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Abstract 
Self-driving cars, a quintessentially ‘smart’ technology, are not born smart. The 
algorithms that control their movements are learning as the technology emerges. Self-
driving cars represent a high-stakes test of the powers of machine learning, as well as 
a test case for social learning in technology governance. Society is learning about the 
technology while the technology learns about society. Understanding and governing 
the politics of this technology means asking ‘Who is learning, what are they learning 
and how are they learning?’ Focusing on the successes and failures of social learning 
around the much-publicized crash of a Tesla Model S in 2016, I argue that trajectories 
and rhetorics of machine learning in transport pose a substantial governance 
challenge. ‘Self-driving’ or ‘autonomous’ cars are misnamed. As with other 
technologies, they are shaped by assumptions about social needs, solvable problems, 
and economic opportunities. Governing these technologies in the public interest 
means improving social learning by constructively engaging with the contingencies of 
machine learning. 
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Introduction  

In late 2016, the car company Tesla announced that the new generation of its Model S 

would include ‘full self-driving hardware’ (Tesla, 2016a). This would be a technology 

capable of realizing a long-held dream of automotive autonomy, with the requisite 

sensors and processing power to drive ‘all the way from LA to New York’ without 
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human input by the end of 2017, according to Elon Musk, the company's CEO 

(quoted in Etherington, 2016). However, this quintessentially ‘smart’ technology has 

not been born smart. The brain of this self-driving-car-in-the-making is still not fully 

formed. The algorithms that its creators hope will allow it to soon handle any 

eventuality are being continually updated with new data. It is a car that is learning to 

drive. 

 My curiosity about this particular model has a morbid side. In May 2016, a 

Tesla Model S was involved in what could be considered the world’s first self-driving 

car fatality. In the middle of a sunny afternoon, on a divided highway near Williston, 

Florida, Joshua Brown, an early adopter and Tesla enthusiast, died at the wheel of his 

car. The car failed to see a white truck that was crossing his path. While in ‘Autopilot’ 

mode, Brown’s car hit the trailer at 74 mph (in a 65 mph zone). The crash only came 

to light in late June 2016, when Tesla (2016b) published a blog post, headlined ‘A 

tragic loss’, that described Autopilot as being ‘in a public beta phase’. 

 The self-driving car is a technology that is already with us as well as a work-

in-progress, laden with promise for what it might become. It is an important vehicle 

for the development and application of machine learning. With machine learning, as 

with other emerging technologies, society has not yet worked out the terms of 

responsibility, the distribution of liability, the thresholds of acceptable safety or the 

lines dividing recklessness from negligence. The emergence of self-driving cars is 

therefore also a test of social learning, which can be defined as the way in which 

society and its institutions make sense of novelty. 

 In this article, I analyse the public debate about self-driving car innovation, 

considering competing definitions of problems, solutions and concerns. I begin by 

considering the emerging politics of machine learning and the relative 
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problematization of algorithmic outcomes and processes. I describe how the 

application of deep learning – a mode of artificial intelligence in which software 

learns its own rules to solve tasks – has revived the possibility of self-driving cars, 

making the engineering challenge, as well as social problems from road safety to 

sustainability, appear ‘solvable’. In this light, the terminology of ‘self-driving cars’ 

and ‘autonomous vehicles’ and the promises surrounding these terms appear 

misleading. New companies perform their versions of idealized self-driving futures 

while incumbent car manufacturers work out how to respond, each seeking to redefine 

technological novelty in their interests. When these nascent technologies go wrong, 

the scale of the gap between promise and reality starts to become clear. 

 My examination of the Tesla crash and its aftermath draws on official 

investigations as well as informal online exchanges among users engaged in a process 

of haphazard social learning. An analysis of what was learnt and what was ignored 

after the crash allows for the anticipation of governance challenges ahead. Innovators’ 

insistence that the answer lies in continued autonomy and algorithmic enhancement 

leads to a rejection of new forms of governance and represents a substantial 

privatization of learning. This jeopardizes both public trust and the long-term 

potential of technologies that could be hugely beneficial. Existing governance 

approaches, including the responses from US regulators to the Tesla crash, suggest 

some misguided assumptions, but also some cause for optimism. In my conclusion, I 

point to some governance options that seek to prioritize social learning, focusing in 

particular on the sharing of data.  
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Being ‘in beta’ 

The suggestion that technologies are social experiments has become a commonplace 

critique. If experiments are understood, following Rheinberger (1997), as systems for 

the organized production of surprises, then an approach to technology as a social 

experiment should prompt us to ask what sorts of uncertainties are considered 

pertinent by different actors and how they respond (Gross, 2010; Stilgoe, 2016). In 

other words, we should pay close attention to who learns what and how. 

 Technological accidents can wrest control of the social experiment away from 

the technologists, laying bare the rules and assumptions that shape black boxes and 

exposing the uncertainties that are so easy to ignore when things work well (Wynne, 

1988). Except in cases of total cover-up, accidents can force public reframing and 

institutional reflection.1 

 However, while accidents may be an instructive form of ‘informal technology 

assessment’ (Rip, 1986), the interpretation of their lessons is, as with all learning, 

socially filtered. It is hard to teach institutions things that they do not want to learn. 

The vagaries and blind spots of social learning have been well described by writers in 

the social sciences (see Parson and Clarke, 1995) and elsewhere. As TS Eliot has the 

doomed archbishop Thomas Becket say in ‘Murder in the cathedral’, 

We do not know very much of the future 
Except that from generation to generation 
The same things happen again and again 
Men learn little from others’ experience. 
 

As I describe below, the recognition of such human failings has helped spur efforts to 

rationalize learning in machines. This exacerbates the tendency to blame the things 

that come to be labelled ‘unintended consequences’ (Jasanoff, 2016), on ‘human 

                                                
1	While	social	scientists	often	talk	about	technological	‘accidents’,	it	is	worth	noting	that	others,	
including	crash	investigators,	shun	the	term	because	it	suggests	that	nobody	is	to	blame.	
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error’ (Shorrock, 2013) or ‘user error’ (Wynne, 1988)). In systems where machines 

and humans interact, users often become the ‘moral crumple zone’ (Elish, 2016) for 

technological failure.  

 Social scientists’ studies of technological accidents point to a more 

constructive alternative view. Reframing errors as ‘system-induced’ (Wiener 1977) 

rather than merely a function of human frailty allows for genuine learning. Perrow 

(1984) emphasizes that humans should be regarded as a resource, not a problem, for 

technological safety. His counterexample to what he regards as inherently dangerous 

nuclear power stations is air travel. Despite the mindboggling socio-technical 

complexity of aeroplanes, Perrow (1984: 127) argues that ‘no other high-risk system 

is so well-positioned to effectively pursue safety as a goal’, because of an emphasis 

on social learning. 

 Innovation is inherently unruly (Wynne, 1988). Rather than just following a 

set of pre-established social rules, such as those to do with safety, technology is a set 

of practices that generate new rules. Questions of safety are therefore hard to pin 

down, because they tend to morph into questions such as ‘safe enough for what?’ 

Discussions that start with ‘risk’ end up being about the purposes of a particular 

technology and its alternatives (Rayner and Cantor, 1987). 

 Work in science and technology studies (STS) has gone some way towards 

explaining the social constitution of technologies such as nuclear power, genetically 

modified foods, nanotechnology and geoengineering (Kearnes et al. 2006; 

Szerszynski et al. 2013; Winner 1980). But there has been less attention to the 

dynamics through which such constitutions emerge and alternative modes of 

governance might suggest improvements. Rather than seeing technologies as 

constitutionally static, we can instead imagine them as processes of learning. 
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 There are multiple ways in which social learning is relevant to the governance 

of emerging technologies. The first, originating in educational psychology (e.g., 

Bandura, 1988), starts from the observation that people can and do learn in groups – 

with and from others. This literature sees social learning as the product of interactions 

between the cognitive activities of learners, the social behaviours they see modelled 

and the wider environment. The normative possibilities of social learning lie in 

understanding the multidimensionality of issues and experimenting with new 

approaches to achieve social change (e.g., Friedman and Abonyi, 1976; Reed et al., 

2010). Systems that are good at social learning are seen as more resilient, interpreting 

shocks and crises as opportunities (Berkes and Turner, 2006). The substantial 

literature on social learning for sustainability blends two approaches to social 

learning: the first focussing on how people learn socially, the second asking how 

societies learn (Parson and Clark, 1995). 

