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Abstract—This paper describes the implementation, demon-
stration and evaluation of a variety of autonomous, vision-
guided manipulation capabilities, using a dual-arm Baxter
robot. Initially, symmetric coordinated bi-manual manipulation
based on kinematic tracking algorithm was implemented on
the robot to enable a master-slave manipulation system. We
demonstrate the efficacy of this approach with a human-robot
collaboration experiment, where a human operator moves the
master arm along arbitrary trajectories and the slave arm
automatically follows the master arm while maintaining a
constant relative pose between the two end-effectors. Next,
this concept was extended to perform dual-arm manipulation
without human intervention. To this extent, an image-based
visual servoing scheme has been developed to control the motion
of arms for positioning them at a desired grasp locations. Next
we combine this with a dynamic position controller to move
the grasped object using both arms in a prescribed trajectory.
The presented approach has been validated by performing
numerous symmetric and asymmetric bi-manual manipulations
at different conditions. Our experiments demonstrated 80% suc-
cess rate in performing the symmetric dual-arm manipulation
tasks; and 73% success rate in performing asymmetric dual-
arm manipulation tasks.

I. INTRODUCTION

Despite half a century of study, industrial manipulation
with robots remains predominantly constrained to repetitive,
pre-programmed motions, with (typically) limited ability to
adapt to changing or uncertain situations. Dual-arm, bi-
manual manipulation poses additional challenges in com-
parison with single-arm manipulation, not least the difficult
control problems engendered by closed kinematic chains.
There are many reasons why dual-arm manipulation may be
useful in practice. For example, an object may be too heavy
to be lifted by a single arm alone. Alternatively, an object
may be so flexible or fragile that it needs to be grasped
simultaneously in two locations, so as to avoid bending or
breaking the object while moving it. In other case, two
arms may manipulate two objects together to achieve an
assembly task. Other motivating reasons, cited for the use
of dual-arm robots, include: flexibility and stiffness issues;
manipulability; and cognitive issues to do with how human
workers perceive mechanical co-workers with human-like
forms [1]. Robotic dual-arm manipulation has been used and
studied for various industrial and domestic applications such
as handling of radioactive goods [2], underwater exploration

This work was supported by the EPSRC Feasibility Study project
“Machine-learning of vision-guided bi-manual grasps, for adaptable au-
tonomous manipulation in manufacturing environments”.

1Extreme Robotics Lab, University of Birmingham, Edgbaston, Birming-
ham, B15 2TT, UK.

2Kuka Robotics UK Ltd., Great western street, Wednesbury, WS10 7LL
UK.

Figure 1. Master-slave manipulation based on task-space approach. The
human moves the master arm in arbitrary ways. The slave arm is auto-
matically controlled to maintain a constant transformation between the two
end-effectors, thus preserving the bi-manual grasp on the box, regardless of
the motions of the arms.

[3], industrial manufacturing [4], part assembly [5], [6],
folding laundry [7], etc.

In bi-manual manipulation, a dual-arm robot’s two end-
effectors interact with the manipulated object, either by
holding an object with fixed grasp points [8], or by holding
an object by means of frictional interactions with contact
points or contact areas [9]. With former, there is no relative
motion between the grasping points and in contrast, relative
motion may well exists with the latter model, where there
may be rolling or sliding contacts between the robot’s end-
effectors and the grasped object. Typically, force and form
closure are not considered in a fixed grasp model, since force
closure depends on frictional forces at contact points and
form closure properties rely more on friction-less contact
models.

