be decomposed into the following steps: 

                                                 

1 The landing-take off cycle (LTO cycle) is the portion of aircraft operations at or near an airport, beginning 

with the flight arrival process (sometimes defined as when the aircraft descends below 3,000 ft) and ending after 

the aircraft has made its climb-out on departure (sometimes defined as when the aircraft climbs above 3,000 ft).  
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1. Development of a model, the Airline Response Model, that simulates airline flight 

frequency, aircraft size, and flight network responses to environmental constraints, by 

modelling the underlying principles behind airline strategic decision making. The 

framework developed for this model is described in Chapter 4, followed by a detailed 

description of each sub-model in Chapter 5. The suitability of the modelling approach 

to capture fundamental system effects is verified by simulating a series of scenarios 

applied to simplified theoretical city networks in Appendix B.  

2. Validation of the Airline Response Model by simulating passenger flows and aircraft 

operations for a selection of real airlines operating at a set of real airports and cities, 

and comparing the simulation results to observed data for that network. By comparing 

the simulation results and observed data for the same network, the capability of the 

Airline Response Model to simulate real-world airline strategic decision making can be 

identified. Chapter 6 presents such an application of the Airline Response Model, for 5 

airlines operating at 22 airports and 14 cities in the United States, using input data from 

2005. The Airline Response Model is validated by comparing the simulated results to 

observed data for the airport and city set from 2005. 

3. Application of the Airline Response Model to simulate future aircraft 

operations and the resulting environmental impact for a set of real airports and cities, 

under a series of environmental policy scenarios. The responsiveness of airline 

operations to each policy can be identified by comparing these simulation results to 

simulation results for a baseline scenario, based on expected infrastructure capacity 

expansion, existing airline operating costs, and forecast population, income and oil 

price projections. Such a comparison also allows identification of the policy scenarios 

for which the modelling of airline operational responses is most important, and those 

for which it is least important. Chapter 7 presents such an application of the Airline 

Response Model, for the network of 22 airports and 14 cities described above, from 

2005 to 2030. The policy scenarios formulated induce airline operational responses 

both at the local, airport level, and at the system-wide level. In each policy simulation, 

key parameters are varied in order to quantify the sensitivity of the Airline Response 

Model and of the air transport system to changes in the key parameters. The 

implications of the results, and final conclusions, are discussed in Chapter 8. 
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4 Modelling Framework 

 

Airline operational responses to environmental constraints are driven by changes in 

costs and passenger demand, which affect airline profit and competition. The approach 

employed to simulate airline operational responses to environmental constraints is therefore 

to model the underlying principles behind airline strategic decision making, i.e. profit 

maximisation within a competitive environment, while capturing the fundamental drivers 

behind changes in airline cost and passenger demand. This approach requires the 

development of a modelling framework that captures the combined airline, airport and 

passenger system responses to future environmental policies and constraints. Before the 

modelling approach and framework are described, however, some factors affecting airline 

profit maximisation are discussed. 

4.1 Factors Affecting Airline Profit Maximisation  

Airline profits are defined by the difference between airline revenues and costs. 

Airline revenues, in turn, are the product of passenger demand and fares. These two variables 

are interdependent. Passenger demand is impacted by changes in the fares offered by airlines: 

as fares increase, passenger demand declines. Fares, in turn, depend on passenger demand 

and supply (airline costs). If airline costs increase, fares also typically increase. The rate of 

increase, however, depends on how much of the extra cost has to be absorbed by the airline, 

and how much can be passed on to the passengers.  

Passenger demand is also impacted by changes in the level of service provided by the 

airlines, defined by, amongst others, nominal passenger travel times, flight delays, the 

number of connections a passenger must make, and the flight frequency offered on the route. 

Demand increases with a decrease in nominal passenger travel time and number of 

connections, which are determined by the airline flight network operated. Demand also 

increases with a decrease in flight delays and an increase in flight frequency. Flight delay is 

considered separately to nominal travel time because the passenger response to flight delays, 

which are unexpected, is significantly greater than the passenger response to changes in 
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nominal travel time, which can be planned for. Flight delays increase with rising traffic levels 

at given infrastructure capacity, and are therefore a function of the number of flights and the 

flight network operated by airlines. 

Airline costs include direct operating costs (also referred to as aircraft or flight 

operating costs) and indirect operating costs associated with passenger, aircraft and traffic 

servicing; reservation and sales; and system overheads (Belobaba, 2006). In addition to 

depreciation and amortization costs, direct operating costs include expenditures for fuel and 

oil, crew, maintenance, and aircraft rental. These costs depend on the number of flights 

operated, the types of aircraft flown, and the flight network operated by each airline. Indirect 

operating costs are generally a function of the number of passengers served. Flight delays 

increase operating costs by increasing crew hours and fuel burn. The level of extra fuel burn 

is dependent on where the delay is incurred (in the air, on an active taxiway, or at the gate). 

Airline competition also has a significant impact on airline revenues and costs, and 

therefore airline profits. In deregulated markets, such as those in the United States and 

Europe, airlines compete by fare and by frequency. Airlines reduce fares in order to capture 

market share from other airlines. The resulting increase in passengers therefore comes at the 

cost of reduced revenue per passenger, as well as the added cost of serving the extra 

passengers. In perfect competition, airlines continue to reduce fares until the marginal 

revenue obtained from the decrease in fares no longer exceeds the marginal cost of serving 

the passengers. Similarly, frequency competition involves airlines increasing flight 

frequencies in order to capture market share from other airlines. The higher market share 

increases airline revenues but comes at the cost of the added flights. Airlines continue to add 

flights until the marginal revenue resulting from the increase in market share no longer 

exceeds the marginal cost of adding another flight. All airlines respond in a similar way, each 

decreasing fares and increasing frequency to capture more market share. Since airlines have 

different operating costs, those with the lowest costs can add more extra flights and thus gain 

more market share than those with higher costs.  

Airlines can reduce costs by optimising the flight network they operate. In hub-and-

spoke networks, certain passengers are flown to their destination by connecting through one 

or more central hub airports instead of flying non-stop, or point-to-point, on a single flight. 

As described in Chapter 1, hub-and-spoke operations induce economies of scale on flights 
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and in ground operations, and enable flights to be offered on more markets with fewer added 

flights than can be achieved through a point-to-point network. However, passengers must 

connect and travel greater total distances, meaning that fuel burn per passenger is generally 

higher in hub-and-spoke networks than in point-to-point networks. The degree to which 

airlines operate a hub-and-spoke network versus a point-to-point network is a complex 

function of airline costs, passenger demand and competition. 

4.2 Modelling Approach and Framework 

The modelling of airline operational responses to environmental constraints requires 

the development of an integrated framework that captures the key effects of each relevant 

element of the air transport system. This can be done by maximising airline profits using an 

objective function that incorporates models of each relevant element of the air transport 

system. The effects of competition can be captured by simulating a strategic game between 

airlines, with each airline’s profit maximised in each stage of the game, iterating until a game 

theoretical equilibrium is reached that specifies the key operational characteristics of each 

airline, i.e., the flight network, flight frequencies, and aircraft sizes operated.  

In order to identify these key airline operational characteristics, the decision variables 

in each airline objective function are specified as the airline flight segment frequencies by 

aircraft size class, and passenger itinerary demand, which defines flight network operated. 

Other variables in the air transport system, including passenger city-pair demand, average 

fares, travel times, flight delays and operating costs define the cost and revenue terms that are 

inputs to the objective function. The modelling of these variables can therefore be extracted 

from the objective function, making it easier to solve, and allowing more advanced modelling 

of each variable, to better reflect system behaviour. Each of these variables is, however, a 

function of flight segment frequency and passenger itinerary demand, i.e., the decision 

variables. All variables can be determined using an iterative framework in which each 

variable is updated according to the results of the profit maximisation. The profit 

maximisation is then run with updated values of each variable, until convergence to an 

equilibrium solution. This iterative approach can be incorporated into the iterative approach 

required to solve the strategic game between airlines, described in the previous paragraph.  
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The modelling framework for the Airline Response Model is presented in Figure 4-1. 

A series of network optimisation models determine the key operational characteristics of each 

airline, which are input into the strategic game simulation between competing airlines. The 

strategic game is simulated using a system flight frequency calculator and an iterative 

framework (indicated by the decision node for convergence and the feedback loop to the right 

of the models, i.e., the dotted line). These components constitute the core of the Airline 

Response Model, which is shown in the red box in Figure 4-1. All the other models serve to 

generate inputs for the network optimisation models. The models include a flight delay 

model, operating cost calculators for each airline, a travel time calculator, an average fare 

model, and a passenger demand model. These models are updated after each iteration of the 

strategic game. The operation of the Airline Response Model and the interaction between 

each of its sub-models is described in greater detail below, sequentially from the top of the 

diagram. 

As shown at the top of Figure 4-1, an initial estimate of flight segment frequencies per 

day is required for each aircraft size class and airport pair simulated. For the base year 

modelled this may come from historical flight frequency data, while for subsequent years it 

may come from the results of the previous year’s model run, necessitating a chronological 

solution to a multi-year forecast, or from traffic forecasts from a different model. With the 

initial estimate of flight frequencies per day, average flight delays are estimated at each 

airport according to specified airport capacities. The Delay Calculator developed for this 

purpose is described in Section 5.2.  

Simultaneous to the calculation of flight delays, a Travel Time Calculator estimates 

nominal travel times by flight segment and O-D city pair as a function of the aircraft types 

operated, passenger itinerary demand served (from the same source as the initial estimate of 

flight frequencies, giving information about passenger routing), specified aircraft 

performance characteristics (such as cruise speed) and flight segment length information. 

This model is described in Section 5.3. 

The estimated flight delays and nominal travel times are inputs to a series of 

Operating Cost Calculators, which calculate operating costs per flight and per passenger for 

each airline. Other inputs include specified fuel price, aircraft fuel efficiency, and airline 

operating costs per hour and per passenger. Different operating costs are calculated for 
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Figure 4-1. Modelling framework for the Airline Response Model, simulating airline 

operational responses to environmental constraints.
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different airlines. The Operating Cost Calculator developed is described in Section 5.4. 

Average O-D operating costs by city pair, across all airlines, are calculated by an Average 

Operating Cost Calculator according to the operating costs per flight and per passenger of 

each airline, and initial estimates of flight frequencies and passenger demand. The Average 

Operating Cost Calculator is also described in Section 5.4. 

The estimates of average operating costs are inputs to an Average Fare Model, which 

estimates average O-D fares by city pair, across all airlines (fares are not calculated for each 

airline separately). This model, which also takes base year average operating costs and fares 

as inputs, is described in Section 5.5. Estimated average O-D fares are output to a Passenger 

Demand Model. In combination with flight delays from the Delay Calculator, average travel 

times from the Travel Time Calculator, and specified population and income data, the 

Passenger Demand Module estimates available O-D passenger demand for each city pair 

modelled. The Passenger Demand Model is described in Section 5.6. 

The estimated operating costs, average fares, and passenger demand, along with initial 

estimates of flight frequencies, are all inputs to the Network Optimisation Models, which 

calculate the segment flight frequencies and itinerary passenger demand for each airline. 

Each optimisation is constrained by available O-D passenger demand, available seats by 

aircraft size class, and a requirement that the same number of each class of aircraft arrive and 

depart from each airport every day. The Network Optimisation Models are described in 

Section 5.1. O-D passenger demand is distributed between airlines according to a market 

share model, which is also described in Section 5.1. Each airline’s market share for each 

respective O-D market is defined as the ratio of the airline’s flight frequency on that market 

to the flight frequency offered by all other airlines serving the market. Because the total 

number of flights offered by all airlines serving each market, calculated by the System Flight 

Frequency Calculator, depends on the results of each airline network optimisation, the 

individual airline network optimisations must be run iteratively, with other airline flight 

frequencies updated each iteration. A game theoretical equilibrium between airlines is 

reached when the system reaches convergence. The simulation of the strategic game between 

competing airlines is described in Section 5.7. 

Because the Delay Model, Travel Time Calculator, Operating Cost Models, Average 

Fare Model, and Passenger Demand Model are not integrated within the network 
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optimisations, they are updated in each iteration after segment flight frequencies and itinerary 

passenger demand are estimated by the Network Optimisation Models, as described above. 

These models are therefore included in the iteration loop that is required to identify the game 

theoretical equilibrium.  

Emissions levels, particularly in terms of system CO2 and LTO NOx at airports, are 

calculated according to equilibrium flight frequencies by aircraft size class, engine emission 

rates in different phases of flight for the different types of aircraft modelled, and typical flight 

mission profiles. The Emissions Calculator developed for this purpose is described in Section 

5.8. 

Application of the Airline Response Model to simulate future aircraft operations 

requires consideration of how the constraints and inputs to each model may change over time. 

In many cases this may be defined by the policy scenario run. In the case of airport capacity 

constraints, the model may be run with exogenously specified airport capacity inputs. Other 

inputs may come from population, per capita income and oil price projections. All 

assumptions about inputs, including their development over time, are described in detail in 

the sections on each sub-model in Chapter 5. 
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5 Detailed Modelling 

 

This chapter describes each of the sub-models presented in Figure 4-1, and the 

iterative framework used to solve the Airline Response Model. Section 5.1 describes the 

network optimisation. Inputs for this sub-model are generated by the sub-models simulating 

flight delay, operating cost, travel time, average fares and passenger demand, which are 

described in Sections 5.2 to 5.6. Section 5.7 describes the iteration procedure required to 

solve the airline strategic game for market share, in which each of the sub-models in the 

framework is updated. Once the system reaches equilibrium, system CO2 emissions and LTO 

NOx emissions are calculated, which is described in Section 5.8.  

5.1 Network Optimisation 

In the Airline Response Model, the Network Optimisation Model identifies airline 

flight segment frequencies by aircraft size class, and passenger itinerary routing, for each 

airline, subject to the maximisation of profits. The flight segment frequencies of all airlines 

are output to a System Flight Frequency Calculator, which enables simulation of airline 

competition effects. 

The Network Optimisation Model is based on maximisation of airline profit using 

large scale mathematical programming methods. The objective function, which consists of a 

revenue term and two cost terms, is presented in equation 5-1. The revenue term is based on 

passengers flown by itinerary and average O-D fares. The cost terms are based on an airline 

cost per flight multiplied by flight segment frequency, and an airline cost per passenger 

multiplied by passengers flown by itinerary, capturing all categories of airline cost. 
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where jiFare ,

 

represents the fare between O-D city pair i and j, averaged over all itineraries 

and airlines; Paxi,j,p,a represents passenger demand between O-D city pair i and j, on itinerary 

p, for airline a; FltCostm,n,k,a represents average cost per flight on the flight segment between 

airports m and n, for aircraft size class k, for airline a; Fltfreqm,n,k,a represents the average 

number of flights per day on the flight segment between airports m and n, using aircraft size 

class k, for airline a; and PaxCosti,j,a represents average cost per passenger between O-D city 

pair i and j, for airline a. Pi,j,a represents the set of all passenger itineraries p between cities i 

and j operated by airline a; Citiesa represents all cities served by airline a; Airportsa 

represents all airports served by airline a; SizeClassesa represents all aircraft size classes 

operated by airline a, and Airlines represents the set of all airlines modelled. 

The decision variables in the optimisation are passenger itinerary demand (Paxi,j,p,a) 

and segment flight frequency by aircraft size class (Fltfreqm,n,k,a), which incorporate 

information to completely describe the airline flight network, daily flight segment 

frequencies, aircraft size choice, and passenger itinerary routing. 

Note that spill costs are not included in the objective function. These are opportunity 

costs to the airline that result when passengers want to fly but cannot obtain a reservation due 

to insufficient seats. Passengers are typically spilled – either to other airlines or from the 

system altogether – because demand is variable, and aircraft can only be allocated to flight 

segments based on expected demand, not actual demand. Although spill costs are typically 

included in airline cost estimation, they are excluded here because of their dependence on 

demand variability and airline decisions on how much spill is acceptable. Demand variability 

is unlikely to change significantly with the changes in demand simulated by the network 

optimisation, so the spill term becomes a constant, which falls away in the optimisation.  

The objective function is constrained by six linear equations describing airline 

network and scheduling requirements and limitations, including two demand constraints, one 

seat constraint, one passenger flow constraint, one airport balance constraint, and one integer 

constraint. The first demand constraint is described by equation 5-2, where the total 

passenger demand served by airline a between cities i and j, summed over all itineraries, must 

be smaller than or equal to the total available demand between cities i and j, multiplied by the 

market share of airline a: 
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where Pi,j,a represents the set of all passenger itineraries p between cities i and j operated by 

airline a; Paxi,j,p,a represents passenger demand between O-D city pair i and j, on itinerary p, 

for airline a; MSi,j,a represents the market share of airline a between cities i and j; and Di,j 

represents the available demand between city i and j, as estimated by the Demand Model 

described in Section 5.6.  

Airline market share in equation 5-2 is modelled by the ratio of the non-stop flight 

frequency offered between the cities by the airline under question, to that of all airlines, as 

shown in equation 5-3: 
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where Fltfreqi,j,a represents the airline O-D flight frequency between city i and j, for airline a. 

This is a rule-of-thumb suggested by Belobaba (2008). There is empirical evidence to suggest 

that airline market share may be slightly more complex than this. Passengers prefer high 

frequency, and therefore higher frequency attracts more than simply the proportional market 

share, while low frequency attracts less, as described by Belobaba (2008). This “S-curve” 

model is not applied here, however, in order to reduce complexity. Also, connecting flights 

via hubs, which don’t contribute to market share in the model applied here, do contribute to 

market share in reality, although to a significantly lesser degree than non-stop flights (as 

much as 20 times less (Belobaba, 2008)). Because the effect is small, and in order to reduce 

complexity, only non-stop flights are considered in the formulation of market share presented 

in equation 5-3. Consequently, however, market share on hub-and-spoke networks is slightly 

underestimated. 

In the network optimisation of each airline, all other airline flight frequencies are 

taken as constant. However, because each airline optimises its operations simultaneously, the 

other airline flight frequencies do change. In order to capture the effect of these changes on 

each airlines’ network optimisation, an iterative approach is applied in which other airline 

frequencies are updated, and the network optimisations repeated, until the results converge to 

an equilibrium, as described in Chapter 4. This iterative approach simulates a game between 
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airlines, whereby each airline increases flight frequencies to gain more market share, until the 

marginal cost of adding another flight is no longer offset by the marginal revenue associated 

with the increased market share achieved by the flight.   

Substituting the market share formulation in equation 5-3 into equation 5-2 results in 

the constraint becoming inherently non-linear: the total system flight frequency (the 

denominator in equation 5-3) is a function of the flight frequency offered by the airline under 

question (the numerator in equation 5-3), which is a decision variable in the objective 

function. Equation 5-2 is linearised with respect to the decision variable (Fltfreqi,j,a), using 

flight frequencies from the previous iteration of the game to calculate the gradient and 

intercept of the linearised constraint. All other airline frequencies are as observed by the 

airline under question, and are therefore treated as known in each iteration of the game. 

However, because each airline optimises its operations simultaneously, these observed 

frequencies are also from the previous iteration of the game. The linearised constraint is 

shown in equation 5-4, and is updated in each iteration of the game described in Section 5.7.  
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where l is the iteration index. As can be seen, both the gradient and intercept of equation 5-4 

are functions of the flight frequencies in the previous iteration (i.e. l-1) (for the airline under 

question, and for all other airlines serving the market).  

In order to ensure that the correct behaviour of the non-linear constraint in equation 5-

2 is captured by the linear constraint in equation 5-4, a second constraint is added that limits 

the amount by which any airline flight frequency can change in each iteration step, as shown 

by equation 5-5. The change in each flight frequency is limited to 1 flight per day in each 

iteration step. 
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The seat constraint applied to the optimisation limits the number of passengers served 

on each flight segment to be less than or equal to the number of seats available, as described 

in equation 5-6: 

aknmaknm SeatsLFPax ,,,max,,, 
 

 AirlinesasSizeClassekAirportsnm aa  ;;,   (5-6)

 
where Paxm,n,k,a represents passengers flown by airline a between airports m and n (i.e., by 

flight segment), on aircraft type k. LFmax represents a maximum load factor permitted (set to 

95% in all cases in this dissertation); and Seatsm,n,k,a is the number of seats offered by airline a 

between airport m and airport n, on aircraft size class k. The number of seats offered by the 

airline (Seatsm,n,k,a) is a direct function of the aircraft seating capacity and the flight frequency 

offered.  

A fourth constraint relates passengers served by flight segment (Paxm,n,k,a) and 

passengers served by itinerary (Paxi,j,p,a – a decision variable). This constraint equates 

passengers by flight segment to passengers on all itineraries using that flight segment, and 

distributing between aircraft types, as shown in equation 5-7: 
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where Pi,j,m,n,a represents all itineraries from city i to city j operated by airline a that use the 

flight segment from airport m to airport n. 

The airport balance constraint applied to the optimisation limits the number of flights 

of each aircraft size class departing from an airport on any day to equal the number of flights 

of that aircraft size class arriving at the airport. This is described in equation 5-8, where the 

left hand side of the equation represents all flights operating aircraft size class k departing 

from airport m, while the right hand side represents all flights operating aircraft size class k 

arriving at airport m: 
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In theory, a fleet constraint could also be included that limits the total hours operated 

by each aircraft size class to be less than or equal to that available in the existing fleet. This 

limits the optimisation to only select aircraft from the existing fleet. However, because the 

model is to be applied well into the future the fleet is instead left unconstrained, allowing the 

model to select its own fleet. The underlying assumption is that airlines will purchase or lease 

new aircraft as required.  

The network optimisation only allows non-stop and single-connection itineraries. 

Multiple connections are not permitted. This simplification is not limiting. In the domestic 

United States only 2% of passengers connect more than once (DOT, 2000), and in the city set 

modelled in Chapters 6 and 7, which includes only larger cities, this percentage drops to 1.5% 

(DOT, 2000).  

The airport and city sets served by each airline (Airportsa, Citiesa), as well as the hub 

airports operated by each airline (defined by Pi,j,a) are fixed, and are therefore not assumed to 

change over time. This assumption aids model tractability by limiting the number of airports 

and cities simulated, and the number of hubs available for routing connecting itineraries 

within the network optimisation routines. However, the assumption implies that the model 

cannot simulate airline decisions to change the markets they serve or to operate new hubs. 

Modelling these strategic decisions would require relaxation of this constraint and the 

inclusion of costs associated with setting-up operations at a new airport or converting a non-

hub airport into a hub. 

Finally, the flight frequencies operated by each airline, per day, are constrained to be 

integers. This constraint is specified in equation 5-9:  

IntegerFltfreq kmn ,0,,   AirlinesasSizeClassekAirportsnm aa  ;;,  (5-9) 

Passenger demand by itinerary should also be constrained to be an integer, but this is 

less important because passenger demand between cities, even per day, is high. Because of 

the integer constraint the optimisation described in this section is solved using a Mixed 

Integer Program (MIP). The optimisation is solved using the commercial optimisation solver 

CPLEX 10.2. The stopping criterion is set to a gap of 1%. The objective function and all the 

constraints are made linear in each of the decision variables, so the optimisation should 

converge to a unique solution. 
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5.2 Flight Delay Modelling 

As air traffic demand approaches airport or airspace capacity, flights experience 

delays. In the case of airport capacity constraints, Idris (2001) describes the primary 

resources in an airport system that can constrain operations, i.e., the gates at which 

passengers embark and disembark aircraft, a ramp area or apron that surrounds the gates, a 

taxiway system that connects the gates/ramp area with the runways, and a runway system 

consisting of one or more runways. As stated by de Neufville and Odoni (2003, p367), the 

primary capacity constraint at an airport is generally the runway system. The complementary 

resource, the airspace system, is typically constrained by the capacity of airspace sectors – 

regions of airspace that are typically managed by a single air traffic controller. The capacity 

of these sectors may be further reduced by convective weather and flow constraints 

implemented by air traffic management in order to maintain safe aircraft separation, such as 

Miles in Trail spacing1.  

Due to the interconnectivity of the air transport system, the effects of airport and 

airspace constraints may propagate upstream. Arrival delays on the surface of a destination 

airport can propagate upstream to cause airborne arrival holding and airspace congestion, 

while holding and congestion in en-route airspace may propagate upstream to the surface of 

an origin airport to increase departure delays. This latter effect is described in detail by Evans 

and Clarke (2002).  

Approaches to Modelling Flight Delays 

Air traffic operations within an airport runway system can be viewed as a queuing 

system (de Neufville and Odoni, 2003, Ch23), allowing flow analysis and queuing theory to 

be used to study and optimise the processes within the system, and to estimate flight delays. 

Queuing theory can be applied by modelling the entire runway system (including all runways 

if a multi-runway system is operational) as a server, with the air traffic demand on the 

runway system (including both arrivals and departures) modelled as system demand, and the 

                                                 

1 Miles in Trail spacing refers to an air traffic management procedure that specifies distances by which aircraft 

on a common flight path must be separated (e.g. 10 Miles in Trail, 20 Miles in Trail etc.). Miles in Trail spacing 

is implemented by air traffic controllers primarily through aircraft vectoring and speed control. 
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average time in the queue representing average flight delay, as illustrated in Figure 5-1 (Idris, 

2001). 

 
 
 
 
 
 
 
 
Figure 5-1. Schematic of the application of a queuing system to an airport (Idris, 2001). 

The most direct approach to modelling a queuing system is through simulation. In this 

approach the system demand and service rates are represented by probability distributions, 

from which inter-arrival times and server service times are sampled. Any delays that occur 

when demand is not able to be served immediately are recorded. This process is repeated in a 

Monte Carlo simulation, and the results averaged. While this approach allows the stochastic 

nature of the arrival and service processes in a runway system to be simulated explicitly, it 

can be computationally expensive.  