 Theories of social learning in governance emphasize the design of systems and 

institutions that learn and improve over time (Fischer, 2000; Rayner, 2004; Wynne, 

1992). These frameworks have an analytical basis in theories of politics as a form of 

learning (Hall, 1993), with policymaking seen not just as the playing out of 

stakeholder interests, but as ‘puzzling together’ (Hoppe, 2011), in the tradition of 

Dewey (1916).  

 The conception of governance as social learning is particularly pertinent to 

new technologies, which typically emerge in what Hajer (2003) calls an ‘institutional 

void’, surrounded by uncertainties not just about the effects of technology 

(Collingridge, 1980) but also the object of governance itself (Owen, 2014). 

Conventional technology assessment fixates on the products of innovation, and in 

particular its hazards. Frameworks of responsible innovation aim to also engage 
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upstream with the processes and purposes of innovation, recognizing that, in addition 

to questions of risk, public concerns also relate to how and why innovation happens 

(Stilgoe et al., 2013). Recent efforts to expand practices of public deliberation on new 

technologies can be seen as a form of learning with and about the social context of 

new technologies, with the additional aim of galvanizing collective action (Fischer, 

2000; Webler et al., 1995). 

 Many of the most profound limits to responsiveness in innovation relate to 

inadequacies in social learning. The historians’ lament that those ignorant of history 

are doomed to repeat it is particularly apposite because innovation is imagined as a 

project of novelty. As Rayner (2004) has argued, presumptions of novelty act against 

learning. It becomes easy for innovators to argue that ‘this time it’s different’ and that 

past pathologies of technological development, such as widening inequality, ethical 

dilemmas, unjustified hype, novel risks and other unintended consequences will not 

be repeated. Institutions often lack the reflexive capacity to take on board and respond 

either to the views of others (Wynne, 1993) or to early warnings of danger (EEA, 

2001). It is easier for institutions to imagine deficits of public knowledge, public trust 

or regulation (Rayner, 2004) than to question the uncertainties and contingencies of 

their own commitments. At the heart of Paquet’s (2005, p. 315) critique of 

‘solutionism’, in which issues are ‘interpreted as puzzles to which there is a solution 

rather than problems to which there may be a response’, is a concern that ‘[t]here is 

no place for social learning… the development of rough and ready arrangements 

around which collaboration and negotiations might be built’. 

 Given the uncertainties of innovation and an institutionalized tendency 

towards hubris (Jasanoff, 2004), a focus on social learning offers a way to understand 

and democratize the means and ends of the social experiment of technological change. 
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Both senses of social learning – how people learn socially and how societies learn – 

apply. The latter is more obviously relevant to the governance of new technologies. 

But the former becomes particularly interesting when we consider the ‘social’ within 

machine learning.  

 

The sociology of machine learning 

The recent and rapid resurgence of machine learning poses particular challenges for 

governance based on social learning. Machine learning systems such as those in 

control of nascent self-driving cars offer a literal example of Wynne’s (1988) 

characterization of technology as rule-making as well as rule-following behaviour. 

The algorithmic architecture of self-driving car programming begins with ‘if-then-

else’ rules, which define actions under certain conditions. The car senses and 

classifies the world around it before probabilistically making choices based upon what 

it has learnt.  

 However, driving is too complicated to fit a predict-and-provide approach. As 

engineers have come to recognize the breadth of possible situations that might need to 

be defined by formal rules and then engraved in algorithms, they have turned to 

machine learning using deep neural networks. Here, the aim of the game is to work 

out the rules. The machine is trained by extracting patterns from vast datasets, a 

process referred to as ‘rule learning’, ‘rule induction’ or ‘rule extraction’. For 

engineers, the gains in efficiency are clear. Lipson and Kurman (2016: 8) claim: ‘The 

fact that deep-learning software ‘learns’ by looking at the world gives it [a] major 

advantage: it’s not rule bound.’ Sebastian Thrun, formerly Google’s self-driving car 

lead, goes further, arguing that ‘[t]he data can make better rules’ (Vanderbilt, 2012). 

One engineering analysis (Moore and Lu, 2011) argues that the rules written by 
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machines from available data would be less arbitrary than the legal ‘rules of the road’ 

(see also Both, 2016). 

 For governance, this unruliness is a cause for concern. The tension between 

rule-following and rule-making in machine learning has started to be explored by 

literature on the politics of algorithms (Burrell, 2016). As it has become clear that 

citizens’ lives are increasingly shaped and cajoled by the influence of algorithms and 

artificial intelligence, social scientists, legal scholars and philosophers have developed 

critical approaches (Mittelstadt et al., 2016). Many of these focus on the question of 

opacity. Algorithms are ‘black boxes’ (Pasquale, 2015) but, unlike many others, they 

may be extremely hard, if not impossible, to prise open with sociological or historical 

tools.  

 Burrell (2016) sees three modes of algorithmic impenetrability. First, 

algorithms are a source of competitive advantage and therefore likely to be 

proprietary. For this reason, access to code and the data that enables its learning will, 

according to Pasquale (2015), become a growing point of contention between 

companies and others seeking to understand their actions. Secondly, as algorithms 

become more specialized, more complex and composed by multiple authors with 

different perspectives, even their creators may no longer be able to understand them 

(Burell, 2016). As computer entrepreneur-turned-academic Kevin Slavin puts it: 

‘We’re writing things we can no longer read’ (quoted in Neyland, 2016). For those on 

the outside seeking to hold algorithms to account, the challenge of legibility is even 

greater. The third way in which algorithms become obscure is in their application, 

creating complexity as they make use of large datasets. Understanding and dealing 

with this means going beyond conventional calls for algorithmic transparency to 

scrutinize real-world uses (Annany and Crawford, 2016; Burell, 2016).  
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 Those seeking to govern algorithms have much to learn from past examples of 

emerging technologies. Over the past three decades, a fault line has emerged in the 

debate over agricultural biotechnology regulation. One approach, favoured by US 

regulators, seeks to evaluate an innovation’s products – traits, risks, benefits and other 

outcomes. The assumption is that technologies, like sausages and laws, should be 

judged on the quality of the product, not the process that created it. The other 

approach, more common in Europe, focuses on the novelty of the process (Jasanoff, 

1995; Kuzma, 2016). Those advocating a more precautionary approach to regulation 

have argued that a product-based approach, by emphasizing the ‘substantial 

equivalence’ between an innovation and its predecessors, overlooks uncertainties that 

may emerge as problematic (Millstone et al., 1999). The presumption of substantial 

equivalence is also likely to generate controversies about labelling when groups 

disagree about the nature and implications of technological novelty.  

 For machine learning, there are process considerations relating to the often-

opaque generation of outcomes by digital systems, as well as to the processes through 

which new technologies are created, such as the gathering of data and the assumptions 

made within algorithms. The identification of tasks and modes of machine learning 

(for example, reinforcement learning, which adopts a trial, error and reward approach 

to optimization, described in one leading paper (Mnih et al., 2015) as ‘deeply rooted 

in psychological and neuroscientific perspectives on animal behaviour’) is 

inescapably social.  

 Deep learning systems are seen by their creators as means of engaging with an 

uncertain world that is impossible to capture with a set of formal rules. However, in 

developing rules, such systems may create new social uncertainties. In gaining the 

ability to recognize and make decisions about unfamiliar information, they lose the 
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ability to account for their actions. Algorithmic outcomes may therefore be 

inscrutable, their decisions being the computing equivalent of a hunch. The what is 

prioritized over the why or the how. This has led some to call for a ‘right to 

explanation’ (Goodman and Flaxman, 2016) in cases where the ‘production of 

prediction’ (Mackenzie, 2015) has profound consequences for people’s lives.1 For the 

machine learning community, the challenge is seen as one of ‘interpretability’ 

(Vellido et al., 2012). For governance, an additional question is whether standards of 

interpretability might differ between companies, regulators, users, and citizens 

(Edwards and Veale, 2017). An explanation that is considered adequate by engineers 

may not satisfy a sceptical NGO, for example. And, if datasets are large and 

multidimensional, simple explanations may be impossible. The separation of 

outcomes from processes if interpretability is trumped by efficiency forms a 

substantial barrier to social learning.  

