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Abstract. Disjoint union is a partial binary operation returning the union of two sets
if they are disjoint and undefined otherwise. A disjoint-union partial algebra of sets is a
collection of sets closed under disjoint unions, whenever they are defined. We provide a
recursive first-order axiomatisation of the class of partial algebras isomorphic to a disjoint-
union partial algebra of sets but prove that no finite axiomatisation exists. We do the
same for other signatures including one or both of disjoint union and subset complement,
another partial binary operation we define.

Domain-disjoint union is a partial binary operation on partial functions, returning the
union if the arguments have disjoint domains and undefined otherwise. For each signature
including one or both of domain-disjoint union and subset complement and optionally
including composition, we consider the class of partial algebras isomorphic to a collection of
partial functions closed under the operations. Again the classes prove to be axiomatisable,
but not finitely axiomatisable, in first-order logic.

We define the notion of pairwise combinability. For each of the previously considered
signatures, we examine the class isomorphic to a partial algebra of sets/partial functions
under an isomorphism mapping arbitrary suprema of pairwise combinable sets to the
corresponding disjoint unions. We prove that for each case the class is not closed under
elementary equivalence.

However, when intersection is added to any of the signatures considered, the isomorphism
class of the partial algebras of sets is finitely axiomatisable and in each case we give such
an axiomatisation.

1. Introduction

Sets and functions are perhaps the two most fundamental and important types of object in
all mathematics. Consequently, investigations into the first-order properties of collections of
such objects have a long history. Boole, in 1847, was the first to focus attention directly
on the algebraic properties of sets [2]. The outstanding result in this area is the Birkhoff-
Stone representation theorem, completed in 1934, showing that boolean algebra provides a
first-order axiomatisation of the class of isomorphs of fields of sets [18].

For functions, the story starts around the same period, as we can view Cayley’s theorem
of 1854 as proof that the group axioms are in fact an axiomatisation of the isomorphism
class of collections of bijective functions, closed under composition and inverse [5]. Schein’s
survey article of 1970 contains a summary of the many similar results about algebras of
partial functions that were known by the time of its writing [17].
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The past fifteen years have seen a revival of interest in algebras of partial functions,
with results finding that such algebras are logically and computationally well behaved [10,
13, 11, 12, 9, 14]. In particular, algebras of partial functions with composition, intersection,
domain and range have the finite representation property [15].

Separation logic is a formalism for reasoning about the state of dynamically-allocated
computer memory [16]. In the standard ‘stack-and-heap’ semantics, dynamic memory states
are modelled by (finite) partial functions. Thus statements in separation logic are statements
about partial functions.

The logical connective common to all flavours of separation logic is the separating
conjunction ∗. In the stack-and-heap semantics, the formulas are evaluated at a given heap
(a partial function, h) and stack (a variable assignment, s). In this semantics h, s |= ϕ ∗ ψ if
and only if there exist h1, h2 with disjoint domains, such that h = h1 ∪ h2 and h1, s |= ϕ and
h2, s |= ψ. So lying behind the semantics of the separating conjunction is a partial operation
on partial functions we call the domain-disjoint union, which returns the union when its
arguments have disjoint domains and is undefined otherwise. Another logical connective
that is often employed in separation logic is the separating implication and again a partial
operation on partial functions lies behind its semantics.

Separation logic has enjoyed and continues to enjoy great practical successes [1, 4].
However Brotherston and Kanovich have shown that, for propositional separation logic, the
validity problem is undecidable for a variety of different semantics, including the stack-and-
heap semantics [3]. The contrast between the aforementioned positive results concerning
algebras of partial functions and the undecidability of a propositional logic whose semantics
are based on partial algebras of partial functions, suggests a more detailed investigation into
the computational and logical behaviour of collections of partial functions equipped with
the partial operations arising from separation logic.

In this paper we examine, from a first-order perspective, partial algebras of partial
functions over separation logic signatures—signatures containing one or more of the partial
operations underlying the semantics of separation logic. Specifically, we study, for each
signature, the isomorphic closure of the class of partial algebras of partial functions. Because
these partial operations have not previously been studied in a first-order context we also
include an investigation into partial algebras of sets over these signatures.

In Section 2 we give the definitions needed to precisely define these classes of partial
algebras. In Section 3 we show that each of our classes is first-order axiomatisable and in
Section 4 we give a method to form recursive axiomatisations that are easily understandable
as statements about certain two-player games.

In Section 5 we show that though our classes are axiomatisable, finite axiomatisations
do not exist. In Section 6 we show that when ordinary intersection is added to the previously
examined signatures, the classes of partial algebras become finitely axiomatisable. In
Section 7 we examine decidability and complexity questions and then conclude with some
open problems.

2. Disjoint-union Partial Algebras

In this section we give the fundamental definitions that are needed in order to state the
results contained in this paper. We first define the partial operations that we use.
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Definition 2.1. Given two sets S and T the disjoint union S
•
∪ T equals S ∪ T if

S ∩ T = ∅, else it is undefined. The subset complement S
•

\ T equals S \ T if T ⊆ S, else
it is undefined.

Observe that S
•
∪ T = U if and only if U

•

\ S = T .
The next definition involves partial functions. We take the set-theoretic view of a

function as being a functional set of ordered pairs, rather than requiring a domain and
codomain to be explicitly specified also. In this sense there is no notion of a function being
‘partial’. But using the word partial serves to indicate that when we have a set of such
functions they are not required to share a common domain (of definition)—they are ‘partial
functions’ on (any superset of) the union of these domains.

Definition 2.2. Given two partial functions f and g the domain-disjoint union f •
^ g

equals f ∪ g if the domains of f and g are disjoint, else it is undefined. The symbol | denotes
the total operation of composition.

Observe that if the domains of two partial functions are disjoint then their union is a
partial function. So domain-disjoint union is a partial operation on partial functions. If f
and g are partial functions with g ⊆ f then f \ g is also a partial function. Hence subset
complement gives another partial operation on partial functions.

The reason for our interest in these partial operations is their appearance in the semantics
of separation logic, which we now detail precisely.

The separating conjunction ∗ is a binary logical connective present in all forms of
separation logic. As mentioned in the introduction, in the stack-and-heap semantics the
formulas are evaluated at a given heap (a partial function, h) and stack (variable assignment,
s). In this semantics h, s |= ϕ ∗ ψ if and only if there exist h1, h2 such that h = h1

•
^ h2

and both h1, s |= ϕ and h2, s |= ψ.
The constant emp also appears in all varieties of separation logic. The semantics is

h, s |= emp if and only if h = ∅.
The separating implication −∗ is another binary logical connective common in separ-

ation logic. The semantics is h, s |= ϕ−∗ ψ if and only if for all h1, h2 such that h = h2

•

\ h1

we have h1, s |= ϕ implies h2, s |= ψ.

Because we are working with partial operations, the classes of structures we will examine
are classes of partial algebras.

Definition 2.3. A partial algebra A = (A, (Ωi)i<β) consists of a domain, A, together with
a sequence Ω0,Ω1, . . . of partial operations on A, each of some finite arity α(i) that should
be clear from the context. Two partial algebras A = (A, (Ωi)i<β) and B = (B, (Πi)i<β) are
similar if for all i < β the arities of Ωi and Πi are equal. (So in particular A and B must
have the same ordinal indexing their partial operations.)

We use the word ‘signature’ flexibly. Depending on context it either means a sequence of
symbols, each with a prescribed arity and each designated to be a function symbol, a partial
function symbol or a relation symbol. Or, it means a sequence of actual operations/partial
operations/relations.

Definition 2.4. Given two similar partial algebras A = (A, (Ωi)i<β) and B = (B, (Πi)i<β),
a map θ : A→ B is a partial-algebra homomorphism from A to B if for all i < β and
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all a1, . . . , aα(i) ∈ A the value Ωi(a1, . . . , aα(i)) is defined if and only if Πi(θ(a1), . . . , θ(aα(i)))
is defined, and in the case where they are defined we have

θ(Ωi(a1, . . . , aα(i))) = Πi(θ(a1), . . . , θ(aα(i)))

. If θ is surjective then we say B is a partial-algebra homomorphic image of A. A
partial-algebra embedding is an injective partial-algebra homomorphism. An isomorph-
ism is a bijective partial-algebra homomorphism.

We are careful never to drop the words ‘partial-algebra’ when referring to the notions
defined in Definition 2.4, since a bald ‘homomorphism’ is an ambiguous usage when speaking
of partial algebras—at least three differing definitions have been given in the literature.
What we call a partial-algebra homomorphism, Grätzer calls a strong homomorphism [7,
Chapter 2].

Given a partial algebra A, when we write a ∈ A or say that a is an element of A, we
mean that a is an element of the domain of A. While total algebras are by convention
nonempty, we make the choice, for reasons of convenience, to allow partial algebras to be
empty. When we want to refer to a signature consisting of a single symbol we will often
abuse notation by using that symbol to denote the signature.

We write ℘(X) for the power set of a set X.

Definition 2.5. Let σ be a signature whose symbols are members of {
•
∪,
•

\, ∅}. A partial
σ-algebra of sets, A, with domain A, consists of a subset A ⊆ ℘(X) (for some base set
X), closed under the partial operations in σ, wherever they are defined, and containing the

empty set if ∅ is in the signature. The particular case of σ = (
•
∪) is called a disjoint-union

partial algebra of sets and the case σ = (
•
∪, ∅) is a disjoint-union partial algebra of sets

with zero.

Definition 2.6. Let σ be a signature whose symbols are members of { •^,
•

\, |, ∅}. A partial
σ-algebra of partial functions, A consists of a set of partial functions closed under the
partial and total operations in σ, wherever they are defined, and containing the empty set if
∅ is in the signature. The base of A is the union of the domains and codomains of all the
partial functions in A.

Definition 2.7. Let σ be a signature whose symbols are members of {
•
∪,
•

\, ∅}. A σ-
representation by sets of a partial algebra is an isomorphism from that partial algebra

to a partial σ-algebra of sets. The particular case of σ = (
•
∪) is called a disjoint-union

representation (by sets).

Definition 2.8. Let σ be a signature whose symbols are members of { •^,
•

\, |, ∅}. A σ-
representation by partial functions of a partial algebra is an isomorphism from that
partial algebra to a partial σ-algebra of partial functions.

For a partial algebra A and an element a ∈ A, we write aθ for the image of a under a
representation θ of A. We will be consistent about the symbols we use for abstract (partial)
operations—those in the partial algebras being represented—employing them according to
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the correspondence indicated below.
•
t  

•
∪ or •

^
•
−  

•

\
;  |
0  ∅

For each notion of representability we are interested in the associated representation
class—the class of all partial algebras having such a representation. It is usually clear whether
we are talking about a representation by sets or a representation by partial functions. For

example if the signature contains
•
∪ we must be talking of sets and if it contains •

^ we must
be talking of partial functions. However, as part (1) of the next proposition shows, for the
partial operations we are considering, representability by sets and representability by partial
functions are the same thing.

Proposition 2.9.

(1) Let σ be a signature whose symbols are a subset of {
•
∪,
•

\, ∅} and let σ′ be the signature

formed by replacing
•
∪ (if present) by •

^ in σ. A partial algebra is σ-representable by
sets if and only if it is σ′-representable by partial functions.

(2) Let A be a partial (
•
t, ;, 0)-algebra. If the (

•
t, 0)-reduct of A is (

•
∪, ∅)-representable and

A validates a ; b = 0, then A is ( •^, |, ∅)-representable.

Proof. For part (1), let σ be one of the signatures in question and let A be a partial algebra.
Suppose θ is a σ-representation of A by sets over base X. Then the map ρ defined by
aρ = {(x, x) | x ∈ aθ} is easily seen to be a σ′-representation of A by partial functions.

Conversely, suppose ρ is a σ′-representation of A by partial functions over base X. Let
Y be a disjoint set of the same cardinality as X and let f : X → Y be any bijection. Define
θ by aθ = aρ ∪ {(f(x), f(x)) | x ∈ dom(aρ)}. Then it is easy to see that θ is another σ′-
representation of A by partial functions. By construction, θ has the property that any aθ and
bθ have disjoint domains if and only if they are disjoint. Hence θ is also a σ-representation
of A by sets.

For part (2), let θ be a (
•
∪, ∅)-representation of the (

•
t, 0)-reduct of A over base set X.

Let Y be a disjoint set of the same cardinality as X and let f : X → Y be any bijection.
The map ρ defined by aρ = f�aθ is easily seen to be a ( •^, |, ∅)-representation of A.

Remark 2.10. In each of the following cases let the signature σ∅ be formed by the addition
of ∅ to σ.

