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Dimension Reduction for Gaussian Process Emulation: An Application to the
Influence of Bathymetry on Tsunami Heights∗
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Abstract. High accuracy complex computer models, also called simulators, require large resources in time and
memory to produce realistic results. Statistical emulators are computationally cheap approxima-
tions of such simulators. They can be built to replace simulators for various purposes, such as the
propagation of uncertainties from inputs to outputs or the calibration of some internal parameters
against observations. However, when the input space is of high dimension, the construction of an
emulator can become prohibitively expensive. In this paper, we introduce a joint framework merg-
ing emulation with dimension reduction in order to overcome this hurdle. The gradient-based kernel
dimension reduction technique is chosen due to its ability to drastically decrease dimensionality with
little loss in information. The Gaussian process emulation technique is combined with this dimen-
sion reduction approach. Theoretical properties of the approximation are explored. Our proposed
approach provides an answer to the dimension reduction issue in emulation for a wide range of sim-
ulation problems that cannot be tackled using existing methods. The efficiency and accuracy of the
proposed framework is demonstrated theoretically and compared with other methods on an elliptic
partial differential equation (PDE) problem. We finally present a realistic application to tsunami
modeling. The uncertainties in the bathymetry (seafloor elevation) are modeled as high-dimensional
realizations of a spatial process using a geostatistical approach. Our dimension-reduced emulation
enables us to compute the impact of these uncertainties on resulting possible tsunami wave heights
near-shore and on-shore. Considering an uncertain earthquake source, we observe a significant in-
crease in the spread of uncertainties in the tsunami heights due to the contribution of the bathymetry
uncertainties to the overall uncertainty budget. These results highlight the need to include the effect
of uncertainties in the bathymetry in tsunami early warnings and risk assessments.
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1. Introduction. Simulators are widely employed, to reproduce physical processes and
explore their behavior, in fields such as fluid dynamics or climate modeling. To characterize
the impact of the uncertainties in the boundary conditions or the parameterization of the
underlying physical processes, a sufficient number of simulations is required. However, when

∗Received by the editors August 23, 2016; accepted for publication (in revised form) June 23, 2017; published
electronically August 17, 2017.

http://www.siam.org/journals/juq/5/M109064.html
Funding: The work of the second author was supported by the NERC grants PURE (Probability, Uncertainty

and Risk in the Natural Environment) NE/J017434/1, “A demonstration tsunami catastrophe risk model for the
insurance industry” NE/L002752/1, and ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in
Europe) FP7-ENV2013 6.4-3, grant 603839. The first and second authors also acknowledge support from the
EPSRC funding IAA reference EP/K503745/1, Discovery to Use (D2U) grant “Computationally and statistically
efficient catastrophe modelling calculations for the UCL tsunami hazard model.”
†Department of Statistical Science, University College London, London WC1E 6BT, UK (xiaoyu.liu.12@ucl.ac.uk,

s.guillas@ucl.ac.uk).

787

c© 2017 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

1/
17

 to
 1

28
.4

1.
35

.1
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/132235154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/juq/5/M109064.html
mailto:xiaoyu.liu.12@ucl.ac.uk
mailto:s.guillas@ucl.ac.uk


788 XIAOYU LIU AND SERGE GUILLAS

the simulators are computationally expensive, as is the case for high accuracy simulations, the
task can become extremely costly or even prohibitive. One prevailing way to overcome this
hurdle is to construct statistical surrogates, namely emulators, to approximate the computer
simulators in a probabilistic way [32]. Emulators are trained on a relatively small number of
well-chosen simulations, i.e., a design of computer experiments. Outputs at any input can be
predicted at little computational cost with emulators. One can then employ emulators for any
subsequent purposes such as uncertainty propagation, sensitivity analysis, and calibration.

With high-dimensional inputs, say beyond 20 dimensions (usually in the hundreds or
thousands), a large design is usually required to explore the input space, typically on the order
of 10 times the number of dimensions, for a reasonable level of approximation. One would
face serious computational problems since the original simulator cannot be run many times
or is very expensive to run. Advanced designs such as Latin Hypercubes or new sequential
designs [4] that are more efficient than Latin Hypercubes only partially alleviate the issue. As
a result, methods that adequately reduce the dimension of the input space are required, as
high-dimensional inputs are often present in computer models, e.g., as boundary conditions
like the bathymetry (i.e., seafloor elevation) in tsunami modeling. Some approaches ignore
high-dimensional inputs and add stochastic terms to account for their contribution [20, 27].
These methods are easy to implement and effective in some applications. However, repeated
simulations at the same input parameters that are encoded in the emulation are often required
to estimate the variability due to those parameters that are ignored. The variability estimates
are often restricted to the second moments, and the input-output relationships over the ignored
inputs are not clear. When a simulator is able to produce derivatives of the output with
respect to the input parameters, such information can help predict the responses at new design
points [28]. More recently, Constantine, Dow, and Wang [6] proposed finding rotations of the
input space with the strongest variability in the gradients of the simulators and constructed
a response surface on such a low-dimensional active subspace. This active subspace (AS)
approach has been demonstrated to be effective theoretically and numerically. Constantine
and Gleich [5] further studied the properties of the Monte Carlo approximation of the subspace.

These gradient-based methods require the calculation of a sufficient number of gradients
explicitly. Many computer codes are featured with this capability using approaches like adjoint
equations or automatic differentiation [28]. However, this is not always practical [33]. For
example, it is impossible for now to produce the gradients of interest in the tsunami code
VOLNA, a nonlinear shallow water equation solver using the finite volume method [12] which
we consider in Study 2 (see section 5.2). The formalism for finite volumes is more difficult in
terms of writing down the solution explicitly than the finite element method that is used for
the PDE problem in [6]. Besides, such nonlinear hyperbolic systems are much more difficult to
solve than linear hyperbolic systems and elliptic systems; and the computation of derivatives
is problematic in nonlinear hyperbolic systems due to nondifferentiability issues in numerical
fluxes with limiters, as well as the presence of shocks [34]. In Study 2, the bathymetry
is represented using finite elements on the triangulation nodes using the stochastic PDE
(SPDE) approach [25]. The lack of correspondence between our SPDE nodes and VOLNA
nodes is another problem with numerically computing adjoints, and additional complex work
would be needed. The high-dimensional nature of the input space also makes the derivatives
difficult to approximate using numerical differentiation methods. Furthermore, simulators
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 789

are usually combined to mimic complicated processes, and the gradients are more difficult to
track and calculate in such cases. Even in the rare situations where gradients are computable
numerically, the computational cost of obtaining them can be prohibitive. Therefore, the
applicability of these methods is restricted by the availability of gradients in the associated
simulators. This has raised the interest in comparable methods without the need to calculate
gradients. Tripathy, Bilionis, and Gonzalez [33] proposed a gradient-free approach to Gaussian
process emulation with built-in dimension reduction by considering the projection matrix as
hyperparameters in the covariance functions. The parameters are estimated using an iterative
maximum likelihood method which introduces significantly great computational cost. The
number of free hyperparameters also increases with the dimension of the input space so that
their statistical inference can be problematic due to the “curse of dimensionality” in very
high-dimensional situations.