Regulation and trajectory tracking are two main problems
in control of dual-arm manipulation. In [10], an input-output
linearization method was used for trajectory tracking. Hybrid
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force/position control was used to control the internal forces
at a desirable level based on decomposition between the
motion and exerted force control loops [11]. A variety of
approaches have been proposed for controlling dual-arm
manipulation systems. The symmetric cooperative task-space
approach was proposed by Caccavale et al. for firm grasp
situations, based on internal and external wrenches [12].
Alternatively, manipulation control based on relative and
absolute pose was described in [13]. Apart from these,
vision-based techniques are being studied recently for accom-
plishing complex manipulation tasks. Image-based, position-
based, and hybrid methods are the three commonly used
visual servoing methods for both dual-arm and single arm
manipulations. Visual servoing [14] with or without haptic
feedback [15] can be used for picking an object when the
desired grasping location is known. In [16], an eye-in-hand
system was used to align the parts held in each hand to be
utilized in a dual-arm assembly task. In [17], a real-time
adaptive object tracker has been used in conjunction with
an optimized visual controller in order to control the joint
motions of a 7dof head mechanism, enabling it to track and
maintain a prolonged gaze at the objects being manipulated.
In [19], a model-based object tracker was used to track an
object’s pose; in-turn this tracking data was then used by a
pose-based visual controller to grasp the objects from known
positions.

So far in the literature, two different approaches are
commonly used for robotic grasp planning: the first one is
based on classical force closure analysis [9] and the second
one is based on a direct mapping from vision [18]. In the
first method, the magnitude of the external disturbances that a
grasp can tolerate will be estimated, by modeling the physical
process that are happening at gripper-object interface. Various
methods are available based on the latter approach, such as
grasp planning by searching for the objects based on gripper
stroke, learned stable grasp points [19], etc.

In this paper, we report various experiments investigating
the capability of a Baxter robot in performing assorted sym-
metric and asymmetric coordinated bi-manual tasks. Sym-
metric tasks are those in which both arms simultaneously
manipulate the same object. In contrast, asymmetric tasks
describe manipulations in which each arm manipulates a dif-
ferent object or same object at different times. Two different
control approaches are presented. The first one is a classical
adaptive task space controller, which is based on kinematic
tracking algorithm [20] to enable a master-slave manipulation
system. The second one includes both joint velocity control
and joint position control. An image-based visual controller
has been developed to control the joint velocities of both
arms to position them at a desired location and to facilitate
stable grasping of objects. A dynamic position controller has
been developed to move the grasped object along a particular
trajectory. Experiments validating the presented approaches
are conducted on a bi-manual robot platform, Baxter and the
evaluation is performed in terms of accuracy and repeatability

of task completion.
The remainder of this paper is structured as follows. In

section II we describe various methodologies that are imple-
mented on a Baxter robot to achieve vision-guided bi-manual
grasping and manipulative actions. Section III presents our bi-
manual manipulation set-up along with a detailed description
of the performed tasks and the results obtained with different
real-world experiments. Finally, the concluding remarks are
provided in section IV.

II. METHODOLOGY

In this section, the implemented control approaches for
performing coordinated dual-arm manipulation tasks are pre-
sented.

A. Dual-arm Manipulation: Task-space Approach

A dual task-space approach has been implemented, based
on the configuration between the arms of the Baxter robot
and the pose of a coordinate frame set in an object being
grasped between the two arms. Fig. 1 shows the tool-centered
coordinate frames of the left (XR) and right (XL) end-
effectors; and the relative and absolute positions, XL

r and Xa

respectively The relative and absolute positions are defined
based on the position of left and right end-effectors and are
formulated as follow [12]:

XL
r , X∗LXR (1)

Xa , XL(XL
r )1/2 (2)

where, X∗L is the conjugate of XL and (XL
r )1/2 is the

transformation corresponding to half of the angle φr around
the axis nL

r = inx + jny +knz of the quaternion p(XL
r ) and

half of the translation between the two arms. In this study,
the task of manipulating a cardboard box using both arms
was tested as illustrated in Fig. 1. The movement of the box
is defined relative to a frame (O) located in the robot’s torso,
while the relative position should remain constant throughout
the task. A sequence of unit dual quaternion multiplications
has been used to represent the sequence of rigid motions.
As shown in Fig. 1, the kinematic tracking algorithm [20]
has been used to enable a master-slave manipulation system,
where one of the arms tracks the movements of another arm
while the relative pose between the two end-effectors remains
constant. This concept can be used for industrial applications,
e.g. a human collaborating with a robot to handle heavy loads.