Alternatively the queuing system may be modelled by numerically solving a system 

of equations describing the evolution of the queuing system over time. Kivestu (1976) 

proposed to model the airport system as an M(t)/Ek(t)/k system – exponentially distributed 

(Memoryless) inter-arrival times, with service times defined by an Erlang-k distribution, and  

using k servers. He developed a numerical approximation scheme to estimate the state 

probabilities of the system over time, allowing estimates of average delay and average queue 

size to be calculated. Malone (1995) further developed the solution method, and proved the 

approach’s appropriateness for application to time-varying queues in airport systems. This 

approach has good accuracy for estimating average delays in airport systems and is less 

computationally expensive than simulation. However, depending on the method used to 

numerically solve the system of equations, it may still be too slow for some applications. The 

approach has, however, been applied to model airport system delays by a number of authors 

(e.g. Hebert and Dietz, 1997; Long et al., 1999-1; Stamatopoulos et al., 2004). The MIT 

DELAYS model (Odoni and Pyrgiotis, 2009) is an example of this modelling approach. 
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Modelling of Flight Delays in the Airline Response Model 

The modelling of flight delays within the Airline Response Model should be 

computationally efficient as it must be completed repeatedly within iteration loops 

incorporating other models, some of which are computationally expensive (e.g. the network 

optimisation), and must be run for a large number of airports in each iteration. However, the 

flight delay model does not require the high accuracy of models in some other applications 

because of its application to calculate average annual flight delays, and not detailed flight 

delay profiles by hour. Neither of the models described above were considered to have 

adequate computationally efficiency, and thus a new rapid airport delay model was developed 

(Evans, 2008). This Rapid Delay Model applies the simpler steady state and cumulative 

diagram approaches, described below, to those periods within a time varying flight schedule 

for which each approach is appropriate. Because of the outstanding importance of runway 

capacity in the air transportation system (Odoni, 2008; de Neufville and Odoni, 2003, Ch10), 

delays due to only the runway system capacity are modelled. 

In classical steady state queuing theory, closed form equations can be derived for 

estimation of average delay and queue size when a system has reached steady state. These 

equations are not typically used to model airport systems, because airport demand and service 

rates can vary significantly during a day, preventing the system from reaching steady state 

(Barnhart et al., 2003). Extended periods also often exist in which demand exceeds capacity, 

which cannot be modelled using this approach. The approach can provide accurate estimates 

of average delay, however, if applied over suitably long time periods, in which the airport 

system can be assumed to reach steady state. It also provides very high computational 

efficiency because the equations can be solved analytically. One queuing system for which a 

closed form equation for average delay and queue size exists is a single server with 

exponentially distributed inter-arrival and service times: the M(t)/M(t)/1 queue – Memoryless 

arrival rate, Memoryless service rate, and using a single server. This is a less accurate model 

of the airport system than the M(t)/Ek(t)/k system. For an M(t)/M(t)/1 queue, average steady 

state waiting time in the queue (average delay, D ), and average steady state queue size ( L ) 

are defined as a function of average arrival rate (demand, λ) and average service rate 

(capacity, μ) as follows (Larson and Odoni, 1981): 
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D  (5-10) 

 




2

L  (5-11) 

These equations can only be applied when the arrival rate is less than the service rate 

(demand does not exceed capacity), that is, when the system utilisation ratio ρ (demand over 

capacity) is less than 1. Also, for these equations to be applicable, demand must not approach 

capacity (i.e., the situation where μ – λ is near zero, or ρ approaches 1) because average delay 

tends to infinity. This is because as the utilisation ratio increases, the time required for the 

system to reach steady state increases. Odoni and Roth (1983) identify a relationship between 

the time for the system to settle to within 2% of its steady-state value (the characteristic time 

constant τ, or "relaxation time"), the utilisation ratio ρ, and the average service rate μ, as 

follows: 

    




 

222 18.2  SAR CC  (5-12) 

where CA and CS are the coefficients of variation for the inter-arrival and service times, which 

are 1 for exponential distributions (as in the M(t)/M(t)/1 system). By rearranging this relation, 

the maximum value of ρ for which an M(t)/M(t)/1 system reaches steady state within a 

specified time T, can be estimated: 

   
2

22
max1 8.21 





  TCC SA MM   (5-13) 

In contrast to the steady state approach, the cumulative diagram approach ignores the 

stochastic nature of the system completely. This very simple approach only predicts delay if 

the average system arrival rate (demand, λ) exceeds the average system service rate (capacity, 

μ), that is, the system utilisation ratio ρ exceeds 1. In this case queue size grows linearly at a 

rate of the difference between the arrival and service rates, as illustrated in Figure 5-2. When 

the arrival rate drops below the service rate the aircraft still in the queue are served first, and 

the queue size drops linearly at a rate of the difference between the service and arrival rates. 

The total waiting time in the queue (total delay) is defined by the area under a queue size 

profile (number of users in the queue with time). The simplicity of this approach offers high 
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computational efficiency, but it is only accurate for a stochastic system when the average 

arrival rate greatly exceeds the average service rate (utilisation ratio ρ is significantly greater 

than 1). Accuracy may be improved by modelling each flight individually, instead of 

specifying average demand and capacity profiles in time bins of e.g. 1 hr duration, although 

at the cost of computational efficiency. This approach was applied by Hansen (2002) to 

compute delay externalities at Los Angeles International Airport.  

The utilisation ratio, above which the cumulative diagram approach provides a 

sufficiently accurate estimate of delay in a stochastic system, can be identified by comparing 

the results of the cumulative diagram approach with those of another, more accurate, model 

such as a queuing simulation. Such a comparison was completed by Evans (2008). The values 

of utilisation ratio ρ are identified at which the cumulative diagram approach estimates delay 

over a single time bin to within 2% (as used by Odoni and Roth (1983) in the estimation of 

equation 5-12) of the value estimated by an M(t)/M(t)/1 queuing simulation, over a range of 

average system service rates μ, and time bin durations T. The resulting utilisation ratio 

threshold, above which the cumulative diagram approach is accurate to within 2% of the 

simulation result (ρCDAmin), was derived statistically (with an adjusted R2 value of 0.78, and 

all coefficients being significant at the 95% confidence level): 

 2-6-3
min 100.338 100.508 - 1.45 TTCDA    (5-14) 

The steady state queuing model is useful below the threshold given by equation (5-

13), while the cumulative diagram approach is applicable above the threshold given by 

equation (5-14). However, the range of utilisation ratios encountered at airports does extend 

 

Figure 5-2. Cumulative diagram approach schematic. 
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above the steady state queuing model threshold, and also extends below the cumulative 

diagram approach threshold. These approaches cannot therefore be applied individually to 

estimate airport delay. The ranges are, however, complimentary, with the steady state 

queuing model applying at low utilisation ratio, and the cumulative diagram approach 

applying at high utilisation ratio, so the approaches can be used in conjunction. 

The basic modelling approach is therefore to apply the steady state and cumulative 

diagram approaches described above to those periods within a time varying flight schedule 

for which each approach is appropriate. This methodology prevents the prediction of 

unrealistically high delays by the steady state approach as demand approaches capacity (ρ 

approaches 1), and the prediction of unrealistically low delays by the cumulative diagram 

approach when demand only just exceeds capacity (ρ is above 1, but below ρCDAmin). In 

periods in which neither approach is appropriate (i.e. when ρ is between ρMM1max and ρCDAmin), 

a linear interpolation is applied between results for the two approaches at the respective 

utilisation ratio thresholds. This methodology is illustrated in Figure 5-3. 

 
 

Figure 5-3. Flight delay modelling methodology 

This approach provides good accuracy either side of the utilisation ratio thresholds, 

where the respective models are applicable, but provides limited accuracy in the transition 

region, where the linear interpolation is applied (as can be surmised in comparison to the 

actual response in Figure 5-3). A non-linear interpolation was also tested, which more closely 

matches the actual response between the two thresholds, but the improvement in performance 

was not significant enough to warrant the increase in complexity. 
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The approach is trivial to apply to a non-time varying queue, but when applied to a 

time varying queue, such as an airport schedule, the propagation of the accumulated delay 

between time bins requires careful implementation. Any clients, i.e., aircraft, not served in a 

time bin remain to be served by the following time bin, where they are served before other 

aircraft arriving into the system in that bin. The approach is implemented by calculating the 

change in queue size in each time bin, chronologically through the day, as a function of the 

demand and capacity in each respective time bin, and the queue size at the start of the time 

bin. The queue size at the end of each time bin defines the queue size at the start of the next 

time bin. Average flight delay is estimated by integrating the queue size profile through all 

time bins and dividing by the total number of aircraft served.  

The queue size profile for each time bin is estimated as follows. If the runway system 

demand in the time bin, defined by the arrival and departure schedules at the airport, is below 

the maximum demand threshold for the steady state approach, defined by ρMM1max, the queue 

size at the start of the bin is reduced at the rate of the difference between the bin capacity and 

demand, until it reaches the steady state queue size for an M(t)/M(t)/1 queue calculated using 

equation 5-11. The queue size is then maintained at this value until the end of the bin, and is 

then the starting queue size for the following bin. This is illustrated in Figure 5-4a. If the time 

bin is not long enough for the queue size to reduce to this value, the queue size at the end of 

the bin is the value to which it has reduced by that time. This is illustrated in Figure 5-4b. 

  

                                        (a)                                                                            (b) 

Figure 5-4. Modelled change in queue size for ρ < ρMM1max, when (a) queue size drops to 

the steady state value, and (b) when it does not.  
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If, instead, the runway system demand in the time bin is above the minimum demand 

threshold for the cumulative diagram approach, defined by ρCDAmin, the queue size at the start 

of the bin is increased at the rate of the difference between the bin demand and capacity, until 

the end of the bin. The queue size at the end of the bin is the value to which it has increased 

by that time. This is illustrated in Figure 5-5. 

 

Figure 5-5. Modelled change in queue size for ρ > ρCDAmin. 

Finally, if the runway system demand in the time bin falls between the maximum 

demand threshold for the steady state approach, defined by ρMM1max, and the minimum 

demand threshold for the cumulative diagram approach, defined by ρCDAmin, the queue size 

profile for the bin is calculated by linearly interpolating between the queue size profiles 

calculated for demand at each threshold according to the ratio of the actual demand in the bin, 

and the demand thresholds. This is illustrated in Figure 5-6. 

 

Figure 5-6. Modelled change in queue size when ρ falls between ρMM1max and ρCDAmin. 
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The number of clients, i.e. aircraft, to be processed by the queue through all time bins 

is the sum of the demand profile, through all time bins, subtracting the queue size at the end 

of the final bin. The total delay incurred by the served aircraft is the integral of the queue size 

profile, subtracting the delay incurred by the aircraft not served at the end of the last bin. 

These flights can be assumed to be cancelled. Average delay is estimated by dividing the total 

delay incurred by the served aircraft by the number of aircraft served. 

Performance of the Rapid Delay Model 

The performance of this Rapid Delay Model in comparison to other delay models was 

evaluated for a series of time varying schedules and system capacities. Aircraft demand on 

the runway system, as defined by a flight schedule, was scaled to define average utilisation 

ratios between 0.1 and 1.3, thus allowing a range of demand and utilisation ratios to be 

analysed. Average utilisation ratio is defined as the ratio of the total demand from 06:00 to 

24:00, and the total capacity over the same period. Exclusion of the early hours of the 

morning allows the average utilisation ratio to better reflect the utilisation of the airport in 

periods when it is typically operated. The modelled schedule was followed by a second 24 hr 

period in which demand was zero but capacity maintained at the level of the first period. This 

allowed any aircraft that had not been served in the first 24 hr period to be served. This is not 

realistic, but allows the performance of model to be evaluated without consideration of flight 

cancellation policies. 

The model results and performance were compared to those of a queuing simulation, 

averaged over 100 simulation runs. As described above, a queuing simulation provides a 

more accurate estimate of system delay than can be achieved using the steady state and 

cumulative diagram approaches. For comparison, model results are also presented for the 

MIT DELAYS model. An M(t)/E9(t)/1 queuing system (exponentially distributed inter-arrival 

times, service times defined by an Erlang-k distribution with k = 9, and using a single server) 

was modelled by the queuing simulation and MIT DELAYS model, as suggested by Malone 

(1995) for airport systems.  

The demand run by the queuing simulation and MIT DELAYS model was defined per 

hour. The Rapid Delay Model can be run with demand specified in different time bin sizes. 

As described by Evans (2008), 2 hours was found to be the best choice for the time bin size. 
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It balances the benefits of small bin sizes, which capture the variability of the schedule, and 

larger bin sizes, which have less restrictive utilisation ratio thresholds, as defined by 

equations 5-13 and 5-14. This results in application of the linear interpolation between the 

steady state approach and the cumulative diagram approach over a smaller range of demand 

levels.  

Average delays estimated by each of the models are presented in Figure 5-7a for an 

average airport capacity of 100 aircraft/hr, and a banked schedule following the shape of the 

Dallas-Fort Worth International Airport schedule in 2000. Results are presented over the 

specified range of utilisation ratios. Error bars are included for the simulation results, 

representing one standard deviation of the average delay calculated over the 100 simulation 

runs. The absolute and percentage difference between the average delay predicted by the 

queuing simulation, and by each of the Rapid Delay Model and the MIT DELAYS model are 

presented in Figure 5-7b and Figure 5-7c respectively. The average runtimes for each model 

are presented in the caption of Figure 5-7.  

All the model runs predict a transition from low delays at low utilisation ratio to 

approximately linearly increasing delay at high utilisation ratio (Figure 5-7a). This is 

expected because, with increasing utilisation ratio and constant capacity, the scheduled 

demand shifts from predominantly well below capacity, for which delays are due to the 

stochastic nature of the system only, to predominantly near or above capacity, when the 

cumulative effects of delay building up during the day dominate. The transition from low 

delay to linearly increasing delay occurs between utilisation ratios of approximately 0.8 and 

0.9, at which the scheduled demand in a number of time bins reaches and exceeds capacity, 

even though the average demand from 6:00 to 24:00 remains below capacity.  

Below a utilisation ratio of 0.7, the differences in absolute delay predicted by the 

simulation and Rapid Delay Model are very small (less than 2 minutes) (Figure 5-7b). At 

high utilisation ratios of 0.9 and above, the Rapid Delay Model matches the simulation fairly 

closely. The differences do not exceed 20% (at a utilisation ratio of 0.65) (Figure 5-7c) or 4 

minutes (at a utilisation ratio of 1.1) (Figure 5-7b). Importantly, the model results fall within 

one standard deviation of the simulation results through the full range of utilisation ratios 

tested (the error bars in Figure 5-7a).  
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Figure 5-7. a) Average delay estimated by the simulation, MIT DELAYS model and 

Rapid Delay Model; b) Absolute delay difference between the simulation and other 

models (MIT DELAYS model and Rapid Delay Model); c) Percentage delay difference 

between the simulation and other models (MIT DELAYS model and Rapid Delay 

Model). Average simulation run time = 10 sec; average MIT DELAYS model run time = 

0.61 sec; average Rapid Delay Model run time = 8710-6 sec. 

The results for the MIT DELAYS model are also compared to the simulation results 

in Figure 5-7b and Figure 5-7c, and show that it too under-predicts the simulation – by up to 

50% (at low utilisation ratios), or 5 minutes (at a utilisation ratio of 0.9). The Rapid Delay 

Model results generally compare closely to the results for the MIT DELAYS model. 

High utilisation ratios of above 1 result in unrealistically high average delays in 

excess of one hour (Figure 5-7a). These utilisation ratios are unlikely to occur in reality as 

airlines and passengers would respond to adjust the way in which they operate before these 

delays occurred, as discussed in Chapters 1 and 2. The utilisation ratios of most interest are 

between 0.9 (when average delay is 25 minutes) and 1, the range of utilisation ratios within 

which most capacity constrained airports will most likely converge to, given airline and 
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passenger responses to delay. The Rapid Delay Model over-predicts the simulation between 

these utilisation ratios by up to 7% (Figure 5-7c), or only 3 minutes (Figure 5-7b). 

The Rapid Delay Model is about 100,000 times faster than the simulation (average 

run times are presented in the caption of Figure 5-7), and about 10,000 times faster than the 

MIT DELAYS model. The Rapid Delay Model and the MIT DELAYS model run times 

remain approximately constant for all capacity scenarios. In contrast, the simulation run time 

increases as the capacity increases, given its dependence on the number of aircraft processed. 

Application of the Rapid Delay Model in the Airline Response Model 

In this dissertation average daily flight delays due to airport capacity constraints are 

calculated for each airport modelled using the Rapid Delay Model described above. A key 

input is airport capacity. This can generally be identified from published data. For the largest 

airports in the United States, airport capacities can be extracted directly from hourly arrival 

and departure rates from FAA Aviation System Performance Metrics (ASPM) data (FAA, 

2008). Approaches also exist for estimating runway capacities according to runway and fleet 

mix characteristics, as described by de Neufville and Odoni (2003, Ch10). Airport capacities 

for each of the airports modelled in Chapters 6 and 7 are presented in Table 5-1. With the 

exception of specific scenarios described in Section 7.1 that model restricted airport capacity 

expansion, these capacities are assumed to increase over time according to airport capacity 

expansion plans described by airport authorities and the U.S. Department of Transport (DOT, 

2004). These increases in capacity are also listed in Table 5-1.  

The other key input to the Rapid Delay Model is the flight schedule. This is a function 

of the flight frequencies operated at the airport, input from the System Flight Frequency 

Calculator, and the shape of the flight schedule. The latter is extracted for each airport from 

2005 FAA ASPM data (FAA, 2008), and is assumed to remain constant over time. Thus, any 

increase in airport traffic is assumed to cause the entire schedule to increase proportionally. 

Changes in the schedule in response to increasing costs, such as shifting flights to off-peak 

times as described by Kostiuk et al. (2000) and Long et al. (1999-1, 1999-2), and schedule 

de-peaking as described by Evans (2002) – both recognised airline responses to airport 

congestion – have only limited impact on flight delays at high traffic levels, and are therefore 

not modelled. 
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Table 5-1. Planned Airport Capacity Expansion 

Airport Year 
Capacity 
(ac/hr) Improvements Reference 

Chicago 
O’Hare 

2005 187 - FAA, 2008 
2015 260 New runway Airport-Technology.com, 2009 

Atlanta 
2005 183 - FAA, 2008 
2006 232 New runway DOT et al., 2004; ATCMonitor.com, 2006 
2013 240 Technological & procedural DOT et al., 2004 

Dallas-         
Fort Worth 

2005 238 - FAA, 2008 
2013 297 Technological & procedural DOT et al., 2004 

Los Angeles 
2005 151 - FAA, 2008 

2013 190 
Technological & procedural DOT et al., 2004; Los Angeles World 

Airports, 2009 

Houston 
Intercontinental 

2005 158 - FAA, 2008 
2006 189 New runway DOT et al., 2004 
2013 224 Technological & procedural DOT et al., 2004 

Denver 
2005 235  FAA, 2008 
2006 263 New runway DOT et al., 2004 
2013 278 Technological & procedural DOT et al., 2004 

Detroit 
2005 164 - FAA, 2008 
2013 184 Technological & procedural DOT et al., 2004 

Philadelphia 
2005 98 - FAA, 2008 
2013 114 Technological & procedural DOT et al., 2004 

Newark 
2005 88 -- FAA, 2008 
2013 89 Technological & procedural DOT et al., 2004 

Washington 
Dulles 

2005 130 - FAA, 2008 
2008 169 New runway DOT et al., 2004 
2013 172 Technological & procedural DOT et al., 2004 
2020 259 New runway Adelman, 2008 

New York 
Kennedy 

2005 74 - FAA, 2008 
2013 85 Technological & procedural DOT et al., 2004 

LaGuardia 
2005 74 - FAA, 2008 
2013 84 Technological & procedural DOT et al., 2004 

Boston 
2005 99 - FAA, 2008 
2006 126 New runway DOT et al., 2004 
2013 127 Technological & procedural DOT et al., 2004 

Miami 
2005 123 - FAA, 2008 
2013 146 Technological & procedural DOT et al., 2004 

San Francisco 
2005 86 - FAA, 2008 
2013 111 Technological & procedural DOT et al., 2004 

Seattle 
2005 87 - FAA, 2008 
2008 99 New runway DOT et al., 2004 

Washington 
National 

2005 72 - FAA, 2008 
2013 86 Technological & procedural DOT et al., 2004 

Chicago 
Midway 

2005 68 - FAA, 2008 
2013 69 Technological & procedural DOT et al., 2004 

Oakland 2005 122 - FAA, 2008 

Houston 
Hobby 

2005 48 - FAA, 2008 
2008 52 Technological & procedural Houston Airport System et al., 2004 
2019 57 Runway extension Houston Airport System et al., 2004 
2029 61 Technological & procedural Houston Airport System et al., 2004 
2036 63 New runway Houston Airport System et al., 2004 

Dallas Love 
2005 71  FAA, 2008 
2010 72 Technological & procedural City of Dallas Dept. of Aviation, 2001 
2020 73 Technological & procedural City of Dallas Dept. of Aviation, 2001 

Ontario 2005 55 - FAA, 2008 
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Delay is distributed between arrivals and departures according to the ratio of each in 

each time period. Average daily departure delays at each airport are added to base year 

average gate departure delays due to mechanical failures and late arrivals, which are assumed 

to remain approximately constant. This assumes that schedule padding will increase to 

maintain schedule reliability, and is a simplification to avoid modelling the downstream 

propagation of flight delays between airports because of late arrivals (downstream 

propagation of delay to the destination airport due to a late departure at the origin airport is 

modelled). In reality, because of the stochastic nature of flight delays, airlines do not pad 

schedules to accommodate all flight delays. The worst delays still propagate through the 

system, and as delays increase, delay propagation is also likely to increase. The delays 

estimated by the Rapid Delay Model are thus likely to under-predict actual delays. Average 

gate departure delays are extracted from FAA ASPM data (FAA, 2008) for 2005. Average 

daily arrival delays are calculated as a function of arrival airport runway constraints only, 

with taxi-in delays assumed to be close to zero. This is consistent with taxi-in delay statistics 

from FAA ASPM data (FAA, 2008) for most airports.  

It is also important to allocate arrival and departure delays to the phases of flight in 

which they are most likely to be incurred: at the gate, on the taxiway, or in airborne holding. 

Aircraft fuel burn rates are different in each phase of flight, and fuel burn is a significant 

portion of airline cost. Typically, if a departure delay is below a certain threshold, it is 

incurred on the taxiway at ground idle thrust. If the delay is greater than can be incurred on 

the taxiway, the aircraft is refused pushback by the air traffic service provider, and must incur 

the delay at the gate or in some cases in a parking area. In either case, the aircraft is not 

burning fuel (with the exception of fuel burn from running the auxiliary power unit, or APU). 

The duration of the taxi out process that is completed at taxi thrust (when the aircraft is 

moving) is taken to be approximately equal to the unimpeded (delay-free) taxi time. 

In the case of an arrival delay, if it is below a certain threshold, it is incurred in 

airborne holding, at airborne holding thrust. If the delay is greater than can be incurred in 

airborne holding, the aircraft is refused pushback by the air traffic service provider at its 

origin, and must again incur the delay at the gate or a parking area. In either case the aircraft 

is, again, not burning fuel (with the exception of fuel burn from running the APU).  
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Taxi and airborne holding thresholds are not clearly defined for any airports, and vary 

significantly with weather and operations. In order to simplify the analysis, average 

thresholds were calculated for each airport as the 99th percentile of historical taxi-out and 

airborne delay data from the FAA ASPM database (FAA, 2008). Calculated taxi-out 

thresholds are as high as 48 minutes with a minimum specified of 15 minutes, while 

calculated airborne holding thresholds vary from 11 minutes to 23 minutes. These thresholds 

were assumed to remain unchanged over time. 

5.3 Travel Time Calculation 

In the Airline Response Model, average nominal flight segment travel time is required 

as an input to the Operating Cost Calculator described in Section 5.4, in order to estimate 

airline costs per flight as a function of airline operating costs per hour. Average nominal O-D 

passenger travel time by city-pair is also required, as an input to the Passenger Demand 

Model described in Section 5.6, enabling the passenger response to changes in travel time to 

be simulated. Nominal travel time is the expected delay-free travel time, and does not include 

flight delays. The latter are input separately into the Operating Cost Calculator and Passenger 

Demand Model from the Delay Calculator.  

Average nominal flight segment travel times are calculated as a function of aircraft 

type. In order to simplify the analysis, the aircraft fleet is categorised into three aircraft size 

classes: a small aircraft type (up to 189 seats), a medium aircraft type (between 190 and 300 

seats), and a large aircraft type (over 301 seats); and two aircraft age categories: aircraft types 

originally certified before and after 1995. Performance characteristics are applied for 

representative aircraft in each of these categories. The representative aircraft types selected 

are as follows: 

 Small, old:   Boeing B737-300 

 Small, new:   Airbus A319 

 Medium, old:   Boeing 767-300  

 Medium, new:  Airbus A330 

 Large, old:   Boeing 747-400  

 Large, new:   Boeing 777-300  
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Average nominal flight segment travel times are estimated for each representative 

aircraft type, for each phase of flight, including: taxi-out, take-off, climb-out, cruise, descent, 

approach and landing, and taxi-in. Average unimpeded taxi-out and taxi-in data is available 

for 75 airports in the United States in the FAA ASPM Database (FAA, 2008). Typical take-

off, climb-out (to 3,000 ft), descent (from 3,000 ft), and approach and landing times are 

available, by aircraft type, in the ICAO Aircraft Engine Emissions Databank (ICAO, 2008). 

Average unimpeded cruise times are calculated using the great circle distance between 

airports and typical cruise speeds, by aircraft type, from the EUROCONTROL Base of 

Aircraft Data (BADA) (EUROCONTROL, 2004). 

Average nominal O-D passenger travel times are calculated according to the flight 

segment travel times described above, and the flight network operated by the airlines. 

Average nominal O-D passenger travel times are calculated for each city-pair modelled by 

averaging nominal O-D travel times for each passenger travelling between that city-pair, i.e., 

calculating the weighted average travel time. In order to simplify the model, it is assumed 

that passengers connect through a maximum of only one hub airport, and that the hub airports 

through which any passenger may connect are limited to the hubs operated by the airline that 

serves the passenger, as described in Section 5.1. The flight segments from which O-D travel 

times are calculated include the flight segments originating at each of the airports in the 

origin city and destined for each of the hub airports modelled (first leg of connecting flights); 

the flight segments originating at each of the airports in the origin city and destined for each 

of the airports within the destination city (non-stop flights); and the flight segments 

originating at each of the hub airports modelled, destined for each of the airports in the 

destination city (second leg of connecting flights). This is shown schematically in Figure 5-8. 