The concept of an active subspace is closely related to the sufficient dimension reduction
(SDR) [7, 9] and effective dimension reduction (EDR) [24] in the statistical community. Given
an explanatory variable X ∈ Rm (input) and response variable Y (output), the aim of SDR (or
EDR) is to find the directions in the subspace of X that contain sufficient information about
the response for statistical inference. More specifically, an SDR R(X) ∈ Rd where d < m
satisfies p(Y |X) = p̃(Y |R(X)), where p(Y |X) and p̃(Y |R(X)) are conditional probability
density functions with respect to X and R(X), respectively. The EDR approach aims to
specifically find a linear projection matrix B onto a d-dimensional subspace (d < m) such
that BTB = Id and

(1) p(Y |X) = p̃(Y |BTX) or equivalently Y ⊥ X|BTX.

Several methods have been developed to find SDR, including nonparametric approaches such
as sliced inverse regression (SIR) [24] and minimum average variance estimation (MAVE)
[35], and parametric approaches like principal fitted components (PFC) [8, 10]. In this
paper, we adopt the gradient-based kernel dimension reduction (gKDR) [15] to construct
low-dimensional approximations to the simulators. The gKDR approach does not require
any strong assumptions on the variables and distributions. The response variable can be
of arbitrary type: continuous or discrete, univariate or multivariate. Unlike the active sub-
space method, gradients are not required to be computed explicitly but are estimated non-
parametrically and implicitly using stable kernel methods. Our proposed approach therefore
provides an answer to the dimension reduction issue in emulation for a wide range of problems
that cannot be tackled using existing methods at the moment. Moreover, the gKDR approach
ends up with an eigenproblem without any need to elaborate numerical optimization and thus
can be applied to large and high-dimensional problems.

We introduce a joint framework to approximate the high-dimensional simulators by com-
bining statistical emulators with the gKDR approach. Deterministic simulators are considered
here; however, the framework could potentially be applied to stochastic simulators, with ad-
ditional treatments of the stochastic effect in the emulation; see, e.g., [19]. Throughout this
paper, the mainstream Gaussian process (GP) emulators are employed for illustration. But
the general framework and most of the results would potentially hold for other emulation
techniques.
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790 XIAOYU LIU AND SERGE GUILLAS

The paper is organized as follows. Sections 2 and 3 review GP emulation and the gKDR
approach, respectively. In section 4, a joint framework of dimension reduction combined with
emulation is proposed, and some theoretical properties are established. Section 5 contains the
numerical experiments on an elliptic PDE and an application to the propagation of uncer-
tainties in the bathymetry to tsunami wave heights, as well as comparison with alternative
methods. Section 6 consists of a concluding discussion.

2. Gaussian process emulation. A Gaussian process (GP) is a collection of random vari-
ables such that any finite subset of these variables follow a joint Gaussian distribution [30]. It
is widely used in various scientific fields. Here we briefly review some basics of its application
in statistical emulation.

A deterministic simulator with multivariate input X = (x1, . . . , xm)T ∈ Rm and univariate
output Y ∈ R can be represented as Y = f(X). The GP emulator assumes that the simulator
output Y = f(X) can be modeled with a Gaussian process. It is commonly assumed that
the mean can be written as E(Y ) = m(X) = h(X)Tβ, where h(X) is a q-vector of predefined
regression functions and the coefficients β ∈ Rq. The covariance between two simulator
outputs Y = f(X) and Y ′ = f(X′) is usually represented as Cov(Y, Y ′) = k(X,X′) =
σ2c(X,X′), where the positive scalar parameter σ2 is the process variance and c(X,X′) is
the correlation function. One common choice for the correlation function is the squared-
exponential correlation c(X,X′) =

∏m
i=1 exp

(
−(xi − x′i)2/δ2

i

)
, where δ = (δ1, . . . , δm)T ∈

(0,∞)m controls the correlation lengths.
Suppose that the simulator is run at n inputs X1, . . . ,Xn and the outputs are Y1, . . . , Yn,

respectively. We may need to impose a prior for the parameter β in the mean function
m(X) = h(X)Tβ. One of the popular choices is a Gaussian prior, β ∼ N(b,V), which forms
a conjugate prior with the GP likelihood. At any n∗ desired inputs X∗1,X

∗
2, . . . ,X

∗
n∗ , the

respective outputs are denoted by Y ∗1 , Y
∗

2 , . . . , Y
∗
n∗ . Then letting H = (h(X1), . . . ,h(Xn)) and

H∗ = (h(X∗1), . . . ,h(X∗n)), the predictive process of Y∗ (also known as kriging prediction)
given the observed data and the covariance function is

(2) Y∗|Y, k(·, ·; θ) ∼ N(m̂∗, Σ̂
∗
),

with

(3) m̂∗ = H∗T β̂ + K∗K−1(Y −HT β̂)

and

(4) Σ̂
∗

= K∗∗ + PT (V−1 + HK−1HT )−1P,

where θ represents the hyperparameters from the covariance function; K, K∗, and K∗∗ are
n × n, n∗ × n, and n∗ × n∗ matrices, respectively, with the associated (i, j)th entries as
K(i, j) = k(Xi,Xj), K∗(i, j) = k(X∗i ,Xj), and K∗∗(i, j) = k(X∗i ,X

∗
j ); P = H∗ −HK−1KT

∗ ;
and β̂ = (V−1 + HK−1HT )−1(HK−1Y + V−1b).

We can see that the output at any desired input predicted using a GP emulator is a distri-
bution rather than a single value. This could be used to estimate the uncertainty introduced
into the prediction with the emulator and to evaluate the confidence about the prediction.
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 791

However, the hyperparameters θ are usually unknown and need to be specified properly. It is
possible to make a fully Bayesian inference with appropriate prior π(θ). But this usually re-
quires a costly Markov chain Monte Carlo (MCMC) approach for the analytically intractable
posterior. In practice, a computationally cheap alternative is often employed by specifying
the hyperparameters θ at the most probable values. This can be done by maximizing the
marginal likelihood:

L(θ) = log p(Y|b,V)

= −1
2

(HTb−Y)T (K + HTVH)−1(HTb−Y)− 1
2

log |K + HTVH| − n

2
log 2π.

(5)

Then the prediction can be completed by plugging in θ̂ = argmaxθ L(θ).
Usually there is no sufficient information about the parameter β; hence a vague prior can

be imposed by letting V−1 → O and b = 0, where O is the matrix of zeros. In this case, the
conditional mean and covariance of the predictive process are, respectively,

(6) m̂∗ = H∗T β̂ + K∗K−1(Y −Hβ̂)

and

(7) Σ̂
∗

= K∗∗ + PT (HK−1HT )−1P,

where β̂ = (HK−1HT )−1HK−1Y. This is closely related to the t-process [29], when a weak
prior for (β, σ2, δ) that π(β, σ2, δ) ∝ σ−2πδ(δ) is assumed with the mean function m(·) =
hT (·)β and the covariance function k(·, ·) = σ2c(·, ·; δ), where δ contains the parameters in
the correlation function c(·, ·).

When k(X,X′) = σ2c(X,X′) is used with a continuous correlation function, such as the
squared-exponential correlation, the emulator interpolates through the training data, i.e.,
m̂(Xi) = Yi and v̂(Xi) = 0 at the training points {Xi}ni=1. When a nugget term is included,
this is no longer true. A nugget term can be included, e.g., to mitigate numerical instabilities
or account for the stochastic terms in simulations [3]. The correlation function c(X,X′) can
be extended with the addition of a nugget as c̃(X,X′) = νIX=X′ + (1 − ν)c(X,X′), where
ν > 0 is the nugget term, and IX=X′ is the indicator function that takes 1 if X = X′ and 0
otherwise. The associated correlation matrix is K̃ = (1 − ν)K + νI, where I is the identity
matrix.