B. Dual arm manipulation using Image-based visual control

In this section, we first present an image-based visual
servoing scheme to control the motion of both master and
slave arms based on the information gained from the visual
tracking of a static object. At the end of this step, the two
arms are positioned in such a way that the object is tightly
held between them. Next, we present an adaptive control
strategy to move the grasped object in a desired trajectory.
We use the integrated Baxter arm cameras for object detection
and visual tracking. It is worth mentioning that the camera



(a) (b)

(c) (d)

Figure 2. Dual-arm manipulation: (a) robot actively searching to detect the
contour of the object, (b) stable grasping using both arms, (c) moving the
box along the desired trajectory, (d) detected box during segmentation of
the image captured by the wrist camera. See supplementary video for clear
illustration.

intrinsics are estimated beforehand using classical calibration
approach [21]. The pixel values of the scene are mapped to
the Baxter robot coordinates as given by (3):

O = (PpCp) ∗ Cc ∗ d+Bp +Go (3)

where, O,Pp, Cp, Op, Go, Cc and d represent Baxter coor-
dinates, pixel coordinates, centre pixel coordinates, Baxter
pose, gripper offset, camera calibration factor and distance
from the table respectively. Since, no depth estimation has
been used in this work, the distance from the robot to the
object is pre-fixed.

The task is initialised by placing a box on the table as
shown in Fig. 2a. The robot then moves its left wrist camera
over the table in order to detect the box and segment it from
the image. For this task, we assume that the left arm is master.
The Canny Edge Detector technique has been used to find
the edges of the object with low error rate, good localization
and minimal response. The Gaussian filter is used in order to
remove the noise of the captured image, to avoid false edge
detection caused by noise. Next, additional non-edge pixels
are removed by applying non-maximum suppression. Finally,
the edge is accepted or rejected by applying upper and lower
threshold for a pixel gradient. This process enables us to find
a bounding box of the object as shown in Fig. 2d. The robot
continues with active searching if the desire bounded region

is not found. The orientation of the box has been estimated
with respect to the coordinates of the corners and centroid of
the object.

Once the initial bounding region of the target object (white
box in Fig. 2) is detected, visual tracking starts automatically.
In this work, we use a particle filter-based tracker to provided
arm control feedback. Initially detected bounding region has
been used as the reference region for the tracker in first
iteration and a reference model Ψr has been computed
using individual channel histograms i.e., in rgb space. Next,
uniformly sampled candidate regions are allocated around
the reference and their individual models are computed Ψi,
where i is the individual candidate index. The best candidate
i.e., the region enclosing our object, has been computed by
finding the maximum of vector of Bhattacharya coefficients
computed between the reference model and each individual
candidate model. The coefficient ρi for candidate region i is
computed using

ρi =
√

ΨrΨi (4)

The corresponding region with the maximum coefficient
value is retained and propagated as a reference region to
the next frame. The centroid of this region is used as a
feedback in controlling the velocity of the robot arm. The
desired point to reach i.e., the reference feature P∗ has been
pre-learned and the centroid point Pc from previous step is
used as observed features. Using these two, the task space
error e = P∗ − Pc to regulate has been framed. Although,
this can be regulated using a classing visual controller [22], in
order to have optimised performance, in this work we use the
control law inspired from Levenberg-Maquardt optimization,
which is given by equation (5)

v = λ
(
J>J + µ

(
J>J

))−1
J>e (5)

where, λ < 0 and µ > 0 are gain values, v is robot joint
velocities and J is the robot Jacobian in task space computed
using (6)

J = LVe Jb (6)

where, L is the image space space Jacobian computed using
observed centroid features, Ve is the velocity twist matrix,
and Jb is robot joint space Jacobian computed using forward
kinematics. The control law given in (5) drives the left robot
arm (master) to position arm’s end-effector supporting one
side of the task object. An important point to note here
is that the the desired goal position for the robot to reach
has been selected with an offset above the original goal
point along the camera optical axis. This is due to the
fact that the camera field of view reduces while the robot
moves towards the object, which leads to failures in target
tracking. Hence, when the robot reaches the pre-fixed goal,
it simply moves down in a straight line path compensating
the offset. Now, similar to the task space approach described
in previous section, the second arm is commanded using
kinematic tracking algorithm i.e., the second arm moves in
the mirrored space of the master arm.



