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Abstract

In this paper, we demonstrate how GPU-accelerated BEM routines can be used in a simple black-box fashion to
accelerate fast boundary element formulations based on Hierarchical Matrices (H -Matrices) with ACA (Adaptive
Cross Approximation). In particular, we focus on the expensive evaluation of the discrete weak form of boundary
operators associated with the Laplace and the Helmholtz equation in three space dimensions. The method is based on
offloading the CPU assembly of elements during the ACA assembly onto a GPU device and to use threading strategies
across ACA blocks to create sufficient workload for the GPU. The proposed GPU strategy is designed such that it can
be implemented in existing code with minimal changes to the surrounding application structure. This is in particular
interesting for existing legacy code that is not from the ground-up designed with GPU computing in mind.

Our benchmark study gives realistic impressions of the benefits of GPU-accelerated BEM simulations by using
state-of-the-art multi-threaded computations on modern high-performance CPUs as a reference, rather than drawing
synthetic comparisons with single-threaded codes. Speed-up plots illustrate that performance gains up to a factor of
5.5 could be realized with GPU computing under these conditions. This refers to a boundary element model with
about 4 million unknowns, whose H -Matrix weak form associated with a real-valued (Laplace) boundary operator
is set up in only 100 minutes harnessing the two GPUs instead of 9 hours when using the 20 CPU cores at disposal
only. The benchmark study is followed by a particularly demanding real-life application, where we compute the
scattered high-frequency sound field of a submarine to demonstrate the increase in overall application performance
from moving to a GPU-based ACA assembly.
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1. Introduction

Many problems in engineering science referring to
an equilibrium state in a homogeneous medium can be
modeled by the Boundary Element Method (BEM). The
fundamental idea is to express the solution only in terms
of values on the boundary of the calculation domain.
This feature makes the BEM especially suitable for un-
bounded domains, as they are frequently encountered in
acoustics, electrostatics and fluid dynamics.

In the course of a boundary element simulation, a sys-
tem of linear equations is set up to find the unknown part
of the boundary data. For this purpose, it is necessary to
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evaluate the discrete weak formulations of the bound-
ary operators involved. Their explicit computation is
usually the most expensive part of a boundary element
simulation, since classically O

(
N2

)
integrals have to be

evaluated numerically for a BEM problem with N el-
ements. Hierarchical Matrices (H -Matrices) based on
the Adaptive Cross Approximation (ACA) approach can
reduce this complexity to O

(
N log N

)
. Together with

the relative simple implementation of ACA it has there-
fore become the method of choice for many large-scale
industrial applications.

With the rise of Graphics Processing Units (GPUs) to
be used for scientific computations, entirely new possi-
bilities have opened up to further accelerate boundary
element simulations. Graphics cards have been orig-
inally designed for image rendering purposes, where
tremendous amounts of light-weight, independent tasks
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are processed in parallel. It turns out that numeri-
cal integration routines in the BEM operate in a very
similar way, in the sense that they are also massively
invoked and execute in a Single Instruction Multiple
Data (SIMD) fashion. This circumstance suggests that
GPU computing may benefit the assembly procedure
of the discretized weak form of boundary operators in
the BEM, and therefore further speed up the expensive
setup of the equation system.

The acceleration of boundary element simulations
has been a subject of research for decades. Until about
2010, activities in this area were mainly focused on the
development of fast approximation algorithms. Popular
approaches such as the Fast Multipole Method (FMM)
[1, 2, 3] or H -Matrices [4, 5] have proven capable of
significantly reducing the computational effort associ-
ated with boundary element calculations.

One of the first attempts to speed up the BEM us-
ing graphics hardware has been made in 2009 by Taka-
hashi and Hamada [6] when they presented a GPU-
accelerated BEM formulation based on the GPU pro-
gramming platform CUDA to solve the Helmholtz
equation in three dimensions. Two years later, Labaki
et al. [7, 8] published a review on three distinct GPU
implementations addressing two-dimensional potential
and electrostatic problems.

In 2011, Yokota et al. [9] employed the BEM to inves-
tigate biomolecular electrostatic interactions governed
by a Poisson equation. For this purpose, they designed
a solver using GPU hardware acceleration on top of an
FMM code. Computational experiments with billion-
scale problems demonstrated good parallel efficiency on
up to 512 GPUs. Shortly after, the authors implemented
an auto-tuning mechanism [10], which enabled reason-
able scaling of their FMM code on up to 4000 GPUs in
the context of particle-based turbulence simulations.