In practice, the error in the prediction of the GP emulator depends on the number of
training data points. As there are more and more training data points, the GP emulator will
be expected to recover the simulator. There are several theoretical results in the literature on
how well the GP emulator f̂ can approximate the simulator f . For example, given n training
samples that are quasi-uniformly distributed on Ω ⊂ Rd, the error can be bounded [13] as
‖f − f̂‖∞ ≤ Cdn

−p/d‖f‖H for any f in some function space H over Ω, typically a Hilbert
space, where p controls the smoothness of the function and Cd is a constant depending on
the dimension d. This result suggests that f̂ provides arbitrarily high approximation orders
when p = ∞, i.e., f is infinitely smooth. However, this rate decreases as the dimension
increases and the constant Cd also grows with d. Hence, the approximation deteriorates
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792 XIAOYU LIU AND SERGE GUILLAS

in very high dimensions. This implies that more evaluations of the simulator are required
to train an accurate emulator when the number of input parameters d increases and the
associated computational cost of constructing an emulator could increase dramatically as a
result. Therefore, it is desirable to reduce the dimension of the problem from the perspectives
of both accuracy and efficiency.

3. Gradient-based kernel dimension reduction. For a set Ω, a symmetric kernel k : Ω×
Ω→ R is positive-definite if

∑n
i,j=1 cicjk(ωi, ωj) ≥ 0 for any ω1, . . . , ωn ∈ Ω and c1, . . . , cn ∈ R.

Then a positive-definite kernel k on Ω is uniquely associated with a Hilbert space H consisting
of functions on Ω such that (1) k(·, ω) ∈ H; (2) the linear hull of {k(·, ω)|ω ∈ Ω} is dense in
H; and (3) 〈h, k(·, ω)〉H = h(ω) for any ω ∈ Ω and h ∈ H where 〈·, ·〉H is the inner product
in H. Because the third property implies that the kernel k reproduces any function h ∈ H,
the Hilbert space H is called the reproducing kernel Hilbert space (RKHS) associated with k.
Let (X, Y ) be a random vector on the domain Rm×Y, and let kX and kY be positive-definite
kernels on Rm and Y with respective RKHS HX and HY . We briefly present the salient facts
about the gKDR approach.

Fukumizu and Leng [15] noted that for any g ∈ HY , there exists a function ϕg(z) on Rd

such that

(8) E [g(Y )|X] = ϕg(BTX).

Then, under mild assumptions, we have, for any X = x,

(9)
∂

∂xi
E [g(Y )|X = x] =

d∑
a=1

Bia〈g,∇aϕ(BTx)〉HY .

On the other hand, defining the cross-covariance operator CYX : HX → HY as the operator
such that

(10) 〈h2, CYXh1〉HY = E [h1(X)h2(Y )]

holds for all h1 ∈ HX , h2 ∈ HY , and using the fact that

(11) CXX E[g(Y )|X] = CXY g

if E[g(Y )|X] ∈ HX for any g ∈ HY [14], we obtain

(12)
∂

∂xi
E [g(Y )|X = x] =

〈
g, CYXC

−1
XX

∂kX (·,x)

∂xi

〉
HY

.

Equating the two expressions above yields, for i, j = 1, . . . ,m,

Mij(x) =
〈
CYXC

−1
XX

∂kX (·,x)

∂xi
, CYXC

−1
XX

∂kX (·,x)

∂xj

〉
HY

=
d∑

a,b=1

BiaBjb〈∇aϕ(BTx),∇bϕ(BTx)〉HY .
(13)
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 793

Therefore, the dimension reduction projection matrix B is formed as the eigenvectors associ-
ated with the nontrivial eigenvalues of the m×m matrix M(x).

Given independent and identically distributed (i.i.d.) samples (X1, Y1), . . . , (Xn, Yn), the
matrix B can be approximated with B̃ [15] which contains the first d eigenvectors of the m×m
symmetric matrix

(14) M̃n =
1
n

n∑
i=1

∇kX(Xi)T (GX + nεnI)−1GY (GX + nεnI)−1∇kX(Xi),

where GX and GY are the Gram matrices with the (i, j) entry as kX (Xi,Xj) and kY(Yi, Yj),
respectively, ∇kX(·) = (∂kX (X1, ·)/∂x, . . . , ∂kX (Xn, ·)/∂x)T ∈ Rn×m.

Sometimes there may not exist such a sufficient dimension reduction rigorously so that
d = m, or we may want to select fewer dimensions d′ < d for later analysis even in cases
where such a subspace exists in order to achieve a more stringent reduction (albeit with a
small loss). For convenience, we slightly reformulate the gKDR approach into a more general
form without any change to the results in [15]. Let W be an m×m matrix with WTW = Im,
satisfying p(Y |X) = p̃(Y |WTX). In fact, if there exists a B matrix satisfying (1), we can just
set W = [B C], where C is an m × (m − d) matrix such that CTC = Im−d and the column
vectors of C are orthogonal to those of B; otherwise, W = B and d = m.

Following the same procedure as before, it is easy to see that

(15) Mij(x) =
m∑

a,b=1

WiaWjb〈∇aϕ(WTx),∇bϕ(WTx)〉HY .

If there exists B satisfying (1) with d < m, ∇aϕ(WTx) = 0 for any a > d; hence the
respective columns correspond to the zero eigenvalues of M(x). The projection matrix W
does not depend on the value of x, while the nontrivial eigenvalues vary with x. Therefore,
we obtain the following eigendecomposition:

(16) M(x) = WΛ(x)WT , Λ(W) = diag(λ1(x), . . . , λm(x)).

4. Joint emulation with dimension reduction. The gKDR approach is now applied to-
gether with GP emulation to construct a low-dimensional approximation to a simulator. Thus
the following procedure is employed to emulate a high-dimensional simulator.

Step 1. Given a set of n1 simulator runs (X1, Y1), . . . , (Xn1 , Yn1), estimate the projection
matrix W̃ using the gKDR approach.

Step 2. Split W̃ into [W̃1 W̃2], where W̃1 consists of the first d columns of W̃ corre-
sponding to the largest d eigenvectors.

Step 3. Design a set of n2 runs (X′1, Y
′

1), . . . , (X′n2
, Y ′n2

) of the simulator, e.g., based
on the reduced space W̃T

1 X, and construct an emulator using the lower-dimensional pairs
(W̃T

1 X′1, Y
′

1), . . . , (W̃T
1 X′n2

, Y ′n2
).

In Step 1, sufficient samples are needed to estimate W̃ accurately. The theoretical results
in [15] on the convergence rate of M̃n would provide some insight. In practice, the number
of directions that have a major influence may also affect the sample size n1 needed. Step 2
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794 XIAOYU LIU AND SERGE GUILLAS

requires an appropriate selection of d to construct an efficient and effective emulator. The
samples to train the emulator in Step 3 can be different (e.g., additional runs) from those
already collected to find W̃ in Step 1. There is a benefit in terms of design arising from
the dimension reduction. Indeed, in Step 3, the design can be built to explore the reduced
space of possible W̃T

1 X′, but the actual inputs of the simulator are of the corresponding
high-dimensional values of X′, as the dimensions left out are deemed unimportant.