 

Figure 5-8. Schematic of flight segments between O-D city-pair. 
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5.4 Operating Cost Modelling 

In the Airline Response Model, operating costs are calculated, per flight and per 

passenger, for each airline as a function of average nominal flight segment travel times and 

average flight delays, as shown in Figure 4-1. Additional inputs include fuel prices, aircraft 

fuel efficiencies, and operating costs per hour and per passenger. The calculated airline-

specific operating costs are then output to the Network Optimisation Models, which calculate 

segment flight frequencies and itinerary passenger demand subject to the maximisation of 

airline profit. The calculated operating costs are also output to an Average Operating Cost 

Calculator, which calculates system average operating costs by city-pair (O-D) for input to 

the Average Fare Model.  

As described in Section 4.1, airline operating costs modelled include direct operating 

costs and indirect operating costs associated with aircraft, traffic and passenger servicing; 

reservation and sales; and other system overheads. Direct operating costs cover fuel and oil 

costs, crew costs, maintenance costs, aircraft rental, depreciation and amortization costs, and 

en-route airspace charges. Aircraft servicing costs cover the handling of aircraft on the 

ground and landing fees. Traffic servicing costs cover the processing of passengers, baggage 

and cargo at airports. Passenger servicing costs cover meals, flight attendants and in-flight 

services. Reservation and sales costs cover airline reservations and ticket offices, including 

travel agency commissions. Other indirect and system overhead costs cover advertising and 

publicity expenses and general and administrative expenses.  

As recommended by Belobaba (2006), some airline operating costs are modelled per 

flight, while others are modelled per passenger. Costs per flight include all direct operating 

costs and aircraft servicing costs, with the exception of the proportion of fuel burn that can be 

attributed directly to passengers. This extra fuel burn, along with traffic servicing costs, 

passenger servicing costs, reservations and sales costs, and other indirect and system 

overhead costs are modelled per passenger. 

Direct operating costs and aircraft servicing costs are estimated for the three aircraft 

size classes described in Section 5.3, averaging over all aircraft types in each size class. With 

the exception of fuel costs and landing fees, all direct operating costs and aircraft servicing 

costs are derived from the U.S. DOT Form41 data Schedule P52 (DOT, 2005-1). Aircraft 
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servicing costs, traffic servicing costs, passenger servicing costs, reservation and sales costs, 

and other indirect and system overhead costs are input directly from the U.S. DOT Form41 

data Schedule P12 (DOT, 2005-2). It is assumed that all operating costs, with the exception 

of fuel costs, will not change significantly over time beyond inflation. 

Landing fees are input directly for each airport from the International Air Transport 

Association’s (IATA) Airport and Air Navigation Charges Manual (IATA, 2008). For those 

airports for which landing fees are not available (7 of the 22 airports simulated in Chapters 6 

and 7), they are assumed to be equal to the average of those airports for which landing fees 

are available. Landing fees are not assumed to change over time, except in specific scenarios 

described in Section 7.2, in which an increase in regional costs is modelled through an 

increase in landing fees at a subset of airports. 

Fuel costs are calculated independently as a function of fuel price and aircraft fuel 

burn in each of the aircraft flight phases, i.e., ground idle, taxi, take-off, climb-out, cruise, 

airborne holding, descent, approach and landing. The fuel price is taken from Air Transport 

Association (ATA) data (ATA, 2008), and is assumed to change over time according to 

changes in oil price forecast by the MIT Integrated Systems Model (IGSM), run for the U.S. 

Climate Change Science Program (CCSP) (CCSP, 2007). The IGSM is an integrated energy-

economy-environment model with internally consistent population, income, and oil price 

scenarios. For the United States it represents a relatively high growth scenario when 

compared to the other energy-economy-environment models run for the CCSP. 

Fuel burn rates are estimated using the EUROCONTROL Base of Aircraft Data 

(BADA) (EUROCONTROL, 2004) and the ICAO Aircraft Engine Emissions Databank 

(ICAO, 2008) for the representative aircraft in each of the aircraft size and age categories 

described in Section 5.3. Fuel burn rates are assumed to decrease over time because of the 

gradual development of more fuel efficient technology and its introduction into the fleet. 

Fleet fuel burn is assumed to decrease by 0.7% per year through the introduction of more 

advanced technology, which would replace retired aircraft and satisfy growing demand. This 

reduction is the average rate forecast by the Energy Information Administration to 2030 

(Energy Information Administration, 2009). It does not account for reductions in fuel burn 

that would be achieved through the introduction of radically new technology such as an 
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advanced open rotor engine or blended wing body aircraft, which are introduced in specific 

scenarios in Section 7.3. 

The duration of each flight phase is input from the Travel Time Calculator, described 

in Section 5.3 above, with the exception of ground idle, taxi and airborne holding, which are 

input from the Delay Calculator, described in Section 5.3.  

Most airline operating costs vary by aircraft type. However, some operating costs vary 

by airport, such as some aircraft, traffic and passenger servicing costs. These are lower at 

airports with particularly high traffic because of economies of scale. O’Kelly and Bryan 

(1998) estimate that economies of scale at hub airports in the United States result in aircraft, 

traffic and passenger servicing costs being between 40% and 95% (averaging 73%) of those 

at non-hub airports. These reduced costs make it attractive for airlines to operate hub-and-

spoke networks. These economies of scale are modelled in this dissertation by exogenously 

decreasing aircraft, traffic and passenger servicing costs at hubs airports, and increasing them 

at non-hub airports. This is done in such a way that the aircraft, traffic and passenger 

servicing costs at hub airports are 73% of those at non-hub airports, and that average aircraft, 

traffic and passenger servicing costs across all airports equal those calculated from the DOT 

Form41 data Schedule P12 (DOT, 2005-2). 

As described in Chapter 1, there are also other cost advantages of hub-and-spoke 

networks over point-to-point networks. Hub-and-spoke networks require fewer flights to 

connect several airports than do point-to-point networks, because they consolidate passengers 

along major traffic routes. The higher traffic volumes on hub-and-spoke flights allow airlines 

to operate larger aircraft on these routes, which typically have lower aircraft operating costs 

per RPM than smaller types. However, the reduction in operating costs is partly offset by the 

greater total distances flown by passengers and the associated increase in fuel burn. Thus, in 

some cases, point-to-point networks have lower cost. An example is when a hub is located far 

from the shortest path between two airports. The lowest cost network is therefore typically a 

combination of both hub-and-spoke and point-to-point networks.  

After the calculation of airline operating costs per flight and per passenger, average 

operating costs are calculated over all airlines by the Average Operating Cost Calculator. 

These are output by city pair, per passenger, to the Average Fare Model, described in Section 
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5.5, for estimation of average fares by city-pair market. Airline costs per flight are allocated 

to O-D passengers according to the itinerary passenger demand for each city pair that is on 

board each flight, while airline costs per passenger are applied directly to O-D passengers.  

5.5 Average Fare Modelling 

The modelling of changes in airline airfares as a function of changes in airline cost 

enables simulation of how airline cost changes impact passenger demand. As described by 

Waitz et al. (2006-2), this is particularly important when modelling policy measures intended 

to mitigate the environmental impacts of aviation. This is because passenger demand 

responses to increased fares resulting from policy interventions may lead airlines to schedule 

fewer flights. This could result in greater reductions in emissions and noise than forecast by 

an analysis that does not model this effect on demand. 

Airline fare strategies are, however, highly complex, particularly in the United States 

and Europe. This has resulted primarily from deregulation of the airline industry (in 1978 in 

the United States and by 1997 in Europe), the development of computerised revenue 

management systems (in the 1980s), and the development of web-based airline ticket 

distribution and on-line travel agents (in the late 1990s) (Carrier, 2006). As a result of these 

developments, airlines do not simply apply cost-based pricing, but apply a combination of 

cost-, demand-, and service-based pricing, applying price discrimination and product 

differentiation to increase total flight revenues, with little consideration to total operating 

costs (Belobaba, 2008). Airlines segment markets with different levels of willingness to pay 

by offering different fare products to business and leisure travellers, preventing diversion by 

setting restrictions on lower fare products (e.g. requiring a Saturday night stay) and limiting 

available seats. The result is higher revenues and load factors than could be achieved through 

any single fare strategy. 

Approaches to Modelling Fares 

Models exist that can be applied directly to airline ticket pricing, such as the 

probabilistic decision model described by Belobaba (1989), which identifies what booking 

limits should be applied to the number of seats available at different prices on the same flight 

in order to increase airline revenue. These models are, however, complex, and are not tailored 

to forecasting applications, requiring information about passengers that is difficult to predict.  
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Other approaches model average fare changes as a function of changes in airline cost 

without considering airline revenue management, and are more appropriate to forecasting 

applications. Fare models applied in the context of forecasting aviation growth in the future 

typically do not model competition effects explicitly. The Aviation System Analysis 

Capability (ASAC) Air Carrier Investment Model (ACIM) (Wingrove et al., 1998), allows 

the user to specify airline yields or operating profits, and how they are expected to change 

over time. The model adjusts fares to produce the yields or operating profits specified. This 

approach has the advantage of allowing differentiation between airlines, but does not 

explicitly model competition beyond assuming that competition maintains profits at the levels 

specified. 

An alternative approach optimises average fares to maximise system profit, within 

limits, as described by Pulles et al. (2002). This approach effectively identifies the cost “pass-

through” to fares that results in maximum profit, modelling the impact of fare changes on 

passenger demand, and the impact of passenger demand changes on capacity supply (flights), 

which in turn impact cost. The approach also allows for user specified cost pass-through, if 

desired. However, it does not capture any competition effects, nor does it model any revenue 

price discrimination or revenue management approaches. Waitz et al. (2006-2) describes a 

similar approach in which a bounding analysis is completed. A range of scenarios are 

modelled with different degrees of cost pass-through to fares applied in each case. For 

example, scenarios are run in which airlines pass 100%, 50% and 0% of cost increases 

through to fares. This approach is very transparent, providing a range of outcomes with 

bounds, but lacks guidance as to the most likely outcome. Again, airline competition effects 

are not modelled explicitly, despite the fact that they may drive the degree to which cost is 

passed through to fare. 

A further approach adjusts fares to maintain an existing airline rate of return, as 

described and applied by Waitz et al. (2006-3). This is accomplished by maintaining a 

proportional relationship between fares and costs. Thus, if costs are predicted to increase by a 

certain percentage, fares are modelled to increase by the same percentage. This approach also 

does not explicitly account for competition effects. 

In contrast to these approaches that do not model airline competition, Adler (2005) 

models airline competition in a network by solving a non-linear optimisation within a two-
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stage, Nash best-response game, identifying flight frequencies and average O-D market fares 

for different passenger types, as described in Section 2.3. The impact of competition on fares 

and frequency is modelled explicitly, and some degree of price discrimination (different 

passenger types are modelled) is captured. Also as described in Section 2.3, Schipper et al. 

(2003) and Carlsson (2002) model the effects of competition on average fares and flight 

frequencies by solving a two stage game separately for each market, as opposed to the whole 

network operated by the airline. In the first stage of the game, airlines simultaneously choose 

flight frequencies in the market, and in the second stage, after having observed the other 

airlines’ chosen frequencies, the airlines simultaneously choose fares for the market. The 

game is solved analytically as a function of passenger value of time, airline costs and 

passenger demand. This formulation was modified by Evans et al. (2008) for variable 

passenger demand. Both formulations, however, do not model any price discrimination or 

revenue management. Nor does the model distinguish between different passenger routings 

on the same O-D market. Fares, passenger value of time and costs may differ quite 

significantly for different routes in the same market, particularly between non-stop flights and 

connecting flights. Finally, the even distribution of flights through the day applied to define 

the flight schedule does not capture passenger preferences to fly at certain times of day 

(particularly the early morning and evening), and therefore ignores the increased demand at 

these times. Nero (1998) and Januszewski (2004) make similar assumptions to formulate 

equations for fare as a function of cost within a competitive environment in order to examine 

airline scheduling and the effect of flight delays on airlines’ prices.  

Modelling of Fares in the Airline Response Model 

Ideally, average O-D fares by passenger type should be included as a decision 

variable in each airline’s network optimisation objective function, described in Section 5.1. 

This would allow different fares to be identified for each airline within the competitive 

environment, subject to airline operating costs. However, this approach would add significant 

complexity, because the calculation of market share in each network optimisation would 

require passenger choice modelling based on both fare and flight frequency, as opposed to the 

relatively simple passenger choice model based on flight frequency only (equation 5-3). Such 

an approach would also be unlikely to add significantly to the model results, because in 

reality fares are set using complex revenue management techniques, and in a different cycle 
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to the more strategic decisions of flight frequency and network choice. Instead, the modelling 

approach adopted for the Airline Response Model is to adjust base year fares to maintain the 

existing rate of return. This is identical to the approach used by Waitz et al. (2006-3), and is 

accomplished by maintaining a proportional relationship between fares and costs. Thus, any 

percentage change in cost is applied directly to base year fares.  

Base year fares in the United States are obtained from published fare lists (DOT, 

2007), while base year operating costs by O-D city pair are estimated by running the Airline 

Response Model with fares fixed to base year values. This ensures that modelled fares 

deviate from observed base year fares according to how modelled operating costs deviate 

from operating costs that are consistent with the observed base year fares. 

5.6 Passenger Demand Modelling 

The most common approach to modelling passenger demand for air transport is the 

gravity model, in which the equation defining trip demand between city pairs or airports 

resembles Newton’s law of gravity. Gravity-type models have been applied to project air 

transport demand in a number of studies (Verleger, 1972; Jamin, 1997; Jamin et al., 2004; 

Reynolds et al., 2007; Dray et al., 2008, 2009-1, 2009-2). In most cases the explanatory 

variables include population, per-capita income, dummy variables indicating whether a city 

has special attributes that may increase passenger demand (e.g. a major tourist destination or 

capital city), and a generalised cost term that includes supply variables. The generalised cost 

term can include passenger airfare and passenger travel time, multiplied by a passenger value 

of time. The distance between the cities is typically captured through the travel time term. In 

some cases (Dray et al., 2009-1, 2009-2) other dummy variables are included for city pairs 

that are connected by other forms of transport that may compete with aviation, such as rail or 

road. Bhadra et al. (2003) use a similar approach to the gravity model in which statistical 

relationships are estimated to define O-D passenger demand by city pair as a function of local 

economic and demographic data, fares, market share of major carriers, the presence of low-

cost carriers, seasonality, and the structure of airport hubs.  

In the Airline Response Model, as described in Chapter 4, O-D passenger demand 

must be calculated by city pair as a function of various variables, including average flight 

delay, average nominal passenger travel time, and average fare. The demand model adopted 
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must therefore be capable of estimating air transport passenger demand by city pair, and must 

account for the demand reducing effects of increased flight delays, changes in the flight 

network to increase travel times, and increased fares. A one-equation gravity-type model, 

similar to those applied by Reynolds et al. (2007) and Dray et al. (2008, 2009-1, 2009-2) was 

selected. Each of the demand reducing effects can be modelled within the generalised cost 

term, which includes travel time and fare terms. While this approach does not explicitly 

model passenger mode choice, it is suitable for the city set modelled in Chapters 6 and 7, 

where mode substitution is less significant due to the long distances travelled. The model 

applied is as follows: 

   jijiji
SBA

jijiij DelayTFareeeeIIPPD ijijij

,2,1,)()(   (5-15) 

where Dij represents the O-D passenger demand between city i and j; P is the related greater 

metropolitan area or equivalent population; I is the greater metropolitan area per capita 

income; A is a binary variable indicating whether either city in the city pair is special, i.e., it 

might have increased visitor numbers (e.g. a major tourist destination or capital city); B is a 

complimentary binary variable indicating whether either city is not special; S is a binary 

variable indicating whether road transport between the city pair is competitive with air 

transport (specified according to a distance-based criterion of 150 nmi (173 miles)); Fare  is 

passenger airfare between the cities averaged over all itineraries; θ1 is the passenger value of 

(nominal) travel time; T  is the nominal travel time between the cities averaged over all 

itineraries; θ2 is the passenger value of delay time; and Delay  is the average flight delay 

between the cities averaged over all itineraries. The exponents represent the elasticity of 

demand to each of the explanatory variables (i.e. % change in demand resulting from a % 

change in each explanatory variable) (in the case of population and income, the elasticity of 

demand is represented by α and γ divided by two). The expression in brackets represents the 

generalised cost to a passenger of air travel between the cities, and it is through this 

expression that it is possible to include the demand-reducing effects of increased flight 

delays, changes in network structure to increase travel times, and increased fares.  

Note that travel time within the generalised cost term is split into nominal travel time 

and flight delays. Passengers dislike travel time increases due to flight delays, which are 
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unexpected, to a greater extent than increases in nominal travel time. Forbes (2008) examines 

airfare responses to flight delays, and finds that fares fall in response to longer flights delays 

by US$(2005) 1.61 on average for non-stop passengers per additional minute of delay. The 

price response is smaller for connecting passengers (US$(2005) 0.87 per minute), while on 

competitive routes, the value can be as high as US$(2005) 2.77 per minute. Averaging over 

these values yields a value of US$(2005) 105 per hour. This is just over 3 times higher than 

the passenger value of travel time derived from data from the U.S. DOT (DOT, 1997) of 

US$(2005) 34.38 per hour. This difference between the passenger value of nominal travel 

time and the passenger value of flight delay time is consistent with other estimates (Ben-

Akiva, 2009). In equation 5-15, θ1 is specified as US$(2005) 34.38 per hour, and θ2 as 

US$(2005) 105 per hour. 

Using demand data for the United States in 2005 (United States Census Bureau, 2000; 

DOT, 2005-2, 2007), the coefficients (exponents) in equation 5-15 were estimated for a set of 

14 cities2, which form the city set modelled in Chapters 6 and 7. All estimated coefficients, 

which are presented in Table 5-2, are significant at the 95% confidence level. The adjusted R2 

for the model estimation is 0.85. The coefficients presented in Table 5-2 are similar to those 

estimated by Jamin et al. (2004) and Dray et al. (2009-1).  

 

                                                 

2 New York City, Chicago, Atlanta, Washington, Los Angeles, Dallas/Fort Worth, Houston, San Francisco, 

Miami, Denver, Detroit, Philadelphia, Boston, and Seattle. 

Table 5-2. Estimated Coefficients, Standard Errors (in parentheses) and Adjusted R2 

for the Passenger Demand Model 
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In Table 5-2, the coefficient for population is positive because increasing population 

leads to an increase in demand for air travel. The coefficient for per-capita income is also 

positive, because an increase in income results in increased mobility, leading to an increase in 

demand for air travel. The coefficient for the first binary variable, which indicates if either 

city in the city pair is special, is positive because special cities attract more passengers. The 

second binary variable indicates if either city is not special, and therefore the coefficient is 

negative. The coefficient for the third binary variable, indicating whether competitive road 

transport links exist between the city pair, is strongly negative. Significant alternative 

transport modes take demand away from aviation. Finally, the coefficient for the generalised 

cost term is also negative, because passengers respond negatively to increases in costs. 

In the application of the demand model in Chapters 6 and 7, base year population and 

per-capita income data are derived from the United States Census (US Census Bureau, 2000) 

and American Community Survey (US Census Bureau, 2005). Population and per-capita 

income projections into the future are scenario variables, which change over time relative to 

the base year. Like the oil price projections, they are taken from the CCSP IGSM forecast 

(CCSP, 2007). This ensures that there is consistency between the modelled populations and 

per-capita income and the modelled oil prices. 

With the exception of income elasticity, all the coefficients estimated for equation 5-

15 (presented in Table 5-2), as well as passenger value of travel time and passenger value of 

delay time, are assumed to remain constant over time. Income elasticity, however, is assumed 

to increase with increasing per-capita income, because, as people become richer, they fly 

more. The income elasticity applied in the Airline Response Model is assumed to increase by 

0.2% per year, which is consistent with increases in income elasticity estimated from 

longitudinal time series data presented by Schäfer et al. (2009). 

5.7 Iteration 

As described in Chapter 4, the integrated framework presented in Figure 4-1 is solved 

by iteration. In each iteration step operating costs, available passenger demand, and fare 

inputs for the network optimisations of each airline are updated, as are flight delays and 

passenger travel times, on which they depend. 
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The airline game is simulated by updating the flight frequencies offered by all airlines 

according to the outputs of each airline’s network optimisation. These flight frequencies are 

inputs to the market share formulation within the demand constraint in each network 

optimisation (equation 5-3), which drives the gaming effect. Thereby, each airline may 

increase or decrease its frequency in order to capture more market share. Each airline stops 

increasing frequency as soon as the marginal cost of adding a flight is greater than the 

marginal revenue obtained from the increased market share gained by adding the flight. Since 

airlines experience different operating costs, those with the lowest costs can add more extra 

flights and thus gain more market share. The system reaches the game theoretical equilibrium 

when all airlines reach equilibrium on all markets. 

System convergence is identified by comparing system flight frequencies over the 

entire network to those of the previous iteration. This is done by generating a vector of the 

changes in all flight segment frequencies, and calculating the Euclidian norm of this vector. 

The system is considered to have converged when this norm falls within the convergence 

criteria, as described by Haag (2009). The norm convergence criterion is set to 1×104. This is 

approximately equivalent to an R2 value comparing all segment flight frequencies of 0.97. 

The efficiency of the iterative approach is improved by specifying the input flight frequencies 

and passenger itinerary demand to each iteration (say, xi) as the average of the output of the 

previous iteration (say, f(xi-1)) and the input to that iteration (xi-1), as shown in equation 5-16: 

2

)( 11  
 ii

i

xfx
x

  (5-16) 

where xi represents the vector of all segment flight frequencies and passenger itinerary 

demand (the decision variables in the network optimisation described by equation 5-1) in 

iteration i. 

Convergence of the system to a global equilibrium that represents airline operations is 

not, however, guaranteed. Specifying the iterative procedure described above as a search for a 

fixed point (i.e., find x given x = f(x)), convergence is guaranteed when the magnitude of the 

gradient of the function f is smaller than 1 (i.e., |f’(x)|<1) within the range of values of x and 

f(x) evaluated (Burden and Faires, 2005). However, the function f is difficult to define in this 

case, because of the complexities of the sub-models described in this chapter. Despite these 
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difficulties in determining whether convergence is guaranteed or not, the Airline Response 

Model was found to converge consistently in all applications completed for this dissertation. 

This includes application of the Airline Response Model to a series of theoretical scenarios 

(described in Appendix B), a scenario representing actual operations in the United States in 

2005 (described in Chapter 6), and a series of policy scenarios forecasting traffic growth from 

2005 to 2030 (described in Chapter 7). In all cases, the model converged within 7 to 10 

iterations. These results suggest that, within the range of values of x and f(x) for which the 

Airline Response Model is applied, a fixed point exists and it is an attractive fixed point 

exhibiting convergence.  

Even with convergence, it is not guaranteed that the system will converge to a global 

solution, but may instead converge to a local solution. In order to identify if this is the case, 

the sensitivity of the Airline Response Model results was tested with regard to the initial 

conditions applied. In the application of the model to a scenario representing actual 

operations in the United States in 2005 (described in Chapter 6), the model was run with a 

range of initial conditions. These initial conditions varied from 50% less demand and traffic 

to that in the observed data to 50% more demand and traffic to that in the observed data. In 

all cases, the Airline Response Model converged to the same equilibrium. This suggests that 

the system equilibrium to which the model converges is a global solution, and not a local 

solution that is dependent on the initial conditions. 

5.8 Modelling Emissions 

Once a game-theoretical equilibrium is reached, flight segment frequencies by aircraft 

size class and passenger itinerary demand at convergence are output by the System Flight 

Frequency Calculator, defining the airline networks, flight frequencies and aircraft size 

choice. The associated environmental impact is quantified by calculating emissions levels. 

This is described below. Further quantification in terms of climate, local air quality and 

health impacts requires additional analysis accounting for atmospheric chemistry, transport 

and dispersion, as well as other factors, and is not considered in this dissertation. 

Two emissions types are calculated: CO2 and NOx. CO2 is a key greenhouse gas 

affecting climate change, while NOx has local air quality impacts as well as climate impacts 

by affecting the formation of ozone. NOx emissions are calculated for the flight LTO cycle 
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only, as an indicator of potential air quality impacts, while CO2 emissions are calculated for 

the system as a whole, as an indicator of potential climate impacts. The climate impacts of 

NOx emissions are not accounted for. 

As with fuel burn, described in Section 5.4, CO2 and NOx emissions vary by engine 

conditions, and thus phase of flight. CO2 and NOx emissions are thus calculated in each flight 

phase: ground idle, taxi, take-off, climb-out, cruise, airborne holding, descent, approach and 

landing. Emissions rates are identified from the EUROCONTROL Base of Aircraft Data 

(BADA) (EUROCONTROL, 2004) and the ICAO Aircraft Engine Emissions Databank 

(ICAO, 2008) for the representative aircraft in each of the aircraft categories described in 

Section 5.3. The duration of each phase of flight is input from the Travel Time Calculator, 

described in Section 5.3, with the exception of ground idle, taxi and airborne holding, which 

are input from the Delay Calculator, described in Section 5.2.  

In order to illustrate the capabilities of the Airline Response Model and to verify its 

suitability to capture fundamental system effects, Appendix B presents results applying it to a 

series of simplified theoretical flight networks. Fundamental system effects, including 

passenger demand responses to increasing cost and travel time, and airline responses to 

changes in demand and costs, are often difficult to clearly identify in real networks because 

of their inherent complexities and scale. Simplified theoretical networks allow scenarios to be 

simulated without these complexities, and at a smaller scale. 

The capability of the Airline Response Model to reproduce real traffic flows is 

validated in Chapter 6 by reproducing passenger flows and flight frequencies for a network of 

airports in the United States in 2005. The model is then applied to simulate future traffic 

growth and emissions within the same network under a series of policy scenarios in Chapter 

7.  
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6 Model Validation: Domestic United States, 2005 

 

This chapter describes the validation of the Airline Response Model. This is achieved 

by simulating airline operations in a network of real cities and airports, and then comparing 

the flight frequency and passenger demand results to observed data for that network. The air 

transport system examined is the domestic air transport system of the United States. This 

system was selected because it is large, serving nearly 40% of global scheduled flights in 

2005 (OAG, 2005), and has been deregulated since 1978, and therefore represents a stable 

competitive market. There is also greater data availability for the air transport system in the 

United States than for other regions, provided particularly by the U.S. DOT (DOT, 2000, 

2004, 2005-1, 2005-2, 2005-3, 2006, 2007). 

The set of cities and airports modelled is described in detail in Section 6.1. This is 

followed by the simulation results, which are presented and discussed in Section 6.2. In order 

to test the robustness of these results, their sensitivity to key input parameters is analysed in a 

sensitivity analysis. This is described in Section 6.3. 