 The politics of interpretability have already revealed themselves with the type 

of image recognition techniques at work in self-driving car systems. When Google’s 

algorithms were misidentifying images of people as dogs and, with predictably 

greater controversy, black people as gorillas, the company’s own engineers could not 

pinpoint where the problem lay (Annany and Crawford, 2016). The machines were 

learning in ways that their creators could not understand. Innovators express the 

surprise they feel when they see one of their creations learning something for itself. 

One Netflix executive described the insights generated by their algorithms being like 

a ‘ghost in the machine’ (Finn, 2017). After years of unsupervised machine learning, 

researchers are only now beginning to understand how a deep neural network goes 

about identifying an image (Lipson and Kurman, 2016; Nvidia, 2017).  
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 One early governance concern with self-driving cars has related to the ethics 

of algorithms making life or death decisions in the event of crashes and the 

responsibilities that this might place upon designers and manufacturers (Bonnefon et 

al., 2016; Crawford and Calo, 2016). Deep learning could outsource such decisions to 

the machine and make it impossible to account for them. As such, it could become a 

form of codified irresponsibility, a convenient way for companies to avoid both 

liability and learning.  

 For robust governance, systems need to be understood and scrutinized in 

multiple ways from multiple perspectives (Annany and Crawford, 2016). Allowing 

learning to be defined with reference only to a particular algorithm’s task restricts the 

potential for contestation according to different purposes. The imagined purposes of 

technologies and their justification are tightly linked with the definition of particular 

problems (Morozov, 2013). As an optimizing strategy, machine learning demands the 

tight identification of tasks. Problems need to be well defined such that they can be 

‘solved’ and the efficiency of the solution evaluated. For cars, this means considering 

how what engineers call the ‘driving task’ has been articulated, cut into various sub-

tasks and reconstructed as ‘solvable’. 

 

Self-driving as a ‘solvable problem’ 

Much of the early history of automated cars, downplayed in more recent rhetoric, 

involved plans for the integrated innovation of vehicles and highways. From the 

1950s up to the end of the century, it was assumed that, in order to get self-driving 

cars to work, they would need to communicate with similarly intelligent highways 

(Wetmore, 2003).2 
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 At the same time, car manufacturers were adding automated systems such as 

cruise control and airbags to improve safety and comfort (Vinsel, forthcoming). 

Adaptive cruise control, lane-departure warnings, collision warnings, rear view 

cameras and other aids came to be classified as Advanced Driver Assistance Systems. 

Tesla’s Autopilot, installed in almost 100,000 cars as of January 2017, might be seen 

as a straightforward next step. However, a narrative of incrementalism would 

overlook the role of machine learning, which is seen by self-driving enthusiasts as the 

tool that will upend conventional transport. 

 Newer companies with self-driving car investments such as Tesla, Google, 

Delphi, Nvidia, Mobileye, Nutonomy, Otto and Cruise Automation, most of whom 

have emerged from the vicinity of Silicon Valley, would trace the histories of their 

transport work back to the ‘Grand Challenge’ robot driving competitions staged by 

the Defense Advanced Research Projects Agency (DARPA). At the first event, in the 

Mojave Desert in 2004, the best of the cars managed only 7 miles of the 150-mile 

course. The next year, five vehicles completed the course. The 2007 version was 

staged in an urban environment. The six cars that finished were seen as an 

announcement to the world that innovation was happening apace. The 2005 and 2007 

events brought attention to engineers from Stanford and Carnegie Mellon universities, 

who would go on to populate some of the leading private-sector self-driving car 

teams.  

 The advancing robotics revealed by the DARPA challenge benefitted from 

and spurred on advances in computing. Hardware originally designed for videogame 

graphics was found to be extremely good at the rapid parallel processing required for 

machine learning. From 2008 onwards, these Graphics Processing Units (GPUs) 

enabled dramatic improvements in complex computer models known as deep neural 
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networks. As of 2016, these neural networks’ greatest feats have been in digital image 

recognition, where it is claimed their abilities have surpassed humans’ (Krizhevsky et 

al., 2012), and voice recognition (Lecun et al., 2015). Training these networks became 

possible with the accumulation of massive, labelled datasets. For self-driving cars, the 

gathering of data from both mapping projects and real-world driving has become 

central to the development of vehicles’ processing capabilities.  

 Autonomous driving is now imagined as possible despite the unpredictability 

of the open road. Innovators insist that self-driving cars are now a ‘solvable problem’ 

that, according to Musk, speaking in 2015, is ‘almost … a solved problem. We know 

exactly what to do and we will be there in a few years’ (quoted in Scoltock, 2015). 

The CEO of Nvidia, a pioneer of GPUs for machine learning and a Tesla hardware 

partner, told a Consumer Electronics Show audience that ‘We can realize this vision 

[of self-driving cars] right now’. On the screen behind him were the words ‘AI 

[artificial intelligence] is the solution to self-driving’ (Recode, 2017). 

The gamification of driving 

The reduction of the driving task to a solvable machine learning problem follows a set 

of high-profile achievements in artificial intelligence. AI has long held a maxim 

known as the Moravec paradox, in honour of the robotics pioneer Hans Moravec: 

‘[T]he hard problems are easy and the easy problems are hard’ (Pinker, 1995: 192). 

For early AI, things that humans could do without thinking, such as walking, seemed 

almost impossible to emulate, while cognitively hard tasks like chess proved 

remarkably easy for computers.  

Driving does not require a genius. Indeed, proponents of self-driving cars are 

fond of pointing out the intellectual deficits of human drivers. The quest is therefore 

to tear apart Moravec’s paradox, to turn a task that many humans find easy into one 
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that computers can solve, with enough data and processing power. In this way, 

driving has been turned into a form of machine learning game.  

 Rather than attempting to replicate the thought processes of human drivers, the 

approach has been one of brute force, with the key resource being data. With the turn 

to ‘big data’, machine learning has seen what Lipson and Kurman call ‘the transition 

from data-poor “clever” algorithms to data-rich “simple” ones’ (Lipson and Kurman, 

2015: 219). The complexity of driving data is far greater than in chess, but the sources 

of learning – billions of hours of real and simulated driving – are greater too. As I 

explain below, self-driving cars learn as fleets rather than as individual robots.  

 One attempt (though flawed (Borup et al., 2006)) to capture and challenge the 

levels of promise surrounding emerging technologies has been developed by Gartner, 

a consultancy firm. Their 2015 ‘hype cycle’ had autonomous vehicles (AVs) at its 

apex, on the cusp of the ‘trough of disillusionment’. AVs were, according to Gartner, 

5-10 years away. The 2016 version had AVs beginning their slide towards reality, and 

now being more than ten years away. A cynic might highlight the contradiction: that 

the technology’s arrival is getting ever more distant. Wetmore (2003) points out that 

self-driving vehicles were ‘only 20 years away’ for more than 60 years in the 20th 

Century. But the more important concern is that there is no clear, uncontested line 

demarcating the presence of a technology in society. Chris Urmson, then leader of 

Google’s self-driving car project, said in March 2016: 

How quickly can we get this into people’s hands? If you read the papers, you 
see maybe it’s three years, maybe it’s thirty years. And I am here to tell you 
that honestly, it’s a bit of both. (in Gomes, 2016).  

 

Companies with commitments to self-driving cars and investment horizons of only a 

few years have little choice but to exaggerate the speed and downplay the friction of 

technological change. They must navigate what Rayner (2004) calls the ‘novelty 



	 16	

trap’, advertising a technology as ground-breaking and transformative while seeking 

to persuade regulators that it is no more than an incremental step beyond existing 

approaches. The perfect self-driving futures currently on offer are further away than 

their proponents imagine. And yet, in the formal and informal experiments currently 

underway, self-driving cars can be said to be on the streets already. With Musk’s 

encouragement, Tesla owners and journalists have described Autopilot’s benefits as 

vast (Musk, 2016a; xkwizit, 2016; xrayvsn, 2016). One technology reporter wrote that 

Tesla’s ‘self-steering was suddenly, overnight, via a software update, a giant leap 

toward full autonomy’ (Bradley, 2016).	At the same time, the company’s response to 

regulatory scrutiny is to suggest that their innovations are mere ‘baby steps’ (Frankel, 

2016). The rhetorical management of the definition of increments and revolutions in 

innovation is a central project of contemporary innovation (Borup et al., 2006). The 

gap between baby steps and giant leaps, between concept cars and transport systems, 

is filled with promise and speculation.	