4.1. Approximation properties. We now explore some theoretical properties of the low-
dimensional approximation to a simulator using the gKDR approach. For any X = x ∈ Rm, if
M(x) is known exactly, we have the eigendecomposition (16). Suppose that the eigenvectors
and eigenvalues are partitioned as

(17) Λ(x) =
[
Λ1(x)

Λ2(x)

]
, W = [W1 W2],

where Λ1(x) = diag(λ1(x), . . . , λd(x)) with d < m consists of the first d largest eigenvalues,
and W1 is the m× d matrix whose columns are the associated eigenvectors. Then for any X,
we can define the projected coordinates by U = WT

1 X ∈ Rd and V = WT
2 X ∈ Rm−d. Our

proposed approach suggests making inference on Y based on U instead of the full explanatory
variable X. The following proposition establishes an error bound for such an approximation.

Proposition 1. For any g ∈ HY and u ∈ Rd, we approximate E[g(Y )|X = x] by E[g(Y )|U =
u] for any x such that WT

1 x = u. The approximation error is bounded as follows:

(18) ‖E[g(Y )|X = x]− E[g(Y )|U = u]‖2L2
≤ C1

(
m∑

i=d+1

biλ
2
i (x)

)
,

where C1 is a constant depending on the domain of x, and bi (i = d + 1, . . . ,m) are positive
constants relating to W1 and g.

Proof. Let G(x) = E[g(Y )|X = x] and φi = CYXC
−1
XX

∂kX (·,x)
∂xi

∈ HY for i = 1, . . . ,m.
Following [2], for any g ∈ HY , we can define a bounded linear operator Φ : HY → Rm on the
Hilbert space such that

(19) Φg =
[
〈φ1, g〉HY 〈φ2, g〉HY · · · 〈φm, g〉HY

]T
.

Its adjoint is a mapping Φ∗ : Rm → HY , defined by the relation 〈Φg,a〉Rm = 〈g,Φ∗a〉HY for
any g ∈ HY and a ∈ Rm. Then we have

(20) 〈Φg,a〉Rm =
m∑
i=1

ai〈φi, g〉HY =
〈 m∑
i=1

aiφi, g

〉
HY

= 〈g,Φ∗a〉HY .

Because g is arbitrary, it must hold for any a ∈ Rm that Φ∗a =
∑m

i=1 aiφi.
Defining K = ΦΦ∗ ∈ Rm, it is easy to see that Kij = 〈φi, φj〉HY . From the derivation of

the gKDR approach, the derivative of G(x) w.r.t. x is just ∇xG = Φg and M = K = ΦΦ∗.
We denote the range of an operator A as Ra(A) and its kernel (null space) as Ker(A). The
space Ra(Φ∗) is finite-dimensional and hence closed, so we have the decomposition HY =
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 795

Ra(Φ∗)⊕Ker(Φ). In particular, for any g ∈ HY , there is a ∈ Rm and g⊥ ∈ Ker(Φ) such that
g = Φ∗a + g⊥. Hence we obtain

(21) Φg = Ma.

Given the projection of coordinates from x to u and v, we can write

(22) G(x) = G(WWTx) = G(W1WT
1 x + W2WT

2 x) = G(W1u + W2v).

The gradient of G w.r.t. u can be obtained by the chain rule as

(23) ∇uG = ∇uG(W1u + W2v) = WT
1∇xG(x) = WT

1 Ma = Λ1(x)WT
1 a,

where a ∈ Rm relates to g. Then it is easy to see that

(24) ‖∇uG‖2L2
=

d∑
i=1

biλ
2
i (x),

where the positive constants bi depend on W1 and g, for i = 1, . . . , d. Similarly, we have

(25) ‖∇vG‖2L2
=

m∑
i=d+1

biλ
2
i (x),

where the positive constants bi depend on W2 and g for i = d+ 1, . . . ,m.
We now infer g(Y ) based on u ∈ Rd rather than x ∈ Rm with d < m. For any u, we have

(26) E[G|u] =
∫
v
G(W1u + W2v)dP (v|u) =

∫
v

E[g(Y )|u,v])dP (v|u) = E[g(Y )|u].

Therefore, for any fixed u, we estimate G(x) = G(W1u + W2v) with E[G|u] for any x =
W1u + W2v, i.e.,

(27) G(x) ≈ Ĝ(x) = E[G|WT
1 x] = E[G|u].

Note that for any fixed u, the original function G(x) = G(W1u + W2v) is a function
of only v, while the approximation Ĝ(x) = E [G|u] is in fact the average of G(u,v) over all
possible v, and so is not a function of v. The Poincaré inequality [22] yields

(28) ‖G− Ĝ‖2L2
≤ C1‖∇vG‖2L2

= C1

(
m∑

i=d+1

biλ
2
i (x)

)
,

where C1 is a constant depending on the domain of x.

When W1 represents a sufficient dimension reduction, λi(x) = 0 for i = d+1, . . . ,m, which
implies that E[g(Y )|X = x] = E[g(Y )|U = WT

1 x] exactly. Though the result is presented
with conditional mean E[g(Y )|·] for any g ∈ HY , it is not limited to the first moment only.
For characteristic kernels such as the popular Gaussian radial basis function (RBF) kernel
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796 XIAOYU LIU AND SERGE GUILLAS

k(x, y) = exp(−‖x − y‖2/(2σ2)) and the Laplace kernel k(x, y) = exp(−α
∑m

i=1 |xi − yi|),
probabilities are uniquely determined by their means on the associated RKHS [15]; see also
[18] for a definition of the distance between probabilities using their means.

In practice, W cannot be known exactly. We can only estimate a perturbed version
W̃ = [W̃1 W̃2] instead using the eigendecomposition of M̃n. Under some mild conditions,
M̃n converges in probability to E[M(x)] with order Op

(
n−min{1/3,(2ξ+1)/(4ξ+4)}) for some

ξ > 0 [15]. Consequently, we have the following result.

Proposition 2. For any g ∈ HY and ũ ∈ Rd, we approximate E[g(Y )|X = x] by E[g(Y )|Ũ =
ũ] for every x such that W̃T

1 x = ũ. Then we have∥∥∥E[g(Y )|X = x]− E[g(Y )|Ũ = ũ]
∥∥∥2

L2

= Op


 4
λd − λd+1

n
−min{ 1

3 ,
2ξ+1
4ξ+4}

(
d∑
i=1

biλ
2
i (x)

) 1
2

+

(
m∑

i=d+1

biλ
2
i (x)

) 1
2

2 ,

(29)

where bi (i = 1, . . . ,m) are positive constants related to W and g.

Proof. Denoting M̃n = E[M(x)] + En and en = n−min{1/3,(2ξ+1)/(4ξ+4)}, the convergence
result on M̃n [15] entails that for any ε > 0, there exist a constant C > 0 and Nε such that
for any n ≥ Nε,

(30) P (‖En‖ < Cen) > 1− ε.

The distance between subspaces that are spanned by columns of W1 and W̃1, denoted by
span(W1) and span(W̃1), respectively, can be defined as [17]

(31) dist(span(W1), span(W̃1)) = ‖W1WT
1 − W̃1W̃T

1 ‖ = ‖WT
1 W̃2‖.

Using Corollary 8.1.11 of [17], if the condition

(32) ‖En‖ <
λd − λd+1

5
,

holds, we are able to bound the distance as follows:

(33) ‖WT
1 W̃2‖ ≤ 4‖En‖/(λd − λd+1) < 4Cen/(λd − λd+1).