6.1 City and Airport Set Modelled 

The air transport system modelled is made up of 14 cities1, which are served by 22 

airports2. The locations of these cities and airports are shown in Figure 6-1. The airlines 

modelled to serve this city and airport set were the five airlines with greatest market share 

serving the modelled city set in 2005, i.e., American Airlines, Southwest Airlines, United 

                                                 

1 New York City, Chicago, Atlanta, Washington, Los Angeles, Dallas/Fort Worth, Houston, San Francisco, 

Miami, Denver, Detroit, Philadelphia, Boston, and Seattle. 

2 Chicago O’Hare (ORD), Chicago Midway (MDW), Atlanta (ATL), Dallas-Fort Worth (DFW), Dallas Love 

(DAL), Los Angeles (LAX), Ontario (ONT), Houston Intercontinental (IAH), Houston Hobby (HOU), Denver 

(DEN), Detroit (DTW), Philadelphia (PHL), Newark (EWR), New York Kennedy (JFK), New York LaGuardia 

(LGA), Washington Dulles (IAD), Washington National (DCA), Boston (BOS), Miami (MIA), San Francisco 

(SFO), Oakland (OAK), and Seattle Tacoma (SEA). 
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Airlines, Delta Airlines, and Continental Airlines (OAG, 2005). The number of cities, 

airports and airlines modelled was limited in order to maintain model tractability. 

  

Figure 6-1. City and airport set modelled. 

The cities chosen were those with the highest O-D passenger demand in 2005 (DOT, 

2007), with two exceptions. To ensure that all regions were represented, Boston (New 

England) and Seattle (Pacific Northwest) were also included (these cities ranked 17th and 19th 

respectively). The airports selected for the analysis include the major airports in each of the 

modelled cities, and the primary hub airports operated by each of the modelled airlines. 

Although Boston and Miami are also served by secondary airports (Boston by Providence 

(PVD) and Manchester (MHT), and Miami by Fort Lauderdale (FLL)), these airports are 

considered less important secondary airports, and are thus not included in the airport set. 

Only two airports are modelled in any city (the primary airport and the largest secondary 

airport), with the exception of New York City, where three airports are modelled (LaGuardia, 

New York Kennedy, and Newark). This two airport limit particularly affects Los Angeles 

(Los Angeles International and Ontario are modelled, while Burbank (BUR) and Orange 

County (SNA) are not) and San Francisco (San Francisco International and Oakland are 
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modelled, while San Jose (SJC) is not). In future work the network may be expanded to 

include these airports, as well as others in the system. 

The modelled airport set served approximately 80% of scheduled available seat miles 

(ASM) flown in the United States in 2005, or nearly 35% of global ASM (OAG, 2005). 

Flights operating between these airports, however, account for only 25% of scheduled 

domestic ASM in the United States in 2005 (OAG, 2005).  

Each of the five modelled airlines is constrained to route passengers through only 

those hubs that they operated in 2005, and to serve only those airports that they served in 

2005. This means that the model does not simulate airline decisions to serve new markets, or 

to operate new hubs. This assumption is necessary to allow the Airline Response Model to 

reproduce the 2005 base year traffic flows because the costs associated with introducing 

operations at new airports are not modelled. The assumption also aids model tractability by 

limiting the number of hubs available for routing connecting itineraries within the network 

optimisation routines. This assumption may be relaxed in future work. The hubs operated by 

each airline in the analysis described in this chapter are as follows: 

 American: Dallas/Fort Worth, Chicago O’Hare, and Miami (American Airlines, 2009) 

 Southwest: None3 (Southwest Airlines, 2009) 

 United: Chicago O’Hare, Washington Dulles, Denver, and San Francisco (United 

Airlines, 2009) 

 Delta: Atlanta (Delta Airlines, 2009-2) 

 Continental: Newark, and Houston Intercontinental (Continental Airlines, 2009) 

The hub airports modelled in this analysis are 9 of a total of 19 large hub airports in 

the U.S. air transport system. They include only those hub airports associated with the set of 

cities, airports and airlines modelled in the analysis 4 . Exceptions include Los Angeles 

                                                 

3 Southwest Airlines operates primarily point-to-point service, although they do have some hub operations at 

Chicago Midway and Dallas Love Field. These hubs are not as significant as other airline hubs, however. 

4 The modelled airlines also operate hubs at airports which are not included in the airport set modelled, i.e., St. 

Louis (STL) (American), Salt Lake City (SLC) (Delta), Cincinnati (CVG) (Delta), and Cleveland (CLE) 

(Continental). These airports serve cities not included in the city set modelled, and are relatively less important 
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International and New York Kennedy airports, which are operated as hubs by United and 

Delta Airlines respectively, but are not modelled as hubs here. This is because the number of 

hubs simulated for each airline is limited in order to maintain model tractability, and because 

these hubs are relatively less important to domestic operations than those modelled (DOT, 

2007).  

The airports served by each airline in the analysis were identified directly from the 

2005 Official Airline Guide (OAG, 2005). In all cases except for Southwest Airlines, they 

include most of the primary airports in the airport set, and exclude some secondary airports5. 

In the case of Southwest Airlines, most secondary airports are included, while a number of 

the primary airports are not included.  

The airport set modelled also serves connecting passengers whose origin or 

destination city is not included in the modelled city set, but who connect on a flight segment 

included in the modelled network. For example, passengers flying from Anchorage to Atlanta 

could connect through Seattle. The passenger demand from Anchorage to Atlanta is not 

modelled, because Anchorage is not in the modelled city set. The passengers would still be 

served, however, by the flight between Seattle and Atlanta, which is in the modelled network. 

In order to account for this extra-network demand, it is extracted from DOT data (DOT, 

2005-3, 2007) for 2005, and scaled according to modelled changes in intra-network demand. 

                                                                                                                                                        

hubs than those modelled (DOT, 2007). Similarly, Detroit, Philadelphia, New York Kennedy and Seattle 

Airports are operated as hubs by Northwest Airlines, US Airways, JetBlue and Alaska Airlines respectively. 

These airlines are not, however, modelled, and thus these airports are not modelled as hubs. This means, 

however, that the traffic at these airports is likely to be under-estimated, as the hub operations of these airlines 

would increase traffic, in some cases quite significantly. 

5 Those airports in the modelled airport set that are not served by the respective airlines are as follows: 

 American:  Dallas Love 

 Southwest:  Chicago O’Hare, Atlanta, Houston Intercontinental, Newark, New York Kennedy, 

Boston, Miami, and San Francisco 

 United:   New York Kennedy, Washington National, Chicago Midway, Houston Hobby, 

Dallas Love, and Ontario 

 Delta:   Chicago Midway, and Dallas Love 

 Continental:  New York Kennedy, LaGuardia, Houston Hobby, and Ontario 
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The Network Optimisation Models are then constrained to also serve this demand, by flight 

segment, distributed equally between all airlines operating on that flight segment.  

Similarly, flight delays may be impacted by extra-network flights, i.e., flights between 

the modelled airports and other airports not within the modelled airport set. This traffic is 

extracted from FAA ASPM data (FAA, 2008) for 2005, and scaled according to changes in 

intra-network traffic at each airport. 

Alliances between airlines, in which airlines agree to serve passengers for other 

airlines, and vice versa, are not modelled. Alliances allow airlines to increase network 

connectivity and frequency without adding flights. Modelling alliances is not trivial, 

however, as they do not simply operate as larger airlines, combining revenues and operations 

of all member airlines. Instead, they operate with sometimes complex contracts between 

member airlines governing the distribution of revenues and costs between the airlines that 

serve any given passenger from their true origin to ultimate destination. Because of the 

complexities of such contracts, and because few alliances exist between the modelled 

airlines6, alliances are not modelled. Because alliances allow airlines to increase network 

connectivity and frequency without adding flights, the effect of not modelling alliances is to 

over-predict frequencies. This is only likely to occur, however, in markets served by airlines 

in the same alliance.  

6.2 Validation Results 

The Airline Response Model is validated by comparing model results, with input data 

as described in Chapter 5, to observed data, provided by the FAA and DOT for 2005 (FAA, 

2008; DOT, 2005-3, 2007). In order to measure how well the Airline Response Model 

reproduces the base year observations and to identify the reasons for differences, four 

indicators are compared: 

 O-D passenger demand between city-pairs, 

                                                 

6 Delta and Continental airlines were both members of the Skyteam Alliance in 2005 (Delta since 2000 and 

Continental since 2004. Continental has since left the alliance (2009) to join the Star Alliance). United is part of 

the Star Alliance and American is part of the One World Alliance. Southwest is not part of any major alliance.  
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 Flight segment frequencies offered across all airlines between airport pairs, 

 Flight frequencies offered across all airlines between O-D city pairs, and 

 Seats offered across all airlines between O-D city pairs. 

A comparison of O-D passenger demand between city pairs, the first indicator, 

provides insight into how well the Passenger Demand Model reproduces the observed 

passenger flows. It also provides insight into the reasons for differences in flight frequencies, 

the second indicator, because it is this passenger demand that these flights serve. If there are 

significant differences in passenger demand in certain markets, similar differences in the 

frequencies for flights serving these markets would be expected.  

A comparison of segment flight frequencies, the second indicator, reveals differences 

between the simulated and observed networks. However, a relatively small difference in the 

flight network, such as the operation of flights from a different airport in a multi-airport 

system, may significantly alter the segment flight frequencies at the airports within that multi-

airport system, implying misleadingly large differences between the model results and the 

observed data. For this reason additional metrics are also compared.  

A comparison of the flight frequencies between O-D city pairs, the third indicator, 

captures how the airlines serve the specified O-D demand, without consideration of the 

distribution of traffic between airports in multi-airport systems. Comparing this indicator to 

differences between segment flight frequencies across multi-airport systems allows the 

capability of the Airline Response Model to simulate the distribution of traffic within multi-

airport systems to be examined. For example, if the differences between segment flight 

frequencies are large, but the differences between O-D flight frequencies are small, the cause 

of the differences between the segment flight frequencies could be identified to be the 

distribution of traffic within the multi-airport system. Note that in the calculation of O-D 

flight frequencies, connecting flights are not included. This indicator therefore does not 

provide an indication of the capability of the model to simulate other network effects, such as 

whether passengers are connecting or flying non-stop, and if they are connecting, which hub 

they are connecting though.  

A comparison of the number of seats offered between O-D city pairs, the fourth 

indicator, captures how the airlines supply seats to serve demand, without consideration of 
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either aircraft types operated (affecting aircraft sizes), or how aircraft and passengers are 

routed within multi-airport systems. Comparing this indicator to the differences between O-D 

flight frequencies allows the capability of the Airline Response Model to simulate aircraft 

size choice to be examined. For example, if the differences between O-D flight frequencies 

are large, but the differences between O-D seats are small, the cause of the differences 

between the O-D flight frequencies could be identified to be aircraft size.  

Each of the modelled and observed indicators described above is compared 

graphically in Figure 6-2 by plotting the modelled values against the corresponding 

observations for each city and airport pair modelled. A diagonal line is added in each case 

which represents an exact match between the modelled results and observed data. In order to 

quantify the proportion of variability in the observed data that is explained by the Airline 

Response Model, an R2 value is calculated across the network for each indicator. These are 

presented with each plot in Figure 6-2. The actual values of modelled and observed O-D 

passenger demand and segment flight frequencies are presented in Appendix C.  

Figure 6-2a compares modelled and observed O-D passenger demand. The data points 

are distributed approximately evenly along the diagonal line. Summed across all city pairs, 

modelled system O-D demand is only 1% higher than the observed data, which is consistent 

with this even distribution of data points. There are a small number of notable outliers, 

however, which are highlighted and labelled. These contribute to the comparatively low R2 

value of 0.56. Figure 6-2a suggests generally, however, that the Airline Response Model is 

capable of capturing the dominant effects driving O-D passenger demand. 

Considering the outliers in Figure 6-2a in more detail, O-D demand between New 

York City and Washington is significantly over-predicted by the model. This is mainly 

because alternative modes of transport – particularly road and rail – are used by passengers 

travelling the relatively short distance between these cities. As described in Section 5.6, a 

dummy parameter is included in the demand equation to account for city pairs that have 

significant road and rail links. However, the highest R2 value in the parameter estimation of 

the demand equation results when the distance threshold applied to identify a city-pair with 

road and rail links is shorter than the distance between New York City and Washington. 

Cities pairs with more dominant road and rail links, such as New York City and Philadelphia, 

and Philadelphia and Washington, are included within the threshold. The road and rail links  
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                                      (a)                                                                     (b)  

 
                                      (c)                                                                      (d)  
Figure 6-2. Comparison of modelled results and observed data: (a) O-D demand, (b) 

segment flight frequency, (c) O-D flight frequency, and (d) O-D seats.  

between New York City and Washington could be accounted for by adding another dummy 

parameter for “less significant” road and rail links, but this is not done in this dissertation. 

In contrast to the over-prediction of O-D demand between New York City and 

Washington, O-D demand between New York City and Miami, and between San Francisco 

and Los Angeles, is under-predicted by the model. In the case of New York City and Miami, 

this is at least partly because of the large number of people travelling from New York City to 
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Florida in the winter for short “winter breaks”, or for longer periods to avoid the winter 

altogether (so-called “snowbirds”). Although dummy parameters are included for “special” 

cities, and both New York City and Miami are classed as special, this is not enough to model 

the particularly high demand between the cities at certain times of year. This effect could be 

resolved by adding another dummy parameter for “extra special” city pairs or routes, but this 

is not done in this dissertation. In the case of San Francisco and Los Angeles, the reason for 

the under-prediction of demand between the cities is that San Francisco is classified as a 

“special city”, but Los Angeles is not. In reality, both cities are moderately “special” – less 

special than the economic and political hubs of New York City and Washington, or the tourist 

destination of Miami, but more “special” than most other cities. The cities were classified 

differently because this resulted in the highest R2 value in the parameter estimation of the 

demand equation. Excluding the data points for O-D demand between New York City and 

Washington, and between New York City and Miami, results in an increase in the R2 value 

shown in Figure 6-2a to 0.70.  

Figure 6-2b compares modelled and observed segment flight frequencies. The data 

points are also distributed approximately evenly along the diagonal line. Summed across all 

flight segments, modelled system segment traffic is only 3% higher than the observed data, 

which is consistent with this even distribution of data points. The small over-prediction of 

system segment traffic is partly caused by the small over-prediction of system O-D passenger 

demand, described above. The over-prediction of system segment traffic is also partly the 

result of not modelling airline alliances. As discussed above, alliances allow airlines to 

increase network connectivity and frequency without adding flights. The outliers in Figure 

6-2b, which are highlighted and labelled, contribute to the comparatively low R2 value of 

0.62. This value is slightly higher than that for the O-D passenger demand. Figure 6-2b 

suggests generally that the Airline Response Model is capable of capturing the dominant 

effects underlying airline choice of flight frequencies. 

Some of the outliers in Figure 6-2b correspond directly to outliers in Figure 6-2a. In 

particular, the over-prediction of flight segment frequency between Washington Dulles (IAD) 

and both Newark (EWR) and LaGuardia (LGA) is consistent with the over-prediction of O-D 

demand between New York City and Washington. Also significant, however, is that all the 

outliers in Figure 6-2b include at least one airport in a multi-airport system (LaGuardia 
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(LGA) and Newark (EWR) form a multi-airport system with New York Kennedy; 

Washington Dulles (IAD) and Washington National (DCA) form another multi-airport 

system; Oakland (OAK) forms a multi-airport system with San Francisco; and Los Angeles 

(LAX) forms a multi-airport system with Ontario). Half of the outliers correspond to flight 

segments connecting two multi-airport systems (Oakland to Los Angeles (OAK-LAX), 

Washington Dulles to Newark (IAD-EWR), and LaGuardia to Washington Dulles (LGA-

IAD)). This suggests that the routing of passengers between airports in multi-airport systems 

is a significant contributor to the comparatively low R2 value of 0.62. This can be seen by 

comparing modelled and observed O-D flight frequencies between city pairs, as presented in 

Figure 6-2c. O-D flight frequencies include flights to all airports in multi-airport systems. 

The data points in Figure 6-2c are again distributed approximately evenly along the 

diagonal line. Summed across all city pairs, modelled system O-D traffic is only 2% higher 

than the observed data, which is consistent with this even distribution of data points, and with 

the 3% over-prediction of system segment traffic. As expected, the spread of data points in 

Figure 6-2c is small, with no significant outliers, translating into an R2 value of 0.86. This 

suggests that the lower R2 value comparing segment flight frequencies (0.62) is related to the 

distribution of passengers between airports in multi-airport systems, as suggested above. 

Other network effects are unlikely to contribute significantly. The degree to which airlines 

operate a hub-and-spoke network versus a point-to-point network does not differ significantly 

between the model results and the observed data. The model simulates 6.0% of passengers 

connecting, while 5.7% of passengers connect in the observed data. This does not, however, 

indicate what contribution is made by differences in the distribution of connecting traffic 

between hubs. The number of connecting passengers is small, however, so it is unlikely to be 

significant. 

In the Airline Response Model, passengers are distributed between airports in multi-

airport systems in such a way as to maximise airline profit. This accounts for the effects of 

flight delays to increase costs, and other economic effects (such as landing fees), but does not 

account for passenger choice of airport. In reality, passengers choose among airports in multi-

airport systems for a variety of reasons, including accessibility and travel time to the airport, 

as described by Bolgeri et al. (2008). Airlines schedule flights at airports in multi-airport 

systems according to these passenger preferences, as well as the other effects. It is therefore 
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expected that the distribution of passengers between airports in multi-airport systems will be 

a cause for differences between the model results and observed data.  

As described above, the Airline Response Model also chooses aircraft size. 

Differences in the size of aircraft types selected by the model and those observed in the data 

may also contribute to differences between the modelled and observed flight frequencies. 

Aircraft size effects can be analysed by comparing modelled and observed O-D seats, as 

presented in Figure 6-2d. Figure 6-2d is fairly similar to Figure 6-2c. The data points are 

distributed approximately evenly along the diagonal line, and summed across all city pairs, 

modelled system O-D seats are approximately equal to the observed data. Similarly, the 

spread of data points in Figure 6-2d is small, and the R2 value comparing O-D seats is 0.83, 

only slightly lower than the value of 0.86 for O-D flight frequencies. This suggests that the 

model choice of aircraft size is similar to that in the observed data, and that aircraft size is not 

a significant contributor to the comparatively low R2 value of 0.62 comparing segment flight 

frequencies. 

Observed and modelled flight frequency results are compared geographically, on a 

route-by-route basis, in Figure 6-3. The thickness of the lines indicates the modelled segment 

flight frequencies per day, while the line colours indicate the percentage differences between 

the modelled segment flight frequencies and the observed data.  

Figure 6-3 shows that the percentage difference between modelled and observed flight 

frequencies are low (lighter colours) for many routes, but for some routes the segment flight 

frequencies are significantly over-predicted (red lines). The majority of routes that show 

percentage differences relative to observed data of 50% or more (blues and oranges/reds) are 

lower traffic routes (the thinner lines), so the addition or removal of one flight per day has a 

proportionally larger effect on the result. The higher traffic routes that do show high 

percentage differences between the modelled flight frequencies and observed data over-

predict flight frequencies (red lines) and, in almost all cases, connect airports in multi-airport 

systems. This is because, as described above, the distribution of flights between airports in 

multi-airport systems is the primary contributor to the largest differences between the model 

results and the observed data.  
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Figure 6-3. Modelled flight segment frequency results (indicated by line thickness) and 

percentage difference relative to observed data (indicated by line colour), United States, 

2005.  

In conclusion, the results presented in Figure 6-2 and Figure 6-3 suggest that the 

Airline Response Model is capable of capturing the dominant effects in airline choice of 

flight frequencies, aircraft size and flight network. The weakest element of the model appears 

to be the distribution of flights between airports within multi-airport systems. This is because 

passenger choice and other effects impacting airline operations within multi-airport systems 

are not modelled in detail. The Airline Response Model is applied to simulate future traffic 

growth and emissions under various policy scenarios in Chapter 7. Before this, however, the 

sensitivity of the model results to key input parameters is examined. 

6.3 Sensitivity Analysis 

A sensitivity analysis is performed in order to examine the sensitivity of the Airline 

Response Model results to changes in key input parameters, for which values are particularly 
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uncertain. The parameters for which the model sensitivity is analysed are airport capacity and 

aircraft fuel burn. No other parameters are varied because all are defined in the data with little 

uncertainty. This includes other performance characteristics that do not typically differ 

significantly between aircraft type, such as cruise speed, and non-fuel related operating costs, 

which only vary across airlines, each of which is modelled independently. 

Airport capacities, which are reported by air traffic service providers on an hourly 

basis, represent the air traffic service provider’s best judgement for the rate at which aircraft 

that can be served by the airport, given weather and wind conditions. These reported airport 

capacities may, however, under- or over-predict the achievable capacity because of 

differences in the way individual air traffic controllers operate. In order to examine the 

sensitivity of the model results to uncertainty in airport capacities, average hourly airport 

capacities at all airports are increased and decreased by 15% relative to their average reported 

capacities calculated from FAA ASPM data (FAA, 2008). This uncertainty level was 

identified by comparing effective and achievable airport capacities identified by Evans and 

Idris (2005) to reported capacities listed by the FAA ASPM database (FAA, 2008). 

The sensitivity of the model to aircraft fuel burn rates is examined because only three 

aircraft types are modelled, i.e., small, medium and large, represented in each case by the 

most widely operated aircraft of that size class. In reality, however, airlines operate many 

more aircraft types, each of which has different performance characteristics. The sensitivity 

of the model results to aircraft fuel burn rates is examined by increasing and decreasing 

aircraft fuel burn rates for all types modelled by 15% relative to values extracted from BADA 

data (EUROCONTROL, 2004) and the ICAO Aircraft Engine Emissions Databank (ICAO, 

2008). This uncertainty level was identified by calculating the standard deviation of cruise 

fuel burn rates for all aircraft of the same size category within the BADA database. 

The Airline Response Model was rerun using the modified values of airport capacities 

and aircraft fuel burn described above. In Table 6-1, the sensitivity of the model is examined 

by comparing system O-D passenger demand, system flight operations, system CO2 

emissions, and average system arrival delay for each of the sensitivity cases described above, 

and a baseline case with no changes to airport capacities or aircraft fuel burn. The percentage 

difference between the sensitivity results and the baseline result are presented in brackets 

below each number. 
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Table 6-1. Model Sensitivity Results 

 
Sys. O-D Pax 

Demand     
(per yr) 

Sys. Flight 
Ops.           

(per yr) 

Sys. CO2 

(Tonnes  per 
yr) 

Avg. Sys. Arr. 
Delay (min) 

Baseline 104,794,000 1,310,000 24,548,000 11.9 

Airport Capacities 
+ 15% 

106,252,000 
(+1.4%) 

1,345,000 
(+2.7%) 

25,207,000 
(+2.7%) 

10.6 
(-11%) 

Airport Capacities 
- 15% 

97,111,000 
(-7.5%) 

1,306,000 
(-0.31%) 

24,785,000 
(+0.97%) 

17.2 
(+44%) 

Aircraft Fuel Burn 
+ 15% 

101,273,000 
(-3.4%) 

1,329,000 
(+1.5%) 

28,154,000 
(+15%) 

12.0 
(+0.84%) 

Aircraft Fuel Burn 
- 15% 

105,576,000 
(+0.75%) 

1,381,000 
(+5.4%) 

22,108,000 
(-9.9%) 

12.6 
(+5.9%) 

 

The Airline Response Model behaves as expected in response to changes in airport 

capacity. An increase in airport capacity leads to a decrease in average flight delay. Lower 

flight delays result in an increase in passenger demand, and reduce airline operating costs. 

This leads to a reduction in fares, which also contributes to the increase in passenger demand. 

The increase in demand results in an increase in flight operations to serve the demand, which, 

in turn, results in an increase in system CO2 emissions. A decrease in airport capacity 

generally has the opposite effect. Flight delays increase, resulting in a decrease in passenger 

demand and flight operations. However, system-wide CO2 emissions increase under 

decreased capacity. This is because of the emissions associated with the large (44%) increase 

in flight delays, much of which is incurred on the taxi-way and in airborne holding, where the 

engines are running. These delay-related emissions offset the decrease in emissions 

associated with the small (0.31%) decrease in operations. 

The model result with greatest sensitivity to airport capacity is average system arrival 

delay. With an increase in airport capacity of 15%, average arrival delays decrease by 11%, 

while a decrease in airport capacity of 15% results in an increase in average arrival delays of 

44%. The greater sensitivity to the decrease in capacity is because of the exponential 

relationship between flight delays and aircraft operations. System O-D demand is also 

relatively sensitive to airport capacity in the case where capacity is decreased (system O-D 

demand decreases by 7.5%). This sensitivity is because of the passenger response to the 

increase in flight delays. As described in Section 5.6, the passenger value of delay time 
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applied is high – about three times the passenger value of travel time. The other results – 

system aircraft operations and system CO2 emissions – are not sensitive to changes in airport 

capacity. Notably, even though O-D demand decreases by 7.5% in the case where airport 

capacity is decreased, system operations only decrease by 0.31%. This is because competition 

effects keep flight frequencies high, even with reduced demand.  

The Airline Response Model also behaves as expected in response to changes in 

aircraft fuel burn. An increase in fuel burn increases airline operating costs, leading to an 

increase in fares, and a decrease in passenger demand. An increase in fuel burn, and thus CO2 

emissions, also results in a small increase in flight operations, despite the decline in passenger 

demand. The reason for this is a shift in the flight network towards greater use of point-to-

point operations in preference to hub-and-spoke operations. Although hub-and-spoke 

operations allow airlines to take advantage of economies of scale at hub airports, reducing 

traffic and passenger servicing costs, fuel costs are higher than in point-to-point operations 

because passengers are flown longer total distances. Thus, with an increase in fuel costs, 

airlines shift to greater use of point-to-point operations in order to reduce fuel costs. Point-to-

point networks require more flights than hub-and-spoke networks to serve the same markets, 

and hence total flight operations increase. In this case the increase in flight operations from 

the shift in network offsets any decrease in flight operations required to serve the lower 

passenger demand. The increase in flight operations also results in an increase in flight 

delays. 