• Let σ be a signature containing
•
∪. A partial algebra A is σ-representable if and only its

reduct to the signature without 0 is σ∅-representable and A satisfies 0
•
t 0 = 0.

• Let σ be a signature containing •
^. A partial algebra A is σ-representable if and only its

reduct to the signature without 0 is σ∅-representable and A satisfies 0
•
t 0 = 0.

• Let σ be a signature containing
•

\. A partial algebra A is σ-representable if and only its

reduct to the signature without 0 is σ∅-representable and A satisfies 0
•
− 0 = 0.

Hence axiomatisations of representation classes for signatures without ∅ would immediately
yield axiomatisations for the case including ∅ also.
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We now define a version of complete representability. For a partial (
•
t, . . .)-algebra A,

define a relation . over A by letting a . b if and only if either a = b or there is c ∈ A such

that a
•
t c is defined and a

•
t c = b. By definition, . is reflexive. If A is (

•
∪, . . .)-representable,

then by elementary properties of sets, it is necessarily the case that if (a
•
t b)

•
t c is defined

then a
•
t (b

•
t c) is also defined and equal to it, which is precisely what is required to see

that . is transitive. Antisymmetry of . also follows by elementary properties of sets. Hence
. is a partial order.

Definition 2.11. A subset S of a partial (
•
t, . . .)-algebra A is pairwise combinable if for

all s 6= t ∈ S the value s
•
t t is defined. A (

•
∪, . . .)-representation θ of A is .-complete if

for any pairwise-combinable subset S of A with a supremum a (with respect to the order .)
we have aθ =

⋃
s∈S s

θ.

Proposition 2.12. If A is a finite partial (
•
t, . . .)-algebra then every (

•
∪, . . .)-representation

of A is .-complete.

Proof. Let θ be a (
•
∪, . . .)-representation of A and let S ⊆ A be pairwise combinable

with supremum a. As S is pairwise combinable and θ is a (
•
∪, . . .)-representation, we

have that sθ
•
∪ tθ is defined for all s 6= t ∈ S. Then by the definition of

•
∪, the set

{sθ | s ∈ S} is pairwise disjoint. As A is finite, S must be too, so S = {s1, . . . , sn}, say. By

induction, for each k we have that s1
•
t . . .

•
t sk is defined and (s1

•
t . . .

•
t sk)θ =

⋃k
i=1 s

θ
i .

Hence (s1
•
t . . .

•
t sn)θ =

⋃
s∈S s

θ. It is clear that for any b1, b2 ∈ A the implication

b1 . b2 =⇒ bθ1 ⊆ bθ2 holds. Therefore aθ must be a superset of each sθi and must be a subset

of bθ for any upper bound b of S. But s1
•
t . . .

•
t sn is clearly an upper bound for S so we

conclude that aθ = (s1
•
t . . .

•
t sn)θ =

⋃
s∈S s

θ as required.

Finally, a word about logic. In our meta-language, that is, English, we can talk in terms
of partial operations and partial algebras, which is what we have been doing so far. However,
the traditional presentation of first-order logic does not include partial function symbols.
Hence, in order to examine the first-order logic of our partial algebras we must view them
formally as relational structures.

Let A = (A,
•
t) be a partial algebra. From the partial binary operation

•
t over A we

may define a ternary relation J over A by letting J(a, b, c) if and only if a
•
t b is defined and

equal to c. Since a partial operation is (at most) single valued, we have

J(a, b, c) ∧ J(a, b, d) → c = d. (2.1)

Conversely, given any ternary relation J over A satisfying (2.1), we may define a partial

operation
•
t over A by letting a

•
t b be defined if and only if there exists c such that J(a, b, c)

holds (unique, by (2.1)) and when this is the case we let a
•
t b = c. The definition of J from

•
t and the definition of

•
t from J are clearly inverses. Similarly, if

•
− is in the signature we

can define a corresponding ternary relation K in the same way.
To remain in the context of classical first-order logic we adopt languages that feature

neither
•
t nor

•
− but have ternary relation symbols J and/or K as appropriate (as well as

equality). In the relational language L(J), we may write ∃a
•
t b as an abbreviation of the

formula ∃cJ(a, b, c) and write a
•
t b = c in place of J(a, b, c). Similarly for

•
− and K.
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3. Axiomatisability

In this section we show there exists a first-order L(J)-theory that axiomatises the class J of

partial
•
t-algebras with

•
∪-representations. Hence J, viewed as a class of L(J)-structures, is

elementary. We do the same for the class K of partial
•
−-algebras with

•

\-representations (as

sets) and the class L of partial (
•
t,
•
−)-algebras with (

•
∪,
•

\)-representations.

Definition 3.1. If A1 ⊆ A2 are similar partial algebras and the inclusion map is a partial-
algebra embedding then we say that A1 is a partial-subalgebra of A2. Let Ai = (Ai,Ω0, . . .)
be partial algebras, for i ∈ I, and let U be an ultrafilter over I. The ultraproduct Πi∈IAi/U

is defined in the normal way, noting that, for example, [(ai)i∈I ]
•
t [(bi)i∈I ] (where ai, bi ∈ Ai

for all i ∈ I) is defined in the ultraproduct if and only if {i ∈ I | ai
•
t bi is defined in Ai} ∈

U . Ultrapowers and ultraroots also have their normal definitions: an ultrapower is an
ultraproduct of identical partial algebras and A is an ultraroot of B if B is an ultrapower
of A.

It is clear that a partial-subalgebra of A is always a substructure of A, as relational
structures, and also that any substructure of A is a partial algebra, that is, satisfies (2.1).
However, in order for a relational substructure of A to be a partial-subalgebra it is necessary
that it be closed under the partial operations, wherever they are defined in A.

It is almost trivial that the class of
•
∪-representable partial algebras is closed under

partial-subalgebras. This class is not however closed under substructures. Indeed it is

easy to construct a partial
•
t-algebra A with a disjoint-union representation but where an

L(J)-substructure of A has no disjoint-union representation. We give an example now.

Example 3.2. The collection ℘{1, 2, 3} of sets forms a disjoint-union partial algebra of sets

and so is trivially a
•
∪-representable partial

•
t-algebra, if we identify

•
t with

•
∪.

The substructure with domain ℘{1, 2, 3} \ {1, 2, 3} is not
•
∪-representable, because

{1}
•
t {2}, {2}

•
t {3} and {3}

•
t {1} all exist, so {1}, {2}, {3} would have to be represented

by pairwise disjoint sets. But then {1, 2}
•
t {3} would have to exist, which is not the case.

We obtain the following corollary.

Corollary 3.3. The isomorphic closure of the class of disjoint-union partial algebras of sets
is not axiomatisable by a universal first-order L(J)-theory.

Returning to our objective of proving that the classes J,K and L are elementary, this
could be achieved by showing that they are closed under ultraproducts and ultraroots.
However this is not entirely straightforward, since many of the relevant model-theoretic
results are known for total operations only. Instead, to apply these known results, we
first describe a way to view an arbitrary partial algebra as a total algebra. Then, having
established elementarity of the resulting class of total algebras we describe how to convert
back to an axiomatisation of the partial algebras.

Definition 3.4. Let A = (A, (Ωi)i<β) be a partial algebra. The totalisation of A is the
algebra A+ = (A ∪ {∞},∞, (Ωi)i<β), where ∞ 6∈ A and for each i the interpretation of
Ωi in A+ agrees with the interpretation in A whenever the latter is defined, and in all
other cases returns ∞. The totalisation of a class C of similar partial algebras is the class
C+ = {A+ | A ∈ C} of total algebras.
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Inversely to totalisation, suppose we have a total algebra B = (B,∞, (Ωi)i<β) where for
each i < β, if any element of the α(i)-tuple b̄ is ∞ then Ωi(b̄) =∞. Then we may define a
partial algebra B− = (B \ {∞}, (Ωi)i<β) where each Ωi(b1, . . . , bn) is defined in B− if and
only if Ωi(b1, . . . , bn) 6=∞ in B, in which case it has the same value as in B. Clearly for any
partial algebra A we have (A+)− = A and for any total algebra B with a suitable ∞ ∈ B
we have (B−)+ = B.

In the following, we show that each of the classes J+,K+ and L+ is closed under both

ultraproducts and subalgebras and hence is universally axiomatisable in L(∞,
•
t), L(∞,

•
−)

and L(∞,
•
t,
•
−) respectively. We then give a translation from the universal formulas defining

J+ to a set of L(J)-formulas that defines J. Similarly for the other two cases.
We will be using the notion of pseudoelementarity, and since there are various possible

equivalent definitions of this, we state the one we wish to use. It can be found, for example,
as [8, Definition 9.1].

Definition 3.5. Given an unsorted first-order language L, a class C of L-structures is
pseudoelementary if there exist

• a two-sorted first-order language L′, with sorts algebra and base, containing algebra-sorted
copies of all symbols of L,
• an L′-theory T ,

such that C = {Malgebra�L |M |= T}.

Lemma 3.6. The class J+ is universally axiomatisable in L(∞,
•
t), the class K+ is universally

axiomatisable in L(∞,
•
−) and the class L+ is universally axiomatisable in L(∞,

•
t,
•
−).

Proof. We start with J+. By definition, J+ is closed under isomorphism. We first show that
J+ is pseudoelementary, hence also closed under ultraproducts.

Consider a two-sorted language, with an algebra sort and a base sort. The signature

consists of a binary operation
•
t on the algebra sort, an algebra-sorted constant ∞ and a

binary predicate ∈, written infix, of type base × algebra. Consider the formulas

a
•
t ∞ =∞

•
t a =∞

(a 6= b) ∧ (a 6=∞) ∧ (b 6=∞)→ ∃x((x ∈ a ∧ x 6∈ b) ∨ (x 6∈ a ∧ x ∈ b))

(a 6=∞) ∧ (b 6=∞)→ ((a
•
t b =∞)↔ ∃x(x ∈ a ∧ x ∈ b))

(a
•
t b 6=∞)→ ((x ∈ a

•
t b)↔ (x ∈ a ∨ x ∈ b))

where a, b, c are algebra-sorted variables and x is a base-sorted variable.
These formulas merely state that the base-sorted elements form the base of a repres-

entation of the non-∞ elements of algebra sort and that ∞ behaves as it should for an

algebra in J+. Hence J+ is the class of (∞,
•
t)-reducts of restrictions of models of the

formulas to algebra-sorted elements, that is, J+ is pseudoelementary. Hence J+ is closed
under ultraproducts.

Since the only function symbol,
•
t, in our defining formulas is already in L(∞,

•
t) and

there is no quantification of algebra-sorted variables, J+ is closed under substructures. A
consequence of this is that J+ is closed under ultraroots, by the simple observation that the
diagonal map embeds any ultraroot into its ultrapower.

We now know that J+ is closed under isomorphism, ultraproducts and ultraroots. This is
a well-known algebraic characterisation of elementarity (for example see [6, Theorem 6.1.16]).
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Then as J+ is elementary and closed under substructures it is universally axiomatisable, by
the  Loś-Tarski preservation theorem.

For K+ and L+ the same line of reasoning applies. Each is by definition closed under
isomorphism. For K+ we show pseudoelementarity and closure under substructures using
the formulas

a
•
− ∞ =∞

•
− a =∞

(a 6= b) ∧ (a 6=∞) ∧ (b 6=∞)→ ∃x((x ∈ a ∧ x 6∈ b) ∨ (x 6∈ a ∧ x ∈ b))

(a 6=∞) ∧ (b 6=∞)→ ((a
•
− b =∞)↔ ∃x(x 6∈ a ∧ x ∈ b))

(a
•
− b 6=∞)→ ((x ∈ a

•
− b)↔ (x ∈ a ∧ x 6∈ b))

and for L+ we do the same using the union of the formulas for J+ and the formulas for
K+.

Proposition 3.7. Let C be a class of partial algebras of the signature (Ωi)i<β, which we
view as relational structures over the signature (Ri)i<β, where for each i the arity of Ri
is one greater than that of Ωi. Suppose C+ is universally axiomatisable in the language
L(∞, (Ωi)i<β). Then C is axiomatisable in the language L((Ri)i<β).

Proof. Let Σ+ be a universal axiomatisation of C+ in the language L(∞, (Ωi)i<β). Since it
is the validity of all the formulas in Σ+ that defines C+ we may assume that each axiom in
Σ+ is quantifier free. We define a translation − from L(∞, (Ωi)i<β) to L((Ri)i<β) such that

A+ |= ψ ⇐⇒ A |= ψ− (3.1)

for any nonempty partial algebra A of the signature (Ωi)i<β and any quantifier-free
L(∞, (Ωi)i<β)-formula ψ.