 The global unevenness of road surfaces, built environments, other road users, 

weather conditions, regulatory regimes and driving cultures means that self-driving 

cars can, without paradox, be both complicated and straightforward, implausible and 

probable, distant and just-around-the-corner. The development of artificial 

intelligence is not a line from easy to hard. If machine learning is ‘the part of artificial 

intelligence that actually works’ (Kosner, 2013), we must question the contexts in 

which it can be said to ‘work’.3 Despite the existence of a car with ‘[f]ull self-driving 

hardware’ (Tesla, 2016a), it may still be impossibly hard to chart a route through the 

messy transitions, mixtures and missteps that may be encountered en route to a self-

driving world.  
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 In addition to systems such as Tesla’s Autopilot, the public performance of 

inevitability has taken the form of a number of high-profile tests. Unlike the DARPA 

challenges, which were genuine public experiments, subsequent efforts had closer 

control of their uncertainties (see Collins, 1988). In his testimony to a US Senate 

Committee, Glen de Vos (2016) from Delphi described how, 

‘in April of 2015, Delphi completed the first automated vehicle cross-country 
drive … a 15-state, 3,400-mile journey from San Francisco to New York City 
with a car that, 99 per cent of the time, was driving without human input.’4 

 

Google claimed to have achieved ‘the world’s first truly self-driving ride on public 

roads at the end of 2015’ (Dolgov, 2017). Other companies have released videos that 

show off their cars’ autonomy, navigating a city’s streets and finding parking spaces 

while the human in the driving seat merely watches.  

 Even if a car manages to drive itself 99% of the time, there is reason to treat 

the final 1% with extreme caution. Journalists and public observers have leapt upon a 

series of very public bumps and scrapes as self-driving cars have started to be tested 

in cities (Muoio, 2016; Reynolds, 2016). Such uncontrolled encounters are more 

publicly useful than any number of advertisements of perfection, which, as roboticists 

have pointed out, are ‘doomed to succeed’ (Brooks and Mataric, 1993).  

 Tesla has claimed that, even without self-driving, their cars are generating data 

that will persuade regulators of their increased safety. But regulators legitimately 

focus on the uncertainties of technological performance. A technology that works 

well right up to the point that it doesn’t, particularly when that point demands the 

attention of a user who has lost concentration, represents a substantial regulatory 

problem. By the time a technology switches off, its user has probably also switched 

off. As one Toyota engineer has argued ‘none of us in the automobile or IT industries 
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are close to achieving true … autonomy …. In some ways, the worst case is a car that 

will need driver intervention once every 200,000 miles’ (Toyota USA, 2017). 

 For self-driving car engineers, this issue is imagined as the ‘handoff problem’, 

a feature of human-computer interaction well known to ergonomists that is now being 

relearnt. An effect of autopilots on aeroplanes is that they can reduce a pilot’s 

capacity to take control when the situation demands, either because of a long-term 

atrophying of skills through lack of practice or a short-term disorientation through 

lack of attention. Long periods of autonomy fundamentally change the role of the 

human from operator (‘in the loop’) to supervisor (‘on the loop’) (Cummings and 

Thornburg, 2011; Perrow, 1984). Studies of simulated handoffs in cars, when 

automated systems demand engagement from distracted humans, suggest that it can 

take as long as 40 seconds for humans to regain full control of a car (Morgan et al., 

2016). 

 In the real world, humans may be unaware of technological failure happening. 

In some recorded cases with Tesla’s Autopilot, the explanation for a malfunction has 

been clear, such as when a large moth blocked a Model S’s radar sensor on a highway 

(Redebo, 2016). In other cases, however, bemused and trusting users have been 

unable to explain why Autopilot didn't work as they had expected. Many of these 

glitches have proven inconsequential. However, they have pointed to a gap between 

the promise and the reality of a technology that is failing to live up to its name.  

 

‘Autonomous vehicles’ and ‘self-driving cars’ as misnomers 

The terms ‘self-driving cars’, ‘autonomous vehicles’ and ‘driverless cars’ have been 

used almost interchangeably in public discourse (Cohen et al., 2017). The differences 

in nuance implied by these terms should not distract us from a larger concern, which 
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is with the rhetoric of autonomous technology. Technology, however, is never self-

driving (Bijker et al., 1987; Winner, 1977). Claims that technology has a will of its 

own (e.g. Kelly, 2010), typically disguise a political agenda that is libertarian and 

deregulatory.  

 Just as self-driving cars cannot be self-driven, so autonomous vehicles can 

never be truly autonomous (Stayton, 2015). Self-driving cars are driven by social 

processes of goal-selection, machine-making, governance, use and their encounters 

with the world around them. The word ‘autonomous’ belies not just the human 

involvement in the cars’ creation, but also the connectivity that enables their 

operation. As Bradshaw and colleagues (2013) point out, ‘autonomous system’ is a 

misnomer, if not an oxymoron. ‘Autonomy’ only happens when tasks and real-world 

contexts are sufficiently constrained (Bradshaw et al., 2013). ‘Autonomous vehicles’ 

are not self-contained, they are not self-sufficient and they are not self-taught. Unlike 

a conventional car, a self-driving car can function only as part of a fleet. Tesla’s cars 

are bought as individual objects, but commit their owners to sharing data with the 

company in a process called ‘fleet learning’. ‘The whole Tesla fleet operates as a 

network. When one car learns something, they all learn it’, with each Autopilot user 

as an ‘expert trainer for how the autopilot should work’ (Musk, quoted in 

Fehrenbacher, 2015). Together, these users generate millions of miles of data every 

day (Musk, 2016b). Each car’s neural network learns how to drive not just from its 

own experience, but also from the accumulated experience of its thousands of sister 

vehicles.  

‘Whenever a self-driving car makes a mistake, automatically all the other cars 
know about it, including future unborn cars … The ability of cars to develop 
artificial intelligence is so much greater than the ability of people to keep up 
with them’ (Thrun, quoted in Lane, 2016). 
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For engineers, fleet learning has the dual advantage of massively increasing the speed 

with which cars can understand the world, while avoiding the imperfections of human 

learning that are captured in archbishop Becket’s lament. Indeed, some researchers 

have sought to escape the constraint of real-world trial-and-error. Reinforcement 

learning in simulated environments, including games such as Grand Theft Auto, is 

seen as one way of accelerating self-driving car training (Filipowicz et al., 2017; You 

et al., 2017).  

 For some companies, the interconnectedness of self-driving cars is central to 

the business model. While Tesla owners have been experimenting with self-driving 

largely on open highways, ride-sharing taxi companies such as Uber and Lyft have 

been early investors and experimenters in urban self-driving. In such environments, 

the efficiency gains from vehicle-to-vehicle and vehicle-to-infrastructure 

communication become clearer and the tension between interdependence and 

autonomy becomes more visible (Yoshida, 2017). The benefits of autonomous 

vehicles may therefore be inversely proportional to their autonomy from one another. 

In this respect, the stimulus of DARPA may have set self-driving in a counter-

productive direction given that the needs of military vehicles, operating in 

unstructured environments, are very different from conventional ones, which are, in 

most places, embedded in well-organized highway systems (Schladover, 2009). 

 Technologies are imagined as solutions to particular problems, and we can 

examine the construction of those problems in order to interrogate the explicit and 

implicit purposes of the technology. But technologies also create problems of their 

own. As Latour and Venn (2002) have discussed, technologies are not merely means 

to ends, a way of getting from A to B. They are detours, taking us to futures that may 

be unintended and are impossible to fully calculate in advance. The ends enabled by 
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technological innovation are typically hard to anticipate and hard to challenge, in part 

because of innovators’ lack of reflexivity about uncertainties and contingencies 

(Guston, 2014). Accidents therefore provide a constructive opportunity for reframing.  

 

Responding to the first self-driving death 

On 30 June 2016, Tesla published a blog post announcing and responding to the crash 

that had happened six weeks earlier. After explaining that the circumstances of this 

tragedy were exceptional, following a pattern familiar from previous technological 

failures (Wynne, 1988), the company’s response went on to explain that Autopilot 

was still a technology ‘in beta’ and that responsibility for safe driving remained the 

driver’s alone. Musk later told reporters, 

Perfect safety is really an impossible goal. It’s really about improving the 
probability of safety – that’s the only thing possible (quoted in Lambert, 
2016). 

 

Musk’s responses represent an attempt at renegotiating the contract between 

carmakers, drivers and the market. Conventional carmakers have largely been limited 

to innovating and testing in private before releasing their products into the wild. 