A reduction in fuel burn has generally the opposite effect. Airline operating costs 

decrease, leading to a decrease in fares, which results in an increase in passenger demand and 

thus flight operations. Although there is also some shift in the flight network towards greater 

use of hub-and-spoke operations, any decrease in flight operations resulting from this change 

in flight network is limited by frequency competition effects, and does not offset the increase 

in flight operations required to serve the increased passenger demand. The increased flight 

operations result in an increase in flight delay, but do not offset the decrease in CO2 

emissions resulting directly from the decrease in fuel burn. 

The model result with greatest sensitivity to aircraft fuel burn is system CO2 

emissions, which is of the same order of magnitude as the change in fuel burn. This is to be 

expected as CO2 emissions are directly proportional to fuel burn. The change in system CO2 
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emissions does not match the change in fuel burn exactly, however, because of small changes 

in the flight network, aircraft types and flight frequencies operated, all of which are induced 

by the change in fuel burn. The other results – system O-D demand, system aircraft 

operations and average system arrival delays – are not sensitive to fuel burn.  
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7 Model Application: Capacity Constraints, Regional Costs 

and New Technology 

 

In this chapter, the Airline Response Model is applied to simulate airline operational 

responses to policy scenarios in the domestic United States. This model simulates the growth 

in passenger demand for air transport, the associated increase in aircraft operations to serve 

this demand, and the environmental impact resulting from these operations, from 2005 to 

2030. Growth over this period is driven by exogenous forecasts of population and per-capita 

income growth calculated by the MIT Integrated Systems Model (IGSM). As described in 

Chapter 5, the IGSM, which was run for the U.S. Climate Change Science Program (CCSP) 

(CCSP, 2007), is an integrated energy-economy-environment model with internally 

consistent population, income, and oil price scenarios. For the United States it represents a 

relatively high growth scenario when compared to the other energy-economy-environment 

models run for the CCSP.  

The Airline Response Model is applied to three families of policy scenarios. In order 

to analyse airline operational responses to policies constraining airport capacity expansion, a 

family of scenarios with different future levels of airport capacity is formulated. The airline 

response to each of these scenarios is simulated, and the results described in detail in Section 

7.1. While restrictions in airport capacity expansion limit traffic growth directly, other 

policies may exploit market forces to reduce the environmental impact of aviation. These 

policies typically lead to an increase in costs, in some cases in only part of the system 

because of regional differences in environmental impact and political will. In order to better 

understand the impact of such a regional cost increase, a second family of scenarios is 

formulated applying different cost increases to part of the airport set modelled, while 

maintaining costs at the rest of the airport set at existing levels. The simulated airline 

response to each of these scenarios is described in detail in Section 7.2. Finally, this chapter 

also simulates the effect of introducing radically new technology into the airline fleet. In 

order to study the operational impact of introducing aircraft operating advanced open rotor 

engines or blended wing body aircraft, a third family of scenarios is formulated applying 
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differing aircraft operating costs and performance characteristics. The airline response to each 

of these scenarios is simulated, and the results described in detail in Section 7.3. For each of 

these families of scenarios, the air transport system analysed is the set of 14 cities, 22 airports 

and 5 airlines described in Section 6.1. 

7.1 The Air Transport System Response to Airport Capacity Constraints 

Airport and airspace capacity already constrain flight operations at many major 

airports. In the United States, average arrival delay at 23 airports was greater than 15 minutes 

in 2006, with LaGuardia Airport experiencing 21 minutes of average delay per flight (FAA, 

2008). In Europe, average arrival delays at 10 airports were greater than 15 minutes in 2006, 

with London Luton Airport experiencing 18 minutes of average delay per flight 

(EUROCONTROL, 2007). In the industrialized world, where airport capacity expansion is 

limited by local community resistance and environmental restrictions, system capacity is 

likely to become an increasingly binding constraint on air traffic growth. Limiting capacity 

growth at airports has also been considered for mitigating the climate impacts of aviation, 

most recently in the case of the third runway at London Heathrow (DfT, 2009). 

This dissertation describes three scenarios that investigate the operational response 

and sensitivity of the air transport system to airport capacity constraints: 

 Case 1: Baseline case, in which airport capacity is assumed to be expanded at all 22 

modelled airports according to expansion plans described by the U.S. DOT (DOT, 2004) 

and airport authorities, as presented in Table 5-1 in Section 5.2. Across the modelled set 

of 22 airports this capacity expansion amounts to a 25% increase in total system capacity. 

It includes the construction of new infrastructure, such as runways, as well as 

technological and procedural improvements (described in detail by DOT (2004)). 

 Case 2: No capacity expansion case, in which airport capacity is assumed to be 

maintained at 2005 levels at all 22 airports. By comparing the results of this case to those 

of Case 1, the operational impacts of no airport capacity expansion across the system can 

be examined. 

 Case 3: No Chicago O’Hare capacity expansion case, in which airport capacity is 

assumed to be expanded at all airports as in Case 1, except at Chicago O’Hare 
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International Airport, where capacity is maintained at 2005 levels. By comparing the 

results of this case to those of Case 1, the operational impact of an airport capacity 

constraint at a single key hub airport can be examined. 

For each of these three cases, simulation results from 2005 to 2030 are presented and 

discussed below. The impact of capacity constraints on system-wide metrics is analysed first. 

This is followed by an analysis of their impact on operations at congested hub airports, and in 

multi-airport systems. Finally, the impact of airport capacity constraints on airline choice of 

aircraft size is analysed. 

System Wide Effects 

Figure 7-1 presents simulated system-wide average arrival delay, the passenger 

demand in response to these delays, the aircraft operations required to serve this demand, and 

the resulting CO2 emissions, for each of the airport capacity scenarios described above. 

In the baseline case, simulated average system arrival delay can be seen to respond 

over time to the airport capacity expansions modelled. With an increase in system capacity by 

22% before 2015, average system arrival delay decreases from 13 minutes in 2010 to 11 

minutes in 2015 (Figure 7-1a). However, with little further capacity expansion after 2015 

modelled, average system arrival delay increases to 28 minutes by 2030. This projected 

average system-wide level of delay is higher than the average arrival delay at the most 

congested airport in the U.S. in 2006, i.e., 21 minutes at LaGuardia Airport, as mentioned 

above. This suggests that, given projected increases in demand, existing airport capacity 

expansion plans may not be sufficient to maintain delays at current levels.  

In the baseline case, passenger demand nearly doubles over the 25 year period shown 

in Figure 7-1b, with the increase in flight delays from 2020 to 2025 slowing demand growth 

slightly. The growth in aircraft operations to serve this demand is slightly slower than the 

growth in demand itself (Figure 7-1c) because of a moderate shift to operate larger aircraft, as 

described in the section on aircraft size choice below. Fewer flights are required to serve the 

available demand with larger aircraft types. The associated growth in CO2 emissions (Figure 

7-1d) is slightly slower than the growth in operations because of the assumed 0.7% annual 

reduction in aircraft fuel burn per year by aircraft type. The benefit of this reduced fuel burn 

in terms of system CO2 emissions is limited, however, by the increase in average aircraft size. 
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                                       (a)                                                                      (b) 

 
                           (c)                                                                      (d) 

Figure 7-1. Simulated air transport system response to airport capacity constraints 

through 2030: (a) average arrival delay, (b) passenger demand, (c) aircraft operations, 

and (d) CO2 emissions. 

 

Case 1: Baseline
Case 2: No Capacity Expansion
Case 3: No ORD Capacity Expansion*
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Although fewer flights are operated, and the aircraft types operated have lower fuel burn than 

previously operated aircraft of that type, a greater number of larger aircraft types are 

operated, which burn more fuel than smaller types. 

In Case 2, in which capacity is not expanded at any airport, average system arrival 

delay could increase to over 40 minutes in 2030 (Figure 7-1a), about 40% higher than in the 

baseline case. This drastic growth is a result of the exponential increase in flight delay as 

operations approach airport capacity limits. A slightly different effect is evident in Case 3, in 

which capacity is expanded at all airports except Chicago O’Hare. After 2010, average 

system arrival delay grows faster than in the baseline case, as operations at Chicago O’Hare 

approach the (lower) capacity limit at that airport. This indicates the importance of this 

airport, and others like it, within the system. After 2025, however, delay levels off to the 

baseline value in 2030, which can be attributed to a significant drop in aircraft operations at 

Chicago O’Hare, and a shift in operations from Chicago O’Hare to other, less congested, 

airports. This is described in detail below and in the section on hub operations.  

Flight delays impact passenger demand (Figure 7-1b), aircraft operations (Figure 

7-1c) and CO2 emissions (Figure 7-1d). Figure 7-1b shows that the increased flight delay in 

Case 2 results in a reduction in network-wide passenger demand growth relative to the 

baseline case by roughly 7% in 2030. In Case 3, the fixed capacity at Chicago O’Hare results 

in initially slower growth in network-wide passenger demand relative to the baseline. 

However, as average system delay levels off, passenger demand grows to the value in the 

baseline case. The decline in passenger demand in response to flight delays is party 

determined by a passenger value of delay time of US$ 105 per hour. The extra flight delays 

impose an extra time cost to each passenger of up to US$ 21 per flight (Case 2 versus Case 1 

in 2030), which compares to an average ticket price of US$ 188. An average delay of 40 

minutes also represents a significant portion of passenger travel time, with average O-D 

passenger travel times across the modelled network just over 3 hrs in 2005. A further 

contribution to the reduction in passenger demand in Cases 2 and 3 is that flight delays 

increase airline costs, which result in an increase in fares.  

Figure 7-1c shows that the constrained capacity in Case 2 ultimately limits system-

wide air traffic growth (by roughly 7% relative to the baseline case in 2030). Air traffic 

growth is limited to a lesser degree in Case 3 (by roughly 4% relative to the baseline case in 
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2030), because capacity is only constrained at Chicago O’Hare. The slower growth in 

operations after 2025 can be attributed to the saturation of operations at Chicago O’Hare (see 

below). Because aircraft operations grow slower in Cases 2 and 3 than in the baseline, 

system-wide CO2 emission growth is also reduced – by between 6% and 9% by 2030 (Figure 

7-1d). These results show that while airport capacity constraints may increase flight delays, 

they can reduce system-wide CO2 emissions from aviation. Note that some of the passengers 

that choose not to fly in Cases 2 and 3 may still travel, but using alternate modes such as rail 

or road. The growth in system-wide CO2 emissions by all transport modes in Cases 2 and 3 

may therefore not be reduced relative to the baseline case to the extent shown in Figure 7-1d. 

Airport capacity constraints may also lead to changes in the distribution of connecting 

and O-D traffic, and in aircraft size. These are described in the following three sections, 

respectively. 

Hub Operations 

A key airline response to airport capacity constraints is to shift connecting traffic 

away from congested hub airports. This strategy allows airlines to continue to increase the 

number of passengers they serve, while limiting increases in flight delay. The impact of 

airport capacity constraints on flight delays, passenger demand, aircraft operations and NOx 

emissions at Chicago O’Hare are shown in Figure 7-2. The results are presented from 2005 to 

2030, for each of the airport capacity scenarios described above.  

In the case where capacity is expanded at all airports according to expansion plans 

(baseline case), a new runway is assumed to become operational at Chicago O’Hare in 2015, 

increasing the airport capacity from 190 to 260 aircraft per hour. In this case, average 

Chicago O’Hare arrival delay, passenger demand, and aircraft operations follow similar 

trends to those for the modelled system presented in Figure 7-1. Note that even with this 

planned capacity increase, average arrival delays would be nearly 25 minutes by 2030, up 

from 8 minutes in 2005. These capacity expansion plans may therefore not be sufficient to 

maintain delays at current levels given the projected increase in demand. Airport LTO NOx 

emissions (Figure 7-2d) grow at a faster rate than aircraft operations. This is because they are 

a function of both the increasing number of flights operated and the growing flight delay 

incurred on the airport surface. 
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                                     (a)                                                                       (b) 

  
                         (c)                                                                      (d) 

Figure 7-2. Simulated Chicago O’Hare (ORD) response to airport capacity 

constraints through 2030: (a) average arrival delay, (b) passenger demand, (c) 

aircraft operations, and (d) LTO NOx emissions.  
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The impact of airport capacity constraints on Chicago O’Hare flight delays, passenger 

demand and traffic growth in Cases 2 and 3 in Figure 7-2 are significantly greater than the 

system impacts shown in Figure 7-1. If capacity is not expanded at any airports (Case 2), 

average arrival delays at Chicago O’Hare may increase to nearly 70 minutes by 2030 (Figure 

7-2a). This projected delay is primarily caused by congestion at Chicago O’Hare itself, but 

also includes delay propagated from other congested airports. This latter component is 

strongly reduced in Case 3, where Chicago O’Hare is the only airport where capacity is not 

expanded. Note that no changes in schedule shape, such as shifting flights to off-peak times 

or schedule de-peaking, are simulated by the Airline Response Model. With delays as high as 

those modelled here, airlines are likely to make changes to the shape of the schedules 

operated in order to reduce delays. The consequence is that the delays simulated here may be 

over-predicted. Implementing a flatter schedule at Chicago O’Hare, such as that operated at 

Newark Airport in 2005, reduces the delay simulated in Case 2 in 2030 by 10 minutes. 

Therefore, the delay at Chicago O’Hare in Cases 2 and 3, even with changes to the schedule 

shape, is likely to be high. 

The high delay at Chicago O’Hare in Cases 2 and 3 significantly reduces the growth 

in O-D passenger demand to the airport relative to the baseline (Figure 7-2b). By 2030 O-D 

passenger demand to Chicago in Case 2 is roughly 34% less than in the baseline case, while 

in Case 3 it is 31% less. The ultimate reason for this large decrease in O-D demand relative to 

the baseline is the passenger response to flight delays, which is partly determined by the 

passenger value of delay time of US$ 105 per hour, as described above. The extra flight 

delays impose an extra time cost to each passenger of up to US$ 80 per flight (Case 2 versus 

Case 1 in 2030), which is half the average ticket price to Chicago of US$ 159. In 2025, 

passenger demand in Case 3 drops below that in Case 2, despite similar delays. This is 

because of a moderate shift in O-D traffic from Chicago O’Hare to Chicago Midway, where 

capacity is expanded. This is discussed in greater detail in the section on multi-airport 

systems below. By 2030, the higher delays in Case 2 dominate, reducing demand below that 

of Case 3. 

The decline in passenger demand to Chicago O’Hare contributes to lower growth in 

aircraft operations relative to the baseline case – by roughly 16% in 2030 in Cases 2 and 3 

(Figure 7-2c). This significant decline in operations relative to the baseline, however, is also 
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caused by a decrease in the amount of connecting traffic at Chicago O’Hare. This is described 

in detail below. In Case 3, the decline in operations relative to the baseline results in a 

levelling off of average flight delay at Chicago O’Hare (Figure 7-2a). This is less the case in 

Case 2, however, because of the propagation of delay to the airport from other congested 

airports. Because LTO NOx emissions are a function of both traffic levels and taxi delays, 

Cases 2 and 3 show faster growth in NOx emissions than the baseline case before 2020 

(Figure 7-2d), when delays are significantly higher than in the baseline, but the number of 

aircraft operations is similar. After 2020, however, the slower growth in operations in Cases 2 

and 3 relative to the baseline dominates, reducing LTO NOx emissions at Chicago O’Hare to 

between 19% and 23% lower than in the baseline in 2030.  

While the percentage of connecting passengers in the system does not change 

significantly between the three cases (remaining at roughly 5.5% in 2030), in Case 3 there is 

a shift in connecting traffic away from Chicago O’Hare to other hub airports in the system. 

This is shown in Figure 7-3, which shows the distribution of connecting passengers across all 

the hub airports operated within the modelled system. The number of connecting passengers 

at Chicago O’Hare (ORD) increases steadily in the baseline case (Figure 7-3a). In Cases 2 

(Figure 7-3b) and 3 (Figure 7-3c), however, the number of connecting passengers increases 

initially, but decreases again after 2020. By 2030 the number of connecting passengers at 

Chicago O’Hare is 30% (Case 3) to 40% (Case 2) lower than in the baseline. In Case 2, there 

is no corresponding increase in connecting passengers at other hubs, which are also capacity 

constrained (Figure 7-3b). However, in Case 3 (Figure 7-3c), particularly in 2030, there is an 

increase in the number of passengers connecting through Dallas-Fort Worth (DFW) (by 

roughly 35%), Denver (DEN) (by roughly 55%) and Washington Dulles (IAD) (by roughly 

10%), relative to the baseline. Denver and Washington Dulles are operated as hubs by United 

Airlines, which also operates a hub at Chicago O’Hare. In Case 3, the capacity of both 

Denver and Washington Dulles is assumed to be expanded through the construction of new 

runways, as well as through technological and procedural changes. Dallas-Fort Worth is 

operated as a hub by American Airlines, which is the other airline operating a hub at Chicago 

O’Hare. In Case 3, the capacity of Dallas Fort-Worth is assumed to be expanded through 

technological and procedural changes. These results suggests that as the flight delays at 
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Chicago O’Hare increase, airlines may route some connecting passengers through other hubs, 

if there is available capacity, instead of through Chicago O’Hare.   

Apart from the redistribution of connecting traffic, airport capacity constraints may 

also lead to changes in the distribution of O-D traffic. This is described in the section below.  

Multi-Airport System Operations 

A key airline response to airport capacity constraints is to shift O-D traffic, that has its 

true origin or ultimate destination in a multi-airport system, from congested primary airports 

to less congested secondary airports. This strategy would allow airlines to serve increasing 

passenger demand, while limiting increases in flight delay. The impact of airport capacity 

constraints on operations in multi-airport systems is examined by considering the distribution 

of O-D passenger demand from 2005 to 2030 across airports within multi-airport systems in 

two cities: Chicago, served by Chicago O’Hare (ORD) and Chicago Midway (MDW) 

airports, shown in Figure 7-4; and New York City, served by Newark (EWR), LaGuardia 

(LGA) and New York Kennedy (JFK) airports, shown in Figure 7-5.  

   
            (a)                                          (b)                                         (c) 

Figure 7-3. Simulated connecting passenger distribution across system hubs through

2030: (a) Case 1: Baseline airport capacity expansion, (b) Case 2: No airport capacity

expansion, and (c) Case 3: No airport capacity expansion at Chicago O’Hare (ORD), but

capacity expansion at all other airports. 
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In the baseline case, where capacity is expanded at all airports, O-D passenger 

demand at Chicago O’Hare (ORD) doubles from 2005 to 2030 (Figure 7-4a). This is in 

contrast to Chicago Midway (MDW), where O-D demand increases by roughly 25%. The 

primary reason for this difference in growth is the significant increase in capacity at Chicago 

O’Hare (from 190 aircraft per hour in 2005 to 260 aircraft per hour in 2030), compared to the 

small increase in capacity at Chicago Midway (from 68 aircraft per hour in 2005 to 69 

aircraft per hour in 2030). The greater market share of Chicago O’Hare is also enabled, 

however, by economies of scope – Chicago O’Hare is used for both connecting and O-D 

traffic, while Chicago Midway is used for O-D traffic only. 

The airport capacity constraints at Chicago O’Hare in Cases 2 (Figure 7-4b) and 3 

(Figure 7-4c) significantly reduce growth in demand at the airport after 2015. By 2030 O-D 

demand at Chicago O’Hare is between 30% and 35% lower than in the baseline. Because 

Chicago Midway is also capacity constrained in all cases, however, it can absorb very little of 

this traffic (flight delays at Chicago Midway closely match those at Chicago O’Hare). Only 

  
            (a)                                        (b)                                        (c) 

Figure 7-4. Distribution of Chicago O-D demand across multi-airport system (MDW, 

ORD) through 2030: (a) Case1: Baseline airport capacity expansion, (b) Case 2: No

airport capacity expansion, and (c) Case 3: No airport capacity expansion at ORD, but

baseline airport capacity expansion at all other airports.

2005 2010 2015 2020 2025 2030
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Year

O
-D

 P
a

ss
en

g
er

s 
by

 A
ir

po
rt

 r
e

la
tiv

e 
to

 2
0

05

2005 2010 2015 2020 2025 2030
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Year

O
-D

 P
a

ss
en

g
er

s 
by

 A
ir

po
rt

 r
e

la
tiv

e 
to

 2
0

05

2005 2010 2015 2020 2025 2030
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Year

O
-D

 P
a

ss
en

g
er

s 
by

 A
ir

po
rt

 r
e

la
tiv

e 
to

 2
0

05

MDW
ORD



 

Chapter 7 

 

 

98 

in Case 3, where there is a small increase in capacity at the airport, is there a small increase in 

O-D demand at Chicago Midway when there is a decrease in demand at Chicago O’Hare 

(after 2020).  

The situation is different in New York City, where Newark and New York Kennedy 

are projected to be less capacity constrained than LaGuardia. In the baseline case, O-D 

demand grows by nearly 150% at Newark (EWR) from 2005 to 2030, and by 200% at New 

York Kennedy (JFK) (Figure 7-5a). O-D demand at LaGuardia (LGA), however, grows by 

only 20%, indicating a significant shift in market share from LaGuardia to Newark and New 

York Kennedy. Airport capacity is not assumed to increase significantly at either Newark 

(from 88 aircraft per hour to 89 aircraft per hour), New York Kennedy (from 74 aircraft per 

hour to 85 aircraft per hour) or LaGuardia (from 74 aircraft per hour to 84 aircraft per hour). 

However, average arrival delays at the airports indicate significant differences in the degree 

to which each airport is capacity constrained. By 2030, average delays of over 40 minutes are 

simulated at LaGuardia – significantly more than those at either Newark (15 minutes) or New 

York Kennedy (19 minutes).  

 

 
            (a)                                       (b)                                         (c) 

Figure 7-5. Distribution of New York City O-D demand across multi-airport system 

(LGA, JFK, EWR) through 2030: (a) Case1: Baseline airport capacity expansion, (b)

Case 2: No airport capacity expansion, and (c) Case 3: No airport capacity expansion at

ORD, but baseline airport capacity expansion at all other airports. 
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Note that New York Kennedy is currently slot controlled. Continued control of the 

number of operations at the airport in this way would lead to significantly less growth in 

demand than projected above.  

Because the capacities of the three New York City airports do not differ significantly 

across the three capacity scenarios, the distribution of New York City O-D passengers 

between airports does not change significantly in Cases 2 (Figure 7-5b) and 3 (Figure 7-5c) 

relative to the baseline (Figure 7-5a). In both cases, the slight reduction in total O-D demand 

to New York City by 2030, relative to the baseline is, instead, because of the propagation of 

delay to the airports from Chicago O’Hare. 

Fleet Response: Aircraft Size 

Another key airline response to airport capacity constraints is to increase aircraft size. 

This strategy would allow airlines to continue to increase the number of passengers that they 

serve, while limiting any increase in the number of flight operations in order to limit an 

increase in flight delays. This response is examined in Figure 7-6, which presents the 

simulated distribution of aircraft sizes operated across the modelled system by all airlines, 

from 2005 to 2030, for each of the airport capacity scenarios described above.  

In 2005, the small aircraft size category modelled (representing the single-aisle, 

short/medium-haul Boeing B737, B757, and Airbus A320 families of aircraft) accounts for 

95% of all operations (Figure 7-6a). This high proportion of small aircraft is because of the 

definition of the category to include all aircraft with seating capacity below 190 seats. The 

remaining 5% of flights operate the medium size category of aircraft (representing the twin-

aisle, medium/long-haul Boeing B767 and Airbus A330 families of aircraft). As passenger 

demand grows over time, the proportion of medium aircraft types in the baseline case 

increases to roughly 12% by 2030. A small proportion of large aircraft types (representing the 

twin-aisle, long-haul Boeing B747, B777 and Airbus A380 families of aircraft) are also 

operated. This trend is consistent with the modelling results of Bhadra (2003), Bhadra et al. 

(2003) and Pulles et al. (2002), who use statistical relationships to estimate the proportion of 

different aircraft sizes used on a flight segment as a function of forecast passenger demand, 

flight segment length (stage length), and traffic type (hub-hub, hub-spoke, or point-to-point). 

According to these relationships, the proportion of larger aircraft types increase with 
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increasing passenger demand. The underlying reasons for this are that larger aircraft typically 

offer lower costs per RPM than smaller aircraft, and that required airline flight frequencies, 

driven by frequency competition, grow at a slower rate than passenger demand. As described 

in Section 4.1, frequency competition forces airlines to increase flight frequencies until the 

marginal cost of adding another flight is no longer offset by the marginal revenue associated 

with the increased market share achieved by the flight. However, the increase in market share 

achieved by adding another flight diminishes as total flight frequency increases, displaying a 

law of diminishing returns. Therefore, with increasing demand and operations over time, the 

equilibrium frequency at which marginal cost equals marginal revenue does not grow at the 

same rate as the growth in passenger demand.  

The impacts of airport capacity constraints on aircraft size choice can be analysed by 

comparing the baseline case (Figure 7-6a) to Cases 2 (Figure 7-6b) and 3 (Figure 7-6c). As 

can be seen, the simulation results suggest that airport capacity constraints do not lead 

    
            (a)                                              (b)                                           (c) 

Figure 7-6. Simulated distribution of aircraft size operated across the system through

2030: (a) Case1: Baseline airport capacity expansion, (b) Case 2: No airport capacity

expansion, and (c) Case 3: No airport capacity expansion at ORD, but baseline airport

capacity expansion at all other airports. 
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airlines to increase aircraft size, but rather to use slightly higher percentages of smaller 

aircraft. This is contrary to the expectations of Kostiuk et al. (2000), who assume that 

increasing airport capacity constraints would result in a shift to larger aircraft types. Kostiuk 

et al. (2000) do not model frequency competition, however, which is the primary cause of the 

effects shown here. While flight delays increase airline operating costs, reducing the flight 

frequency at which marginal cost equals marginal revenue, the resulting reduction in aircraft 

operations is not sufficient to offset the decrease in demand associated with the flight delays, 

shown in Figure 7-2c. This is because much of the delay, particularly when delays are high, is 

incurred at the gate, where aircraft are burning very little fuel, and therefore incurring less 

cost penalty. The result is that, instead of capacity constraints leading to an increase in 

aircraft size, there is a slight shift to use smaller aircraft. This is particularly clear under high 

delays, such as in Case 2 in 2030 (Figure 7-6b). This result is, however, contingent on high 

levels of competition between airlines, and flight frequency being of particular importance to 

define market share. This result would not be the case at airports with dominant carriers, 

where capacity constraints may instead lead to an increase in aircraft size, as suggested by 

Kostiuk et al. (2000). Similarly, if other policies were in place to limit growth in aircraft 

operations, such as airport slot control, there may also be a shift to larger aircraft, instead of 

the slight shift to smaller aircraft shown here. 