Let V (ψ) be the finite set of variables occurring in ψ and let S(ψ) be the set of subterms
of ψ. We may also write V (t) and S(t) to denote the set of all variables and subterms of the
term t. For any assignment ρ : V (ψ)→ A+ and t ∈ S(ψ) let [t]ρ denote the evaluation of t
under ρ in A+. Let v be any injective mapping from S(ψ) to our set of first-order variables,
mapping the term s ∈ S(ψ) to the variable vs and satisfying vu = u for all u ∈ V (ψ). Let
V (ψ)∗ = {vt | t ∈ S(ψ)}, so V (ψ)∗ ⊇ V (ψ). A grounded subset D ⊆ V (ψ)∗ satisfies

• v∞ 6∈ D,
• vΩi(t1,...,tn) ∈ D =⇒ vt1 , . . . , vtn ∈ D, for any Ωi(t1, . . . , tn) ∈ S(ψ).

Informally, each grounded D determines a partition of the subterms into ‘defined’ terms t
(when vt ∈ D) and ‘undefined’ terms s (when vs ∈ V (ψ)∗ \D), in a way that is consistent
with the structure of the terms.

For any subset D ⊆ V (ψ)∗ define

ϕ(D) =
∧

vt1 ,...,vtn∈D,
vΩi(t1,...,tn)∈D

Ri(vt1 , . . . , vtn , vΩi(t1,...,tn)) ∧
∧

vt1 ,...,vtn∈D,
vΩi(t1,...,tn) 6∈D

∀w¬Ri(vt1 , . . . , vtn , w)

where w is a new variable. For any equation s = t occurring in ψ define

(s = t)D by

 vs = vt if vs, vt ∈ D
> if vs, vt 6∈ D
⊥ otherwise
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and then let ψD be obtained from ψ by replacing each equation s = t by (s = t)D. Translate
ψ to the L(J)-formula

ψ− =
∧

D⊆V (ψ)∗

D grounded

(ϕ(D)→ ψD).

We must prove (3.1). Suppose ψ is not valid in A+, say ρ : V (ψ) → A+ is an
assignment such that A+, ρ 6|= ψ. Let ρ∗ : V (ψ)∗ → A satisfy ρ∗(vt) = [t]ρ for any t ∈ S(ψ)
provided [t]ρ 6= ∞ (else ρ∗(vt) ∈ A is arbitrary—possible since A is nonempty) and let
D = {vt ∈ V (ψ)∗ | [t]ρ 6=∞}. Then D is grounded, A, ρ∗ |= ϕ(D) and by formula induction
we get A+, ρ |= χ ⇐⇒ A, ρ∗ |= χD for any subformula χ of ψ. So A, ρ∗ 6|= ϕ(D)→ ψD and
therefore ψ− is not valid in A.

Conversely, suppose ψ− is not valid in A, so there is a grounded subset D ⊆ V (ψ)∗ and
a variable assignment µ : V (ψ−) → A such that A, µ |= ϕ(D) ∧ ¬ψD. As A is nonempty
we may extend µ to an assignment λ : V (ψ)∗ → A and we will have A, λ |= ϕ(D) ∧ ¬ψD.
Define λ+ : V (ψ)→ A+ by

λ+(u) =

{
λ(u) u ∈ D
∞ u ∈ V (ψ) \D.

Since A, λ |= ϕ(D) and λ+ agrees with λ over D ∩ V (ψ) we have

[t]λ
+

=

{
λ(vt) vt ∈ D
∞ vt 6∈ D.

(3.2)

We claim that
A+, λ+ |= χ ⇐⇒ A, λ |= χD (3.3)

for any subformula χ of ψ. For the base case let χ be an equation (s = t). If vs, vt ∈ D
then χD is vs = vt and (3.3) holds, by (3.2). If vs ∈ D but vt 6∈ D then χD is ⊥ and

∞ = [t]λ
+ 6= [s]λ

+ ∈ A so both sides of (3.3) are false. The case where vt ∈ D but vs 6∈ D is

similar. Finally, if vs, vt 6∈ D then χD is > and [s]λ
+

= [t]λ
+

=∞ so both sides of (3.3) are
true. Now (3.3) follows for all subformulas χ of ψ, by a simple structural induction. Since
A, λ 6|= ψD we deduce that A+, λ+ 6|= ψ, so ψ is not valid in A+. This completes the proof
of (3.1).

If A is nonempty, we have

A ∈ C ⇐⇒ A+ ∈ C+ ⇐⇒ A+ |= Σ+ ⇐⇒ A |= {ψ− | ψ ∈ Σ+}.
So if the empty partial algebra is in C then {∀xψ− | ψ ∈ Σ+} is an axiomatisation of C. If
the empty partial algebra is not in C then {∃x> ∧ ψ− | ψ ∈ Σ+} is an axiomatisation of
C.

Theorem 3.8. Let σ be any one of the signatures (
•
∪), (

•

\) or (
•
∪,
•

\). The class of partial
algebras σ-representable as sets, viewed as a class of relational structures, is elementary.

Proof. The classes in question are J, K and L. Lemma 3.6 tells us that each class satisfies the
condition for Proposition 3.7 to apply. Hence each class is axiomatisable in the appropriate
relational language.
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We can now easily establish elementarity in all cases without composition.

Corollary 3.9. Let σ be any signature whose symbols are a subset of {
•
∪,
•

\, ∅}. The class
of partial algebras that are σ-representable by sets is elementary.

Proof. The previous theorem gives us the result for the three signatures (
•
∪), (

•

\) and (
•
∪,
•

\).
Then as we noted in Remark 2.10, axiomatisations for these signatures yield axiomatisations

for the signatures (
•
∪, ∅), (

•

\, ∅) and (
•
∪,
•

\, ∅) with the addition of a single extra axiom, either
J(0, 0, 0) or K(0, 0, 0). The remaining cases, the empty signature and the signature (∅),
trivially are axiomatised by the empty theory.

Corollary 3.10. Let σ be any signature whose symbols are a subset of { •^,
•

\, ∅}. The class
of partial algebras that are σ-representable by partial functions is elementary.

Proof. By Proposition 2.9(1) these representation classes are the same as those in Corol-
lary 3.9.

4. A Recursive Axiomatisation via Games

In this section we describe a recursive axiomatisation of the class of
•
∪-representable partial

algebras. This axiomatisation can be understood quite simply, as a sequence of statements
about a particular two-player game. The efficacy of this approach using games relies on our
prior knowledge, obtained in the previous section, that the class in question is elementary.
The reader should note that everything in this section can be adapted quite easily to
•

\-representability by sets and (
•
∪,
•

\)-representability by sets.

Fix some partial
•
t-algebra A. The following definition and lemma are the motivation

behind our two-player game.

Definition 4.1. We call a subset U of A

•
•
t-prime if a

•
t b ∈ U implies either a ∈ U or b ∈ U ,

• bi-closed if the two conditions a ∈ U or b ∈ U and a
•
t b defined, together imply

a
•
t b ∈ U ,

• pairwise incombinable if a, b ∈ U implies a
•
t b is undefined.

Lemma 4.2. Let F(A) be the set of all
•
t-prime, bi-closed, pairwise-incombinable subsets

of A. Then A has a disjoint-union representation if and only if there is a B ⊆ F(A) such
that

(i) for all a 6= b ∈ A there is U ∈ B such that either a ∈ U and b 6∈ U or b ∈ U and a 6∈ U ,

(ii) for all a, b ∈ A if a
•
t b is undefined then there is U ∈ B such that a, b ∈ U .

Proof. For the left-to-right implication, if θ is a disjoint-union representation of A on a base
set X then for each x ∈ X let U(x) = {a ∈ A | x ∈ aθ} and let B = {U(x) | x ∈ X}. It is

easy to see that U(x) is a
•
t-prime, bi-closed, pairwise-incombinable set, for all x ∈ X, and

that B includes all elements required by (i) and (ii) of this lemma.
Conversely, assuming that B ⊆ F(A) has the required elements we can define a rep-

resentation θ of A by aθ = {U ∈ B | a ∈ U}. Condition (i) ensures that θ is faithful, that
is, distinguishes distinct elements of A. Condition (ii) ensures aθ and bθ are disjoint only
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if a
•
t b is defined. The pairwise incombinable condition on each U ∈ B ensures a

•
t b is

defined only if aθ and bθ are disjoint. The
•
t-prime and bi-closed conditions on elements of

B ensure that when a
•
t b is defined, (a

•
t b)θ = aθ ∪ bθ.

We define a two player game Γn over A with n ≤ ω rounds, played by players ∀ and ∃.
A position (Y,N) consists of two finite subsets Y and N of A. It might help to think of Y
as a finite set of sets such that some given point belongs to each of them and N is a finite
set of sets such that the same point belongs to none of them.

In the initial round (round 0) ∀ either

(i) picks a 6= b ∈ A, or

(ii) picks a, b ∈ A such that a
•
t b is undefined.

In the former case ∃ responds with an initial position, either ({a}, {b}) or ({b}, {a}), at her
choice. In the latter case she must respond with the initial position ({a, b}, ∅).

In all later rounds, if the position is (Y,N) then ∀ either

(a) picks a, b ∈ A such that a
•
t b is defined and belongs to Y , or

(b) picks a ∈ Y and b ∈ A such that a
•
t b is defined, or

(c) picks a ∈ A and b ∈ Y such that a
•
t b is defined.

In case (a) player ∃ responds with either (Y ∪ {a}, N) or (Y ∪ {b}, N), in cases (b) and (c)

she must respond with the position (Y ∪ {a
•
t b}, N). Observe that N never changes as the

game proceeds, it is either a singleton or empty.
A position (Y,N) is a win for ∀ if either

(1) Y ∩N 6= ∅, or

(2) there are a, b ∈ Y such that a
•
t b is defined.

Player ∀ wins a play of Γn if he wins in some round 0 ≤ i < n, else ∃ wins the play of the
game.

The game Γn(Y,N) is similar (where Y,N are finite subsets of A), but the initial round
is omitted and play begins from the position (Y,N).

Lemma 4.3. If A is representable then ∃ has a winning strategy for Γω. If A is countable
and ∃ has a winning strategy for Γω then A has a representation on a base of size at most
2|A|2.

Proof. First suppose A has a representation, θ say. By Lemma 4.2 there is a set B of
•
t-prime, bi-closed, pairwise-incombinable subsets of A such that (i) for all a 6= b ∈ A there

is U ∈ B such that either a ∈ U, b 6∈ U or b ∈ U, a 6∈ U and (ii) whenever a
•
t b is undefined

there is U ∈ B with a, b ∈ U . We describe a winning strategy for ∃. In response to any
initial ∀-move she will select a suitable U ∈ B and play an initial position (Y,N) such that

Y ⊆ U and N ∩ U = ∅. (4.1)

and the remainder of her strategy will be to preserve this condition throughout the play.
In the initial round there are two possibilities.

(i) If ∀ plays a 6= b ∈ A then there is a U ∈ B with either a ∈ U, b 6∈ U or b ∈ U, a 6∈ U .
In the former case ∃ plays an initial position ({a}, {b}) and in the latter case she plays
({b}, {a}).
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(ii) If ∀ plays (a, b) where a
•
t b is undefined, there is U ∈ B where a, b ∈ U and ∃ selects

such a U and plays ({a, b}, ∅).
In each case, (4.1) holds.

In a subsequent round, if the current position (Y,N) satisfies (4.1) and ∀ plays a, b

where a
•
t b ∈ Y is defined then since U is

•
t-prime either Y ∪ {a} ⊆ U or Y ∪ {b} ⊆ U , so ∃

may play either (Y ∪ {a}, N) or (Y ∪ {b}, N), as appropriate, preserving (4.1). Similarly, if

∀ plays a, b where a ∈ Y and a
•
t b is defined (or b ∈ Y and a

•
t b is defined), then since U is

bi-closed we have a
•
t b ∈ U so ∃ plays (Y ∪ {a

•
t b}, N), preserving condition (4.1). This

condition suffices to prove that ∃ does not lose in any round of the play.
Conversely, suppose A is countable and ∃ has a winning strategy for Γω. Then for each

a 6= b ∈ A let Sa,b =
⋃
i<ω Yi, where (Y0, N), (Y1, N), . . . is a play of Γω in which ∀ plays the

type (i) move (a, b) initially (so N is a singleton). For each a, b ∈ A where a
•
t b is undefined

let Ta,b =
⋃
i<ω Yi be the limit of a play in which ∀ plays the type (ii) move (a, b) initially

(so N is empty). In each case we suppose—here is where we use the hypothesis that A is
countable—that ∀ plays all possible moves subsequently. We also suppose that ∃ uses her
winning strategy.