Crash-testing, for example, has been a vital part of automotive innovation, but it has 

been imagined as a private activity, conducted in laboratories or computer simulations 

(Leonardi, 2010). A production car typically needs to be crashed more than twenty 

times in tests in order to satisfy regulators. During the early life of the Tesla Model S, 

the company emphasized that the hardware was world-beating. As well as 

acceleration that beat most petrol-driven cars, the company trumpeted ‘the best safety 

rating of any car ever tested’ (Tesla, 2013). Nevertheless, the Tesla is not sold as a 

finished article. It is seen as a technology capable of development, a framework for 
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the accommodation of software that can be continually upgraded. The company 

argued that, with existing hardware, their software target was a 90% reduction in 

crashes by using Autopilot (Musk, 2017a). The May 2016 crash and the response 

therefore represented a public trial less of the car’s body than its brain.  

 The first official report of the May 2016 crash, from the Florida police, put the 

blame squarely on the truck driver for failing to yield the right of way (Traffic Crash 

Records, 2016). However, the circumstances of the crash were seen as sufficiently 

novel to warrant investigations by the National Transportation Safety Board (NTSB) 

as well as the National Highway Traffic Safety Administration (NHTSA). The NTSB 

is tasked with identifying the probable cause of every air accident in the US, as well 

as some highway crashes. However, the novelties of the Tesla collision limited the 

Board’s ability to report quickly on events. Their preliminary report was matter-of-

fact. It relates that, at 4:40pm on a clear, dry day, a large truck carrying blueberries 

crossed US Highway 27A in front of the Tesla, which failed to stop. The Tesla passed 

under the truck, sheering off the car’s roof. The collision cut power to the wheels and 

the car then coasted off the road for 297 feet before hitting and breaking a pole, 

turning sideways and coming to a stop. Brown was pronounced dead at the scene. The 

truck was barely damaged. 

 The NTSB (2016) noted that the Tesla Model S is a fervent data generator. 

The car’s records revealed that the car was travelling at 74 mph when it hit the truck, 

9 mph above the speed limit. The car was also able to tell the NTSB that Autopilot 

was active at the time of the crash.  

 In May 2017, the NTSB released its full docket of reports on the crash. From 

further data released by Tesla, the investigators learnt that Joshua Brown’s 40-minute 

journey consisted of two-and-a-half minutes of conventional driving followed by 37 
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and a half minutes on Autopilot, during which his hands were off the steering wheel 

for 37 minutes (NTSB, 2017a). He touched the wheel eight times in response to 

warnings from the car. The longest time between touches was six minutes. In the 

minutes before the crash, neither Brown nor Autopilot ever applied the brakes. The 

NTSB calculated that Brown would have had at least ten seconds to react had he seen 

the truck. The only witness to speak to the NTSB said that the crash looked like,  

A white cloud, like just a big white explosion … and the car came out from under 
that trailer and it was bouncing … I didn’t even know … it was a Tesla until the 
highway patrol lady interviewed me two weeks later …. She said it’s a Tesla and 
it has Autopilot, and I didn’t know they had that in those cars. (NTSB, 2017b) 

 

This window into the functioning of a car that its owner regarded as capable of self-

driving is important, but it remains misty. The car is replete with sensors, but these 

offer no insight into what the car thought it saw nor how it reached its decisions. The 

car’s brain remained largely off-limits to investigators. At a board meeting in 

September 2017, one NTSB staff member explained: ‘The data we obtained was 

sufficient to let us know the [detection of the truck] did not occur, but it was not 

sufficient to let us know why’ (NTSB, 2017c). 

 The NHTSA saw the incident as an opportunity for a crash course in self-

driving car innovation. Its Office of Defects Investigation wrote to Tesla demanding 

data on all of their cars, instances of Autopilot use and abuse, customer complaints, 

legal claims, a log of all technology testing and modification in the development of 

Autopilot and a full engineering specification of how and why Autopilot does what it 

does (NHTSA, 2016a). 

 While working with the ongoing NTSB and NHTSA investigations, Tesla 

engaged in a very public form of informal technology assessment with numerous 

others. 
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‘Do the math’ 

The day after Tesla revealed the crash, car safety veteran Clarence Ditlow was quoted 

as saying that, ‘The Tesla vehicles with autopilots are vehicles waiting for a crash to 

happen – and it did in Florida’ (quoted in Puzzanghera, 2016). Ditlow said that the 

Autopilot feature should be disabled until regulators were able to advise on its limits. 

His criticism related not just to whether Autopilot worked as a driving aid, but also 

whether it was luring drivers into complacency by implicitly over-claiming.  

 The German transport minister asked Tesla to rename the system, to which the 

company responded, ‘Autopilot is a suite of technologies that operate in conjunction 

with the human driver to make driving safer and less stressful’ and published the 

results of a survey that suggested 98% of German drivers were aware of the limits of 

the system (Bild, 2016). For some regulators, including in California, (State of 

California Department of Motor Vehicles, 2016), the name, and the claims 

surrounding it, implied that the system was not an automatic pilot, for driver-

assistance, but an autonomous pilot, to replace a driver. Tesla’s competitors shared 

the concern. Machine learning pioneer Andrew Ng, just after leaving Google to join 

Baidu, tweeted, in reference to an earlier, non-fatal crash: 

It's irresponsible to ship driving system that works 1,000 times and lulls false 
sense of safety, then... BAM! (Ng, 2016). 

 

Trent Victor, an engineer at Volvo, who call their system ‘Pilot Assist’, told a 

technology reporter that ‘[Autopilot] gives you the impression that it’s doing more 

than it is … [it] is more of an unsupervised wannabe’ (quoted in Golson, 2016). David 

Caldwell from Cadillac had justified the delay of a new feature called ‘Super Cruise’ 

in terms of corporate responsibility: ‘We won’t release it just to hit a date, nor will we 
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“beta test” with customers’ (quoted in Davies, 2016). And one driving journalist 

pointed out that, while Mercedes’ ‘Drive Pilot’ was technically equivalent to Tesla’s 

Autopilot, the German company had deliberately limited the system in order to avoid 

users thinking they were in a self-driving car (Jaynes, 2016). Tesla, by making 

promises about imminent autonomy, seemed to be caught, along with their users, in a 

web of hyperbole. 

 Other critics suggested that Tesla’s real irresponsibility lay in their failure to 

reveal the crash at the time of a public stock offering that raised $1.46 billion. Alan 

Murray, the editor of Fortune magazine, claimed that the crash was a material fact for 

the share price, to which Musk responded, 

Indeed, if anyone bothered to do the math (obviously, you did not) they would 
realize that of the over 1M auto deaths per year worldwide, approximately half a 
million people would have been saved if the Tesla autopilot was universally 
available. Please, take 5 mins and do the bloody math before you write an article 
that misleads the public. (quoted in Loomis, 2016). 

 

In this exchange, Musk’s framing is one of near-perfect consequentialism. He 

imagines the issue as one of relative risk: the acceptability of self-driving cars should 

be determined merely in comparison to the safety of conventional, human-driven cars. 

He is attempting to restrict the debate to technological outcomes rather than processes 

or purposes. In legitimizing only the probabilistic risk quantity, he is ignoring 

concerns about risk quality, such as those revealed through social science relating to 

control, trust, fairness, catastrophic potential, novelty and uncertainty (Irwin et al., 

1999; Lupton, 1999; Renn, 1998). Societies may know that air travel is far safer than 

car travel and still justifiably take issue with aeroplane crashes, for example. A system 

in which conventional cars are replaced by self-driving cars may see the decline of 

conventional accidents, but the arrival of new categories of catastrophe relating to 

‘mode confusion’ (NHTSA, 2014, RAND, 2016) or software vulnerabilities. If 



	 26	

regulators merely ‘do the math’, they should be relatively relaxed about occasional 

technological failure and exceptional circumstances, as long as the aggregate 

performance improves upon alternatives. Musk’s insistence upon ‘doing the math’ led 

him to a further rebuttal of journalists’ criticisms: 	

If, in writing some article that’s negative, you ... dissuade people from using 
an autonomous vehicle, you're killing people (quoted in McGoogan, 2016). 

 

Musk’s competitors do not share his certainty. Most would admit that they are a long 

way away from safe self-driving cars. Gill Pratt from Toyota has claimed that 

reasonable reassurance about safety would only come after a trillion miles of testing 

(Guizzo and Ackerman, 2015; also, Kalra and Paddock, 2016). Given that this scale 

of advance testing is impossible, as it was when Alvin Weinberg (1972) made a 

similar point about nuclear power stations, the uncertainties, and therefore the politics 

of experimentation, will never be settled.  