For the GPU acceleration of H -Matrix compres-
sion Christophersen proposed in 2012 an OpenCL-
based algorithm that used interpolation techniques for
the far-field and not ACA. Recently, Börm and Christo-
phersen [11] suggested a hybrid adaptive algorithm
based on a technique called Green’s cross approxima-
tion to achieve very good GPU performance. However,
this technique makes a redesign of the H -Matrix code
necessary.

The main objective of this paper is to reveal how
existing H -Matrix BEM codes can be upgraded with
GPU computing to accelerate the dense and H -Matrix
weak-form assembly of all four commonly encoun-
tered boundary operators associated with the three-
dimensional Laplace and Helmholtz equations. These
are the single- (SLP) and double-layer potential (DLP)

operators, as well as the adjoint double-layer potential
(ADLP) and hypersingular (HYPS) boundary operators.
We will show that it is actually reasonable to apply GPU
computing within the flexible framework of an existing
BEM library framework running on a desktop computer
with minimum code changes, and give realistic impres-
sions of what can be expected from this approach.

For this purpose, the GPU programming interface
CUDA C/C++ will be employed, which is included
in the CUDA Toolkit [12] version 8.0. The imple-
mentation is based on an experimental branch of the
Galerkin boundary element library Bempp [13] version
3.1 (www.bempp.com), which provides flexible solu-
tions for various BEM applications in a black-box man-
ner. Therefore, the possibility to choose boundary el-
ements of variable polynomial order will be preserved
on the GPU. The system under consideration is a work-
station equipped with two Intel Xeon processors E5-
2670 v2 [14] with ten physical cores each, operating
at 2.5 GHz processor base frequency, as well as two
NVIDIA GeForce GTX TITAN Black boards [15] with
a full Kepler GK110 GPU implementation each, and
about 200 GB of system memory.

The remainder of this paper is structured as follows.
Section 2 briefly reviews the mathematical framework
of H -Matrix-based Galerkin boundary element formu-
lations. Sections 3 and 4 discuss how the relevant parts
of the underlying C++ code can be adapted such that
the dense and H -Matrix-based assembly routines run
on GPUs. Benchmark results in Section 5 illustrate
the performance of the proposed algorithms for various
Laplace and Helmholtz boundary operators, where both
the complete and the H -Matrix weak-form construc-
tion are investigated. We conclude the benchmarks with
a realistic industry example to compute the scattered
sound field of a submarine. In Section 7, we present
a summary and an outlook on ongoing work.

2. Galerkin-based boundary integral operators and
their discretization

In this work, we consider Galerkin discretizations
of the single-layer potential (SLP), double-layer poten-
tial (DLP), adjoint double-layer potential (ADLP), and
hypersingular (HYPS) boundary operators for three-
dimensional Laplace and Helmholtz problems. The cor-
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responding discrete matrices are defined as follows.

[S h]i, j =

∫
Γ j

∫
Γi

ψi (x) g (x, y) φ j (y) dsydsx , (1)

[Kh]i, j =

∫
Γ j

∫
Γi

ψi (x)
∂g (x, y)
∂ny

φ j (y) dsydsx , (2)

[
K′h

]
i, j

=

∫
Γ j

∫
Γi

ψi (x)
∂g (x, y)
∂nx

φ j (y) dsydsx . (3)

[Dh]i, j =

∫
Γ j

∫
Γi

g (x, y)
[
curlΓψi (x) · curlΓφ j (y)

−k2ψi (x) nx · φ j (y) ny

]
dsydsx . (4)

In the above equations, n denotes the unit normal vector
at a specified point on the boundary Γ of the solution
domain, and φi and ψ j represent real basis functions of
the domain and test space, respectively. We note that for
the hypersingular operator the functions φ j and ψi must
be at least continuous and piecewise linear. The above
definition for D can then be obtained from the normal
derivative of the double-layer potential, followed by in-
tegration by parts.

The Green’s function of the Helmholtz equation
(−∆u − k2u = 0) in 3D is defined as

g (x, y) =
exp (ik |x − y|)

4π |x − y|
. (5)

The Laplace equation in 3D (−∆u = 0) has the same
Green’s function with the wavenumber k set to zero.