In fact, since en decreases as n, we have

(34) Cen ≤
λd − λd+1

5

for any n ≥ ((λd − λd+1)/(5C))−max{3,(4ξ+4)/(2ξ+1)}, where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 are the
eigenvalues of E[M(x)]. Letting N ′ε = max{Nε, ((λd − λd+1)/(5C))−max{3,(4ξ+4)/(2ξ+1)}}, we
have, for any n ≥ N ′,

(35) P

(
‖En‖ <

λd − λd+1

5

)
> 1− ε.

c© 2017 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

1/
17

 to
 1

28
.4

1.
35

.1
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 797

Therefore, ‖WT
1 W̃2‖ = Op( 4en

λd−λd+1
). We also note that ‖WT

2 W̃2‖ ≤ ‖W2‖‖W̃2‖ = 1.
Then for any x, we have the following approximation to G(x):

(36) G(x) ≈ G̃(x) = E
[
G|W̃T

1 x
]

= E [G|ũ] .

Letting ṽ = W̃T
2 x and following the same procedure as Proposition 1, for any fixed ũ we have

(37) ‖G− G̃‖2L2
≤ C2‖∇ṽG‖2L2

,

where C2 is some constant. Since ∇ṽG = WT
2 W̃2∇vG+ WT

1 W̃2∇uG, we have

(38) ‖G− G̃‖2L2
≤ C2‖∇ṽG‖2L2

≤ C2

(
‖WT

2 W̃2∇vG‖L2 + ‖WT
1 W̃2∇uG‖L2

)2
.

The result holds by plugging in the respective terms.

The approximation procedure generates an “innovative simulator” f̃ on the reduced input
space of U = W̃T

1 X, which is, however, not deterministic. Suppose there are two distinct
inputs X1 and X2 with the respective outputs Y1 6= Y2. It may happen that W̃T

1 X1 = W̃T
1 X2,

i.e., the approximated simulator f̃ may yield different outputs given the same input. The low-
dimensional stochastic simulator f̃ can nevertheless be emulated, for example, by using GP
with the nugget effect, assuming that the influence of the dropped components is relatively
small and simple enough to be captured by the nugget. The overall approximate error of
the final emulator f̂ to f can be decomposed into ‖f̂ − f‖ ≤ ‖f − f̃‖ + ‖f̃ − f̂‖, where the
first term on the right-hand side is due to the low-dimensional approximation which has been
investigated in Proposition 2, and the second term depends on the emulation procedure.

4.2. Choice of parameters and structural dimension. When applying the proposed
framework for emulation, several parameters need to be specified properly, e.g., the param-
eters in the kernels and the regularization parameter εn. In addition, it is also required to
choose an appropriate structural dimension d to construct an accurate emulator. The cross
validation approach can be used to tune such parameters empirically in order to construct an
accurate predictive model.

One of the possible ways is to choose d within the dimension-reduction procedure. Fuku-
mizu and Leng [15] pointed out that it might not be practical to select d based on asymptotic
analysis of some test statistics, as in many existing dimension-reduction techniques, when the
dimension is high, the sample size is small. They mentioned that the ratio of the sum of the
largest d eigenvalues over the sum of all the eigenvalues,

∑d
i=1 λi/

∑m
i=1 λi, might be useful in

identifying the conditional independence of Y and X given BTX. In addition, Proposition 2
shows that the approximation error decreases as a function of λd − λd+1. As discussed in [5],
d might be chosen such that λd − λd+1 is maximized. However, we may notice that the ap-
proximation error also depends on the squares of the eigenvalues with some unknown weights.
Therefore, it seems to be not very practical to select d solely based on the eigenvalues.

On the other hand, Fukumizu and Leng [15] suggested selecting d based on the subsequent
utilization of d rather than the dimension-reduction procedure when dimension reduction
serves as a preprocessing step. For example, the ultimate goal of our proposed framework here
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798 XIAOYU LIU AND SERGE GUILLAS

is to construct an accurate emulator; hence it is intuitive to select the structural dimension
that produces the best predictive performance. Therefore, in the following numerical studies,
we select d as well as other parameters for the gKDR approach using simple trial-and-error
or a more formal cross validation approach based on the predictive accuracy of the respective
emulators.

5. Numerical simulations. In this section we conduct two numerical studies. In the first
study, the proposed emulation framework using the gKDR approach is compared with several
alternatives of dimension reduction and the full emulation on a PDE problem. This problem
set-up allows the computation of gradients explicitly. In the second study, we illustrate the
emulation framework with an application to tsunami modeling; we also provide a comparison
to other methods—except AS, which cannot be applied. Throughout the simulations, the
Gaussian processes for machine learning code using maximum likelihood method implemented
by [30] is employed for the emulation, assuming a linear form mean function with intercept
and a squared exponential correlation function.

5.1. Study 1: Elliptic PDE with explicit gradients available. In this example, we inves-
tigate the elliptic PDE problem with random coefficients as studied in [6]. Let u = u(s,x)
satisfy the linear elliptic PDE

−∇s · (a∇su) = 1, s ∈ [0, 1]2.

The homogeneous Dirichlet boundary conditions are set on the left, top, and bottom bound-
aries (denoted by Γ1) of the spatial domain of s, and a homogeneous Neumann boundary
condition is imposed on the right side of the spatial domain denoted Γ2. The coefficients
a = a(s,x) are modeled by a truncated Karhunen–Loeve (KL) type expansion

(39) log(a(s,x)) =
m∑
i=1

xiγiφi(s),

where the xi are i.i.d. standard Normal random variables, and φi(s), γi are the eigenpairs of
the correlation operator

(40) C(s, t) = exp(β−1‖s− t‖1).

The correlation operator introduces decayed spatial correlation structure with distance in the
field a(s) which is often assumed for the conductivity field in physics; see, e.g., [33].

Figure 1 presents an example of the PDE solution u(s,x) when a realization of a(s,x)
is generated using the KL expansion with β = 1 and m = 100. The target value is a linear
function of the solution

(41) f(x) =
∫

Γ2

u(s,x)/|Γ2|ds.

The problem is discretized using a finite element method on a triangulation mesh; then f and
∇xf can be computed as a forward and adjoint problem; see [6] for more details. We choose
m = 100 and examine two cases of the correlation lengths β = 1 and β = 0.01. Therefore,
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 799

Figure 1. A realization of the field a(s,x) when β = 1 with m = 100 and the corresponding solution u(s,x).

the original input space is X = R100 with standard Normal distribution and the output f(x)
is univariate. Under the Normality assumption, the domain of the input space is unbounded
so that the error bound in Proposition 2 cannot hold. Note that the Normal distribution
was only used to generate finite input parameters for illustration purposes here and the actual
input parameters can be regarded as bounded. In practice, we can also truncate the generated
samples with some bounded values.

The gKDR approach is applied to reduce the dimension of the problem using M samples.
We also compare with some popular alternative dimension reduction techniques: AS (here
possible due to the explicit gradients), SIR, SIR-II [24], sliced average variance estimation
(SAVE) [11], MAVE, and PFC. In addition, it is noted that the input parameters are im-
ported to the PDE through specific structure of KL expansion as defined in (39) and (40).
Therefore, another intuitive way to reduce the dimension is just to apply the well-known prin-
cipal components analysis (PCA) technique by extracting the first few parameters {x1, . . . , xd}
corresponding to the top d largest eigenvalues of the correlation operator. After reducing the
dimension of the problem, the GP emulator is trained using a Latin Hypercube design of
10d points on the reduced d-dimensional space so that the whole procedure needs M + 10d
samples in total using each dimension reduction method. For comparison, we also emulate the
problem on the original 100-dimensional input space directly with M + 10d samples, which
is the full emulation. The gKDR approach is implemented in MATLAB by Fukumizu; see
http://www.ism.ac.jp/∼fukumizu/. The MATLAB code for AS and solving the PDE by [6] is
available on https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice.
For SIR, SAVE, and PFC, the codes are provided in the MATLAB LDR-package (https://
sites.google.com/site/lilianaforzani/ldr-package), and SIR-II is implemented by simply mod-
ifying the SIR code. For MAVE, the MATLAB code by Xia is available from http://www.
stat.nus.edu.sg/∼staxyc/. The associated parameters in some methods, such as the kernel
and regularization parameters for gKDR, the number of slices for the sliced methods, and
the degree of polynomial basis for PFC, are chosen in a simple trial-and-error way by trying
several values and selecting the best.