 

Constructing human deficiency 

In January 2017, the NHTSA issued its report on the May 2016 Tesla crash. The 

agency’s initial aim was to ‘examine the design and performance of any automated 

driving systems in use at the time of the crash’. The conventional outcome of such 

investigations is a decision on the necessity of a product recall. In this case, however, 

the NHTSA noted how the system under evaluation had already changed markedly 

since the crash through wireless software updates. 

 The report contained two largely separate assessments. The first took an 

engineering approach, sidestepping the connections with grander visions of full 

autonomy. The report emphasized that the Tesla Autopilot was a long way from full 

autonomy. NTHSA broke down Autopilot into its constituent systems: lane centering 
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control, automatic emergency braking (AEB) and traffic-aware cruise control. This 

choice to evaluate the technology as a set of merely incremental innovations 

highlighted some important specifics while overlooking larger questions. The report 

notes, for example, that AEB is designed for rear-end collisions:  

Braking for crossing path collisions, such as that present in the Florida fatal 
crash, are outside the expected performance capabilities of the system 
(NHTSA, 2017).  

 

The second strand of analysis focussed on what the NHTSA called ‘human factors’. 

Their approach was one of ‘naïve sociology’ (Wynne, 1989), in which technologies, 

when assessed, are assumed to operate within a world far tidier and more predicable 

than reality. The criticisms of Tesla amounted to a suggestion that the company’s 

warning information was ‘perhaps not as specific as it could be’. The agency notes 

that advanced driver assistance systems are correlated with increased instances of 

distractions greater than seven seconds. This is a well-known feature of automated 

systems, bolstered by research in self-driving car simulators (Körber et al., 2015), in 

which the ‘vigilance decrement’ of humans becomes more problematic as automation 

improves. Nevertheless, the NHTSA were satisfied by Tesla’s own research into 

‘mode confusion’ and chose to direct their major recommendation at users: ‘Drivers 

should read all instructions and warnings provided in owner’s manuals for ADAS 

[advanced driver-assistance systems] technologies and be aware of system 

limitations’ (NHTSA, 2017). The NHTSA missed an opportunity for social learning 

and wider applicability with its assessment. Had, for example, a pedestrian or the 

driver of another car been killed in the crash, the agency’s framing and subsequent 

assessment may have been very different (Faife, 2017). 

 The identification and blaming of human deficits has been a common feature 

of self-driving car innovation. Much of the early justification for autonomous cars 



	 28	

made reference to the more than 90% of car accidents caused by human error 

(NHTSA, 2017). As people started to encounter Google’s test vehicles, reports of 

low-speed crashes caused by bemused or star-struck humans were common. Google’s 

self-driving lead Chris Urmson (2015) justified their activities as part of a longer 

trend in car design: ‘for the last 130 years we’ve been working around the least 

reliable part of the car – the driver’. (When a Google car eventually made a mistake, 

deciding to pull out in front of a bus and crashing, the tone of news reporting was 

understandably gleeful). 

 For Tesla, human unreliability has become clear as they have unfolded their 

Autopilot project. Following the revelation of the fatal crash, the company’s then 

Director of Autopilot Programs tweeted: 

Human complacency is a serious but separate issue best addressed with 
education, monitoring & enforcement, not dumbed down safety systems. 
(Anderson, 2016) 

 

Soon afterwards, the company announced a set of changes to Autopilot that, if not 

‘dumbing down’, imposed substantial extra conditions on the feature. Despite 

claiming, in common with many innovators after accidents, that the crash was 

unforeseeable and exceptional, the company sought to make a repeat less likely with 

new Autopilot software uploaded to every car. Musk claimed that these updates 

would ‘minimize the possibility of people doing crazy things with it’ (quoted in 

Charton, 2015). An initial claim that ‘Autosteer now navigates highway interchanges’ 

was removed by the time of the update’s final release (Westbrook, 2016). Drivers 

were warned that they would have to touch the steering wheel more often and that, if 

they didn't demonstrate that they were paying attention, the system would shut them 

out, enforcing conventional driving for the rest of the trip. The way that the cars’ 

sensors are used was adjusted to increase the dependence of radar, which is better 
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than conventional cameras at spotting a thing like a white truck against a white sky. 

The NHTSA (2017) noted in its report that ‘Tesla has changed its driver monitoring 

strategy to promote driver attention to the driving environment’. By January 2017, the 

company was referring to Autopilot as a ‘hands-on experience’.  

 For cars built with the new hardware, Tesla activated Autopilot in January 

2017, with Musk saying ‘please be cautious’ (Musk, 2017b). The algorithms had to 

relearn how to employ the car’s new sensors, which meant a step backwards in 

performance. A class action law suit from a group of frustrated Autopilot users 

claimed that Tesla had sold them a product that failed to live up to its self-driving 

promises and was unsafe when used (Sheikh et al. v Tesla, 2017). The maximum 

speed of the new Autopilot was initially limited to 45 mph – ‘for heavy traffic, where 

it is needed most’, Musk tweeted (Musk, 2017c) – while they tested the system.  

 These changes did not satisfy the NTSB. Their final word on the probable 

cause of the Tesla crash added a concern with Autopilot’s ‘operational design, which 

permitted [the driver’s] prolonged disengagement from the driving task and his use of 

the automation in ways inconsistent with guidance and warnings from the 

manufacturer’ (NTSB, 2017c). The board considered that merely asking drivers to 

touch the steering wheel more was an inadequate response. Tesla, in the words of one 

NTSB staffer, ‘did little to constrain the use of autopilot to roadways for which it was 

designed’ (ibid.) A statement from Brown’s family, rather than blaming Tesla, 

emphasised social learning: ‘When rail systems, metro systems, and personal vehicles 

(etc.) were constructed, fatalities occurred and we learned from them … Part of 

Joshua’s legacy is that his accident drove additional improvements making the new 

technology even safer.’ (Landskroner Grieco Merriman, 2017). 
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 Tesla’s public modulation of Autopilot’s capabilities represents a new mode 

of engagement with car customers. Drivers are expected to be clear about the limits of 

the technology, but these limits are continually being redefined by the company and 

tested by users, a subset of whom are engaged in a form of alternative online 

pedagogy. Some claim to have hacked the Tesla’s software or invented ways to quash 

the car’s warnings to hold the steering wheel (e.g., MEtv Product Reviews, 2016). 

YouTube is replete with hands-free Tesla driving displays and other haphazard 

experimentation (Brown and Laurier, 2017). In one much-shared case, the driver 

appears to be asleep while his Tesla moves along in traffic. While official bodies such 

as the NTSB may insist that the Tesla is not a self-driving car, a significant number of 

drivers are behaving as if they disagree. These users would seem to be at the bottom 

of the ‘certainty trough’, committed to the technology but distant enough to be 

unaware of its contingencies (MacKenzie, 1990). Musk seems to recognize the 

dangers of this false certainty, admitting that ‘Autopilot accidents are far more likely 

for expert users’ (quoted in Ramsey, 2017). 

 The connection back to the company is unclear. Tesla claims that it listens to 

drivers, such as with an update removing the speed limit at which Autopilot could be 

set. The company is keen to demonstrate that its innovation lies in its software, and 

that this allows for a new form of responsiveness. However, the model of learning is 

highly privatized. When evidence of misuse arises, the response is typically to blame 

users’ ignorance and backtrack on expectations. Tesla’s emailed response to 

Consumer Reports’ call for a moratorium on Autopilot was that, ‘[w]hile we 

appreciate well-meaning advice from any individual or group, we make our decisions 

on the basis of real-world data, not speculation by media’ (quoted in Consumer 
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Reports, 2016). This example of a company hiding behind opaque, proprietary data is 

a governance concern to which I will return in the conclusion. 