Each set Sa,b (where a 6= b) or Ta,b (where a
•
t b is undefined) is

•
t-prime, bi-closed and

pairwise incombinable, since ∀ plays all possible moves in a play and ∃ never loses. Hence

B = {Sa,b | a 6= b ∈ A} ∪ {Ta,b | a
•
t b is undefined} satisfies the conditions of Lemma 4.2.

Clearly the size of the base set B is at most 2|A|2.

Lemma 4.4. For each n < ω there is a first-order L(J)-formula ρn such that A |= ρn if and
only if ∃ has a winning strategy in Γn.

Proof. Let V and W be disjoint finite sets of variables. For each n < ω we define formulas

µn(V,W ) in such a way that for any partial
•
t-algebra A and any variable assignment

λ : vars → A we have

A, λ |= µn(V,W ) ⇐⇒ ∃ has a winning strategy in Γn(λ[V ], λ[W ]). (4.2)

Let

µ0(V,W ) =
∧

v,v′∈V

¬∃cJ(v, v′, c) ∧
∧

v∈V, w∈W
v 6= w

where c is a fresh variable. So (4.2) is clear when n = 0. For the recursive step let

µn+1(V,W ) = ∀a, b
( ∧
v∈V

(J(a, b, v)→ µn(V ∪ {a},W ) ∨ µn(V ∪ {b},W ))

∧
∧
v∈V

(J(a, v, b)→ µn(V ∪ {b},W ))

∧
∧
v∈V

(J(v, a, b)→ µn(V ∪ {b},W ))

)
where a and b are fresh variables. By a simple induction on n we see that (4.2) holds, for all
n. Finally, (let ρ0 = > and) let

ρn+1 = ∀a, b
(

(a = b ∨ µn({a}, {b}) ∨ µn({b}, {a})) ∧ (∃cJ(a, b, c) ∨ µn({a, b}, ∅))
)
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where again a, b and c are fresh variables.

Observe that each formula µn(V,W ) is equivalent to a universal formula and therefore
ρn, but for the clause ∃cJ(a, b, c), is universal.

Theorem 4.5. The isomorphic closure of the class of disjoint-union partial algebras of sets
is axiomatised by {ρn | n < ω}.

Proof. We will use Lemma 4.3 and Lemma 4.4, but we must be slightly careful, because we
chose to present the lemmas with the assumption that the L(J)-structure in question is a
partial algebra. Hence we must check that (2.1) holds before appealing to either lemma.

If an L(J)-structure A is isomorphic to a disjoint-union partial algebra of sets then
certainly it satisfies (2.1). Then by Lemma 4.3, player ∃ has a winning strategy in the game
of length n for each n < ω. So A |= ρn by Lemma 4.4.

Conversely, if A |= {ρn | n < ω} let B be any countable elementary substructure of A.
Then B |= {ρn | n < ω}. The validity of ρ3 tells us that (2.1) holds, as we now explain. For
if J(a, b, c) and J(a, b, d), with c 6= d, then from ρ3 we know that either µ2({c}, {d}) holds
or µ2({d}, {c}) holds. Without loss of generality, we assume the former. From µ2({c}, {d}),
assigning c to v in the first conjunct, we deduce µ1({c, a}, {d}) or µ1({c, b}, {d}) and again
we may assume the former. From the second conjunct in µ1({c, a}, {d}) (assigning b to the
variable v and d to the variable b) we deduce µ0({c, a, d}, {d}), which is contradicted by the
final inequality v 6= w, when v and w are both assigned d.

Hence we can use Lemma 4.4 and conclude that ∃ has a winning strategy in game Γn for
each n < ω. Then since ∃ has only finitely many choices open to her in each round (actually,
at most two choices), by König’s tree lemma she also has a winning strategy in Γω. So by
Lemma 4.3 the partial algebra B is isomorphic to a disjoint-union partial algebra of sets.
Since A is elementarily equivalent to B, we deduce A is also isomorphic to a disjoint-union
partial algebra of sets, by Proposition 3.7.

5. Non-axiomatisability

In this section we show that for any of the signatures (
•
∪), (

•

\), (
•
∪,
•

\), (
•
∪, ∅), (

•

\, ∅) or (
•
∪,
•

\, ∅)
the class of partial algebras representable by sets is not finitely axiomatisable. Hence the

same is true for representability by partial functions, when
•
∪ is replaced by •

^. For partial
functions, we also show the same holds when we add composition to these signatures. Our
strategy is to describe a set of non-representable partial algebras that has a representable
ultraproduct.

Let m and n be sets of cardinality greater than two. We will call a subset of m × n
axial if it has the form {i} × J (for some i ∈ m, J ⊆ n) or the form I × {j} (for some
I ⊆ m, j ∈ n). Observe that ∅ × {j} = {i} × ∅ = ∅ for any i ∈ m, j ∈ n.

Next we define a partial (
•
t, 0)-algebra X(m,n). It has a domain consisting of all axial

subsets of m× n. The constant 0 is interpreted as the empty set and S
•
t T is defined and

equal to S ∪ T if S is disjoint from T and S ∪ T is axial, else it is undefined.
Now for any i 6= i′ ∈ m and j 6= j′ ∈ n the set I(i, j, i′, j′) = {a ∈ X(m,n) |

(i, j) ∈ a or (i′, j′) ∈ a} is a
•
t-prime, bi-closed, pairwise-incombinable set. The collection

{I(i, j, i′, j′) | i 6= i′ ∈ m, j 6= j′ ∈ n} of such sets satisfies conditions (i) and (ii) of
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Lemma 4.2 and hence the
•
t-reduct of X(m,n) is

•
∪-representable. The formula 0

•
t 0 = 0 is

also satisfied, so X(m,n) is (
•
∪, ∅)-representable.

Definition 5.1. Given a partial algebra A = (A, (Ωi)i<β), a partial-algebra congru-
ence on A is an equivalence relation ∼ with the property that for each i and every
a1, . . . , aα(i), b1, . . . , bα(i) ∈ A, if a1 ∼ b1, . . . , aα(i) ∼ bα(i) then Ωi(a1, . . . , aα(i)) is defined
if and only if Ωi(b1, . . . , bα(i)) is defined and when these are defined Ωi(a1, . . . , aα(i)) ∼
Ωi(b1, . . . , bα(i)).

Note our condition for being a partial-algebra congruence is strictly stronger than that
obtained by viewing a partial algebra as a relational structure and then using the familiar
definition of a congruence—for signatures with no function symbols a congruence relation
is merely an equivalence relation. Our definition of a partial-algebra congruence takes the
‘algebraic’ rather than ‘relational’ view of the structure. If a congruence ∼ on a partial
algebra A is a partial-algebra congruence, that is sufficient for the quotient A/∼ (with its
usual meaning on the relational view of A) to itself be a partial algebra.

Definition 5.2. Given a partial algebra A = (A, (Ωi)i<β) and a partial-algebra congruence
∼ on A, the partial-algebra quotient of A by ∼, written A/∼, is the partial algebra of
the signature (Ωi)i<β with domain the set of ∼-equivalence classes and well-defined partial
operations given by: Ωi([a1], . . . , [aα(i)])= [Ωi(a1, . . . , aα(i))] if Ωi(a1, . . . , aα(i)) is defined,
else Ωi([a1], . . . , [aα(i)]) is undefined.

Given a partial-algebra congruence ∼ on A, the partial-algebra quotient by ∼ is the
same structure as the quotient by ∼, which is why we reuse the notation A/∼. All the
expected relationships between partial-algebra homomorphisms, partial-algebra congruences
and partial-algebra quotients hold.

Returning to our task, we define a binary relation ∼ over X(m,n) as the smallest
equivalence relation such that

{i} × n ∼ m× {j}
{i} × (n \ {j}) ∼ (m \ {i})× {j}

for all i ∈ m, j ∈ n. The equivalence class of {i} × n (for any choice of i ∈ m) is denoted 1

and the equivalence class of {i}× (n \ {j}) is denoted (i, j), for each i ∈ m, j ∈ n. All other
equivalence classes are singletons, either {{i} × J} for some i ∈ m, J ( n or {I × {j}} for

some I ( m, j ∈ n. We show next that ∼ is a partial-algebra congruence. Clearly
•
t is

commutative in the sense that S
•
t T is defined if and only if T

•
t S is defined and then they

are equal. Hence it suffices to show, for any S ∼ S′, that S ∩ T = ∅ and S ∪ T is axial if and
only if S′ ∩ T = ∅ and S′ ∪ T is axial, and if these statements are true then S ∪ T ∼ S′ ∪ T .
Further, by symmetry, it suffices to prove only one direction of this biconditional.

Suppose then that S ∼ S′, that S ∩ T = ∅ and that S ∪ T is axial. We may assume
S 6= S′, so without loss of generality there are two cases to consider: the case S = {i} × n
and the case S = {i} × (n \ {j}) and S′ = (m \ {i})× {j}. In the first case, since S ∪ T is
axial and |n| > 1 we know T must be a subset of S. But T is also disjoint from S, hence T
is empty. Then it is clear that S′ ∩ T = ∅ and S′ ∪ T is axial and that S ∪ T ∼ S′ ∪ T . In
the second case, since S ∪ T is axial and |n| > 2 we know T must be a subset of {i} × n.
But T is also disjoint from S and so T is either {(i, j)} or ∅. Either way, it is clear that
S′ ∩ T = ∅ and S′ ∪ T is axial and that S ∪ T ∼ S′ ∪ T .
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Now define a partial (
•
t, 0)-algebra A(m,n) as the partial-algebra quotient

X(m,n)/∼. Since the elements of A(m,n) are ∼-equivalence classes and these are typ-
ically singletons, we will suppress the [ · ] notation and let the axial set S denote the
equivalence class of S, taking care to identify ∼-equivalent axial sets.

For the following lemma, recall the notion of .-complete representability given in
Definition 2.11.

Lemma 5.3. For any sets m and n of cardinality greater than two, the partial algebra

A(m,n) is .-completely (
•
∪, 0)-representable if and only if |m| = |n|.

Proof. For the left-to-right implication let θ be a .-complete representation of A(m,n) over

the base X. The set 1θ must be nonempty, because 1
•
t 1 is undefined. Fix some x ∈ 1θ and

define a subset R of m × n by letting (i, j) ∈ R ⇐⇒ x ∈ {(i, j)}θ for i ∈ m, j ∈ n. For
each i ∈ m, since 1 is the supremum of {{(i, j)} | j ∈ n} and θ is .-complete, there is j ∈ n
such that x ∈ {(i, j)}θ and hence (i, j) ∈ R. Dually, for any j ∈ n, since 1 is the supremum
of {{(i, j)} | i ∈ m} there is i ∈ m such that (i, j) ∈ R. We cannot have (i, j), (i′, j) ∈ R,

for distinct i, i′ ∈ m since θ is a representation and {(i, j)}
•
t {(i′, j)} is defined. Similarly,

for distinct j, j′ ∈ n we cannot have (i, j), (i, j′) ∈ R. Hence R is a bijection from m onto n.
We deduce that |m| = |n|.

For the right-to-left implication suppose |m| = |n|. It suffices to describe a .-complete
representation of A(n, n).

The base of the representation is the set Pn of all permutations on n. If S is any axial
set it has the form {i} × J for some i ∈ n, J ⊆ n or the form I × {j} for some I ⊆ n, j ∈ n.
Define a representation θ over Pn by letting ({i}× J)θ be the set of all permutations σ ∈ Pn
such that σ(i) ∈ J and (I×{j})θ be the set of all permutations σ ∈ Pn such that σ−1(j) ∈ I.
Observe this is well defined, since firstly if an axial set is both of the form {i} × J and of
the form I × {j} then the definitions agree, and secondly it is easily seen that ∼-equivalent
axial sets are assigned the same set of permutations.

We now show that θ is a (
•
∪, 0)-representation. To see that θ is faithful we show that

∼-inequivalent axial sets are represented as distinct sets of permutations. We may assume
the axial sets are not in the equivalence class 1, since 1θ = Pn and all axial sets not in 1 are
clearly assigned proper subsets of Pn. Similarly, we may assume the axial sets are not the
empty set.