The final emulators are used to make a prediction on a testing set of n evaluations
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800 XIAOYU LIU AND SERGE GUILLAS

{f1, . . . , fn} that differ from the training set, where fi = f(xi) and xi ∈ R100 is drawn
randomly from the standard Normal distribution. The predictive performance is measured by
the normalized predictive root-mean-square-error (PRMSE)

Normalized PRMSE =

√
1
n

∑n
i=1(fi − f̂i)2

maxi fi −mini fi
,

where f̂i is the prediction (predictive mean) using emulation. Note that such performance
criteria only depend on the deviation between simulation results and point predictions which
are taken to be the predictive means. One of the appealing features of GP emulation is the
ability to produce uncertainty estimates for the prediction such that the whole predictive
distribution is available. It would be helpful to assess the predictive performance based on the
distribution rather than point predictions; see [16] for some advanced scoring rules to evaluate
predictive distributions. However, we do not explore this further since the GP emulator is
used as a surrogate for the simulator here, and we are only interested in the point predictions
and how close they can be to the true simulation values. The associated computing time is
also recorded with three parts: T1 for running the simulator, T2 for estimating the dimension
reduction, and T3 for training the emulator and making prediction. Note that T1 includes the
time devoted to run the simulator M times when using all the dimension reduction methods.
It also includes the time used to compute the gradients for AS and the additional 10d runs for
full emulation. T2 is zero for the PCA method and full emulation since there is no dimension-
reduction procedure. T3 also includes the time for running the simulator 10d times on the
designed points except the PCA method and full emulation.

In this study, we choose M = 300 and d = 1, . . . , 5. Table 1 presents the results on
a testing set with n = 500 evaluations using different emulation approaches, and Figure 2
shows an example of the associated computing time when β = 1 and d = 5. Compared with
the full emulation results, by reducing the dimension properly, the predictive accuracy can
be improved, especially when the correlation length is long (β = 1). Also, as a result, the
computing time for training GP emulator (T3) decreases dramatically. In terms of predictive
accuracy, AS naturally performs the best, as it is using exact gradients, followed by gKDR.
MAVE, SIR, and PFC are better than SIR-II and SAVE, but PFC does not work very well
when β = 1, and MAVE spends more computing time on dimension reduction. As an un-
supervised method, PCA performs worse than most of the other methods, especially when
β = 0.01. When β is small, and hence the correlation is weak, it is more difficult for PCA to
find the most variable directions. In addition, PCA only considers the correlation structure
in the field log(a(s,x)) and ignores the role of output. Even the most variable directions in
the input space do not necessarily influence the output the most. Most methods yield smaller
errors for β = 1 than β = 0.01, except PFC and full emulation. Unlike the other techniques,
AS employs exact gradients which explains its lead in performance. However, as shown in
Figure 2, the computing time T1 for AS is about two orders of magnitude longer than the
others, making the method the most computationally expensive. Moreover, computing gra-
dients ∇xf is sometimes impossible, e.g., for the tsunami simulation in the next study. This
restricts the applicability of the AS method to a few applications. To summarize, when the
exact gradients are computable, the proposed gKDR approach is able to produce comparable
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 801

results (though not as good) as the AS method that uses exact gradients, and outperforms
the other SDR methods in most cases. However, the computational cost of applying gKDR is
much less than that of employing AS. Note that when β = 1, MAVE yields better prediction
using d = 2, 3, 4 than gKDR. It was also shown that MAVE could outperform gKDR in some
cases, but not always, for the classification problem in [15]. As shown in Figure 2, MAVE
spends more time estimating the dimension reduction than the others. In addition, it is dif-
ficult to apply in very high-dimensional settings [15], and it cannot handle the multivariate
outputs or partial dimension reduction which is needed for the tsunami simulations in the
next study. Therefore, gKDR not only is able to find the SDR accurately and efficiently, but
also can be applied in a wide range of scenarios where complicated variable types or very high
dimensions are involved. The next application, to tsunami simulation, provides a snapshot of
its wide capability when there are few applicable alternatives.

Table 1
Study 1: Normalized PRMSEs at 500 testing sites using emulation on the full input space (Full) or combined

with different dimension reduction techniques.

β = 1
d gKDR AS SIR SIR-II SAVE MAVE PFC PCA Full
1 0.116 0.126 0.125 0.153 0.153 0.126 0.152 0.057 0.097
2 0.044 0.007 0.025 0.153 0.153 0.020 0.140 0.057 0.095
3 0.032 0.011 0.024 0.152 0.152 0.019 0.120 0.030 0.095
4 0.024 0.012 0.024 0.150 0.150 0.024 0.080 0.074 0.093
5 0.024 0.011 0.026 0.150 0.150 0.083 0.071 0.075 0.092

β = 0.01
1 0.037 0.033 0.043 0.169 0.169 0.039 0.161 0.163 0.032
2 0.033 0.028 0.039 0.169 0.169 0.038 0.160 0.161 0.032
3 0.033 0.029 0.039 0.167 0.167 0.039 0.034 0.161 0.032
4 0.033 0.025 0.039 0.167 0.167 0.039 0.033 0.160 0.032
5 0.033 0.024 0.038 0.167 0.167 0.037 0.033 0.157 0.032

5.2. Study 2: Tsunami emulation where no gradients are available. Here we apply the
proposed general framework to investigate the impact of uncertainties in the bathymetry on
tsunami modeling, where the bathymetry is included as a high-dimensional input.

A synthetic bathymetry surface is created in the (s1, s2) coordinate system to conduct
tsunami simulations as shown in Figure 3 (a). For simplicity, we assume that the seabed
elevation only varies along the first coordinate s1. Though simple, it still captures the typical
continental characteristics: the continental shelf spans from shore line (s1 = 0) to around
s1 = −25 km at the water depth of around 150 m; the continental slope is between s1 = −25
km and s1 = −75 km with water depth of 150 ∼ 1800 m; west of −75 km it is the deep ocean
with water depth of 1800 ∼ 2200 m.

To model uncertainties and mimic the realistic boat tracks of oceanic surveys, some irregu-
lar lines are drawn. We consider two levels of survey density which are denoted by survey levels
1 and 2, respectively. Considering that the surveys are usually constrained within budgets, the
total lengths of the two level surveys are fixed at 1000 and 100 km. To account for different
possible survey traces, 20 samples of boat tracks are drawn at each level of survey density;
three samples per level are illustrated in Figure 4. In this study, we only consider the impact
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802 XIAOYU LIU AND SERGE GUILLAS

Figure 2. Computing time (in seconds) for the emulation using different approaches when β = 1 and d = 5.
T1: Time for running the simulator. T2: Time for estimating the dimension reduction. T3: Time for training
the emulator and making a prediction. T2 is too small compared with T1 and T3 and hence is invisible for
most dimension reduction methods.

of the uncertainties in the bathymetry within the area (s1, s2) ∈ [−40000, 0] × [−5000, 5000]
as shown with a blue rectangle in Figure 4. The bathymetries at other locations are fixed at
the true values. This assumption is based on the physical knowledge that deep ocean has a
relatively small influence on tsunami waves.