Once the two arms are positioned at their desired locations,
the dual-arm manipulation trajectory control starts automati-
cally. In this study, an adaptive control scheme has been used
to control and manipulate the movement of an object along
a desired trajectory. The object has been modeled as a mass-
spring-damper system. The dynamics model of the object are
formulated according to (7) [23]:[

FL

FR

]
=

[
k d

k d

][
Xm

Ẋm

]
+

[
−k 0 −d 0

0 −k 0 −d

]
XL

XR

ẊL

ẊR

+

[
kl

−kl

]
(7)

where, FL and FR represent the interaction forces at left
and right arm, XL and XR are Cartesian position of left and
right arm, ẊL and ẊR represent the Cartesian velocity of left
and right arm, and m, k, d represent object mass, stiffness
and damping, respectively. The dynamics of the robot are
modeled as follows:

ML(qL)q̈L + CL(qL, q̇L) ˙qL +GL(qL) = τuL + fL (8)

MR(qR)q̈R + CR(qR, q̇R) ˙qR +GR(qR) = τuR
+ fR (9)

where, ML and MR represent symmetric bounded positive
definite inertia matrix for the left and right arm respec-
tively, qL and qR represent joint position for the left and
right arm respectively, CL,R(q, q̇)q̇ represent the Coriolis
and Centrifugal force, CL,R(q) is the gravitational force,
τuL,R

represent the vector of control input torques and fL,R

represent the external force created by friction or load. The
desired trajectory was defined in Cartesian space for the
left arm (master) and then the trajectory for the right arm
was formulated with respect to a desired offset from the left
arm. The desired trajectory of the master and slave arms are
formulated based on a starting point (y∗(0)) and a desired
destination point (y∗(T )) with T being the period of the
trajectory, as follows:

X∗L(0) = [xL(0), y∗L(t), zL(0), ϑL(0), φL(0), ψL(0)]T (10)

X∗R(t) = [xL(t), (yL(t) + XL
r ), zL(t), ϑL(t), φL(t), ψL(t)]T

(11)
where XL

r shows the relative pose (explained in previous
section) and zL(t), ϑL(t), φL(t), and ψL(t) are determined
by calculating the forward kinematics of the left arm. The
control law to move the box along a desired trajectory is
then given by

τu(t) = JT (q)Fxkd (12)

where, J(q) is the Jacobian and Fxkd represents the sum of
forces. As shown in Fig. 2b, the left arm was moved to the
left side of the box and right arm with suction cap was moved
to the right side of the box. Next, the relative pose was set
to be the length of the box, after which the box could be

lifted and moved to the desired destination position by using
the dual-arm task space technique (Fig. 2c). The trajectory
tracking error ε(t) was calculated by (13):

ε(t) = ė(t) + ke(t) (13)

where, e(t) and ė(t) are the joint errors, calculated respec-
tively from (14) and (15) as follow:

e(t) = q(t) − q∗(t) (14)

ė(t) = q̇(t) − q̇∗(t) (15)

Two levels of collision avoidance were implemented within
all algorithms during all experiments. The first collision
detection was performed through visualizing the robot in
RVIZ software. The second level of protection deals with
impact and “squish”, when sudden changes in joint torques
are detected, or when any applied torque is greater than a
pre-defined threshold.