2.1. Hierarchical Matrices

In the following, we briefly review ACA-based H -
Matrix assembly [16] of boundary operators. The basic
idea is to approximate the fully-populated matrices (1)
to (4) by using only a few of the matrix entries. For
this purpose, a tree-based geometric partitioning is in-
troduced. Leafs of the tree correspond to matrix blocks,
which are either admissible with respect to a distance
and block diameter dependent admissibility condition,
or inadmissible. Admissible blocks can be compressed.
Inadmissible blocks are stored in dense mode. An ex-
ample partitioning is shown in Figure 1. Large blocks
are admissible while most of the very small blocks are
inadmissible.

Figure 1: Hierarchical partition of a matrix depending on a geometric
admissibility condition.

Several different approaches exist to treat the admis-
sible blocks. The probably most popular one is known
as the Adaptive Cross Approximation (ACA) procedure.
An introduction and analysis of the ACA algorithm is
given in Bebendorf [16, Section 3.4]. In the following,
we briefly recap the principle of ACA as it will be im-
portant to understanding the GPU algorithm later on.

Consider an admissible leaf block A ∈ Rm×n. Starting
from R0 := A, the recursion formula

Rk+1 := Rk −
[
(Rk)ik , jk

]−1
(Rk)1:m, jk (Rk)ik ,1:n (6)

yields a low-rank representation of the block A. The
index ranges (Rk)i,1:n and (Rk)1:m, j denote the i-th row
and the j-th column of Rk, respectively. Essentially, this
means that we have to find a non-zero pivot (ik, jk) in Rk,
which is used as a scaling factor for an outer product of
the ik-th row and the jk-th column. The result is then
subtracted from Rk to get Rk+1, and so forth.

The column index jk is chosen by finding the maxi-
mum element of the current row ik according to∣∣∣(Rk−1)ik , jk

∣∣∣ = max
j=1,...,n

∣∣∣(Rk−1)ik , j

∣∣∣ . (7)

The selection of the row index ik, however, turns out to
be more complicated. It is described in detail by Beben-
dorf [16, Section 3.4.3].

On closer inspection of the recursion (6) it becomes
apparent that the k-th step only incorporates matrix en-
tries in the jk-th column and the ik-th row to compute a
better approximation Rk+1. Thus, it is not necessary to
determine the full matrix Rk in each step, except from a
few of the original entries of A. Taking advantage of this
property, the ACA algorithm takes the following form.
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procedure ACA (admissible leaf block A ∈ Rm×n)
Initialization k ← 1, Z ← ∅
repeat

Determine row index ik
Compute selected row ṽk ← aik ,1:n
. Subtract scaled preceding results
for l = 1, . . . , k − 1 do

ṽk ← ṽk − (ul)ik vl

end for
Add ik to Z
if ṽk does not vanish then

Find column index jk ← max j=1,...,n
∣∣∣(ṽk) j

∣∣∣
vk ← (ṽk)−1

jk ṽk

Compute selected column uk ← a1:m, jk
. Subtract scaled preceding results
for l = 1, . . . , k − 1 do

uk ← uk − (vl) jk ul

end for
k ← k + 1

end if
until stopping criterion is met

or Z contains all m rows
end procedure

Here, uk denotes the jk-th column of Rk−1, i.e.
(Rk−1)1:m, jk , and ṽk is the ik-th row of Rk−1, i.e.[
(Rk−1)ik ,1:n

]T
. The matrix S k :=

∑k
l=1 ulvT

l eventually
represents an approximation of A = S k + Rk.

The rank of S k is bounded by the number of updates
k. The rank also determines the accuracy of the approx-
imation. Therefore, a maximum number of iterations
kmax can be defined adaptively as a stop criterion, such
that a predefined level of accuracy is ensured. How-
ever, the algorithm usually converges already after a few
steps.

Note that for practical application the prototype ACA
algorithm as outlined above is extended by several fea-
tures, such as heuristic sub-block detection and zero-
block identification.