Along the possible boat tracks, observations of bathymetry are collected every 500 m with
some small random noise. Then the whole bathymetry surface can be modeled using the SPDE
approach [25] and inferred using the integrated nested Laplace approximation (INLA) method
[31] for approximate Bayesian inference. Given observations of bathymetry z = (z1, . . . , zn)′

at locations s = (s1, . . . , sn)′, it is assumed that zi = Z(si) + εi, i = 1, . . . , n, where the
unknown bathymetry surface Z(s) is a Gaussian field with a Matérn covariance function

(42) Cov(Z(s), Z(s∗)) =
σ2

2ν−1Γ(ν)
(κ‖s− s∗‖)νKν(κ‖s− s∗‖),

where ‖s − s∗‖ is the Euclidean distance between two locations s and s∗ ∈ R2, Kν is the
modified Bessel function of the second kind and order ν > 0, κ > 0 controls the nominal
correlation range through ρ =

√
8ν/κ corresponding to correlations near 0.1 at the Euclidean

distance ρ, and σ2 is the marginal variance. Lindgren, Rue, and Lindström [25] noted that
Z(s) also satisfies the SPDE

(43) τ(κ2 −∆)α/2Z(s) = W (s),

where the innovation process W is spatial Gaussian white noise with unit variance, ∆ = ∂2

∂s21
+
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Figure 3. (a) Synthetic bathymetry. (b) Seabed uplift when hmax = 5 m. (c) Gauge sites.

∂2

∂s22
is the Laplacian operator, and τ controls the marginal variance through the relationship

(44) τ2 =
Γ(ν)

Γ(ν + 1)(4π)κ2νσ2 .

With a finite element representation

(45) Z(s) =
m∑
k=1

wkψk(s)

over an appropriate triangular mesh, a stochastic weak solution to the SPDE can be approxi-
mated. Lindgren, Rue, and Lindström [25] have shown that the coefficients w = (w1, . . . , wm)T

can be approximated by a Gaussian Markov random field, i.e., w ∼ N(0,Q−1) for Q is sparse.
Note that bivariate splines can be used [26] to reduce the number of parameters required for
specific approximation order, which is good, but not enough, for dimension reduction. Then
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Figure 4. Three samples of boat tracks at two levels of survey density; the bathymetries within the blue
rectangle are assumed uncertain.

we build the hierarchical spatial model

z|w,θ ∼ N(Aw, σ2
eI),

w|θ ∼ N(0,Q(θ)−1),
θ ∼ π(θ),

where Aij = ψj(si) and θ contains all the hyperparameters. Since w uniquely determines the
bathymetry, it is the de facto input for uncertain bathymetry. In this study, we build a mesh
for the finite element representation in the SPDE approach as shown in Figure 5 (a). The dense
triangles in the middle cover the uncertain bathymetry area, and the outer extension with
coarse triangles is added to avoid the boundary effect. There are 3200 nodes that influence
the bathymetry; hence the uncertain input for bathymetry is of dimension 3200. Given each
boat track and the associated observations z, 20 samples of the finite element coefficients
are drawn from the posterior π(w|z) to construct a range of possible initial bathymetries.
Thus there are 400 (20 samples of boat tracks times 20 samples of w) sets of possible initial
bathymetries in total at each survey level; see Figure 6 for their empirical sample mean and
standard deviation at survey levels 1 and 2.

Tsunami waves are triggered by the following simplified seabed deformation:

(46) dz(s1, s2; t) =
t

60
· hmax · sin

(
s1 + 100000

−60000 + 100000
π

)
· I{−100000≤s1≤−60000,0≤t≤60},

c© 2017 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

1/
17

 to
 1

28
.4

1.
35

.1
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 805

Figure 5. (a) Mesh for SPDE approach; extended with coarse triangles to avoid boundary effect. (b) Mesh
for VOLNA; extended toward the left-hand side (deep ocean area) to avoid artificial reflection in simulations.

Figure 6. Empirical mean and standard deviation of the 400 sets of bathymetry input across both uncertain
boat tracks and posterior samples of w; note the different scales of standard deviation for survey levels 1 and
2.

where dz(s1, s2; t) is the seabed uplift at location s = (s1, s2) and time t, hmax denotes
the maximum seabed uplift; see Figure 3 (b) for an example. We take five different values
hmax = 1, . . . , 5 m. These values are evenly combined with the uncertain initial bathymetry.
Thus there are two sources of uncertainties: w for bathymetry and hmax for tsunami source,
where w is high-dimensional.
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806 XIAOYU LIU AND SERGE GUILLAS

We employ the tsunami code VOLNA [12], an advanced nonlinear shallow water equation
solver using the finite volume method on a high performance computing facility. The com-
putational domain and mesh for VOLNA are presented in Figure 5 (b). There are 120, 661
triangles and 61, 068 nodes in the mesh, where the very coarse triangles on the left end are
added to avoid boundary reflection in the simulations. The output of the simulation is chosen
to be ∆η(s) = max ηt(s) − η0(s), where ηt(s) is the free surface elevation at simulation time
t and location s. ∆η represents the maximum wave height at off-shore locations or the maxi-
mum inundation depth at on-shore locations. For illustration, we consider simulation values
at gauge 1: (−2000, 0), gauge 2: (−400, 0), gauge 3: (0, 0), and gauge 4: (200, 0), which are
at far-shore, near-shore, shore-line, and land, respectively; see Figure 3 (c).

The simulation results are presented in Figure 7, with those using the true bathymetry
shown in red lines and those using the sample mean bathymetry shown in green dashed lines.
We can see that ∆η increases with hmax but also shows variation due to the uncertain inputs w
for fixed hmax, especially at gauges 2–4 around the shore line. In general, the simulations with
sample mean bathymetry would deviate from true values, while those with random bathymetry
samples can cover the true events quite well. The survey level also has significant influence
that differs across the four gauges. In most cases the wider range of possible simulation values
with coarser survey level 2 indicates that the uncertainty in the bathymetry would spread the
tsunami waves out to simulate more extreme scenarios and such an effect could be amplified
around the shore line.

Figure 7. Simulation values with different inputs (w, hmax) at four gauges. The uncertain inputs w are
drawn based on survey levels 1 and 2, together with the true values and sample mean values.
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 807

Following the procedure in section 4, we can construct a low-dimensional emulator for
such a high-dimensional simulator with 3200 input parameters for the bathymetry (w) and
one parameter for the seabed deformation (hmax). Denoting the VOLNA code with f , the
output can be represented as ∆η = f(w, hmax). Because Figure 7 displays a significant
relationship between hmax and ∆η, we keep it as a separate input in the emulator and reduce
the dimension of w only. In this case, we aim to find a projection matrix B such that
w ⊥ (∆η, hmax)|BTw. The conditional independence just implies the sufficiency of BTw, i.e.,
p(∆η|hmax,w) = p̃(∆η|hmax,BTw) [36]. Therefore, (∆η, hmax) is regarded as a temporary
output when applying gKDR in order to reduce the dimension of w only.

For the gKDR approach, Gaussian RBF kernels k(x, y) = exp(‖x−y‖2/(2σ2)) are deployed
for both kX and kY but with different parameters σ2. Following [15], we have the parameter-
ization σX = c1σmed(X), σY = c2σmed(Y), where σmed(·) is the median of pairwise distance
of the data. The regularization parameter εn is fixed at 10−5 because its influence is shown
to be negligible after a few trials. There are three parameters to be specified properly: c1, c2,
and d, the number of directions included in the emulator. We consider possible candidates
c1, c2 ∈ [0.5, 1, 5, 10, 15, 20], d ∈ [1, . . . , 5] here. Then, based on each of the possible parameter
combinations, we can construct a GP emulator on the low-dimensional inputs (hmax,BTw)
and make predictions on the new inputs (h̃max,BT w̃).