III. EXPERIMENTAL VALIDATIONS

A. Experimental Set-up

The experimental setup used in this work consists of a bi-
manual robot, Baxter equipped with a parallel jaw gripper on
the left hand and a suction gripper on the other hand. The
compressor pressure (of the suction gripper) was maintained
constant on 6 psi during all the experiments. The vision
system includes two single cameras that are integrated within
each arm (located at the end-effector) and can provide images
with a framerate of ∼ 25 fps. The task space contains a
table covered with black cloth (to reduce the light reflections)
placed in front of the robot. Four different objects are used
for the experiments: a cardboard box, rectangular and circular
foams, and light weight indoor golf balls. The communication
with the robot controller, cameras and work computer (4.00
GHz Intel Core i7 CPU with 8 Gb of RAM) has been realized
through the latest version of ROS framework.

B. Studied Tasks

In this study, the capability of Baxter in performing various
dual-arm tasks has been evaluated by conducting various
experiments including symmetric and asymmetric manipu-
lations. In the 1st experiment, adaptive task space control
system was used in order to move a box along the created
trajectory. Here the master arm was moved by a human oper-
ator, thus, creating an arbitrary trajectory for the slave arm to
follow (Fig. 1). This test was performed to show the proof of
principle of kinematic tracking algorithm. Then, this concept
was extended to perform symmetric coordinate manipulation
tasks using image-based visual servoing. Adaptive control
system was used to move a box along a predefined trajectory
using both arms (Fig. 2). The protocol of 2nd experiment was
to detect a cylindrical foam, grasp the object with parallel
jaw gripper, move the left arm to the predefined position and
finally grasp the object using suction gripper of other hand
(Fig. 7). In the last experiment, the task was to detect the
rectangular foam first, and then detect the yellow balls. At
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Figure 3. Cost (sum squared error, e) variation with image-based visual
servoing while positioning the master arm at the side of the cardboard box.
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Figure 4. Norm of tracking error during dual-arm symmetric manipulation
(top) Left arm, (bottom) Right arm

the end, the robot has to grasp and place the balls at the
centre of the rectangular foam (Fig. 9).

C. Symmetric dual-arm manipulation

The task is initialised by detecting the bounding region of
the box (30cm× 20cm× 15cm) as shown in Fig. 2(d), then
the left arm was visually servoed to reach the left side of
the box. Fig. 3 shows the cost variation i.e., the sum squared
error e during the positioning process. The trajectories of
the right and left arms were defined and then task space
adaptive control was used to move the object with respect
to the relative pose. Fig. 4a and Fig. 4b show respectively
the tracking error norms (computed using (13) - (15)) of the
left arm and right arm. The experiment has been repeated for
30 different trials and each trial took 41s in average. Fig. 5
illustrates the performance over all trials. From the obtained
results it can be seen that the success rate is %80, which
demonstrates the robustness of the system in performing
the bi-manual manipulation task by using our implemented
adaptive control scheme. The task failed once due to incorrect
detection of edges by the vision system, most likely due to
light reflections. Another source of failure is the collision.
Two different collisions are noted, the arm colliding with the
box and with the table.
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Figure 5. Success rate of performing the symmetric coordinated dual-arm
manipulation task using task-space adaptive control.
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Figure 6. Joint velocities of left arm during picking the object.

D. Asymmetric dual-arm manipulation

In this section, we explored the possibilities of using robots
in industry to perform various bi-manual tasks such as assem-
bly/dismantle, pick and place, and robot-human collaborative
tasks. For the sake of demonstration, we use a cylindrical
deformable object (5cm × 3cm), which has been detected
in the images from left arm’s camera using the Hough
transformation for circle detection. More complex shapes can
also be robustly detected, by using advanced algorithms from
the vision literature. However, the underlying robot control
principles (the focus of this paper) would remain same. The
robot arms are commanded as described in the section II. The
velocities of the left arm joints have been recorded and are
shown in Fig. 6. The robot’s last three joints are capable
of attaining maximum speeds of 4rad/s (230 degrees/s).
However, our experiments were performed at low velocities
and the maximum recorded joint velocity was 66 degrees/s.
As shown in Fig. 7a, the robot actively searches for the object
by moving the left camera. After detecting the object and
segmenting the object’s perimeter, the robot was commanded
to reach the desired grasping location and grasp the object.
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Figure 7. Asymmetric dual-arm manipulation - handoff of object from left
arm to right arm: (a) and (b) searching, detecting and grasping the object,
(c) moving the left arm to the hand-over position, (d) grasping the object
by the right arm, (e) placing the object on the target position, (f) visually
detecting the contour and object centroid. See supplementary video for clear
illustration.
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Figure 8. Success rate of performing the asymmetric coordinated dual-arm
manipulation task using velocity control.