First suppose we have two inequivalent vertical sets {i}× J and {i′}× J ′. If i = i′ there
must be a j in the symmetric difference of J and J ′. Then any permutation with i 7→ j
witnesses the distinction between ({i}× J)θ and ({i′}× J ′)θ. Otherwise i 6= i′, and if we can
choose j 6= j′ with j ∈ J and j′ 6∈ J ′ then any permutation with i 7→ j and i′ 7→ j′ belongs
to ({i} × J)θ \ ({i′} × J ′)θ. Since we assumed our axial sets are neither ∅ nor in 1 we can
do this unless J and n \ J ′ are the same singleton set, {j0} say. But then for any distinct
j, j′ ∈ n \ {j0} we have j 6∈ J and j′ ∈ J ′ so any permutation with i 7→ j, i′ 7→ j′ belongs to
({i′} × J ′)θ \ ({i} × J)θ. Hence θ always distinguishes inequivalent vertical sets. If we have
two inequivalent horizontal sets I × {j} and I ′ × {j}′ then the argument is similar.

Lastly, suppose we have inequivalent sets {i} × J and I × {j}. If we can choose a k ∈ J
not equal to j and an l 6∈ I not equal to i then there exist permutations with i 7→ k and
l 7→ j and any such permutation belongs to ({i} × J)θ \ (I × {j})θ. We can do this unless
either J = {j}, in which case we have two horizontal sets, which we have already considered,
or I = n\{i}. By a symmetrical argument, we can witness the distinction unless J = n\{j}.
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Hence ({i}× J)θ 6= (I ×{j})θ unless {i}× J = {i}× (n \ {j}) and I ×{j} = (n \ {i})×{j},
contradicting the assumed inequivalence of {i}×J and I×{j}. This completes the argument
that θ is faithful.

It is clear that θ correctly represents 0 as ∅. Now to see that θ is a (
•
∪, ∅)-representation

it remains to show that θ represents
•
t correctly as

•
∪. If S

•
t T is defined then we may

assume S = {i} × J1 and T = {i} × J2 for some disjoint J1 and J2, since the case where

S
•
t T is a horizontal set is similar. Then it is clear from the definition of θ that Sθ and T θ

are disjoint and so Sθ
•
∪ T θ is defined and that (S

•
t T )θ = Sθ

•
∪ T θ. If S

•
t T is undefined

then either there is some (i, j) ∈ S ∩ T , in which case Sθ and T θ clearly are non-disjoint, or
S ∪ T is not axial, in which case there are i 6= i′ and j 6= j′ with (i, j) ∈ S and (i′, j′) ∈ T .
In the second case, any permutation with i 7→ j and i′ 7→ j′ witnesses that Sθ and T θ are

non-disjoint. Hence when S
•
t T is undefined, Sθ

•
∪ T θ is undefined. This completes the

proof that θ is a (
•
∪, ∅)-representation.

Finally we show that θ is .-complete. Let γ be a pairwise-combinable subset of A(n, n).
If γ has supremum {i}×J for some J with |n\J | ≥ 2 then for all S ∈ γ since the supremum
is an upper bound and by the definition of ., either S = {i} × J or there is T such that

S
•
t T ∼ {i} × J . It follows that each S ∈ γ has the form {i} × JS for some JS ⊆ J and

since the {i} × J is the least upper bound we have J =
⋃
S∈γ JS . Then for any σ ∈ Pn we

have

σ ∈ ({i} × J)θ ⇐⇒ σ(i) ∈ J
⇐⇒ σ(i) ∈ JS for some S ∈ γ

⇐⇒ σ ∈ ({i} × JS)θ for some S ∈ γ

⇐⇒ σ ∈
⋃
S∈γ

({i} × JS)θ =
⋃
S∈γ

Sθ.

Similarly if the supremum of γ is I×{j} for some I with |m\I| ≥ 2, then (I×{j})θ =
⋃
S∈γ S

θ.

If the supremum of γ is (i, j) then either γ = {(i, j)}, so the proof of the required
equality is trivial, or, because γ is pairwise combinable, each S ∈ γ has the form {i} × JS
or each S ∈ γ has the form IS × {j} in which cases the proof is similar to above. If the

supremum of γ is 1, then either γ = {1} or γ = {{(i, j)}, (i, j)} for some i, j, or each S ∈ γ
has the form {i} × JS , or each S ∈ γ has the form IS × {j}. In every case the required
equality is seen to hold. So θ is a .-complete representation.

Remark 5.4. We have seen that X(3, 4) has a (
•
∪, ∅)-representation, but, by Lemma 5.3

and Proposition 2.12, the partial algebra A(3, 4) = X(3, 4)/∼ does not. Since the latter is a

partial-algebra homomorphic image of the former we see that the class of (
•
∪, ∅)-representable

partial algebras is not closed under partial-algebra homomorphic images, in contrast to the
corresponding result for algebras representable as fields of sets, that is, boolean algebras.

We now have a source of non-representable partial algebras with which to prove our
first non-axiomatisability result.

Theorem 5.5. The class of (
•
∪, ∅)-representable partial algebras is not finitely axiomatisable.
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Proof. Write ν for ω \{0, 1, 2} and let m ∈ ν. By Lemma 5.3 the partial algebra A(m,m+ 1)

has no .-complete (
•
∪, ∅)-representation. Since this partial algebra is finite, it follows, by

Proposition 2.12, that it has no (
•
∪, ∅)-representation.

Let U be a non-principal ultrafilter over ν. We claim that the ultraproduct Πm∈νA(m,m+
1)/U is isomorphic to a partial-subalgebra of A(Πm∈νm/U, Πm∈ν(m + 1)/U). Note that
every element of Πm∈νA(m,m+ 1)/U is the equivalence class of a sequence of vertical sets
[({im} × Jm)m∈ν ] where im ∈ m and Jm ⊆ m+ 1 for each m ∈ ν, or the equivalence class of
a sequence of horizontal sets [(Im ×{jm})m∈ν ] where Im ⊆ m and j ∈ m+ 1 for each m ∈ ν.
The partial-algebra embedding θ maps [({im}×Jm)m∈ν ] to {[(im)m∈ν ]}×{[(jm)m∈ν ] | {m ∈
ν | jm ∈ Jm} ∈ U}, and it maps [(Im × {jm})m∈ν ] to {[(im)m∈ν ] | {m ∈ ν | im ∈ Im} ∈
U} × {[(jm)m∈ν ]}.

It is easy to check that θ is a well-defined partial-algebra embedding. We limit ourselves

to showing that if aθ
•
t bθ is defined in A(Πm∈νm/U, Πm∈ν(m+1)/U) then a

•
t b is defined in

Πm∈νA(m,m+ 1)/U , since it is this condition that distinguishes partial-algebra embeddings
from embeddings of relational structures.

We prove the contrapositive. Suppose a
•
t b is undefined and let [(am)m∈ν ] = a and

[(bm)m∈ν ] = b. Then we can find S ∈ U such that one of the following two possibilities holds.
One, for each m ∈ S there exists (im, jm) belonging to both (a representative of) am and
(a representative of) bm. Or two, for each m ∈ S there exists im 6= i′m and jm 6= j′m such
that (im, jm) belongs to (a representative of) am and (i′m, j

′
m) belongs to (a representative

of) bm. Extend (im)m∈S , (jm)m∈S and, if appropriate, (i′m)m∈S and (j′m)m∈S to ν-sequences
arbitrarily. If the first alternative holds then ([(im)m∈ν ], [(jm)m∈ν ]) belongs to (representat-

ives of) both aθ and bθ. So aθ
•
t bθ is undefined since the representatives are non-disjoint.

If the second alternative holds then [(im)m∈ν ] 6= [(i′m)m∈ν ], [(jm)m∈ν ] 6= [(j′m)m∈ν ] and
([(im)m∈ν ], [(jm)m∈ν ]) belongs to (a representative of) aθ and ([(i′m)m∈ν ], [(j′m)m∈ν ]) belongs

to (a representative of) bθ. So aθ
•
t bθ is undefined since the union of the representatives is

not axial.
We now argue that A(Πm∈νm/U, Πm∈ν(m + 1)/U) is representable, by showing

that the cardinalities of its two parameters are equal. The map f : Πm∈νm/U →
Πm∈ν(m + 1)/U defined by f([(im)m∈ν ]) = [(im + 1)m∈ν ] is injective and its range is
all of Πm∈ν(m + 1)/U except [(0, 0, . . .)]. Since these are infinite sets it follows that the
cardinality of Πm∈νm/U equals the cardinality of Πm∈ν(m+ 1)/U . It follows by Lemma 5.3

that A(Πm∈νm/U, Πm∈ν(m+ 1)/U) is (
•
∪, ∅)-representable.

Since the partial algebra Πm∈νA(m,m+ 1)/U has a partial algebra embedding into a
representable partial algebra and the class of representable partial algebras is closed under
partial subalgebras, we conclude that Πm∈νA(m,m + 1)/U is itself representable. Hence
we have an ultraproduct of unrepresentable partial algebras that is itself representable. It

follows by  Loś’s theorem that the class of (
•
∪, ∅)-representable partial algebras cannot be

defined by finitely many axioms.

Corollary 5.6. Let σ be any one of the signatures (
•
∪), ( •^), (

•
∪, ∅), ( •^, ∅), ( •^, |) or ( •^, |, ∅).

The class of σ-representable partial algebras is not finitely axiomatisable in L(J), L(J, 0),
L(J, ;) or L(J, ;, 0), as appropriate.

Proof. The case σ = (
•
∪, ∅) is Theorem 5.5. The case σ = ( •^, ∅) follows by Proposition 2.9(1),

which tells us that the representation classes for (
•
∪, ∅) and ( •^, ∅) coincide.
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For the case σ = ( •^, |, ∅), for any sets m,n of cardinality greater than two, expand

A(m,n) to a partial (
•
t, ;, 0)-algebra B(m,n) by defining a ; b = 0 for all a, b. As in the proof

of Theorem 5.5, write ν for ω \ {0, 1, 2} and let U be a non-principal ultrafilter over ν. Then
for every m ∈ ν the partial algebra B(m,m+ 1) has no ( •^, |, ∅)-representation, as its reduct

to (
•
t, 0) has no ( •^, ∅)-representation. However, as we saw in the proof of Theorem 5.5, the

reduct of Πm∈νB(m,m+ 1)/U to (
•
t, 0) does have a ( •^, ∅)-representation and moreover,

by  Loś’s theorem, it validates a ; b = 0. By Proposition 2.9, these conditions ensure
Πm∈νB(m,m+ 1)/U has a ( •^, |, ∅)-representation. Once again we have an ultraproduct of
unrepresentable partial algebras that is itself representable. Hence the representation class
is not finitely axiomatisable.

For each of the signatures containing ∅ the result follows from the result for the
corresponding signature without ∅, by Remark 2.10. Because if the representation class for
the signature without ∅ were finitely axiomatisable we could finitely axiomatise the case
with ∅ by the addition of the single extra axiom J(0, 0, 0).

We can prove a stronger negative result about .-complete representability.

Theorem 5.7. The class of .-completely (
•
∪, ∅)-representable partial algebras is not closed

under elementary equivalence.

Proof. Consider the two partial (
•
t, ∅)-algebras A1 = A(ω1, ω) and A0 = A(ω, ω), where

ω1 denotes the first uncountable ordinal. By Lemma 5.3 the former is not .-completely

(
•
∪, ∅)-representable while the latter is. We prove these two partial algebras are elementarily
equivalent by showing that the second player has a winning strategy in the Ehrenfeucht-
Fräissé game of length ω played over A1 and A0.

Although elements of A1 or A0 are formally equivalence classes of axial sets, we may
take {0} × ω as the representative of 1 and {i} × (ω \ {j}) as the representative of (i, j), in
either partial algebra. Since all elements are axial, each nonzero a ∈ Ai uniquely determines
(given this choice of representatives) sets hi(a) and vi(a) such that a = hi(a) × vi(a), for
i = 0, 1. For example h1({i} × J) = {i}, v1({i} × J) = J, h1(1) = {0} and v1(1) = ω. We
will view 0 as ∅ × ∅, in that hi(0) = vi(0) = ∅.

For any sets X,Y we write X ≈ Y if either

• both X and Y contain 0
• or neither contain 0 and either |X| = |Y | or both sets are infinite.

Observe, for any X,Y and U ⊆ X, that

X ≈ Y ⇐⇒ there is V ⊆ Y with U ≈ V and X \ U ≈ Y \ V. (5.1)

Initially there are no pebbles in play. After k rounds there will be k pebbles on
b̄ = (b0, . . . , bk−1) ∈ Ak1 and k matching pebbles on ā = (a0, . . . , ak−1) ∈ Ak0. For each S ⊆ k
let

h1(b̄, S) =
⋂
i∈S

h1(bi) ∩
⋂
i∈k\S

(ω1 \ h1(bi)),

v1(b̄, S) =
⋂
i∈S

v1(bi) ∩
⋂
i∈k\S

(ω \ v1(bi)),
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with similar definitions for h0(ā, S) and v0(ā, S). Observe that {h1(b̄, S) | S ⊆ k} \ {∅} is
a finite partition of ω1 and each of {v1(b̄, S) | S ⊆ k} \ {∅}, {h0(ā, S) | S ⊆ k} \ {∅} and
{v0(ā, S) | S ⊆ k} \ {∅} is a finite partition of ω.