For comparison, we also apply alternative dimension-reduction techniques to construct the
low-dimensional approximations. Due to the complexity of the VOLNA code, the gradients of
simulation values with respect to the inputs are not computable. Hence the active subspace
method cannot be employed. Most of the methods in Study 1 cannot be applied directly
because of the need for partial dimension reduction, or the “large p, small n” feature; i.e., there
are much more input parameters than the number of simulations. We consider two extensions
to PFC and SIR. The partial PFC (PPFC) method [21] is implemented based on the R package
ldr [1] to find the reduction on w only meanwhile taking the effect of hmax into account. Note
that PFC is not developed for the problem where p > n or p� n. Another method we compare
to is the sequential sufficient dimension reduction (SSDR) [36]. It is specifically proposed to
overcome the “large p, small n” difficulty by decomposing the variables into pieces, each of
which has p1 < n variables so that conventional dimension reduction methods can be applied.
The projective resampling approach [23] with SIR is employed. The R code for SSDR by [36]
is available from http://wileyonlinelibrary.com/journal/rss-datasets.

To measure the predictive performance and select proper parameters, a 10-fold cross val-
idation approach is employed. For each survey level, 400 simulations are divided evenly into
10 groups. Each group is retained as testing set once, while the other nine groups are used to
estimate the projection matrix B using the gKDR, PPFC, or SSDR approaches and train the
respective GP emulator. Table 2 presents the normalized PRMSEs from the cross validation
for each survey level and gauge using different dimension reduction techniques. The errors
of survey level 1 are in general smaller than those of survey level 2. This implies that as the
uncertainties in the bathymetry increase, it gets more difficult to make accurate predictions
using emulation. The methods gKDR and SSDR outperform PPFC in all cases, especially in
survey level 1, where the normalized PRMSEs can be 50% lower in some cases. In survey level
1, the errors of the gKDR approach are slightly larger than those of the SSDR for gauges 2–4,
where the normalized PRMSEs using SSDR are around 1.1% − 3.7% lower. But in survey
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808 XIAOYU LIU AND SERGE GUILLAS

level 2, the gKDR approach is more accurate than the SSDR approach for all gauges with
reduction of normalized PRMSEs at 1.0% for gauge 1 and 10.1% − 18.9% for gauges 2–4.
Therefore, gKDR is comparable with SSDR in survey level 1 but works much better than
SSDR in survey level 2 when there are more uncertainties involved. We can conclude that the
proposed GP emulation framework combined with the gKDR dimension reduction approach
is effective and accurate for this complicated tsunami simulator and overall it outperforms the
alternatives.

Table 2
Study 2: Normalized PRMSEs of the 10-fold cross validation using GP emulation combined with different

dimension reduction methods.

Gauge
Survey level 1 Survey level 2

gKDR PPFC SSDR gKDR PPFC SSDR
1 0.031 0.078 0.033 0.095 0.096 0.096
2 0.099 0.138 0.097 0.134 0.175 0.149
3 0.091 0.187 0.090 0.129 0.210 0.159
4 0.082 0.144 0.079 0.106 0.141 0.121

To investigate the impact of the training set size on the predictive performance of the
proposed emulation framework with gKDR, we conduct repeated random subsampling cross
validations with various training set sizes. We consider the training set size as 2%, 5%, 10%,
20%, . . . , 90% and the test set size as 10% of the total 400 simulations. For each training
set size, the sampling is repeated 50 times. The parameters c1, c2, d are fixed at those values
selected through the above 10-fold cross validation. Figure 8 displays the normalized PRMSEs
with various training set sizes. In general, the predictive errors decrease as the training set
size increases, and eventually converge to a relatively flat level, after about 100 simulations.
It is reassuring that such a small number of simulations is enough to allow an efficient and
effective dimension reduction and Gaussian process emulation.

In the end, we apply the resulting emulator to predict the simulation values over a large
number of new inputs. The predictions can be used for probabilistic risk assessment and many
other purposes. For illustration, 10, 000 samples of (h̃max, w̃) are drawn where h̃max are drawn
from a Normal distribution N(3, 1) truncated at 0 and 5. For each survey level, 100 samples of
possible boat tracks are drawn randomly. Given the observations along each boat track, 100
samples of w̃ are drawn from the posterior. In most of the current tsunami research work, the
bathymetry is usually considered fixed, which neglects the possible uncertainty in the outputs.
For comparison, we also conduct another set of simulations with the 5 possible values of hmax,
but with a fixed w taken to be the sample mean shown in Figure 6. In this case, hmax is the
only uncertain parameter. Then we can also make another set of predictions on the 10, 000
samples of h̃max only. The predictions for these two cases are presented in Figure 9. We can see
that at gauge 1 it makes no significant difference whether the uncertainty in the bathymetry is
included or not, as the impact is relatively small on the far-shore waves, as shown in Figure 7.
However, the impact of the uncertainty in the bathymetry on the simulation values is more
significant at gauges around the shoreline. The distributions are shifted, skewed, and spread
out, covering more extreme events with larger ∆η. These features are potentially important,
for example, in the catastrophe models for (re)insurance, or hazard assessment used in coastal
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DIMENSION REDUCTION FOR GAUSSIAN PROCESS EMULATION 809

Figure 8. Normalized PRMSEs with various training set sizes.

planning.

6. Discussion. We proposed a joint framework for emulation of high-dimensional simula-
tors with dimension reduction. The gKDR approach is employed to construct low-dimensional
approximations to the simulators. The approximations retain most of the information about
the input-output behavior and make the emulation much more efficient. Both theoretical prop-
erties and numerical studies have demonstrated the efficiency and accuracy of the proposed
approach and its advantages over other dimension-reduction techniques. Our method can be
applied to uncertainty quantification for many purposes, such as risk assessment, sensitivity
analysis, and calibration, with great perspectives in real-world applications.

There are some practical issues when applying the proposed framework. The hyperpa-
rameters in gKDR and the number of dimensions to be included in the emulator need to be
specified properly. In practice, a simple trial-and-error procedure could be applied, especially
when the results are not very sensitive to the choices. Cross validation steps could also benefit
from a parallel computing technique. The sample size also affects the predictive ability of the
final emulator, as sufficient samples are needed to estimate the dimension reduction accu-
rately. A diagnostic plot of predictive errors with increasing number of sizes such as Figure 8
could help identify the convergence. After determining the dimension reduction, a sufficient
number of training samples with a proper design are often required to train the emulator
in order to balance the computational cost and accuracy. The benefits of our approach are
multiple. One can tackle uncertainty quantification tasks for complex models where boundary
conditions are of high dimension. Beyond tsunami modeling, in climate simulation, weather
forecasting, or geophysical sciences, uncertainty quantification studies would become tractable
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810 XIAOYU LIU AND SERGE GUILLAS

Figure 9. Histogram of predictions of 10, 000 tsunami wave heights at four gauges due to the uncertain
seabed uplift (prediction P2). Prediction P1 also accounts for the uncertainties in the bathymetry. Left column:
High-resolution bathymetry survey (level 1). Right column: Coarse bathymetry survey (level 2).

and potentially offer solutions to important scientific problems.
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