 

Technological alternatives 

Although they avoided publicly connecting the crash with their cars’ flaws, Tesla 

made a set of technological tweaks in the weeks following the announcement of the 

accident. Rather than using the ‘EyeQ’ system from Israeli company Mobileye that 

also powers other companies’ more humble safety systems, they announced a move to 

develop their own software for use with Nvidia hardware. As Tesla parted company 

with Mobileye, differences in their versions of events exposed some of the 

contingencies of machine learning in cars. Tesla didn't mention the crash, but 

Mobileye’s chairman expressed his frustration: ‘[W]e need to be there on all aspects 

of how the technology is being used, and not simply providing technology’ (quoted in 

Ramsey, 2016). The company’s head of communications added: ‘This incident 

involved a laterally crossing vehicle, which current-generation AEB [automatic 

emergency braking] systems are not designed to actuate upon’ (quoted in Fierman, 

2016), a detail that would later be highlighted by the NHTSA. 

 Nvidia have fewer qualms. Following revelations about the potential of their 

GPU chips for use in deep neural networks in the late 2000s, the company has grown 

its machine learning business. Their emphasis is on ‘end-to-end’ machine learning, in 

which the system works out the rules that need to be prioritized (detecting the edges 

of roads, for example) for the solution of its task (Bojarski et al., 2016a). This 

unsupervised, self-optimizing approach concentrates less on the rule-setting process 

of formal algorithm design and more on training data, such as from the steering wheel 

of a human driver, allowing the network to learn rules by itself (Bojarski et al., 
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2016b). This creates a hunger for new forms of input. In January 2017, Nvidia 

announced that they would be adding cameras facing inwards and well as outwards, 

to learn about drivers’ behaviour from their faces as well as their interface with the 

car’s controls.  

 Competitors have taken issue with this approach, arguing that the seemingly 

improved average performance of such systems can obscure the tiny but vital fraction 

of situations in which they fail. Mobileye’s founder described the trouble with end-to-

end learning in dealing with ‘corner cases’, the rare events that happen outside normal 

parameters but which humans may nevertheless find relatively manageable. His 

argument was that a single digital neural network that has taught itself a set of rules 

will be less able than multiple specialized subsystems with responsibilities such as 

detecting pedestrians, detecting lanes or detecting road signs, each trained with formal 

logic, ‘domain expertise’ and machine learning, to deal with the unexpected. He 

pointed out that ‘We’re talking here about a lot of work’ to get from a relatively good 

algorithm that works almost all the time to one that is trustworthy 99.9% of the time 

(Shashua, 2016). Mobileye claims that its ‘semantic abstraction’ approach requires 

more up-front effort in teaching the vocabulary of driving but fewer training examples 

(Shaley-Shwartz and Shashua, 2016). Rather than treating self-driving as a single 

problem, making it look deceptively ‘solvable’, the challenge is broken up, making 

complexities more visible. 

 Other self-driving start-ups emphasize the need for formal logic as a route to 

verification, interpretability and accountability, making it possible to know the whys 

and wherefores of algorithmic decision-making (Ackerman, 2016). All approaches 

adopted by companies make use of multiple forms of data and learning, but the 

balance varies, and depends on matters of political economy as well as engineering. 
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For the car industry, autodidactic deep learning is far more disruptive, because it 

downplays more than a century’s worth of accumulated expertise and cumulative 

learning relating to the sociotechnical system comprising cars and their material and 

social infrastructure. Deep learning instead presumes that driving is merely another 

task that can be learnt from human practitioners, mastered and improved upon. Rule-

making trumps rule-following.  

 Tesla claim that its Nvidia-powered ‘Tesla Vision’ deep neural network 

‘deconstructs the car's environment at greater levels of reliability than those 

achievable with classical vision processing techniques’ (Tesla, 2017a). Their hope is 

that this increase in brainpower will compensate for a lack of formal education.  

 As of October 2017, Tesla sees no problem with its sensors. It claims that its 

combination of GPS, radar, ultrasound and eight cameras is now capable of full 

autonomous driving. It is just waiting for its software and the regulators to catch up. 

Other driverless innovators are unconvinced that such hardware is up to the job. 

While Tesla relies on ultrasonic sensors for short distances and cameras and radar for 

detecting objects further away, other companies have invested heavily in LiDAR – a 

laser-based step-up from radar. LiDAR has a longer range than ultrasound and is 

better than radar at precisely spotting small objects made from a wide range of 

materials. But the technology is, as of 2016, prohibitively expensive and bulky for a 

private car. Competitor companies see affordable LiDAR as critical and expect its 

price to follow a downward trajectory similar to that of radar.  

 The opening up of such technological disagreements suggests that, despite the 

existence of various online explainers for ‘how self-driving cars work’, and the 

imagined gaps between engineers’ and public understandings of this, there are some 

subtle but profound differences of approach currently in play. Given these 
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contingencies, policymakers have a more active part to play in the development of 

approaches, the setting of standards and the integration of technology into the built 

environment. 

 

Democratizing learning 

As I have described, autonomous vehicles are not as heroically independent as their 

enthusiasts would have us believe. Nor are they as autodidactic. The story of 

autonomy is a way of downplaying a car’s connections with other vehicles, the built 

environment and the infrastructure of regulation. It is a story that deserves to be 

challenged. The emergence of self-driving cars will be a process of social learning 

that can and should be democratized. 

 Much of the noisiest excitement surrounding self-driving cars has come from a 

culture of innovation that has little experience of the material, non-digital world and is 

unused to intense regulation. Large (though still young) Silicon Valley companies 

such as Tesla and Google have been joined by start-ups like Comma.ai, a company 

that promises to ‘solve self-driving’ by offering a build-it-yourself self-driving car kit. 

Car manufacturers with long histories that have come to accommodate (and in some 

cases define) substantial government oversight have, through acquisitions and 

partnerships, sought to take advantage of these new possibilities. 

 This clash of hardware and software cultures raises immediate questions of 

governance. For example, these two worlds understand product liability very 

differently. Cars are conventionally designed, tested, and released as finished products 

with an ever-present threat of product recalls, fines or civil law suits if they are 

deemed defective. Software, however, is governed in most jurisdictions as a service 

rather than a product, and granted substantial leeway (Chander, 2014). As 
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Nissenbaum (1994) observed more than twenty years ago, we must ‘accept that the 

producers of computer systems are not, in general, fully answerable for the impacts of 

their products. If not addressed, this erosion of accountability will mean that 

computers are ‘out of control’ in an important and disturbing way.’ The norm is to 

evaluate software liability once defects are detected and consider whether innovators 

could reasonably have foreseen them. The rapid uptake of machine learning looks set 

to exacerbate the irresponsibility that Nissenbaum feared. As the stakes of software 

deployment rise – in online security, social media and robotics – we may well see 

self-driving cars as a test case for the hardening of software regulation. 

 JafariNaimi (2017) argues that the self-driving car presents an opportunity for 

reframing transport governance. With the automobile in the 20th century, a strong idea 

about what a car was – an everyday object like a bicycle rather than a sociotechnical 

system like a train and its tracks – led to regulatory regimes that concentrated power 

with cars, their drivers and manufacturers. As with other emerging technologies 

(Rayner, 2004), makers of self-driving cars see their unarguable potential being held 

back by lags and deficits – in infrastructure, law and public understanding. However, 

the technology’s promise is open-ended and its effects are impossible to reliably 

calculate. Rather than taking the technology as fixed and looking to plug the deficits 

of law or public understanding that are imagined around it, policymakers should 

instead see self-driving cars as an opportunity for more active engagement in the 

shaping of technological systems, prioritizing social learning and knitting self-driving 

cars back into their social worlds.  

 The emergence of self-driving cars, with all the missteps and misadventures 

that will occur as they mix with other modes of transport, will represent an expansion 

of what is already a form of disorganized social experimentation. Good governance 
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will mean resisting the privatization of learning that is happening. It will mean 

engaging not just with technological outcomes, which, given the complexity of 

transport systems, will be radically indeterminate, but also with the processes and 

purposes – inscribed and implicit – of innovation. 

 As I describe above, there are clear tensions between social learning and the 

pure form of machine learning manifest in deep neural networks. The opacity of 

machine learning systems, both deliberate and accidental, offers an excuse for 

innovators and a barrier for governance. However, a closer look at self-driving car 

innovation reveals some constructive alternatives. Engineers have already had to 

engage in a form of socialized machine learning, building on research in social 

robotics (e.g., de Greeff and Belpaeme, 2015). As algorithms meet the material world, 

social machine learning becomes unavoidable and engineers’ responsibilities come to 

the fore (Nourbakhsh, 2013). If engineers are able to respond, then the narrow sense 

of the ‘social’ already programmed into some cars’ neural networks – in which, for 

example, it is assumed that users are error-prone and pedestrians are just another part 

of the passive environment – need not be imposed on the world. There is some 

evidence that companies are already differentiating their approaches to self-driving 

technology (or, as some companies more modestly put it ‘driver assistance 

technology’).  