As an induction hypothesis we assume, for each S ⊆ k, that h1(b̄, S) ≈ h0(ā, S)
and v1(b̄, S) ≈ v0(ā, S). Initially, when k = 0, the only subset of k is ∅ and we have
h1(( ), ∅) = ω1 ≈ ω = h0(( ), ∅) and v1(( ), ∅) = ω = v0(( ), ∅).

In round k, suppose ∀ picks bk ∈ A1. The subsets of k + 1 are {S ∪ {k} | S ⊆ k} ∪ {S |
S ⊆ k}. For any S ⊆ k, since h0((a0, . . . , ak−1), S) ≈ h1((b0, . . . , bk−1), S), by (5.1) there is
XS ⊆ h0((a0, . . . , ak−1), S) such that

XS ≈ h1((b0, . . . , bk), S ∪ {k}),
h0((a0, . . . , ak−1), S) \XS ≈ h1((b0, . . . , bk), S).

(5.2)

Similarly there is YS ⊆ v0((a0, . . . , ak−1), S) such that YS ≈ v1((b0, . . . , bk), S ∪ {k}) and
v0((a0, . . . , ak−1), S)\YS ≈ v1((b0, . . . , bk), S). Player ∃ lets ak be the element of A0 represen-
ted by (

⋃
S⊆kXS)× (

⋃
S⊆k YS), which is an axial set since bk is. In fact more is true: because

bk is the representative of its equivalence class, (
⋃
S⊆kXS)× (

⋃
S⊆k YS) will be the represent-

ative of its equivalence class, so h0(ak) =
⋃
S⊆kXS and v0(ak) =

⋃
S⊆k YS . Then it follows

that h0((a0, . . . , ak), S ∪ {k}) = XS and h0((a0, . . . , ak), S) = h0((a0, . . . , ak−1), S) \XS and
similar identities hold for the vertical components. Hence, by (5.2), the induction hypothesis
is maintained. Similarly if ∀ picks ak ∈ A0, we know ∃ can find bk ∈ A1 so as to maintain
the induction hypothesis.

We claim the induction hypothesis ensures ∃ will not lose the play. To prove that ∃
does not lose, we must prove that {(ai, bi) | i < k} is a partial isomorphism from A1 to A0

for every k. That is, we must prove for any i, j, l < k that

(1) bi = 0 ⇐⇒ ai = 0,
(2) bi = bj ⇐⇒ ai = aj ,
(3) J(bi, bj , bl) ⇐⇒ J(ai, aj , al).

Conditions (1) and (2) follow immediately from the induction hypothesis.
Given that (1) and (2) hold, it follows that (3) also holds whenever 0 ∈ {bi, bj}. To prove

(3) for the remaining cases, we assume J(bi, bj , bl) holds, where 0 6∈ {bi, bj} and distinguish

three cases: bl = 1, bl = (i′, j′) (for some i′ ∈ ω1, j
′ ∈ ω) and bl 6∈ {1} ∪ {(i′, j′) | i′ ∈

ω1, j
′ ∈ ω}.

For bl = 1 we have h1(bl) = {0}, v1(bl) = ω and either h1(bi) = h1(bj) is a singleton and

v1(bi)
•
∪ v1(bj) = ω, or v1(bi) = v1(bj) is a singleton and h1(bi)

•
∪ h1(bj) = ω1. The induction

hypothesis shows that a similar condition holds for the vertical and horizontal components
of ai, aj , al, hence J(ai, aj , al) also holds.

For bl = (i′, j′) we have h1(bl) = {i′}, v1(bl) = ω \ {j′} and either h1(bi) = h1(bj) = {i′}
and v1(bi)

•
∪ v1(bj) = ω \ {j′}, or v1(bi) = v1(bj) = {j′} and h1(bi)

•
∪ h1(bj) = ω1 \ {i′}.

Again, the induction hypothesis implies that a similar condition holds for the vertical and
horizontal components of ai, aj , al, hence J(ai, aj , al) holds.

When bl 6∈ {1} ∪ {(i′, j′) | i′ < ω1, j′ < ω} (still with 0 6∈ {bi, bj}) then either

h1(bi) = h1(bj) = h1(bl) is a singleton and v1(bi)
•
∪ v1(bj) = v1(bl), or a similar case, with

h1 and v1 swapped. As before, an equivalent property holds on ai, aj , al and J(ai, aj , al)
follows. This completes the argument that the implication J(bi, bj , bl) =⇒ J(ai, aj , al) is
valid. The implication J(ai, aj , al) =⇒ J(bi, bj , bl) is similar.
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As ∃ can win all ω rounds of the play, the two structures A1 and A0 are elementarily

equivalent. Hence the .-completely (
•
∪, ∅)-representable partial algebras are not closed under

elementary equivalence.

Corollary 5.8. Let σ be any one of the signatures (
•
∪), ( •^), (

•
∪, ∅), ( •^, ∅), ( •^, |) or ( •^, |, ∅).

The class of .-completely σ-representable partial algebras is not closed under elementary
equivalence.

Proof. The case σ = (
•
∪, ∅) is Theorem 5.7. For the case σ = ( •^, ∅), note that the proof used

in Proposition 2.9(1) of the equivalence of representability by sets and by partial functions
extends to .-complete representability. Hence the .-complete representation classes for

(
•
∪, ∅) and ( •^, ∅) coincide.

For the case σ = ( •^, |, ∅), let A1,A0 be as defined in Theorem 5.7. Expand A1 and
A0 by adding a binary operation ; defined by a ; b = 0. It is clear that the two expansions
are still elementarily equivalent since we have given the same first-order definition of ; for
both. The expansion of A1 does not have a .-complete ( •^, |, ∅)-representation as A1 itself
is not completely representable. The expansion of A0 does have a .-complete ( •^, |, ∅)-
representation, which we can easily see via the same method employed in the proof of
Proposition 2.9(2).

The results for signatures not including ∅ again follow straightforwardly from those for
the corresponding signatures with ∅. For a signature with ∅, take any elementarily equivalent
A1,A2 with A1 .-completely representable and A2 not. Let B1,B2 be the reducts of A1,A2

to the signature without 0. Then B1 is .-completely representable since A1 is. As A1 is
representable, it satisfies J(0, 0, 0), so A2 does too, by elementary equivalence. Now note
that the content of Remark 2.10 applies to .-complete representability just as it does to
representability. Hence if B2 were .-completely representable then A2 would have to be—a
contradiction. Hence B2 is not .-completely representable. So for the signature without ∅
we have elementarily equivalent B1,B2 with the first .-completely representable and the
second not.

Finally we prove that all the negative results concerning representability for signatures

containing
•
∪ carry over to signatures containing

•

\. First note that if a partial algebra

A = (A,
•
t,
•
−) has a (

•
∪,
•

\)-representation then it satisfies

a
•
− b = c ⇐⇒ b

•
t c = a. (5.3)

However as we see in the following example there exist partial (
•
t,
•
−)-algebras satisfying (5.3),

whose
•
t-reduct is

•
∪-representable but whose

•
−-reduct has no

•

\-representation. Similarly

there exist partial (
•
t,
•
−)-algebras satisfying (5.3), whose

•
−-reduct is

•

\-representable but

whose
•
t-reduct has no

•
∪-representation.

Example 5.9. Our first partial algebra can be quite simple: a partial algebra consisting

of a single element a, with a
•
t a and a

•
− a both undefined. It satisfies (5.3) and is

•
∪-representable but not

•

\-representable. Moreover, we give an example of a partial algebra

containing a zero element. The domain is ℘{1, 2, 3} \ {3} and we define
•
t as

•
∪ and then

define
•
− using (5.3). The identity map is a

•
∪-representation of the

•
t-reduct (in fact, a
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(
•
∪, ∅)-representation of the (

•
t, 0)-reduct). Suppose θ is a

•

\-representation of the
•
−-reduct.

We show that {1}θ ⊆ {1, 3}θ, which is a contradiction as {1, 3}
•
− {1} is undefined. Let

x ∈ {1}θ. Then x ∈ {1, 2, 3}θ since {1, 2, 3}
•
− {1} is defined. As {1, 2}

•
− {1} = {2} and

x ∈ {1}θ we cannot have x ∈ {2}. From {1, 2, 3}
•
− {2} = {1, 3} we deduce that x ∈ {1, 3}θ.

Similarly, if we take a partial algebra with domain ℘{1, 2, 3} \ {1, 2, 3}, define
•
− as

•

\
and define

•
t using (5.3), the identity map represents the

•
−-reduct, but the

•
t-reduct of the

partial algebra has no
•
∪-representation. To see this, note that since {1, 3} = {1}

•
t {3},

in any
•
∪-representation {1} and {3} would have to be represented by disjoint sets. By

similar arguments, {1}, {2} and {3} would have to be represented by pairwise disjoint sets,

contradicting the fact that {1}
•
t {2}

•
t {3} is undefined.

Notwithstanding Example 5.9 there is a simple condition that ensures a
•
∪-representation

is always a
•

\-representation, and vice versa.

Definition 5.10. A partial algebra A = (A,
•
t,
•
−, . . .) is complemented if it satisfies (5.3)

and there is a unique 1 ∈ A such that 1
•
− a is defined for all a ∈ A. We write a for 1

•
− a.

Observe by (5.3) that

a
•
t a = 1. (5.4)

Hence in a complemented partial algebra A, if σ is a signature containing either
•
∪ or

•

\ and
θ is a σ-representation of A then

aθ = aθ, (5.5)

where Y = 1θ
•

\ Y for any Y ⊆ 1θ.
Before we articulate the consequences of a partial algebra being complemented, we

describe a
•

\-analogue of .-completeness. In any partial (. . . ,
•
−, . . .)-algebra A, define a

relation .′ by letting a .′ b if and only if a = b or b
•
− a is defined. If A is (. . . ,

•

\, . . .)-
representable then it is clear that .′ is a partial order. For (

•
t,
•
−) structures satisfying (5.3),

observe that .′=..

Definition 5.11. A subset S of a partial (. . . ,
•
−, . . .)-algebra A is

•
−-pairwise-combinable

if for all distinct s, t ∈ S there exists u ∈ A such that u
•
− s = t. As in Definition 2.11

we may define a (. . . ,
•

\, . . .)-representation to be .′-complete if it maps .′-suprema of
•
−-pairwise-combinable sets to (necessarily disjoint) unions.

Lemma 5.12. Let A = (A,
•
t,
•
−, . . .) be complemented and let θ be a map from A to a

subset of ℘(X) (for some X). Then θ is a
•
∪-representation (of the

•
t-reduct) if and only if it

is a
•

\-representation (of the
•
−-reduct). Moreover, if θ is a representation it is .-complete if

and only if it is .′-complete.

Proof. Suppose A is complemented and let θ be a
•

\-representation. For any a, b ∈ A, if a
•
t b

is defined then by (5.3) we know that (a
•
t b)

•
− a = b, which, by our hypothesis about θ,
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implies that aθ is disjoint from bθ, so aθ
•
∪ bθ is defined. We now show that, conversely, if

aθ
•
∪ bθ is defined then a

•
t b is defined and (a

•
t b)θ = aθ

•
∪ bθ. Using equations to mean

both sides are defined and equal, assuming aθ
•
∪ bθ is defined, we have

aθ ∩ bθ = ∅ by the definition of
•
∪

aθ ⊇ bθ as aθ = aθ and bθ ⊆ 1θ

a
•
− b is defined as θ is a

•

\-representation

a
•
− b is defined as A is complemented

(a
•
− b)

θ

= aθ
•

\ bθ as θ is a
•

\-representation and by (5.5)

= aθ
•
∪ bθ by elementary set theory

a
•
− b

•
− a = b as θ is a

•

\-representation

a
•
t b = a

•
− b by (5.3)

(a
•
t b)θ = aθ

•
∪ bθ by the calculation of (a

•
− b)

θ

above

and hence θ represents
•
t correctly as

•
∪.