In summary, the analysis presented in this section suggests that while airport capacity 

constraints may have a significant impact on system-level flight delays, demand, aircraft 

operations, and emissions, the impact at congested airports is significantly greater. If capacity 

is available at alternative airports, airlines are likely to respond to airport capacity constraints 

by making changes in the flight network operated to avoid congested hubs and to shift some 

traffic to secondary airports. Airlines are less likely, however, to increase the sizes of aircraft 

operated, particularly under high frequency competition. This may not be the case, however, 

with an increase in landing fees, which has a greater impact on increasing airline marginal 

cost, as described in the next section. 

7.2 The Air Transport System Response to Regional Cost Increases 

While restrictions in airport capacity expansion limit traffic growth directly, other 

policies may exploit market forces to reduce the environmental impact of aviation. These 
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policies typically lead to an increase in costs, in some cases in only part of the system 

because of regional differences in environmental impact and political will. While increases in 

cost may generally be effective at reducing the environmental impact of aviation, if 

implemented in only part of the system, these benefits may be eroded because of changes in 

the flight network. 

One policy that has been proposed to mitigate the environmental impact of aviation is 

to adjust airport landing fees in such a way as to penalise the most polluting aircraft, driving 

airlines to operate less polluting aircraft types (House of Commons, 2003). The proposed 

implementation of such a policy is through increased landing fees, which has been shown to 

drive airlines to increase the size of aircraft they operate, while reducing flight frequency 

(Wei, 2006; Givoni and Rietveld, 2009). This is because landing fees are applied per flight 

and not per passenger, so larger aircraft can reduce airline costs per passenger by serving the 

same number of passengers with fewer flights. Increasing aircraft size while reducing flight 

frequency has significant advantages in reducing airport congestion, and therefore surface 

emissions, and some advantages in reducing other environmental impacts, because some 

larger aircraft have slightly lower emissions per RPM than some smaller aircraft. It is unclear, 

however, how high landing fees must be to induce an increase in aircraft size, and to what 

extent total emissions can be reduced. If applied to only one region within a system, increases 

in landing fees may also induce airlines to reroute connecting passengers through hub airports 

outside the region, increasing flight distances and therefore total emissions. It is also unclear, 

however, how high landing fees must be to induce such network change. It is therefore useful 

to analyse the effects of regional increases in landing fees on aircraft size, the flight network, 

and emissions. 

Changes in the flight network may also result from the inclusion of aviation within a 

regional emissions trading scheme (also called a cap-and-trade scheme). Such a policy 

mechanism has gained increased attention since the EU legislated that all flights taking off or 

landing in Europe will be included in the EU ETS from 2012 (European Union, 2009). 

Concern has been expressed about the potential for traffic to avoid the region in order to 

reduce costs (Association of European Airlines, 2007; Ernst & Young, 2007; Scheelhaase and 

Grimme, 2007). This would have a negative impact on the economy of the region, and would 
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also reduce the effectiveness of the scheme to reduce emissions. Individual airlines have even 

threatened to move hubs to non-EU locations (Turner, 2007). 

The Airline Response Model captures full network and aircraft size effects, 

optimising the flight network and aircraft size choice by airline. It may thus be useful for 

analysis of the network, aircraft size and emissions implications of regional cost increases, 

such as would occur under a regional increase in landing fees or a regional emissions trading 

scheme. A limitation of the Airline Response Model, however, is that it does not simulate 

fares by itinerary or by airline, but only by O-D city-pair, averaged over all airlines. An 

airline that operates a hub outside a region with increased costs would have lower costs than 

an airline operating a hub within the region. It may thus be able to offer lower fares for 

connecting flights between cities outside the region, potentially leading to a shift in demand 

between airlines. Because the Airline Response Model does not simulate fares by itinerary or 

by airline it is not able to capture this effect. In future work the model will be developed to 

simulate fares by itinerary and by airline in order to support such analysis. 

The effects of regional cost increases are simulated in the set of cities, airport and 

airlines in the United States described in Section 6.1. Cost increases are implemented in the 

form of increased landing fees, enabling analysis of their impact on the flight network, 

aircraft size choice and emissions. A regional increase in landing fees is more likely within 

the United States than an emissions trading scheme restricted to only one region. Landing 

fees are implemented by airport, while an emissions trading scheme would be a national 

initiative, if implemented. In future work, other air transport systems will be simulated, such 

as the European air transport system, in which it is more appropriate to simulate emissions 

trading. 

The region selected for increased landing fees in this analysis is Texas. The reason for 

this is that there are two important intercontinental hub airports in Texas: Dallas-Fort Worth 

and Houston Intercontinental, both of which are included in the modelled airport set. These 

hub airports serve the cities of Dallas/Fort Worth and Houston, along with secondary airports 

Dallas Love Field and Houston Hobby. American and Continental Airlines operate hubs at 

Dallas-Fort Worth and Houston Intercontinental respectively, and also serve a number of 

other airports outside Texas. 
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Existing airport landing fees in the United States range from as low as US$ 40 per 

flight (small aircraft size class, Atlanta) to as high as US$ 5,700 per flight (large aircraft size 

class, Newark) (IATA, 2008). In Texas, landing fees range from US$ 390 per flight (small 

size class, Houston Intercontinental), to US$ 2,560 per flight (large size class of aircraft, 

Dallas Fort-Worth). In order to simulate the response of the air transport system to regional 

cost increases, and to identify the level of cost increase required to drive changes in the flight 

network and aircraft choice, three scenarios are formulated:  

 Case 1: A baseline case, in which landing fees are maintained at existing levels at all 

airports. 

 Case 2: A case in which all existing landing fees are increased by US$ 1,000 per flight in 

2015 at each airport in Texas, and by a further 4% per year following that. This case 

models a small to medium cost increase relative to existing landing fees. 

 Case 3: A case in which all existing landing fees are increased by US$ 5,000 per flight in 

2015 at each airport in Texas, and by a further 4% per year following that. This case 

models a large cost increase relative to existing landing fees.  

Policy measures that implement cost increases in order to mitigate the environmental 

impacts of aviation typically increase the value of the cost increase applied, over time, in 

order to counter the effects of increasing passenger demand. The CCSP IGSM, for example, 

models an increase in carbon price by 4% per year (CCSP, 2007). This is the value applied to 

Cases 2 and 3 here, after the initial increase in landing fees in 2015. 

Airport capacities at all airports are assumed to be increased in all cases according to 

expansion plans described by the U.S. DOT (DOT, 2004) and airport authorities, as shown in 

Table 5-1 in Section 5.2. 

Regional Effects 

The regional impacts of increased landing fees on Texas O-D demand, aircraft 

operations, and CO2 emissions, in each of the three cases described above, are presented in 

Figure 7-7. The implications of these results are discussed below, followed by presentation 

and discussion of the system-wide effects.  
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The baseline case, in which no increases in landing fees are applied to any airports, is 

identical to the baseline case in the analysis of airport capacity constraints described in 

Section 7.1. The growth in Texas passenger demand, aircraft operations and CO2 emissions in 

this baseline case, shown in Figure 7-7, follow similar trends to the system as a whole, shown 

in Figure 7-1. The growth in CO2 emissions in 2015 is slightly lower than in other periods. 

This is related to airport capacity expansion at a number of airports system-wide in 2013, 

which leads to a small reduction in flight delays, and a correspondingly small increase in 

passenger demand growth. This increased demand growth leads to slightly greater use of 

point-to-point operations (shown by a reduction in the number of connecting passengers in 

Figure 7-8a below). In point-to-point networks passengers are flown directly, reducing total 

fuel burn and CO2 emissions relative to hub-and-spoke networks. Because Texas air traffic is 

dominated by the hub operations at Dallas-Fort Worth and Houston Intercontinental, this 

 
 
 
 

 
              (a)                                                (b)                                             (c) 

Figure 7-7. Simulated Texas response to airport capacity constraints through 2030: (a)

passenger demand, (b) aircraft operations, and (c) CO2 emissions. 
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small change in system-wide airport capacity has an exaggerated impact on Texas CO2 

emissions.  

In Case 2, in which landing fees at all airports in Texas are increased by US$ 1,000 

per flight, the growth in O-D passenger demand to Dallas/Fort Worth and Houston (Figure 

7-7a) is only slightly lower than in the baseline case (by roughly 2% in 2030). In Case 3, in 

which landing fees at all airports in Texas are increased by US$ 5,000 per flight, the effect is 

greater, with the growth in passenger demand roughly 5% lower than in the baseline case by 

2030. These reductions in demand are the result of the higher landing fees, which increase 

airline costs. These increased costs are passed on to passengers in the form of increased fares. 

The increase in fares is not large enough, however, to have a significant impact on passenger 

demand. By 2030, the increases in airline costs are US$ 8.40 and US$ 42.20 per passenger in 

Cases 2 and 3 respectively, which compare to an average ticket price within the modelled 

network of US$ 188.  

By 2030, aircraft operations at airports in Texas (Figure 7-7b) are also slightly lower 

than in the baseline case in Case 2 (by roughly 4%), but in Case 3, they are significantly 

lower (by roughly 15%). This large decrease in aircraft operations relative to the baseline 

case, despite little change in passenger O-D demand to the region, is the result of an increase 

in the sizes of aircraft operated in the region, and a shift in connecting traffic from the hub 

airports in the region – Dallas-Fort Worth and Houston Intercontinental – to other hubs 

airports outside the region. These effects are described in detail below. In contrast to the 

effect on aircraft operations, CO2 emissions from all flights arriving at or departing from 

airports in Texas (Figure 7-7c) are only slightly lower than the baseline case in both Case 2 

(roughly 4% lower) and Case 3 (roughly 5% lower). The large decrease in operations in Case 

3 relative to the baseline is not matched by the CO2 emissions because of the shift to larger 

aircraft, which burn more fuel per flight than smaller aircraft, with correspondingly greater 

CO2 emissions. 

While the percentage of connecting passengers in the system does not change 

significantly between the three cases (remaining at roughly 5.5% in 2030), in Case 3 there is 

a small shift in connecting traffic away from Dallas-Fort Worth and Houston Intercontinental 

to other hub airports in the system. This is shown in Figure 7-8, which shows the distribution 

of connecting passengers across all the hub airports operated within the modelled system.  
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While the total number of connecting passengers in the system is not significantly 

impacted by the increased landing fees in Texas in Case 2 (Figure 7-8b), a small reduction 

can be seen in Case 3 (Figure 7-8c), relative to the baseline case (Figure 7-8a). Relative to the 

baseline case, there is also little change in the number of passengers connecting at Dallas-Fort 

Worth (DFW) or Houston Intercontinental in Case 2 (Figure 7-8b), but in Case 3, there is a 

noticeable decrease by 2030 (Figure 7-8c) – by roughly 20% at Dallas-Fort Worth, and by 

35% at Houston Intercontinental (IAH). In this case, there are corresponding increases in the 

number of connecting passengers at Miami (MIA) (by roughly 150% in 2030) and Newark  

(EWR) (by roughly 10% in 2030) relative to the baseline. Miami and Newark, at which there 

are no increases in landing fees, are operated as hubs by American and Continental Airlines 

respectively, which also operate hubs at Dallas-Fort Worth and Houston Intercontinental 

respectively. These results suggest that sufficiently high landing fees may induce airlines to 

route some connecting traffic away from impacted hubs. The result is a reduction in the 

number of aircraft operations in the region, as shown for Case 3 in Figure 7-7b. 

  
                        (a)                                        (b)                                         (c) 
Figure 7-8. Simulated connecting passenger distribution across system hubs through

2030: (a) Case1: Baseline, (b) Case 2: Increased landing fees at all Texas airports of US$

1,000 per flight, and (c) Case 3: Increased landing fees at all Texas airports of US$ 5,000

per flight.  
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Changes in aircraft size as a result of increased landing fees are investigated by 

plotting the distribution of aircraft sizes among flights arriving at or departing from airports 

in Texas, shown in Figure 7-9. The increase in landing fees in Case 2 (Figure 7-9b) in not 

sufficient to produce any significant shift to greater use of larger aircraft relative to the 

baseline case (Figure 7-9a). However, the larger increase in landing fees in Case 3 does 

produce such a shift (Figure 7-9c), with growth in both the percentage of medium aircraft 

types operated as well as large aircraft types. While landing fees are higher for larger aircraft, 

these differences are not sufficient to offset the reductions in airline costs per passenger that 

can be achieved by using larger aircraft to serve the same number of passengers with fewer 

flights. Unlike in the case of airport capacity constraints, frequency competition does not 

limit this effect here. Landing fees directly impact airline operating costs, reducing the 

frequency at which marginal cost equals marginal revenue to a greater extent than airport 

capacity constraints, while the impact of increased landing fees on passenger demand is only 

through increased fares, and not through any direct demand response to flight delays. 

 

 

    
                           (a)                                           (b)                                           (c) 
Figure 7-9. Simulated distribution of aircraft size operated at Texas airports through

2030: (a) Case1: Baseline, (b) Case 2: Increased landing fees at all Texas airports of US$

1,000 per flight, and (c) Case 3: Increased landing fees at all Texas airports of US$ 5,000

per flight. 
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The result is that aircraft operations are reduced to a greater extent than passenger demand, as 

shown in Figure 7-7, and average aircraft size increases.  

System Effects 

The system effects of increased landing fees in Texas are presented in Figure 7-10. 

The baseline results are identical to those in the analysis of airport capacity constraints, 

shown in Figure 7-1. Comparing Cases 2 and 3 to the baseline case suggests that the impact 

of the regional increases in landing fees on system demand (Figure 7-10a), aircraft operations 

(Figure 7-10b) and CO2 emissions (Figure 7-10c) is very small. The greatest impact is on 

aircraft operations in Case 3 (which is roughly 2% lower than the baseline case by 2030). 

This very small impact is because of the large size of the system in comparison to the region 

with increased landing fees, and the generally small impact of the increased landing fees on 

the region itself (Figure 7-7), except in the case of aircraft operations.  

 

 
 
 
 

            (a)                                                (b)                                             (c) 
Figure 7-10. Simulated system response to airport capacity constraints through 2030:

(a) passenger demand, (b) aircraft operations, and (c) CO2 emissions. 
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In summary, the results presented in this section indicate that regional cost increases, 

in the form of increased landing fees, are likely to have relatively little impact on passenger 

demand to the region, but may have a significant impact on aircraft operations, if the increase 

in landing fees is large enough. Such landing fees can induce some shift in the flight network, 

with some connecting passengers being rerouted through hubs outside the region. Increased 

landing fees can also induce a shift to greater use of larger aircraft. The impact on CO2 

emissions is not as large as on aircraft operations, and the impacts of system demand, aircraft 

operations and CO2 emissions is very small. System-wide CO2 emissions may be reduced to a 

greater extent by the introduction of new technology into the fleet, which reduces aircraft fuel 

burn significantly. This is described in the next section. 

7.3 The Air Transport System Response to the Introduction of New Technology 

Another key policy mechanism that is proposed to mitigate the negative 

environmental impacts of aviation growth is the specification of new regulations for aircraft 

fuel burn or emissions levels (GAO, 2009). This would incentivise the development of new 

technology and encourage its adoption into airline fleets. Leads time are, however, long, 

because of the time required to develop the new technology, and fleet turnover is slow in the 

aviation industry. Enabling such technology development is still attractive to policymakers, 

however, because it does not have the negative effects on economic growth associated with 

other mitigation policies, such as taxes and emissions trading. However, it is not clear how 

the air transport system will respond to new technology, and whether it will be sufficient to 

mitigate the negative environmental impacts of aviation growth without other policies. 

Two scenarios are formulated introducing radically new technology into the fleet in 

order to investigate the response and sensitivity of the air transport system to reductions in 

aircraft fuel burn. The technologies introduced are an aircraft operating advanced open rotor 

engines (also called ultra-high bypass ratio engines) and a blended wing body aircraft. The 

response of the air transport system to each of these technologies is compared to a baseline 

case in which no radically new technology is introduced.  

Advanced open rotor technology reduces engine fuel burn by gaining some of the 

efficiencies of turbo-prop engines, such as the weight and drag reductions associated with no 

nacelle, while limiting some of the drawbacks associated with turbo-prop engines, such as 
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low aircraft speed. Open rotor engines have been under study for many years but are 

currently receiving renewed attention because of their potential to reduce CO2 emissions. The 

fuel burn reduction from an aircraft designed to operate advanced open rotor engines may be 

up to 30% over conventional aircraft (Lawrence et al., 2009), although cruise speed is also 

likely to be slower, by approximately 8% (Hoff, 1990). For this and other reasons aircraft 

operating advanced open-rotor engines are only likely to be appropriate for the smallest 

aircraft size class modelled in this analysis – short/medium haul, single aisle aircraft that 

would replace the Boeing B737 and Airbus A320 families of aircraft.  

The blended wing body aircraft concept blends the aircraft fuselage into the wings, 

and eliminates the empennage, to form a kind of “flying wing”. The design has a significantly 

improved lift-to-drag ratio over conventional aircraft, reducing fuel burn by as much as 30% 

(Greener by Design, 2005). The concept has also been under study for many years, and like 

the advanced open-rotor technology has recently received renewed attention because of its 

potential to reduce CO2 emissions. Because of configuration issues related to blending the 

fuselage into the wing, the blended wing body design is only likely to be practical for the 

largest aircraft size class modelled in this analysis – long haul, twin aisle aircraft that would 

replace the Boeing B747, B777, and Airbus A380 families of aircraft. Although this large 

class of aircraft is barely used domestically at all, this is likely to change with the 

introduction of a new large aircraft with significantly reduced operating costs. 

The cost of developing both advanced open rotor and a blended wing body aircraft is 

highly uncertain. This is also the case for their likely dates of availability. Two scenarios are 

therefore simulated – one in which development costs are assumed to be absorbed by 

governments and other agencies in such a way that the aircraft amortization costs incurred by 

the airline are no different to those of existing aircraft, and one in which development costs 

lead to amortization costs that are twice those of existing types. Dray et al. (2009-2) suggests 

that open rotor technology may be available by 2020, while the date of introduction of 

blended wing body technology is likely to be beyond 2020. For the purposes of this analysis, 

however, both technologies are assumed to be available in 2020. 

In contrast to the other two families of scenarios considered, the introduction of 

radically new technology requires making assumptions about the rate at which these 

technologies enter airline fleets. Fleet turnover is a complex process involving the retirement 
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of older, less cost effective aircraft, and the purchase of new aircraft to replace them and to 

serve increased demand. A fleet model capturing these effects is not included in the Airline 

Response Model. Instead, the turnover of the fleet to include the radically new technology 

aircraft described above is modelled using simple assumptions about fleet retirement rates 

and the simulated growth in aircraft operations. Morrell and Dray (2009) present retirement 

curves for different types of aircraft, modelled by (logistic) S-curve functions. For most 

aircraft types, the roughly linear portion of the S-curve has a gradient of approximately 4% of 

the fleet per year. The growth rate in aircraft operations simulated in the baseline scenarios in 

Figure 7-1c and Figure 7-10b is 2.4% per year. Assuming aircraft utilisation rates remain 

approximately constant, this growth rate can also be assumed for the fleet. Making the 

simplifying assumption that all aircraft added to the fleet are new types, the rate at which 

radically new technology would enter the fleet is therefore 6.4% per year.  

In reality, the rate at which radically new technology will enter the fleet is a function 

of the operating costs of the technology, the purchase price of the aircraft, the fuel price, and 

the growth in demand. On the one hand, if the fuel burn reductions introduced by the 

technology are large and the fuel price is high, fleet turnover may be faster than the rate 

modelled. On the other hand, if the costs associated with the development of the technology 

that are passed on to airlines are high, and fuel prices are low, fleet turnover may be slower 

than the rate modelled. For the purposes of this analysis, however, both radically new 

technologies are assumed to enter the fleet at the rate of 6.4% per year, from 2020. In order to 

fully examine the impact of the new technologies in the fleet, the simulation is run to 2040. 

Note that the fuel burn of the rest of the fleet is assumed to improve at the same rate 

applied in Sections 7.1 and 7.2, i.e., 0.7% per year. 

Advanced Open Rotors 

Figure 7-11 presents simulated system-wide passenger demand, aircraft operations 

and CO2 emissions for the set of airlines, airports and cities in the United States described in 

Section 6.1. Results are presented for a baseline scenario in which no radically new 

technology is introduced, and for two scenarios in which an advanced open-rotor aircraft is 

introduced in the small size class of aircraft. In the first case (Case 2), amortization costs are 
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assumed to be identical to existing small aircraft, while in the second case (Case 3) they are 

assumed to be double those of existing small aircraft.  

The baseline results in Figure 7-11 are identical to those in the analysis of airport 

capacity constraints through 2030, shown in Figure 7-1. Comparing Cases 2 and 3 to the 

baseline case suggests that the introduction of radically new technology which reduces fuel 

burn of the small aircraft size class has relatively little impact on system demand (Figure 

7-10a), aircraft operations (Figure 7-10b) and CO2 emissions (Figure 7-10c). This can be 

attributed, at least in part, to the slow fleet turnover rate simulated, which is representative of 

the aviation industry.  

In the case where amortisation costs associated with an open rotor aircraft are 

identical to those of existing aircraft (Case 2), the impact of the new technology on passenger 

demand is to decrease it slightly relative to the baseline case (by roughly 3% in 2040) (Figure 

 

 

 
                         (a)                                                  (b)                                                (c) 
Figure 7-11. Simulated air transport system response to the introduction of advanced

open rotors through 2040: (a) passenger demand, (b) aircraft operations, and (c) CO2

emissions. 
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7-11a). A reduction in fuel burn reduces operating costs, leading to an increase in frequency 

competition. As described above, airlines increase flight frequency until the marginal cost of 

adding a flight is no longer offset by the marginal revenue associated with the increased 

market share achieved by the flight. With a decrease in marginal cost, this equilibrium 

frequency increases. Thus, reduced fuel burn can result in a small increase in aircraft 

operations, shown in Figure 7-11b. The increased aircraft operations result in an increase in 

flight delays – by more than 10 minutes on average per flight relative to the baseline case by 

2040. Flight times also increase over the baseline case because of the slower cruise speed of 

open rotor aircraft. Both these effects lead to a slight reduction in passenger demand, as 

shown in Figure 7-11a. The effect is partially offset by the demand impact of lower fares, 

which result from the lower operating costs of the new technology. This latter effect is not 

dominant, however. 

Beyond the competition effects described above, another reason for the slight increase 

in aircraft operations in Figure 7-11b is a shift to greater use of the small size class of aircraft. 

Because of the reduced cost associated with operating the open rotor aircraft, which falls 

within this aircraft size class, airlines make greater use of this aircraft type than in the 

baseline case. This effect can be seen in Figure 7-12, which shows the distribution of aircraft 

size classes operated in each case. In the baseline case the percentage of small aircraft 

steadily decreases from 2005 to 2040, with the percentage of medium aircraft increasing, and, 

after 2025, large aircraft also (Figure 7-12a). This is because of economies of scale of larger 

aircraft, as described in Section 7.1. Case 2 follows a similar trend to the baseline, until after 

2020 when the percentage of small aircraft remains approximately constant (Figure 7-12b). 

This indicates that the cost savings benefit of advanced open rotor engines offsets the benefits 

of the economies of scale associated with the larger aircraft.  

The introduction of advanced open rotor aircraft in Case 2 also results in a reduction 

in system CO2 emissions from aviation relative to the baseline case, as shown in Figure 7-11c 

(by roughly 5% in 2030). This is a direct result of the reduction in fuel burn of the new 

technology, which is sufficiently great that it is not offset by the increase in aircraft 

operations shown in Figure 7-11b.  

In Case 3 the amortisation costs associated with advanced open rotor aircraft are 

assumed to be double those of existing aircraft. The effect of this is to significantly reduce the 
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operating cost benefit achieved by the reduction in fuel burn. The result is to limit almost all 

the effects observed in Case 2. The increase in frequency competition is reduced, limiting any 

increase in aircraft operations shown in Figure 7-11b (to roughly 1% relative to the baseline 

by 2040). While the increase in travel time resulting from increased cruise speeds remains the 

same, the increase in flight delays associated with the increase in operations is reduced (to 

roughly 5 minutes on average per flight greater than the baseline case by 2040). Also, the 

reduction in fares resulting from the decrease in operating costs is less. In response to these 

effects, passenger demand is reduced only slightly relative to the baseline case (by roughly 

1% by 2040) – less than in Case 2. There is, however, still a moderate shift to greater use of 

the small aircraft types relative to the baseline case, as seen by comparing Figure 7-12c to 

Figure 7-12a, which contributes to the small increase in aircraft operations observed in Figure 

7-11b. 

   
 

 
             (a)                                            (b)                                            (c) 

Figure 7-12. Simulated distribution of aircraft size operated across the system through

2040: (a) Baseline with no advanced open-rotor technology, (b) Advanced open rotor

technology introduced with amortisation costs equal to existing aircraft types, and (c)

Advanced open rotor technology introduced with amortisation costs double those of

existing aircraft types. 
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In contrast to the other results, system CO2 emissions in Case 3, shown in Figure 

7-11c, are similar to those in Case 2. The reason for this is that, while the cost benefit of the 

new technology to the airline is reduced by the doubled amortization costs in Case 3, the 

reduction in CO2 emissions is not affected. This indicates that even if the development costs 

of a radically new technology result in increased amortization costs for airlines, reduction in 

system CO2 emissions may still be possible. This does, however, require the implementation 

of policy measures to ensure adequate fleet entry, which is taken as given in this family of 

scenarios. 

Blended Wing Body Aircraft 

Figure 7-13 presents simulated system-wide passenger demand, aircraft operations 

and CO2 emissions for the same set of airlines, airports and cities in the United States 

described in Section 7.1. Results are presented for a baseline scenario and two scenarios in 

which a blended wing body aircraft is introduced. In the first case (Case 2), amortization 

costs are assumed to be identical to existing large aircraft, while in the second case (Case 3) 

they are assumed to be double those of existing large aircraft.  