The center point of the parallel jaw gripper is positioned to be
coincident with the center position of the detected object (Fig.
7b). Finally, the right arm is moved to a position (Fig. 7c)
such that it can grasp the object from the left arm (figure7d)
and place it on a desired destination position on the table (Fig.
7e). This experiment was repeated over 30 trials and each trial
took 45s in average. The task performance is shown in Fig.
8. In this experiment, the success rate was %73 with 8 failed
trials. Six of these failures were due to a sudden pressure
change in the compressor causing a failure of the vacuum
gripper. In just two trials, the center point of the object was
not calculated correctly by the vision system, and the robot
was therefore not able to grasp the object correctly. With
respect to the presented setup for both symmetric/asymmetric

(a) (b)

(c)

Figure 9. Single arm manipulation in cluttered scenes: (a) detecting the
white box and yellow balls, (b) grasping a ball and placing it on the white
box, (c) detected objects, automatically labeled in order of which object is
to be grasped first. See supplementary video for clear illustration.
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Figure 10. Success rate of performing single-arm manipulation task.

dual-arm manipulation tasks, the scenario can be replicated
by another party in order to replicate and improve the tasks.

E. Single Arm Manipulation: Grouping of Objects

This test has been performed as an extension to the previ-
ous experiment, where we demonstrate the task of grouping
objects within a cluttered scene. The objects to be detected
and grasped are yellow balls, with diameter of 4cm, where
the task is to place them on top of a rectangular box. It
is worth mentioning that this last test uses only one arm



(master) and hence, the complexity of manipulation is less
than the other two experiments. Similar to the previous
experiments, an active search is performed initially to detect
yellow balls in the scene. The balls are labeled accordingly
as shown in Fig. 9c so as to plan their placement on top
of the box. The location of box (in robot frame) is known
beforehand. Similar to previous, this test has been repeated
30 times and the task performance is shown in Fig. 10.
Task of collecting 7 balls in each trial took about 36s in
average. In [24], the single grasping success rate for the
previously seen objects was %73, while the corresponding
rate was %83 in this study. Also result demonstrates %7
higher success rate for the symmetric dual-arm manipulation
task than asymmetric dual-arm manipulation. It is worth
mentioning, as the number of trials increases, the success
rate might be decreased due to random failures. In this
study, failures caused mainly by vision system and grippers
which both of them can be improved by using new object
detection techniques, like Scalable Tree-based approach for
joint object and pose recognition in 3D or detection-based
object labeling in 3D scenes, and utilizing robust grippers
with higher precision.

IV. CONCLUSION

In this study, a variety of manipulation tasks have been
attempted, using a dual-arm Baxter robot. In this study
we obtained promising results which suggest the capability
of Baxter to be used for light industrial applications, with
particular potential for safely collaborating with humans.
The success rate of %80 shows the high capability of the
robot in performing dual-arm manipulation tasks. Collision,
incorrect vision detection and weak grasping were three main
reasons for the small number of task failures recorded in
this study. Our ongoing work is extending these methods
to explore dual-arm manipulation applications with a pair
of industrial-quality KUKA LBR iiwa robots, using more
complex hands and sensors, and more sophisticated and
robust grasp planning algorithms in order to generalize these
manipulation tasks to real-world environments.
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