Dually, if θ is a
•
∪-representation and a

•
− b is defined then we know by (5.3) that

b
•
t (a

•
− b) = a, implying aθ

•

\ bθ is defined. For the converse and for showing that when

both are defined they are equal, assume aθ
•

\ bθ is defined, so

aθ ⊇ bθ by the definition of
•

\
aθ ∩ bθ = ∅ as aθ = aθ

a
•
t b is defined as θ is a

•
∪-representation

(a
•
t b)

•
t a

•
t b = 1 = a

•
t a by (5.4)

b
•
t a

•
t b = a cancelling the a’s, as θ is a

•
∪-representation

(a
•
− b)θ = a

•
t b

θ

by (5.3)

= aθ
•
t bθ as θ is a

•

\-representation and by (5.5)

= aθ
•

\ bθ by elementary set theory

and so
•
− is correctly represented as

•

\.
For the final sentence of this lemma we do not need A to be complemented, only that

it validates (5.3). Then the concepts ‘pairwise combinable’ and ‘
•
−-pairwise combinable’

coincide and the relations . and .′ are equal. Hence the concepts ‘.-complete’ and ‘.′-
complete’ coincide.

Theorem 5.13. Suppose
•

\ is included in σ and all symbols in σ are from {
•
∪,
•

\, ∅}. The
class of partial algebras σ-representable by sets is not finitely axiomatisable. The class
of partial algebras .′-completely σ-representable by sets is not closed under elementary
equivalence.
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Proof. For m,n of cardinality greater than two, let A′(m,n) be the expansion of A(m,n) to

(
•
t,
•
−, 0) where

•
− is defined by (5.3). Observe that A′(m,n) is complemented. Let Aσ(m,n)

be the reduct of A′(m,n) to the abstract analogue of σ. By Lemma 5.12 (and the fact that

A′(m,n) satisfies 0
•
t 0 = 0) we see that Aσ(m,n) is .′-completely σ-representable if and

only if A′(m,n) is .′-completely (
•
t,
•

\, ∅)-representable, which is true if and only if A(m,n)

is .-completely (
•
t, ∅)-representable. By Lemma 5.3 this is the case precisely when |m| = |n|.

So Aσ(m,m+ 1) is not σ-representable for 2 < m < ω.
As before, write ν for ω\{0, 1, 2} and let U be any non-principle ultrafilter over ν. We will

argue that Πm∈νAσ(m,m+ 1)/U is σ-representable. From Πm∈νAσ(m,m+ 1)/U , form the

partial algebra B′ by expanding to (
•
t,
•
−, 0) using (5.3) and defining 0 in the obvious way, if

necessary. Then let B be the (
•
t, 0)-reduct of B′. We can easily see that, B′ is complemented

and in particular it validates (5.3). Hence Πm∈νAσ(m,m+ 1)/U is σ-representable if and

only if B is (
•
t, 0)-representable. It is easy to check that B = Πm∈νA(m,m+ 1)/U , which

we know, by the proof of Theorem 5.5, is (
•
t, 0)-representable. Hence the ultraproduct

Πm∈νAσ(m,m+ 1)/U of non-σ-representable partial algebras is itself σ-representable and
so the class of σ-representable partial algebras is not finitely axiomatisable.

For the second half of the theorem, we know, from the proof of Theorem 5.7, that
A(ω1, ω) ≡ A(ω, ω), where ≡ denotes elementary equivalence. Hence A′(ω1, ω) ≡ A′(ω, ω)

since both expansions use the same first-order definition of
•
−. The elementary equivalence

of the reducts Aσ(ω1, ω) and Aσ(ω, ω) follows. We established earlier in this proof that
Aσ(ω1, ω) is not .′-completely σ-representable, while Aσ(ω, ω) is. Hence the class of .′-
completely σ-representable partial algebras is not closed under elementary equivalence.

Corollary 5.14. Suppose
•

\ is included in σ and all symbols in σ are from { •^,
•

\, |, ∅}. The
class of partial algebras σ-representable by partial functions is not finitely axiomatisable.
The class of partial algebras .′-completely σ-representable by partial functions is not closed
under elementary equivalence.

Proof. Proposition 2.9(1) tells us that when all symbols are from { •^,
•

\, ∅}, representability

by partial functions is the same as representability by sets (with •
^ in place of

•
∪). The

proof of Proposition 2.9(1) extends to equality of .′-complete representability by partial
functions and by sets. Hence for these signatures the results are immediate corollaries of
Theorem 5.13.

For signatures σ including both | and ∅ we use the same methods as in the proofs of
Corollary 5.6 and Corollary 5.8. Let σ− be the signature formed by removing | from σ. First
we expand the partial algebras Aσ−(m,m+ 1) described in the proof of Theorem 5.13 to a
signature including ; by defining a ; b = 0 for all a, b. The expanded partial algebras are not
representable since the Aσ−(m,m+ 1)’s are not. The ultraproduct of the expanded partial
algebras validates a ; b = 0, by  Loś’s theorem and so is representable, by the same method
as in the proof of Proposition 2.9(2). This refutes finite axiomatisability. For .′-complete
representability, again define ; by a ; b = 0, to expand both of the two elementarily equivalent
partial algebras Aσ−(ω1, ω) and Aσ−(ω, ω). The expansions B1 and B0 remain elementarily
equivalent and the first is not .′-completely representable whilst the second is, by the same
method as in the proof of Proposition 2.9(2).
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The remaining cases are signatures including | but not ∅, that is (
•

\, |) and ( •^,
•

\, |). For
these the results follow from the corresponding signatures that include ∅, by the now-familiar
arguments involving Remark 2.10 and its generalisation to .′-complete representability.

6. Signatures Including Intersection

In this section we consider signatures including a total operation · to be represented as
intersection. In contrast to the results of the previous section, the classes of partial algebras
representable by sets are finitely axiomatisable. This is true for all signatures containing

intersection and with other operations members of {
•
∪,
•

\, ∅}. In order to control the size of
this paper we do not consider representability by partial functions, only noting that the
proofs in this section are not immediately adaptable to that setting.

We start with the signatures (
•
∪,∩, ∅) and (

•
∪,∩). Consider the following finite set

Ax(J, ·, 0) of L(J, ·, 0) axioms.
•
t is single valued: J(a, b, c) ∧ J(a, b, c′)→ c = c′
•
t is commutative: J(a, b, c)→ J(b, a, c)
·-semilattice: · is commutative, associative and idempotent

· distributes over
•
t: J(b, c, d)→ J(a · b, a · c, a · d)

0 is identity for
•
t: J(a, 0, a)

domain of
•
t: ∃cJ(a, b, c)↔ a · b = 0

Let Ax(J, ·) be obtained from Ax(J, ·, 0) by replacing the axioms concerning 0 (the ‘0 is

identity for
•
t’ and ‘domain of

•
t’ axioms) by the following axiom stating that either there

exists an element z that acts like 0, or else the partial operation
•
t is nowhere defined.

∃z(∀aJ(a, z, a) ∧ ∀a, b(a · b = z ↔ ∃cJ(a, b, c))
∨
∀a, b, c ¬J(a, b, c)

(6.1)

Theorem 6.1. The class of (J, ·, 0)-structures that are (
•
∪,∩, ∅)-representable by sets is

axiomatised by Ax(J, ·, 0). The class of (J, ·)-structures that are (
•
∪,∩)-representable by

sets is axiomatised by Ax(J, ·).

Proof. We first give a quick justification for the axioms being sound in both cases. It suffices
to argue that the axioms are sound for disjoint-union partial algebras of sets, with or without
zero respectively.

Let A be a disjoint-union partial algebra of sets with zero. We attend to each axiom of
Ax(J, ·, 0) in turn.
•
t is single valued: if J(a, b, c) and J(a, b, c′) hold then a

•
∪ b is defined and is equal to

both c and c′. Hence c = c′.
•
t is commutative: J(a, b, c) holds if and only if a∩ b = ∅ and a∪ b = c. By commutativity

of intersection and union this is equivalent to the conjunction b ∩ a = ∅ and b ∪ a = c,
which holds if and only if J(b, a, c) holds.

·-semilattice: the easily verifiable facts that intersection is commutative, associative and
idempotent are well known.
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· distributes over
•
t: if J(b, c, d) then b ∩ c = ∅, so certainly (a ∩ b) ∩ (a ∩ c) = ∅. The

other condition necessary for J(a · b, a · c, a · d) to hold is that (a ∩ b) ∪ (a ∩ c) = a ∩ d.
The left-hand side equals a ∩ (b ∪ c) and by our hypothesis b ∪ c = d, so we are done.

0 is identity for
•
t: for any set a we have a ∩ ∅ = ∅ and a ∪ ∅ = a, which are the two

conditions needed to establish J(a, 0, a).

domain of
•
t: for any sets a and b there exists a set c such that J(a, b, c) if and only if

a
•
∪ b is defined, which is true if and only if a ∩ b = ∅.

Now let A be a disjoint-union partial algebra of sets without zero. It is clear that for all
the axioms not concerning 0 the above soundness arguments still hold. To see that axiom
(6.1) holds, note that if ∅ ∈ A then ∅ is an element z that acts like 0, as the first clause of
(6.1) asks for. Alternatively, if ∅ /∈ A, then for any sets a and b the intersection a ∩ b, which

is an element of A, must be nonempty. Hence a
•
∪ b is undefined and so for any c we have

¬J(a, b, c), meaning the second clause of (6.1) holds.

The sufficiency of the axioms is proved for (J, ·, 0)-structures by a modification of the
proof of Birkhoff’s representation theorem for distributive lattices. Assume that Ax(J, ·, 0)

is valid on a (J, ·, 0)-structure A. By the ‘
•
t is single valued’ axiom we can view A as a

partial (
•
t, ·, 0)-algebra. A filter F is a nonempty subset of A such that a · b ∈ F ⇐⇒ (a ∈

F and b ∈ F ). For any nonempty subset S of A let 〈S〉 be the filter generated by S, that
is, {a ∈ A | ∃s1, s2, . . . , sn ∈ S (some finite n), a ≥ s1 · s2 · . . . · sn}, where ≤ is the partial
ordering given by the ·-semilattice.1 A filter is proper if it is a proper subset of A. Recall

that a set F is
•
t-prime if a

•
t b ∈ F implies either a ∈ F or b ∈ F .

Let Φ be the set of all proper
•
t-prime filters of A. Define a map θ from A to ℘(Φ) by

letting aθ = {F ∈ Φ | a ∈ F}. We will show that θ is a representation of A.
The requirement that (a · b)θ = aθ ∩ bθ follows directly from the filter condition a · b ∈

F ⇐⇒ (a ∈ F and b ∈ F ). It follows easily from the axioms concerning 0 that 0 is the
minimal element with respect to ≤. Hence a filter is proper if and only if it does not contain
0. Then the requirement that 0θ = ∅ follows directly from the condition that the filters in Φ
be proper.

We next show that θ is faithful. For this we show that if a 6≤ b then there is a proper
•
t-prime filter F such that a ∈ F but b 6∈ F . The filters containing a but not b, ordered
by inclusion, form an inductive poset, that is, a poset in which every chain has an upper
bound. (The empty chain has an upper bound since the up-set of a is an example of a filter
containing a but not b.) Hence, by Zorn’s lemma, there exists a maximal such filter, F say.

We claim that F is proper and
•
t-prime.

Suppose, for contradiction, that c
•
t d is defined and belongs to F but that neither c ∈ F

nor d ∈ F . By maximality of F we have b ∈ 〈F ∪ {c}〉 and b ∈ 〈F ∪ {d}〉. Then there is an
f ∈ F such that f · c ≤ b and f · d ≤ b. Then by the definition of ≤ and the distributive

axiom, b ·f · (c
•
t d) = (b ·f · c)

•
t (b ·f ·d) = (f · c)

•
t (f ·d) = f · (c

•
t d). Hence b ≥ f · (c

•
t d)

and since both f and c
•
t d are in F we get that b should be too—a contradiction. Thus

either c ∈ F or d ∈ F . We conclude that F satisfies the
•
t-prime condition. Clearly F is

proper, as b 6∈ F . Hence F is a proper and
•
t-prime filter and so θ is faithful.

1There might be no ‘filter generated by the empty set’, that is, no smallest filter, as the intersection of
two or more filters can be empty.
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To complete the proof that θ is a representation we show that
•
t is correctly represented

as
•
∪. That is, a

•
t b is defined if and only if aθ

•
∪ bθ is defined, and when they are defined

(a
•
t b)θ = aθ

•
∪ bθ. We have that

a
•
t b is defined ⇐⇒ a · b = 0 by the domain of

•
t axiom

⇐⇒ (a · b)θ = 0θ as θ is faithful

⇐⇒ aθ ∩ bθ = ∅ as 0 and · are represented correctly

⇐⇒ aθ
•
∪ bθ is defined by the definition of

•
∪.