The baseline results in Figure 7-13 are again identical to those in the analysis of 

airport capacity constraints through 2030, shown in Figure 7-1. Comparing Cases 2 and 3 to 

the baseline case suggests that the introduction of a blended wing body aircraft that reduces 

the fuel burn of the large size class of aircraft has very little impact on system demand 

(Figure 7-10a), aircraft operations (Figure 7-10b) and CO2 emissions (Figure 7-10c). This can 

primarily be attributed to the slow fleet turnover rate simulated, and the small percentage of 

large aircraft types operated in the system. 

In the case where amortisation costs associated with a blended wing body aircraft are 

identical to those of existing aircraft (Case 2), the impact of the new technology on passenger 

demand is to increase it slightly (by roughly 3% in 2040) (Figure 7-13a). This is because the 

reduced fuel burn of blended wing body aircraft reduces operating costs, and therefore fares, 

leading in an increase in passenger demand. Unlike with the introduction of an advanced 

open rotor aircraft, aircraft operations do not increase with the introduction of a blended wing 

body aircraft (Figure 7-13b), so flight delays do not increase. Blended wing body aircraft also 

cruise at the same speeds as existing aircraft, so flight times remain the same as existing 
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aircraft. The result is that fare effects dominate the passenger demand response to the 

introduction of blended wing body aircraft.   

Aircraft operations decrease slightly with the introduction of blended wing body 

aircraft (by roughly 2% in 2040) (Figure 7-13a). This is because of a shift by airlines to 

operate more large aircraft, which can be seen in Figure 7-14 by comparing the percentage of 

large aircraft operated in Case 2 (Figure 7-14b) to the percentage operated in the baseline 

case (Figure 7-14a). Despite the small increase in demand to be served (Figure 7-13b), the 

shift to larger aircraft is sufficient to result in a total decrease in number of flights operated. 

This effect on aircraft size is also sufficient to offset any frequency competition effects in 

response to the reduced operating costs, described above for the introduction of open rotor 

aircraft.  

 
 
 
 

  
                        (a)                                                   (b)                                                (c) 
Figure 7-13. Simulated air transport system response to the introduction of a blended

wing body aircraft through 2040: (a) passenger demand, (b) aircraft operations, and (c)

CO2 emissions. 
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The introduction of a blended wing body aircraft into the fleet in Case 2 has 

essentially no impact on system CO2 emissions (Figure 7-13c). The reason for this is that the 

decrease in aircraft operations shown in Figure 7-13b is achieved through increased operation 

of larger aircraft. These aircraft, although they have lower fuel burn than older technology 

large aircraft, still have higher fuel burn than small and medium sized aircraft. The decrease 

in CO2 emissions achieved through fewer operations and the lower fuel burn of the large 

aircraft type is offset by the increase in use of the large aircraft type over the small and 

medium aircraft types. Also, although fuel burn per RPM of the new aircraft is lower than 

that of the older aircraft, passenger demand has increased slightly relative to the baseline 

case. The small percentage of new aircraft in the fleet and the increase in passenger demand 

mean that total CO2 emissions are no lower than in the baseline case. 

 

 
 

 
             (a)                                            (b)                                             (c) 

Figure 7-14. Simulated distribution of aircraft size operated across the system through

2040: (a) Baseline with no blended wing body technology, (b) Blended wing body

technology introduced with amortisation costs equal to existing aircraft types, and (c)

Blended wing body technology introduced with amortisation costs double those of

existing aircraft types. 
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In Case 3 the amortisation costs associated with blended wing body aircraft are 

assumed to be double those of existing aircraft. As in the advanced open rotor case, the effect 

of this is to significantly reduce the operating cost benefit achieved by the reduction in fuel 

burn. Again, the result is to limit almost all the effects observed in Case 2. There is a small 

shift to larger aircraft types, as seen by comparing Figure 7-14c (Case 3) to Figure 7-14a 

(baseline), but it is not as large as that in Case 2. The result is that there is essentially no 

change in aircraft operations (Figure 7-13b), passenger demand (Figure 7-13a) or CO2 

emissions (Figure 7-13c) relative to the baseline.  

In conclusion, the introduction of radically new technology into the fleet that reduces 

aircraft fuel burn significantly is likely to have very little impact on passenger demand and 

aircraft operations. The impact on system CO2 emissions from aviation may vary from small, 

in the case of technology that could be taken up by the majority of the fleet (such as a 

replacement for the small aircraft size class of aircraft), to insignificant, in the case of 

technology that could be taken up by only a small portion of the fleet (such as a replacement 

for the large aircraft size class of aircraft). It is noted that these small to insignificant impacts 

are, at least in part, because of the slow fleet turnover rates typical of the aviation industry, 

and because no international flights are modelled, which would make greater use of the large 

aircraft size class. If fleet turnover rates can be accelerated, these impacts would be larger. It 

is also noted that the environmental impact of introducing radically new technology is not 

significantly impacted by whether or not the development costs of the technology are covered 

by the airlines operating the aircraft, assuming that policy measures are in place to ensure 

adequate fleet entry. Without policy measures to ensure adequate fleet entry, increased 

amortization costs may significantly slow the rate at which the new technology enters the 

fleet, reducing the environmental benefit of the new technology further.  
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8 Conclusions 

 

Given insights from the application of the Airline Response Model, several 

conclusions can be drawn from this dissertation concerning the modelling approach itself and 

the behaviour of the air transport system. 

Perhaps most importantly, it can be concluded that it is possible to simulate airline 

operational responses to environmental constraints and policies by simulating airline strategic 

decision making within a competitive environment. This was done by explicitly modelling 

airline profit maximisation, frequency competition, and changes in airline cost and passenger 

demand. The model was validated by comparing simulation results to observed data for a 

network of 22 airports and 14 cities in the United States in 2005. Passenger demand and 

flight frequencies were predicted to be within 1-3% of observed values, while R2 values 

comparing modelled and observed passenger demand and flight frequencies range from 0.56 

to 0.86. The model was found to capture all dominant effects in airline strategic decision 

making regarding airline choice of flight frequencies, aircraft size and flight network. The 

Airline Response Model can therefore be applied to simulate airline operational responses to 

policy measures impacting airline costs and passenger demand within a competitive 

environment. The greatest differences between modelled and observed data are between 

airports in multi-airport systems, indicating that the modelling of the distribution of traffic 

between airports in multi-airport systems has most potential for further development.  

By applying the Airline Response Model to a series of environmental policy 

scenarios, a number of conclusions can be drawn regarding the response of the air transport 

system to airport capacity constraints, regional increases in cost in the form of increased 

landing fees, and the introduction of radically new low-fuel burn technology into the fleet.  

Airport capacity constraints may have some significant system-wide effects, including 

high delays and reductions in passenger demand, aircraft operations and CO2 emissions. The 

simulation results indicate that, with no airport capacity expansion in the United States, 

average system-wide arrival delays in 2030 may be quadruple the 2005 level of 11 minutes 
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per flight. Passenger demand and aircraft operations may be almost 10% lower than in a case 

in which airport capacity is expanded by 25%, as planned. At the same time, however, airport 

capacity constraints may also limit growth in system-wide CO2 emissions from aviation. In 

the case of no capacity expansion in the United States, CO2 emissions from aviation may be 

nearly 10% lower than in the case in which airport capacity is expanded. This suggests that 

restrictions in airport capacity expansion may lead to reductions in aviation CO2 emission 

growth, although this may come at the cost of high delays and some reductions in demand 

and operations. 

While airport capacity constraints may have some significant system-wide effects, 

they are the result of local airport effects which are much greater. Simulation results indicate 

that, with no capacity expansion, average arrival delays at a congested hub airport such as 

Chicago O’Hare may be over 70 minutes per flight by 2030, up from less than 10 minutes per 

flight in 2005. This would cause passenger O-D demand and aircraft operations to drop by up 

to 20% relative to a case in which the airport capacity is expanded by 40%, as planned. Such 

a dramatic decrease in the growth of aircraft operations would have a significant effect on 

local airport emissions: the growth of LTO NOx emissions would decrease by up to 25% 

relative to the case in which capacity is expanded at the airport. This suggests that, despite the 

increases in delay, restrictions in airport capacity expansion can have a significant impact on 

reducing growth in local emissions. The high simulated delays also indicate, however, that, in 

the case where capacity expansion is not possible at a congested hub airport, other policy 

measures, such as slot control or increased landing fees, may have to be applied to reduce 

delays to manageable levels, because the air transport system may not adjust sufficiently on 

its own. 

The simulation results do show, however, that if there is available capacity at other 

airports, airlines may respond to capacity constraints by adjusting their flight networks to 

avoid the congested airports. This may include making changes to the distribution of 

connecting traffic across their hubs and the distribution of O-D traffic between airports in 

multi-airport systems. Therefore, while the air transport system may not adjust sufficiently to 

prevent some significant increases in delay, airlines may shift some traffic to avoid airports 

with high delays. These changes in flight network would be more limited in an air transport 

system with less slack capacity, such as Europe, leading to even higher delays and greater 
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demand reduction than modelled here. Also, the redistribution of connecting passengers 

between hubs is limited in developed air transport systems generally, such as the United 

States and Europe, because many passengers in these systems fly non-stop. In less developed 

systems, such as in India or China, which make greater use of hub-and-spoke networks, the 

rerouting of connecting passengers through alterative (and in some cases, new) hubs is more 

likely. While less developed air transport systems do not currently operate many multi-airport 

systems, a number of new second airports are under construction and in planning. The 

redistribution of traffic within these new multi-airport systems may become the most 

important approach to accommodating increased operations in these systems. 

It can also be concluded from this dissertation that, under high frequency competition, 

airport capacity constraints are unlikely to induce a significant shift to larger aircraft. This is 

because of frequency competition effects that maintain high flight frequencies despite 

reductions in passenger demand in response to flight delays. This indicates that, in order to 

increase aircraft size at congested airports with high levels of competition, other policy 

measures may have to be applied, such as slot control or increasing landing fees. 

This dissertation shows that regional increases in landing fees, if sufficiently high, can 

lead to significant reductions is aircraft operations by increasing average aircraft size and 

inducing airlines to shift connecting traffic to unaffected hubs. Passenger demand and CO2 

emissions, however, are less likely to be significantly impacted. For example, if landing fees 

in a region such as Texas (which range from US$ 400 per flight to US$ 2,600 per flight) are 

increased by US$ 5,000 per flight, aircraft operations in the region may be reduced by as 

much as 15%. O-D demand and CO2 emissions in the region would be reduced by up to 5%. 

While the shift to larger aircraft types is likely to occur in most air transport systems, the shift 

in flight network would again be limited to air transport systems in which there is excess 

capacity, and in which there is sufficient connecting traffic. 

Aircraft operations may also be impacted by the introduction of radically new 

technology that reduces aircraft fuel burn. While the simulation results presented in this 

dissertation indicate that the impacts on passenger demand and aircraft operations is small, 

the reduction in operating cost associated with the new technology can result in an increase in 

frequency competition, increasing flight frequencies relative to a case with no new 

technology by nearly 5% in 2040. The impact of new low-fuel burn technology on system 
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CO2 emissions may be slightly greater than its impact on demand and operations, but only in 

the case where the technology could be taken up by the majority of the fleet. An aircraft 

equipped with open rotor engines, for example, which may reduce aircraft fuel burn by up to 

30%, could replace short/medium hall single aisle aircraft such as the Boeing B737 and 

Airbus A320 families of aircraft. These aircraft account for much of the existing domestic 

fleet. The simulation results indicate that the introduction of such an aircraft at typical fleet 

turnover rates would result in a reduction in CO2 emissions in 2040 by up to 5% relative to a 

case with no new technology. This dissertation therefore suggests that new technology alone 

cannot be relied upon to significantly reduce CO2 emissions, unless fleet turnover is 

significantly accelerated. It also suggests that technology that can replace the majority of the 

existing fleet must take priority over other technology. 

Finally, it can be concluded from this dissertation, that, while the primary impacts of 

environmental constraints are captured through changes in passenger demand, there are a 

number of secondary effects that can only be captured by simulating airline operational 

responses to environmental constraints. These effects include flight network effects, airline 

frequency competition effects, and aircraft size effects. The modelling of these airline 

operational responses to environmental constraints is important when studying both system 

and local, airport level, effects. It is also important to capture the capability of the air 

transport system to adjust under changing conditions, which may alter the effectiveness of 

some environmental policies. Because of the importance of capturing these effects, this thesis 

makes a valuable contribution. 
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9 Recommendations for Future Research 

 

Recommendations for future research in modelling airline operational responses to 

environmental constraints are presented below. Recommendations for further development of 

the modelling approaches used are presented in Section 9.1, followed by recommendations 

for future applications of the model in Section 9.2. 

9.1 Recommendations to Develop the Modelling Approach 

Recommendations to further develop the modelling framework described in Chapter 4 

and the modelling approaches for each of the sub-models described in Chapter 5 are 

presented below. They include integration of a more advanced passenger choice model and a 

fleet turnover model into the modelling framework, and simulation of changes in schedule 

shape in response to airport capacity constraints.  

 It is recommended that a more advanced passenger choice model be integrated into the 

modelling framework described in Chapter 4. In the existing framework, passenger 

choice is only modelled between airlines, and only as a function of flight frequency. A 

key assumption made in the development of the modelling framework described in 

Chapter 4, and in the network optimisation for each airline described in Section 5.1, is 

that passenger routing (non-stop or connecting through one of the hubs operated by the 

airline) is an airline decision. Thus, in the network optimisation, passengers are routed in 

such a way as to maximise airline profit. In reality passengers choose which itineraries to 

fly based on a number of criteria, including ticket price, total travel time, how many 

connections make up the itinerary, and which airline operates the itinerary (frequent flyer 

programs have increased airline loyalty, meaning that passengers may choose to fly with 

a specific airline despite the ticket price or travel time being less attractive than for a 

competitor). Airlines do, however, sell tickets for itineraries that maximise their profit, so 

in many cases the simplification modelled in this dissertation is adequate. This was 

demonstrated in Chapter 6, where the model described in Chapter 4 and 5 was validated 

against observed data. Certain effects are not captured, however, limiting the capability of 
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the model to simulate some air transport system responses to environmental constraints. 

One such effect is passenger choice of itineraries. Inclusion of more advanced passenger 

choice modelling would enable the distribution of passengers on each itinerary to be 

calculated as a function of fares and travel time. This would require integration of a more 

advanced passenger choice model between the Passenger Demand Model and Network 

Optimisation Models presented in Figure 4-1, and would require development of the Fare 

Model to simulate fares by itinerary, as opposed to estimation of average fares across all 

itineraries. Inclusion of passenger demand modelling by itinerary would enable more 

realistic simulation of the distribution of traffic across airports in a multi-airport system. 

In the current framework, such distribution is based entirely on airline costs, including 

landing fees and delay costs. In reality, however, airline choice of airports within a multi-

airport system is also a function of the location of the airport relative to urban centres and 

its accessibility (Bolgeri et al., 2008). These criteria, along with flight delays and other 

factors affect passenger choice.  

Inclusion of a more advanced passenger choice model within the modelling framework to 

model passenger demand by itinerary would also allow improved modelling of the effects 

of regional increases in costs. The current modelling framework is capable of simulating 

airline decisions to shift connecting passengers from a hub airport within the region of 

increased cost to a hub airport outside the region. This requires, however, that the airline 

operate hubs both inside and outside the region. For many regions this is not the case, but 

there may still be a shift in connecting traffic to other regions. This is because an airline 

that does not operate a hub outside the region of increased cost may be forced to increase 

fares because it is not able to avoid the cost increase within the region. A connecting 

passenger response to this increase in fares may be to choose to fly with other airlines that 

do not operate in the region, and therefore offer lower fares. Inclusion of a more advanced 

passenger choice model within the modelling framework would allow this effect to be 

simulated, providing a more complete picture of the effects of regional cost increases than 

is currently possible. 

 It is recommended that a fleet turnover model be integrated into the modelling framework 

described in Chapter 4. Because modelling of airline fleet turnover is already a developed 

component of most models in the literature that simulate the environmental impacts of 
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aviation (described in Appendix A), development of another model to simulate fleet 

turnover was not considered to be a significant contribution to the field of study in this 

dissertation. Such a fleet turnover model was therefore not included in the framework 

described in Chapter 4. However, as described in Section 2.2, one airline response to 

environmental constraints is to upgrade equipment. The entry of this equipment into the 

fleet and the turnover of the existing fleet are complex functions of the operating costs 

and performance of the old and new equipment. The development of the technology and 

its market readiness, however, are also functions of costs (particularly oil price) and 

environmental constraints. These affect airline demands for improved economic and 

environmental performances, which increase the pressure on manufacturers to develop 

suitable technology. Airline responses to environmental constraints by upgrading 

equipment may also have an impact on other airline responses. It has been demonstrated 

in Section 7.4, where the effect of introducing radically new technology is investigated, 

that the relationship between aircraft operating costs and the flight network is complex, 

and that the introduction of new technology with significantly reduced fuel burn does not 

necessarily result in a significant reduction in emissions. In order to model the impact of 

new technology more accurately, it is recommended that a fleet turnover model be 

included in the modelling framework described in Chapter 4. Such a fleet turnover model 

may be integrated in different ways. In the simplest case, it would be integrated within the 

iteration framework, but outside the network optimisation, modelling airline fleet 

decisions separately to airline network optimisation decisions. A more complex 

integration would be to include fleet choice between different technologies, with different 

costs and performance, within the network optimisation, simulating airline optimisation 

of the flight network and fleet purchase simultaneously. In both cases it is noted that a 

fleet constraint would be added to the network optimisation described in Chapter 5.1. 

This has others benefits as fleet constraints limit the change in operations from one year 

to the next. In the current framework each year is modelled independently, including 

specification of aircraft types by flight segment to maximise profit. In reality, only 

aircraft in the available fleet can be utilised, constraining the optimisation. The current 

implementation therefore neglects constraints limiting the change in operations from year 

to year. Introduction of a fleet constraint would allow this effect to be modelled. 
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 It is recommended that a component be included in the modelling framework that 

simulates changes in schedule shape in response to airport capacity constraints. As 

described in Section 2.2, one airline response to increased airport capacity constraints is 

to flatten the schedule, reducing the degree to which a banked schedule is operated. This 

response is not modelled in the framework developed in this dissertation. It is however, a 

response to airport capacity constraints that has been observed (Evans, 2002). It is 

therefore recommended that the modelling framework be expanded to simulate this effect 

also. This may be done, for example, by correlating the banking metric described by 

Evans (2002) to flight delays, and adjusting a schedule to match the required banking 

metric as delays increase.  

9.2 Recommendations for Future Applications of the Model 

Recommendations for future applications of the Airline Response Model are 

presented below. They include application of the model to developing world regions, and to 

regions that are most likely to see implementation of policies to attempt to mitigate the 

environmental impacts of aviation, particularly Europe. 

 It is recommended that the Airline Response Model be applied to developing world 

regions with high aviation growth rates. The growth rates in population and per-capita 

income in regions such as India, China and parts of South America mean that aviation 

growth rates in these regions are significantly higher than in more developed regions such 

as the United States and Europe. Many of these regions have relatively under-developed 

air transport systems, which may see significant change, irrespective of environmental 

constraints. Part of the reason for this change is the potential for a significant shift in the 

types of flight networks operated: from the strong hub-and-spoke systems currently 

operated to the systems comprising both hub-and-spoke and point-to-point operations that 

are typical of more developed systems with higher passenger demand. This transition is a 

direct result of increasing passenger demand between smaller cities, making the 

introduction of non-stop service profitable. By neglecting these network changes, any 

forecasts of airport noise and local emissions – particularly at hub airports – may be 

significantly exaggerated. Similarly, because passengers travel greater distances in hub-

and-spoke networks than point-to-point networks, system CO2 emissions may also be 
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exaggerated by neglecting these network changes. It is therefore recommended that these 

regions – particularly India, China and Brazil – be simulated using the Airline Response 

Model. It is noted that data collection for these areas may be difficult and that simplifying 

assumptions may have to be made in many cases. 

 It is recommended that the Airline Response Model be applied to those regions that are 

most likely to see implementation of policies to attempt to mitigate the environmental 

impacts of aviation, particularly Europe. Although Europe is not likely to experience the 

growth rates forecast for India and China, it is currently the region with the most political 

will to implement policies to attempt to mitigate the environmental impacts of aviation, 

evidenced by the planned inclusion of aviation in the EU ETS in 2012 (European Union, 

2009). Europe also has significant airport capacity constraints, some of which are 

politically sensitive, such as the building of a third runway at London Heathrow. 

Application of the Airline Response Model to Europe would contribute to the debates on 

each of these issues. One key question under debate is the extent to which connecting 

traffic would move from European hub airports to hub airports outside Europe as a result 

of the increases in costs associated with the EU ETS. Modelling of passenger responses to 

these effects would require the inclusion of more advanced passenger choice modelling, 

as described in Section 9.1 above. The modelling of airline operational responses, 

however, including the threatened shift of hubs to non-EU locations (Turner, 2007), may 

be examined in detail by the model described in this dissertation. 
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Appendix A: Existing Integrated Aviation-Environment System 

Models 

 

This appendix presents a detailed description of the three existing integrated aviation-

environment system models described in Chapter 1: (i) the Aviation Emissions and 

Evaluation of Reduction Options Modelling System (AERO-MS) (Pulles et al., 2002); (ii) the 

Aviation Environmental Portfolio Management Tool (APMT) (Waitz et al., 2006-1); and (iii) 

the Aviation Integrated Modelling (AIM) Project (Reynolds et al., 2007). The modelling 

approaches employed by these models are presented in the sections below, followed by a 

summary and comparison of the key characteristics of each model in Table A-1. 

A.1 Aviation Emissions and Evaluation of Reduction Options Modelling System 

AERO-MS was developed by the Dutch Civil Aviation Authority from 1994 to 2002 

with the objective to “assess the problems related to air pollution from aircraft engine 

emissions and to analyse possible measures to reduce the impacts of air transport on the 

atmosphere, taking into account the environmental benefits and the economic impacts of such 

measures.” (Pulles et al., 2002, p15) The model is specifically designed to simulate the 

climate and economic impacts of economic policies such as emissions trading and the entry 

of new technology into the fleet. It differs most significantly from other integrated aviation-

environment system models in that it only models global climate impacts, using a simplified 

global chemistry transport model. It does not model local air quality or noise impacts. Due to 

this focus on climate impacts, the modelling of detailed airport operations and the associated 

emissions is not required. Flight frequencies (defining the schedule explicitly and the flight 

network implicitly) are forecast by aircraft type and technology, enabling aircraft flight paths, 

fuel use and emissions, and air transport revenues and costs to be estimated. Modelling of 

flight delays is incorporated through a factor that increases flight paths over great circle 

distances. This detour factor accounts for all airborne delays. No ground delays are simulated. 

Both passenger and freight demand are modelled using an endogenous demand model, while 

6 aircraft size categories, 3 range categories, and 2 technology age categories are simulated 

by a fleet model. The development of future technology is modelled through the application 

of a fixed percentage improvement in fuel burn each year. In terms of economic impacts, 
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only the economic benefits of aviation are estimated in detail. Climate change impacts, output 

in terms of changes to radiative forcing, are not converted to monetary costs. The model 

operates with a 1992 base year, with some data updated to 1997. The characteristics of 

AERO-MS are summarised and compared to those of the other integrated aviation-

environment system models in Table A-1. 

A.2 Aviation Environmental Portfolio Management Tool 

APMT is under development by PARTNER, the Partnership for AiR Transportation 

Noise and Emissions Reduction, a Center of Excellence headquartered at the Massachusetts 

Institute of Technology (MIT) and sponsored by the U.S. FAA, the U.S. National 

Aeronautics and Space Administration (NASA), and Transport Canada. APMT utilises a 

suite of software tools with the objective to “assess the interdependencies between aviation-

related noise and emissions effects, and to provide comprehensive cost analysis of aviation 

environmental impacts.” (Waitz et al., 2006-1, p3) Unlike AERO-MS, APMT addresses local 

air quality, community noise and climate change impacts. The climate change impacts are 

modelled using impulse response functions only, which are derived from other sources. 

Unlike AERO-MS, no form of global chemistry transport model is used. The modelling of 

local air quality and noise impacts requires detailed modelling at the airport level. Of the 

three integrated aviation-environment system models described, the level of fidelity to which 

airport and air traffic operations is modelled in APMT is the highest, with flight delays due to 

airport and airspace capacity constraints modelled in extensive detail using queuing theory. 

Nine aircraft size categories are simulated. In contrast, the forecasting of demand and air 

traffic growth is simulated at a lower level of detail than the other integrated aviation-

environment system models. Both passenger and freight demand are based on exogenous 

demand forecasts from the FAA TAF, and the ICAO FESG airport air traffic forecast. These 

forecasts are based on regression analysis on historical data and consensus views from 

experts. Partial equilibrium is simulated by modifying the demand forecasts according to 

predicted changes in fare, which are calculated according to simulated changes in cost. Air 

traffic growth is also simulated based on forecasts from the FAA TAF and ICAO FESG 

airport air traffic forecast. Another significant difference between APMT and the other 

integrated aviation-environment system models is that future aircraft technologies are 

modelled within APMT using a special Engineering Design Space (EDS) module that 
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optimises future aircraft design according to requirements simulated within APMT. This 

allows the characteristics of new technology to be simulated to a high level of detail. APMT 

also includes components that calculate and monetize the benefits and costs of aviation 

(including costs of negative environmental effects: air quality impacts, noise impacts and 

climate impacts). This provides the tool with a benefit-cost assessment capability that is 

necessary if alternative policies with different impacts are to be assessed and compared. The 

characteristics of APMT are summarised and compared to those of the other integrated 

aviation-environment system models in Table A-1. 