 Algorithmic efficacy has attracted substantial attention, but it will be only part 

of the innovation required to make self-driving cars work. Engineering efforts to 

improve the interpretability of deep learning systems challenge the narrative of 

inevitable opacity that has until recently provided an easy excuse for irresponsibility. 

Alongside the debate about interpretability, mitigating ‘mode confusion’ has become 

an important target for design. While some have argued that AVs should be allowed 
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to travel unlabelled, so that other road users do not take advantage of their presumed 

generosity, there is growing recognition among engineers of the need for vehicles to 

actively communicate their presence, their intentions and their capabilities to other 

road users (Surden and Williams, 2016). One AI researcher has suggested the need for 

a ‘Turing red flag law’ (Walsh, 2016), mandating the clear labelling of all 

autonomous systems.  

 The politics of novelty surrounding self-driving cars is unpredictable. 

However, if the whole system is to be as transformative as is claimed, its novelty 

should not be defined merely by technical advances in algorithms. Socializing 

machine learning demands the closer integration of insights from human-computer 

interaction and collaborative design into engineering rather than a presumption that a 

self-driving car merely means replacing a person with a computer. 

 Most corporate and regulatory statements on self-driving have overlooked the 

contingencies of machine learning to focus on human deficiencies. As well as 

blaming human error for crashes (NHTSA, 2017) policy analyses have focussed on 

the need for public education (GHSA, 2017; Policy Network 2016; Waymo 2017). 

This hubris is likely to lead to a model of accidental governance in which car 

manufacturers set the terms of experimentation, and events such as crashes come to 

define, in the minds of publics and regulators, the trajectory of technology. 

Countering this requires the deployment of what Jasanoff (2003) calls ‘technologies 

of humility’, devices for engaging with the profound uncertainties of innovation. This 

means reimagining public participation not as education, but as democracy.  

 An important entry point for governments into the process of learning and 

experimentation with self-driving cars is through the sharing of data. A self-driving 

car can already generate a gigabyte of data each second. The investigations of the 
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Tesla crash provide a window into the politics of data sharing. The NTSB were able 

to rapidly learn, from data volunteered by Tesla, what happened inside the car in the 

minutes before the crash, but Autopilot’s decision-making remained opaque. Airline 

regulators mandate the inclusion of flight data recorders (nicknamed ‘black boxes’) 

that capture conversations between pilots as well as flight data which are then shared. 

One NTSB mantra is that ‘anybody’s accident is everybody’s accident’. Some car 

companies are starting to emphasize accountability. They conclude that, in the event 

of a crash, it is important not just to know what happened but why it happened: one 

self-driving research project funded by Toyota is called ‘The car can explain’. Tesla is 

one of the few carmakers not to follow NHTSA guidance on event data recorders, 

which means that regulators must rely on the company’s generosity when crashes 

happen. The need to improve social learning has led some to call for the inclusion of 

‘ethical black boxes’ in robotic systems (Winfield and Jirotka, 2017). The reasons for 

doing so go beyond the investigation of accidents.  

 Data is the fuel for machine learning and it is a source of competitive 

advantage for car companies. It is impossible to predict precisely how data will be 

monetized, because of the wide range of possibilities of future transport systems, but 

we can anticipate that aggregated or personalized data relating to geography, driving 

behaviours, traffic, people flow and more will become an important currency for 

future innovation. The economies of scale will be substantial, tending towards new 

concentrations of economic power. 

 Once we reject the narrative of autonomy and recognize the thicket of 

connections between cars and the outside world, we can imagine new possibilities for 

machine learning in the service of social learning. If the development of self-driving 

algorithms is to realize some of the public value that its developers suggest, then there 
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is a strong case for collaboration rather than competition. If cars learn more 

effectively as fleets, then it is reasonable to expect responsible car companies to share 

their learning with others. However, if algorithms and the data that feed them are 

imagined to be, as seems likely, a source of competitive advantage, then the public 

value of self-driving technology will be diminished.  

 Some tentative governance proposals in the US have urged greater data-

sharing. Guidance from the NHTSA, launched by President Obama in September 

2016, uses the language of ‘learning’ and ‘group learning’ to justify its call for data-

sharing, particularly where urban trials are licensed by government authorities. The 

NHTSA also suggest that companies should collect and analyse data on ‘near misses 

and edge cases’, join an ‘early warning reporting program’ and find ways for their 

cars to communicate with one another (NHTSA, 2016b). The NTSB concluded its 

investigation with a similar recommendation: ‘We don't think each manufacturer of 

these vehicles need to learn the same lessons independently. We think by sharing that 

data, better learning and less errors along the way will happen’ (NTSB, 2017c).  

The initial policy focus, as with local governance measures, is on safety. The 

Californian Department of Motor Vehicles initiated a draft policy in December 2016 

demanding that companies provide data not just on accidents involving AVs, but also 

on ‘disengagements’, the moments when self-driving technology fails and demands 

human input (State of California Department of Motor Vehicles, 2016). The 

disengagement reports submitted by companies reveal the gap between informal 

experimentation and formal compliance. Tesla claims that, by the end of 2016, its 

customers had already covered more than a billion miles in Autopilot mode. 

Meanwhile, the company’s report submitted to the Californian DMV presents data on 
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its four test vehicles, which covered only 550 miles in 2016 and disengaged on 

average every three miles (Tesla, 2017b).  

 What counts as a disengagement is largely left to the companies to decide. 

But, if nothing else, such reports begin to organize social learning from self-driving 

car experimentation. As it stands, much of the NHTSA guidance is voluntary, albeit 

with a thinly veiled threat of pre-market approval and proactive regulation if car 

companies misbehave. Some companies have already sought to demonstrate their 

responsibility in data sharing in order to head off top down controls. Uber, for 

example, has volunteered aggregate data on ride sharing for the benefit of transport 

planning. Industry representatives have responded that self-driving car data will be 

commercially valuable and must therefore be proprietary, except in situations where 

safety is a priority (Hawkins, 2016).  

 Even if sufficient data is forthcoming in the event of crashes, this will be only 

a small part of a much larger process of social learning. US leadership in self-driving 

car innovation has meant the inheritance of a mode of governance in which, among 

other characteristics, cars are seen as self-evidently beneficial, risks are governed 

retrospectively (often through the courts), concerns about liberty are relatively 

elevated over those of public safety and public transport receives little support. The 

default has been to govern self-driving cars according to this framework, defining 

risks narrowly while emphasizing the need to attract investment and create new 

markets. Other countries have adopted a modulated form of this technology-first 

approach. However, there are notable examples of policies that, by starting with a 

focus on transport rather than technology, reframe the challenge. On the narrow issue 

of road safety, for example, Vision Zero, a strategy for reducing road deaths that 

began in Sweden, offers an alternative model of social learning that puts car 
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innovation alongside infrastructure, law and social norms in redistributing 

responsibility for safety (Eriksson, 2017; JafariNaimi, 2017). A social learning 

approach to governing self-driving cars would be similarly well rounded, putting the 

promise of machine learning in its place.  
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Notes

                                                
1	A	good	discussion	of	the	feasibility	and	desirability	of	such	a	legal	right	can	be	found	in	
Goodman	and	Flaxman	(2016),	Wachter	et	al.	(2017)	and	Edwards	and	Veale	(2017)	
2 ‘Demo 97’, for example, with a consortium of Government funders and car manufacturers, embedded 
magnets in a stretch of Interstate north of San Diego (in 1997) so that cars could follow the road’s 
twists and turns. One company claimed this was ‘an integrated vehicle control system that is helping 
move automated highways from science fiction to reality’ (quoted in Wetmore, 2003). In Europe, the 
PROMETHEUS Project (PROgraMme for a European Traffic of Highest Efficiency and 
Unprecedented Safety) brought together a large number of universities and car companies to develop 
trial systems in the late 1980s and early ‘90s. Such grand projects never got beyond the trial phase, 
however. 
3	Thanks	to	Michael	Veale	for	this	point.	
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4	Researchers	from	Carnegie	Mellon	claimed	to	have	made	a	similar	journey	in	1995,	dubbed	‘No	
Hands	Across	America’,	with	their	car	driving	itself	98%	of	the	time	(Jochem	and	Pomerleau,	
1996).	
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