Further, when both a
•
t b and aθ

•
∪ bθ are defined it follows easily from Ax(J, ·, ∅) that

a = a · (a
•
t b). So if a is in a filter then by the filter condition a

•
t b is too. Hence

aθ ⊆ (a
•
t b)θ, and similarly bθ ⊆ (a

•
t b)θ, giving us aθ

•
∪ bθ ⊆ (a

•
t b)θ. By the

•
t-prime

condition on filters we get the reverse inclusion (a
•
t b)θ ⊆ aθ

•
∪ bθ. Hence (a

•
t b)θ = aθ

•
∪ bθ.

For a (J, ·)-structure A, if Ax(J, ·) is valid in A then (6.1) holds. If the first alternative
of (6.1) holds then we may form an expansion of A to a (J, ·, 0)-structure, interpreting
0 as the z given by this clause. Then by the above proof for (J, ·, 0)-structures we can

find a (
•
∪,∩, ∅)-representation of the expansion. By ignoring the constant 0 we obtain a

(
•
∪,∩)-representation of A.

Otherwise, the second alternative in (6.1) is true and J(a, b, c) never holds, so we may
define a representation θ of A by letting aθ = {b ∈ A | b ≤ a}. Clearly θ represents · as ∩
correctly, by the ·-semilattice axioms. Since a · b ∈ aθ ∩ bθ for any a, b ∈ A and a

•
t b is never

defined, θ also represents
•
t as

•
∪ correctly.

From the previous theorem we can easily obtain finite axiomatisations for the signatures

(
•
∪,
•

\,∩, ∅) and (
•
∪,
•

\,∩). Recall that we use the ternary relation K to make first-order

statements about the partial binary operation
•
−.

Corollary 6.2. The class of (J,K, ·, 0)-structures that are (
•
∪,
•

\,∩, ∅)-representable by sets

is finitely axiomatisable. The class of (J,K, ·)-structures that are (
•
∪,
•

\,∩)-representable by
sets is finitely axiomatisable.

Proof. To Ax(J, ·, 0) and Ax(J, ·) add the formulas a · b = b → ∃cK(a, b, c) and the
relational form of (5.3) (that is, K(a, b, c)↔ J(b, c, a)), which are valid on the representable
partial algebras. Then when these axiomatisations hold, the representations in the proof of

Theorem 6.1 will correctly represent
•
− as

•

\.

We claimed finite representability for all signatures containing intersection and with other

operations coming from {
•
∪,
•

\, ∅}. For the signatures (∩) and (∩, ∅) finite axiomatisability is

easy and well known. So the signatures remaining to be examined are (
•

\,∩, ∅) and (
•

\,∩).2

Our treatment is very similar to the cases (
•
∪,∩, ∅) and (

•
∪,∩)—no new ideas are needed—but

we provide the details anyway. Consider the following finite set Ax(K, ·, 0) of L(K, ·, 0)
axioms.

2As an aside, note these are signatures for which representability by sets and by partial functions are
easily seen to be the same thing.
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•
− is single valued: K(a, b, c) ∧K(a, b, c′)→ c = c′
•
− is left injective: K(a, b, c) ∧K(a′, b, c)→ a = a′
•
− is subtractive: K(a, b, c)↔ K(a, c, b)
·-semilattice: · is commutative, associative and idempotent

· distributes over
•
−: K(b, c, d)→ K(a · b, a · c, a · d)

0 is identity for
•
−: K(a, 0, a)

domain of
•
−: ∃cK(a, b, c)↔ a · b = b

Let Ax(K, ·) be obtained from Ax(K, ·, 0) by replacing the ‘0 is identity for
•
−’ axiom by

the axiom
¬∃a ∨ ∃z∀aK(a, z, a) (6.2)

stating that, provided A is nonempty, there exists an element z that acts like 0.

Theorem 6.3. The class of (K, ·, 0)-structures that are (
•

\,∩, ∅)-representable by sets is

axiomatised by Ax(K, ·, 0). The class of (K, ·)-structures that are (
•

\,∩)-representable by
sets is axiomatised by Ax(K, ·).

Proof. Again we give a quick justification for the soundness of the axioms. It suffices to argue

that the axioms are sound for partial (
•

\,∩, ∅)-algebras of sets and for partial (
•

\,∩)-algebras
of sets respectively.

Let A be a partial (
•

\,∩, ∅)-algebra of sets. We attend to each axiom of Ax(K, ·, 0) in
turn.
•
− is single valued: if K(a, b, c) and K(a, b, c′) hold then a

•

\ b is defined and is equal to
both c and c′. Hence c = c′.

•
− is left injective: re-write the axiom with the predicate J , using (5.3), then it becomes

‘
•
t is single valued’, which we verified in Theorem 6.1.

•
− is subtractive: re-write with J , then it becomes ‘

•
t is commutative’.

·-semilattice: as in proof of Theorem 6.1.

· distributes over
•
−: re-write with J , then it becomes ‘· distributes over

•
t’.

0 is identity for
•
−: clear.

domain of
•
−: for any sets a and b there exists a set c such that K(a, b, c) if and only if

a
•

\ b is defined, which is true if and only if b ⊆ a, true if and only if a ∩ b = b.

Now let A be a partial (
•

\,∩)-algebra. It is clear that for all the axioms not concerning
0 the above soundness arguments still hold. To see that axiom (6.2) holds, note that either

the clause ¬∃a holds or we can take any a ∈ A and find that a
•

\ a is defined and hence its
value, ∅, is a member of A and witnesses the existence of a z such that ∀aK(a, z, a).

To prove the sufficiency of the axioms for (K, ·, 0)-structures we use the same method
employed in the proof of Theorem 6.1. The definitions of the ordering ≤, of filters and of

proper filters remain the same. This time however, we define a filter to be
•
−-prime if a ∈ F

and ∃a
•
− b together imply either b ∈ F or a

•
− b ∈ F .

Similarly to before, Φ is the set of all proper
•
−-prime filters of A and our representation

will be the map θ from A to ℘(Φ) defined by aθ = {F ∈ Φ | a ∈ F}. That · is correctly
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represented as intersection is again immediate from the (unchanged) definition of a filter. It

follows from the ‘0 is identity for
•
−’ and ‘domain of

•
−’ axioms that once again a filter is

proper if and only if it does not contain 0. Hence 0 is represented correctly as the empty set.
To show that θ is faithful, given a 6≤ b, as before, we can find a maximal filter F

containing a but not b and we show F is proper and
•
−-prime.

Suppose, for contradiction, that c ∈ F and c
•
− d is defined but that neither d ∈ F nor

c
•
− d ∈ F . By maximality of F we have b ∈ 〈F ∪ {d}〉 and b ∈ 〈F ∪ {c

•
− d}〉. So there

is an f ∈ F such that f · d ≤ b and f · (c
•
− d) ≤ b. Then by the definition of ≤ and the

distributive axiom, b ·f ·c
•
− f ·d = b ·f ·c

•
− b ·f ·d = b ·f · (c

•
− d) = f · (c

•
− d) = f ·c

•
− f ·d.

Then by left-injectivity of
•
− we obtain b · f · c = f · c, that is, b ≥ f · c. Since both f and c

are in F we see that b should be too—a contradiction. Thus either d ∈ F or c
•
− d ∈ F . We

conclude that F satisfies the
•
−-prime condition. Clearly F is proper, as b 6∈ F . Hence F is

a proper
•
−-prime filter and so θ is faithful.

Finally, we show that
•
− is correctly represented as

•

\. We have that

a
•
− b is defined ⇐⇒ a · b = b by the domain of

•
− axiom

⇐⇒ (a · b)θ = bθ as θ is faithful

⇐⇒ bθ ⊆ aθ as · is represented correctly

⇐⇒ aθ
•

\ bθ is defined by the definition of
•

\.

Further, when both a
•
− b and aθ

•

\ bθ are defined it follows easily from Ax(K, ·, ∅) that

a
•
− b = a · (a

•
− b). So if a

•
− b is in a filter then by the filter condition a is too. Hence

(a
•
− b)θ ⊆ aθ. Similarly, it is easy to show that (a

•
− b) · b = 0, so if a

•
− b is in a proper

filter then b is not. Hence (a
•
− b)θ ∩ bθ = ∅, giving us (a

•
− b)θ ⊆ aθ

•

\ bθ. By the
•
−-prime

condition on filters we get the reverse inclusion (a
•
− b)θ ⊇ aθ

•

\ bθ. Hence (a
•
− b)θ = aθ

•

\ bθ.
For a (K, ·)-structure A, if Ax(K, ·) is valid in A then (6.2) holds. If the first alternative

of (6.2) holds then A is empty and so the empty function forms a representation. Otherwise,
the second alternative in (6.2) is true. Then we may form an expansion of A to a (K, ·, 0)-
structure, interpreting 0 as the z given by this clause. Then by the above proof for

(K, ·, 0)-structures we can find a (
•

\,∩, ∅)-representation of the expansion. By ignoring the

constant 0 we obtain a (
•

\,∩) representation of A.

7. Decidability and Complexity

We finish with a discussion of the decidability and complexity of problems of representability
and validity. We also highlight some still-open questions.

Theorem 7.1. The problem of determining whether a finite partial
•
t-algebra has a disjoint-

union representation is in NP.

Proof. Given a finite partial
•
t-algebra A = (A,

•
t), a non-deterministic polynomial-time

algorithm based on the proof of Lemma 4.3 runs as follows. For each distinct pair a 6= b
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it creates a set Sa,b and for each pair a, b where a
•
t b is undefined it creates a set Ta,b (all

these sets are initially empty). Then for each c ∈ A, each set Sa,b and each set Ta,b it guesses
whether c ∈ Sa,b and whether c ∈ Ta,b. Once this is done, the algorithm then verifies that
exactly one of a and b belongs to Sa,b, that both a and b belong to Ta,b and that each of

these sets is a
•
t-prime, bi-closed, pairwise incombinable set (to verify this for any single set

takes quadratic time, in terms of the size of the input (A,
•
t)). This takes quartic time. By

Lemma 4.3 this non-deterministic algorithm solves the problem.

Problem 7.2. Is the problem of determining whether a finite partial
•
t-algebra has a

disjoint-union representation NP-complete?

Now turning our attention to validity, let s(ā), t(ā) be terms built from variables in

ā and the constant 0, using
•
t. We take the view that the equation s(ā) = t(ā) is valid if

for every disjoint-union partial algebra of sets with zero, A, and every assignment of the
variables in ā to sets in A, either both s(ā) and t(ā) are undefined or they are both defined
and are equal. The following result is rather trivial but worth noting. It contrasts with
Theorem 5.5 by showing that the equational fragment of the first-order theory of partial

(
•
∪, ∅)-algebras is an extremely simple object.

Theorem 7.3. The validity problem for (
•
t, 0)-equations can be solved in linear time.

Proof. A (
•
t, 0)-term is formed from variables and 0, using

•
t. Now

•
∪ is associative in

the sense that either both sides of (a
•
∪ b)

•
∪ c = a

•
∪ (b

•
∪ c) are defined and equal, or

neither is defined. In the same sense,
•
∪ is also commutative. Hence, in representable partial

(
•
t, 0)-algebras, the bracketing and order of variables in a term does not affect whether a

term is defined, under a given variable assignment, or the value it denotes when it is defined.
Similarly, any zeros occurring in a term may be deleted from the term without altering
its denotation. If a variable a occurs more than once in a term then the term can only be
defined if a is assigned the value 0. Hence an equation s(ā) = t(ā) is valid if and only if

(a) the set of variables occurring in s(ā) is the same as the set of variables occurring in t(ā),
(b) the set of variables occurring more than once in s(ā) is the same as the set of variables

occurring more than once in t(ā).

This can be tested in linear time.

Problem 7.4. Consider the set Σ of all first-order L(J)-formulas satisfiable over some
disjoint-union partial algebras of sets. Is this language decidable and if so, what is its
complexity?

We have seen that the class of partial algebras with σ-representations by sets is not

finitely axiomatisable, provided either
•
∪ or

•

\ is in σ and all symbols in σ are from {
•
∪,
•

\, ∅},
and the same negative result holds for representations by partial functions (with •

^ in place

of
•
∪). However when intersection is added to these signatures the representation classes

are finitely axiomatisable by sets. This leaves some cases in question, with regards to finite
axiomatisability.

Problem 7.5. Determine whether the class of partial algebras σ-representable by partial

functions is finitely axiomatisable for signatures σ containing ∩ and either •
^ or

•

\, where

symbols in σ are from { •^,
•

\,∩, |, ∅}.
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