A.3 Aviation Integrated Modelling Project 

The AIM project is under development by the Institute for Aviation and the 

Environment (IAE) at the University of Cambridge. The project has the goal of “developing a 

policy assessment tool for aviation, environment and economic interactions at local and 

global levels.” (Reynolds et al., 2007) It is into this tool that the Airline Response Model 

described in this dissertation is ultimately to be integrated. AIM simulates local air quality 

and climate change impacts, while noise is to be an added functionality after further 

development. Climate impacts are modelled using a parametric model developed based on 

runs from a global chemistry transport model. Because of the requirement to model local air 

quality impacts, the model includes detailed modelling at the airport level, like APMT, 

although this is accomplished by modelling flight delays at a lower level of fidelity than by 

APMT, and only as a function of airport capacity constraints, and not airspace capacity 

constraints. AIM models only 3 aircraft size categories, and, like AERO-MS, 2 age 

categories. The number of aircraft size categories is to be increased in future developments of 

the model. Passenger demand and air traffic growth are forecast using endogenous models, 

similar to AERO-MS, allowing partial equilibrium between supply and demand to be 

simulated by modelling changes in demand according to forecast fares, which, in turn, are 

modelled as a function of changing airline costs. Changes in demand are also modelled as a 

function of changes in passenger travel time, which is impacted by flight delays. The 

modelling of future technology development is not as advanced as that of APMT, but is more 

advanced than that of AERO-MS. The entry of specific new technologies into the fleet is 

modelled in detail using a fleet model as a function of the performance and costs of the new 

technology. AIM models environmental impacts, but does not take them to monetary values. 
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It also does not model the economic benefits of aviation. The estimation of both 

environmental costs and economic benefits is planned for future development. AIM operates 

with a base year of 2005. The characteristics of AIM are summarised and compared to those 

of the other integrated aviation-environment system models in Table A-1. 

Table A-1. Comparison of Integrated Aviation Environment System Models 

 AERO-MS APMT AIM 

Developer Dutch Civil Aviation 
Authority 

MIT University of Cambridge 

Base year 1992 (some data updated 
to 1997) 

Rolling, based on TAF 
and FESG) 

2005 

Fare modelling  According to changes 
in airline cost 

 According to changes 
in airline cost 

 According to changes 
in airline cost 

Demand modelling  Passenger and freight 
 Partial equilibrium 
 Endogenous, as a 

function of changes in 
fares 

 Passenger and freight 
 Partial equilibrium (to 

be upgraded to 
general equilibrium in 
future) 

 Input from TAF and 
FESG, modified 
according to changes 
in fares 

 Passenger only 
 Partial equilibrium 
 Endogenous, as a 

function of changes in 
fares 

Supply (air traffic) 
modelling 

 Historical trends as a 
function of demand 

 Input from TAF and 
FESG, modified 
according to modified 
demand 

 Historical trends as a 
function of demand 

No. of aircraft classes 
modelled 

 6 size categories 
 3 range categories 
 2 age categories 

 9 size categories 
 No range 

categorisation 
 No age categorization 

 3 size categories 
 No range 

categorisation 
 2 age categories 

Modelling flight network Assumed identical to 
base year 

Assumed identical to 
base year 

Assumed identical to 
base year 

Modelling of 
competition effects 

None None None 

Flight delay modelling  Detour factor only  Airport and airspace 
queuing models 

 Airport queuing model 

Modelling fleet turnover Yes Yes Yes 
Future technology 
modelling 

 Fixed % fuel burn 
improvement 

 Aircraft design 
optimisation 

 Simulated fleet entry of 
specific technologies 

Environmental impacts 
modelled 

 Climate change   Noise 
 Local air quality 
 Climate change 

 Local air quality 
 Climate change 

Climate modelling  Simplified chemistry 
transport model 

 Impulse response 
functions 

 Parametric model 
based on chemistry 
transport model runs 

Economic impact 
modelling 

 Economic benefits  Economic benefits 
 Environmental Costs 

(in Monetary values) 

 None 
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Appendix B: Model Application to Theoretical Networks 

 

In order to test and illustrate the basic capabilities of the Airline Response Model, and 

to verify its suitability to capture fundamental system effects, the Airline Response Model 

was applied to several simplified networks. These networks were selected to be sufficiently 

simple to allow the airline operational responses to constraints to be clearly identifiable, and 

to make interpretation of the model results clear. The key airline operational responses 

simulated include changes in flight frequencies; changes in the degree to which a hub-and-

spoke network is operated in favour of a point-to-point network; changes in the distribution 

of connecting traffic in a hub-and-spoke system between alternative hub airports; and 

changes in the distribution of O-D traffic within a multi-airport system. Each of these airline 

operational changes was examined in response to an airport capacity constraint, a key 

operational constraint in the air transport system. The networks selected for the analysis are 

as follows:  

 Three spoke airports equidistant from a central hub airport, as illustrated in Figure B-1a. 

This network allows analysis of the effect of airport capacity constraints at a hub airport 

on a hub-and-spoke network, in which the hub capacity constraint can cause a reduction 

in traffic throughout the network, and a shift from hub-and-spoke operations to greater 

use of point-to-point operations.  

 Three spoke airports surrounding two hub airports, as illustrated in Figure B-1b. This 

network allows analysis of the effect of airport capacity constraints at a hub airport on the 

distribution of traffic between that hub and an alternative hub, in which the hub capacity 

constraint can cause a shift in connecting traffic from the constrained hub to the 

alternative hub.  

 Four spoke airports, two of which serve the same market (forming a multi-airport 

system), equidistant from a central hub airport, as illustrated in Figure B-1c. This network 

allows analysis of the effect of airport capacity constraints at one airport within a multi-

airport system on the distribution of traffic within the system, in which the capacity 

constraint can cause a shift in O-D traffic from the constrained airport to the alternative. 
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                    (a)                                                  (b)                                               (c) 

Figure B-1. Simplified theoretical networks modelled – a) a hub-and-spoke network; b) 

a hub-and-spoke network with two hub airports; and c) a hub-and-spoke network with 

one spoke served by a multi-airport system of two airports. 

The application of the model to each of these theoretical networks is described in 

detail below, followed by descriptions of the results in each case.  

B.1 Simplified Hub-and-Spoke Network  

Key input data used in the simulation of a simplified hub-and-spoke network is shown 

in Table B-1. While these inputs are hypothetical, they are based on typical values for the air 

transport system in the United States in 2005. Similarly, hypothetical populations and per-

capita incomes are selected to generate the unconstrained demand between the cities 

accommodating the airports in Figure B-1a. The unconstrained passenger demand to the hub 

city is significantly greater than between the spoke cities. The reason for this is that hub-and-

spoke networks take advantage of economies of scale at the hub, and therefore typically form 

with hubs in cities with high O-D demand (e.g., Chicago, Atlanta, Dallas, Houston, etc.).  

Table B-1. Input Parameters for the Analysis of a Hub-and-Spoke Network. 

Input Parameters 

Unconstrained demand [pax/yr] 
Hub City – Spoke City 530,000 

Spoke City – Spoke City 230,000 

Hub-spoke stage length [nmi] 430 

Number of airlines serving each O-D market 2 

Extra-network traffic1 [flts/day] 
Hub Airport  2,000 

Spoke Airport 500 

                                                 

1 Flights between the modelled airports and other airports not within the modelled airport set. 
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The geographical distribution of the airports is defined by a spoke length of 430 nmi 

(500 miles), representing a relatively short-haul network. Given the network design presented 

in Figure B-1a, the distance between each of the spoke airports is therefore 750 nmi (866 

miles). Competition is modeled by simulating two airlines serving the network, both of which 

operate the modeled hub airport as a hub. For simplicity, these two competing airlines are 

assumed to operate identical fleets and experience identical operating costs. Extra-network 

traffic, required to simulate airport flight delays, accounts for all flights from airports outside 

the network modelled. Revenues and costs from this extra-network traffic are not included in 

the profit maximization run by the Airline Response Model. Other key parameters, 

particularly airport capacities and aircraft performance and costs, are described in detail 

below. These are followed by a description of the modelling of airline fares and passenger 

demand. 

Three scenarios are investigated, applying different airport capacities. While airport 

capacities are unconstrained at all spoke airports in each scenario, the capacity of the hub 

airport is increasingly restricted, from unconstrained, to 100 aircraft per hour (a medium 

capacity constraint, resulting in delays roughly equivalent to those at the worst delayed 

airports in the United States today), to 70 aircraft per hour (a severe capacity constraint, 

resulting in delays roughly equivalent to those projected for the worst delayed airports in the 

United States 20 to 25 years in the future, if airport capacities are not expanded). In the 

modelling of flight delays in each of these three scenarios, gate departure delays due to 

mechanical failures and late arrivals are ignored. 

For simplicity, only one class of aircraft is modelled, representing the single-aisle, 

short/medium-haul Boeing B737 and Airbus A320 families of aircraft, which are the most 

widely operated commercial aircraft in the world (Kingsley-Jones, 2005). Aircraft 

performance data and cost data is specified by assuming that 25% of the fleet is an older 

aircraft type in this class, represented by the Boeing B737-300, and 75% is a newer aircraft 

type, represented by the Airbus A319. These percentages represent the distribution of aircraft 

in this class designed before and after 1995 in the United States in 2005 (OAG, 2005). 

Aircraft performance and cost data are applied as described in Sections 5.3 and 5.4. No 

landing fees are applied. Economies of scale, as described in Section 5.4, are applied to 

reduce the ground servicing costs at the hub airport relative to those at the spoke airports. 
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As described in Chapter 5.5, fares are modelled in the Airline Response Model by 

scaling base year observed fares according to modelled changes in operating costs per 

passenger. However, in the theoretical networks modelled, no base year fares exist. 

Therefore, it is assumed that fares are consistently 20% higher than city-pair O-D costs per 

passenger. Passenger demand is modelled to change in response to these fares, and changes in 

travel time and flight delay, as described in Section 5.6. Passenger value of travel time, 

passenger value of delay time and all parameter elasticities in the demand equation are 

specified as described in Section 5.6. Flight connecting times at the hub airport are assumed 

to be 40 minutes. 

The Airline Response Model was run using the inputs from Table B-1 and those 

summarized above for each of the three airport capacity scenarios described. The results are 

presented in Figure B-2. The solid lines indicate flight frequencies, while the dashed lines 

indicate O-D passenger demand. In both cases, the thickness of the line provides an 

indication of its magnitude. Average O-D fares and the percentages of connecting passengers 

flying between the spoke airports are also shown.  

In order to serve the 530,000 passengers per year between each spoke city and the 

hub, and the 230,000 passengers per year between each spoke city (non-stop and connecting), 

the network that maximises airline profit in the unconstrained scenario (Figure B-2a) is 

dominated by hub-and-spoke operations, with 16 flights per day (8 flights for each airline) 

between the spoke airports and the hub, and only 2 non-stop flights per day (1 for each 

airline) between the spoke airports. Slightly more than half of the passenger demand between 

the spoke cities, 57%, connects through the hub airport. The average fare between the spoke 

cities is nearly double that between the spoke cities and the hub ($159 versus $86). This is 

because of the greater distance travelled between the spoke cities, either non-stop (750 nmi) 

or connecting through the hub (860 nmi), than directly between the spoke cities and the hub 

(430 nmi). The airline cost per passenger between the spoke cities is therefore higher than 

that to the hub. If larger aircraft were operated between the spoke airports and the hub, the 

costs per passenger on this segment would be lower (larger aircraft typically have lower 

aircraft operating costs per passenger), reducing both fares, but particularly the fare from the 

spoke city to the hub. Because all airport capacities are unconstrained, flight delays are zero 

at both the hub and spoke airports.  
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The effect of a medium capacity constraint at the hub airport on the network can be 

seen in Figure 6-2b. The flight network that maximises airline profit is less dominated by 

hub-and-spoke flights, with the flight frequency between the spoke airports and hub dropping 

from 16 flights per day to 10 flights per day (5 for each airline). Although the number of 

flights between the spoke cities remains at 2 flights per day (1 for each airline), the 

percentage of passengers flying between the spoke cities that connect through the hub drops 

from 57% to 46%. O-D passenger demand between the hub and spoke cities reduces from 

530,000 passengers per year predicted in the unconstrained scenario, to 342,000 passengers 

per year under the medium hub capacity constraint. This reduction in O-D passenger demand 

primarily results from an increase in flight delay, caused by an average arrival delay of 35 

minutes at the hub airport. The demand response is particularly sensitive to the increase in 

                                 (b)                                                             (c) 

Figure B-2. Results for a simplified hub-and-spoke network with – (a) unconstrained

airport capacities; (b) a medium capacity constraint at the hub; and (c) a severe

capacity constraint at the hub. 

193,000 pax/yr
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46 % connecting

342,000 pax/yr
$99

Spoke Airport

Hub Airport

Flights

Passenger O-D demand
Unconstrained

Medium capacity constraint

230,000 pax/yr
$159

57% connecting

530,000 pax/yr
$86

236,000 pax/yr
$175

41% connecting

147,000 pax/yr
$151

Severe capacity constraint

(a) 
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flight delays at the hub because of the passenger value of delay time applied, which is about 

three times the passenger value of travel time applied. Average fare also increases, because of 

an increase in airline costs from the hub to the spoke airport, associated with the increase in 

flight delays. This increased fare is also a contributor to the decrease in O-D passenger 

demand between the hub and the spoke cities. Because of the reduced O-D passenger demand 

on the route, and the reduction in connecting passengers, the number of flights that are 

operated between the spoke and hub is reduced by 6 flights per day (3 flights by each airline). 

Under the medium hub capacity scenario, O-D passenger demand between the spoke 

cities decreases from 230,000 passengers per year, predicted in the unconstrained scenario, to 

193,000 passengers per year. This decrease in demand is due to both the 35 minute flight 

delay incurred by the 46% of passengers that connect through the hub airport, and the 

increase in average fares between the spoke cities from $159 to $170. The overall drop in 

demand is not as severe as the drop in demand between the spoke and hub cities because 56% 

of passengers fly non-stop, avoiding the flight delays at the hub. Average fares increase 

between the spoke cities because of the passengers connecting through the hub airport, to 

whom a portion of the cost increases associated with the flight delays are allocated.  

The effects observed in Figure B-2b are stronger in Figure B-2c, where the hub 

airport capacity is further constrained. The network that maximises airline profit under this 

severe hub capacity constraint is characterized to an even lesser degree by hub-and-spoke 

flights, with the flight frequency between the spoke airports and hub dropping to 8 flights per 

day (4 for each airline), and the flight frequency between the spoke airports increasing to 4 

flights per day (2 for each airline). The percentage of passengers flying between the spoke 

cities that connect through the hub drops further to 41%. O-D passenger demand between the 

hub and spoke cities reduces further, to 147,000 passengers per year, primarily as a result of 

an increase in the average arrival delay at the hub airport to 57 minutes. Average fares 

between the spoke cities and the hub also increase significantly to $151 because of the 

increase in costs associated with the increase in delays.  

In contrast to the declining demand between the spoke cities and the hub, O-D 

passenger demand between the spoke cities in Figure B-2c increases to 236,000 passengers 

per year. This is greater even than the 230,000 passengers per year predicted in the 

unconstrained scenario. This increase in demand is because the weighted average O-D 
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passenger travel time between the spoke airports, including both the non-stop and connecting 

passengers, is reduced relative to the unconstrained scenario, despite the increase in delay at 

the hub. Only 41% of the O-D passengers between the spoke airports connect through the 

hub, and thus experience the 57 minute delay at the hub. The rest fly non-stop. The combined 

effect is a slight increase in O-D demand between the spoke cities. Average fares increase 

from $159 to $175 because of the 41% of passengers connecting through the hub airport, to 

whom a portion of the large cost increases associated with the flight delays are allocated. 

However, this increase in fare is not enough to offset the benefit of the lower delays incurred 

by the non-stop passengers and the shorter travel time.  

The simplified theoretical network modelled in this example shows how the network 

selected by an airline to maximise its profits can change as hub airports become capacity 

constrained. It is noted, however, that the dominant impact of flight delays is to reduce 

passenger demand, and that network change is a secondary effect. This network change may, 

however, still have a significant effect on the environmental impact of aviation, causing a 

shift in the distribution of emissions between airports. It is also noted that the degree to which 

an airline operates a hub-and-spoke network is highly dependent on demand and competition 

in each city-pair market, so the effect of airport capacity constraints to cause a shift from hub-

and-spoke operations to point-to-point operations may be hidden by demand and competition 

effects in more complex networks. Particularly, as demand between spoke cities increases, 

there is a general shift to more point-to-point operations, as there is enough passenger 

demand between smaller city-pairs to make a larger number of point-to-point flights 

profitable.  

Airport capacity constraints may also cause changes in the distribution of connecting 

traffic between hub airports; and changes in the distribution of O-D traffic within a multi-

airport system. These effects are examined in the following two sections, although in less 

detail than the example above. 

B.2 Distribution of Traffic between Hubs 

The second theoretical network simulated – a system of three spoke airports 

surrounding two hub airports, shown in Figure B-1b – illustrates the capability of the Airline 

Response Model to distribute traffic between hub airports with different capacity constraints. 
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Key input data is shown in Table B-2. As for the hub-and-spoke network in Section B.1, 

these inputs are hypothetical, but are based on typical values for the U.S. air transport system 

in 2005. Two airlines are again modelled, and both are assumed to operate hubs at both hub 

airports, so they compete directly. All other input data, with the exception of airport 

capacities, are identical to that described in Section B.1. Airport capacities are described in 

detail below.  

 

Airport capacities are specified for each of the airports for two scenarios. In the first 

scenario, airport capacities are unconstrained at all airports. In the second scenario, the 

capacity of one of the two hub airports is limited to 95 aircraft per hour, while the other hub 

airport and the spoke airports are left unconstrained. Under the simulated traffic levels, the 

capacity constraint of 95 aircraft per hour is severe, resulting in delays roughly equivalent to 

those projected at the worst delayed airports in the United States 20 to 25 years in the future, 

if airport capacities are not expanded. The Airline Response Model is run using the inputs 

from Table B-2 and those summarized above for each of the two airport capacity scenarios 

described. Figure B-3 presents flight frequency results for each of the scenarios. Passenger 

demand, fares and the percentage of connecting passengers are not included in order to aid 

readability. Changes in passenger demand and the flight network are, however, described 

below.  

In order to serve the 330,000 passengers per year between each spoke city and each 

hub city, and the 120,000 passengers per year between each spoke city (non-stop and 

connecting), the network that maximises airline profit in the unconstrained scenario (Figure 

B-3a) distributes the traffic between the spoke airports symmetrically between the two hub 

Table B-2. Input Parameters for Analysis of the Distribution of Traffic between Hubs. 

Input Parameters 

Unconstrained demand [pax/yr] 

Hub City – Hub City 750,000 

Hub City – Spoke City 330,000 

Spoke City – Spoke City 120,000 

Spoke-centre distance [nmi] 430 

Hub-hub distance [nmi] 260 

Number of airlines serving each O-D market 2 

Extra-network traffic [flts/day] 
Hub Airport  2,000 

Spoke Airport 500 
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airports in a pure hub-and-spoke network. An equal number of flights (12 flights per day) are 

scheduled to each hub when the spoke airport is equidistant from both hub airports (the top 

spoke airport in Figure B-3a), while more flights (16 flights per day versus 8 flights per day) 

are scheduled to the respective closer hub, because of the lower costs associated with flying 

the shorter distance to the closer hub. Flights are also scheduled between the two hub airports 

(16 flights per day) to serve the 750,000 passengers per year between the hub cities and any 

connecting passengers from the spoke airports. 

The effect of a capacity constraint at one of the two hub airports (the right hub) on the 

network can be seen in Figure B-3b. Because of delays at the constrained hub airport, O-D 

passenger demand to the constrained hub drops and connecting traffic shifts away from the 

constrained hub to the unconstrained hub. These effects result in a sharp decrease in all flight 

frequencies to the constrained hub, and a sharp increase in the flight frequency between the 

spoke airport located closest to the constrained hub (the lower right spoke airport) and the 

unconstrained hub (from 8 flights per day to 12 flights per day). Other flight frequencies to 

the unconstrained hub reduce slightly, because of a reduction in O-D passenger demand 

connecting through the unconstrained hub to the constrained hub. This decrease in demand is 

larger than the increase in passengers connecting through the unconstrained hub between the 

spoke airports. All O-D demand between the constrained hub airport and the spoke airport 

 

                                 (a)                                                                            (b) 

Figure B-3. Results for distribution of traffic between two hubs – (a) both of which are 

unconstrained; and (b) one of which is capacity constrained. 
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closest to it (the lower right spoke airport) flies non-stop, hence the still relatively high flight 

frequency between these airports (10 flights per day), even if it is significantly lower than in 

the unconstrained scenario (16 flights per day). All passengers flying between the constrained 

hub airport and the spoke airport furthest from it (the lower left spoke airport) connect 

through the unconstrained hub. Hence there are no non-stop flights between these airports. 

This example illustrates the capability of the model to simulate airline decisions to 

distribute traffic between hubs, based on the delays experienced at each hub. It is noted, 

however, that a number of factors that affect an airline’s decision in selecting hubs for 

connecting flights are not captured in the model, including existing airline presence at the hub 

airport and incentives provided by airport authorities. The model may however indicate to 

what extent airlines may switch operations to alternative hubs that they already operate. 

B.3 Distribution of Traffic in a Multi-Airport System 

The third and final theoretical network simulated – a simplified hub-and-spoke 

network with one spoke served by a multi-airport system of two airports, shown in Figure 

B-1c – illustrates the capability of the Airline Response Model to distribute traffic between 

airports in a multi-airport system with different capacity constraints. Key input data is shown 

in Table B-3. As in Sections B.1 and B.2, these inputs are hypothetical, but are based on 

typical values for the U.S. air transport system in 2005. Two airlines are again modelled, and 

both are assumed to operate at both airports in the multi-airport system, so they compete 

directly. All other input data, with the exception of airport capacities, are identical to that 

described in Section B.1. Airport capacities are described in detail below.  

 

Table B-3. Input Parameters for Analysis of the Distribution of Traffic in a Multi-

Airport System. 

Input Parameters 

Unconstrained demand [pax/yr] 
Hub City – Spoke City 650,000 

Spoke City – Spoke City 140,000 

Hub-spoke stage length [nmi] 430 

Number of airlines serving each O-D market 2 

Extra-network traffic [flts/day] 
Hub Airport  2,000 

Spoke Airport 500 
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Airport capacities are specified for each of the airports for three scenarios. In the first 

scenario, airport capacities are unconstrained at all airports. In the second scenario, the 

capacity of one of the spoke airports in the multi-airport system is limited to 35 aircraft per 

hour, while the other airports, including the hub, are left unconstrained. Under the simulated 

traffic levels, the capacity constraint applied to the spoke airport in the multi-airport system is 

severe, and results in delays roughly equivalent to those projected for the worst delayed 

airports in the United States 20 to 25 years in the future, if airport capacities are not 

expanded. In the final scenario, the capacity of both airports in the multi-airport system is 

limited, but to different degrees – one with a medium capacity constraint of 40 aircraft per 

hour, and the other with a severe capacity constraint of 35 aircraft per hour. The other airports 

in the network are left unconstrained. Under the simulated traffic levels at the airport, the 

medium capacity constraint results in delays that are roughly equivalent to those at the worst 

delayed airports in the United States today, while the severe capacity constraint is the same as 

for the second scenario. 

The Airline Response Model was run using the inputs from Table B-3 and those 

summarized above for each of the three airport capacity scenarios described. Figure B-4 

presents the flight frequency results for each of the scenarios.  

In order to serve the 650,000 passengers per year between each spoke city and the 

hub, and the 140,000 passengers per year between each spoke city (non-stop and connecting), 

the network that maximises airline profit in the unconstrained scenario (Figure B-4a) 

distributes the traffic between the airports in the multi-airport system equally between the two 

airports (9 flights per day each), with the rest of the system forming a pure hub-and-spoke 

network. 18 flights per day are operated from the hub to each of the other spoke airports.  

The effect of a capacity constraint at one of the airports in the multi-airport system 

(the left airport) on the otherwise unconstrained network can be seen in Figure B-4b. In this 

scenario, all the flights from the hub airport are routed to the unconstrained airport because of 

the flight delays at the constrained airport. The constrained airport does not serve any traffic 

in the network. Instead the system forms a pure hub-and-spoke network with the 

unconstrained airport in the multi-airport system forming a spoke in the system, with 18 

flights per day operated between each of the spokes and the hub. All O-D passenger demand 

from the multi-airport city is routed through the unconstrained airport. It is noted that because 
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each airport has exogenously specified extra-network traffic, there are still high delays at the 

constrained airport, even though no traffic operates there in the network modelled. 

The effect that different capacity constraints at the airports in the multi-airport system 

have on the network can be seen in Figure B-4c. One airport (the left airport) has a severe 

capacity constraint, while the other has a medium capacity constraint. In this scenario, the 

flights from the hub airport to the multi-airport city are distributed between the two airports. 

Because of the higher flight delays, the more constrained airport (the left airport) receives 

less traffic than the less constrained airport (4 flights per day versus 8 flights per day). It is 

noted that the total number of flights between the two airports in the multi-airport system (12 

flights per day) is less than the number of flights to the other spokes (18 flights per day). The 

reason for this is the reduction in demand caused by the flight delays in the multi-airport 

system. 

 

                                   (b)                                                           (c) 

Figure B-4. Results for distribution of traffic in a multi-airport system of two airports –

a) both of which are unconstrained; b) one of which is capacity constrained; and c) both

of which are capacity constrained, but to different degrees. 
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This example illustrates the capability of the model to simulate airline decisions to 

distribute traffic between airports in a multi-airport system, based on the delays experienced 

at each airport. It is noted that a number of factors not captured in this model also affect an 

airline’s choice of airports in a multi-airport system, such as proximity to urban areas, 

accessibility, facilities, and existing airline presence at an airport. 
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Appendix C: Detailed Model Validation Results 
 

This appendix presents the data and model results validating the Airline Response 

Model, referenced in Section 6.1. The data and results presented include the following:  

 Table C-1. Observed Annual O-D Demand. 

 Table C-2. Modelled Annual O-D Demand. 

 Table C-3. Observed Segment Flight Frequencies (Flights per Day) 

 Table C-4. Simulated Segment Flight Frequencies (Flights per Day) 

 Table C-5. Difference between Simulated and Observed Segment Flight 

Frequencies (Flights per Day). 

 Table C-6. Percentage Difference between Simulated and Observed Segment 

Flight Frequencies. 
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Table C-1. Observed Annual O-D Demand. 
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Table C-2. Modelled Annual O-D Demand. 
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Table C-3. Observed Segment Flight Frequencies (Flights per Day). 
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Table C-4. Simulated Segment Flight Frequencies (Flights per Day). 
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Table C-5. Difference between Simulated and Observed Segment Flight Frequencies 

(Flights per Day). (Positive numbers indicate model over-prediction, while negative 

numbers indicate model under-prediction.) 
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Table C-6. Percentage Difference between Simulated and Observed Segment Flight 

Frequencies. (Positive numbers indicate model over-prediction, while negative numbers 

indicate model under-prediction.) 
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