3. Dense GPU parallelization

In the following section, we turn to the major concern
of this paper, the development of simple and effective
GPU-accelerated weak-form assembly routines. First,
we will give a very brief introduction into GPU com-
puting with CUDA. We then describe the host program
managing the deployment of accelerator hardware, as
well as the actual GPU integration routines. We begin
with the boundary operators as introduced in Section 2,

where the discrete weak formulation is represented by
a fully-populated matrix. The resulting code parts will
serve as the basis for the following H -Matrix weak-
form assembly.

3.1. GPU programming with CUDA

The term “CUDA” originally stood for “Compute
Unified Device Architecture”, and is essentially a par-
allel computing platform with a dedicated application
programming interface (API) developed by NVIDIA
since the late 1990s. The programming model enables
scientists and engineers to access graphics processors
for GPGPU purposes in a straightforward way. The
CUDA API is built on top of the high-level program-
ming language C/C++, which is commonly used for
scientific software development and High Performance
Computing purposes.

The general concept of GPU programming with
CUDA is that of a host program executing on the CPU
that manages computational tasks performed on de-
vices. Therefore, the terms CPU/host and GPU/device
are used interchangeably in the following.

In order to get work done by the GPU, the host in-
vokes a special function called kernel. A CUDA kernel
is characterized by the fact, that it is called from the
host program and executes on the device. Each paral-
lel thread on the GPU then launches an instance of the
kernel, where work is spread across the requested com-
pute resources via process indices. Detailed CUDA pro-
gramming guides are freely available from the NVIDIA
website [17, 18], and will therefore not be explicated
here.

3.1.1. Hardware architecture of GPUs
For code development we have used TITAN Black

graphics cards which are based on the NVIDIA Kepler
GK110 microarchitecture [19], which hosts 15 Stream-
ing Multiprocessor Units (SMX). Each SMX features
192 single precision CUDA cores, as well as 64 dou-
ble precision units. This “precision gap” is the rea-
son, why calculations in single precision typically run
much faster on GPUs than double precision computa-
tions. The amount of fast accessible on-chip memory
is restricted to 48 KB assigned to the L1 cache, 8 KB
read-only data cache, and 1536 KB L2 cache memory.
Note that the cache of a GPU multiprocessor is gen-
erally very small compared to modern CPU configura-
tions. For comparison, one core of the Intel Xeon pro-
cessors E5-2670 v2 has 25 MB cache at its disposal.
This fact makes an efficient memory management on
the GPU essential for good performance.
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3.1.2. Thread parallelism in CUDA
In CUDA, parallel tasks are mapped to grids of blocks

with blocks of threads. The described multiprocessors
schedule tasks in warps of 32 threads each, which ex-
ecute in a SIMD fashion. Hence, branching in individ-
ual threads inside a warp (branch divergence) leads to
slow down as CUDA runs through both branches in an
if/then/else statement and discards results as necessary.
Thus, GPU computing is made for identical, paralleliz-
able tasks.

3.2. Host code
Each element of the global BEM matrix consists of

sums of integrals over test and trial elements. The nu-
merical evaluation of these raw weak-form integrals is
clearly the most expensive part of the matrix assembly
procedure. Therefore, we source out this subroutine to
the GPU, while the subsequent summation of element
contributions to the respective degrees of freedom in the
matrix is left to the CPU.

3.2.1. Basic procedure
The host code of the GPU-accelerated dense-matrix

weak-form assembly can be outlined as follows. First,
the total amount of work associated with all pairs of test
and trial elements is distributed evenly over the avail-
able devices. This approach assumes that the GPUs
which are attached to the system are all of the same type,
which is usually the case for modern high-performance
workstations and computer clusters.

The participating devices are covered by a parallel
loop, where each GPU runs through the following steps.
First, the respective device is initialized. This procedure
includes the transfer of the raw grid data with vertex co-
ordinates and element definitions to the global device
memory space. Since in BEM we deal with surface
grids which are typically not very large in size we al-
ways transfer the complete grid information to a device.
Geometry information such as normal vectors and Ja-
cobians are computed on the device and stored as 1D
structures according to the principle of coalesced access
to global device memory [17, Section 5.3].

Moreover, the relevant basis functions (and if neces-
sary also their spatial derivatives) are evaluated at the
quadrature points defined with respect to the unit trian-
gle. These values reside in the global device memory
space, as well.

Numerical quadrature weights, however, are stored
in constant memory. These are only a few values,
which are accessed by all GPU threads at the same time.
Hence, this type of memory suggests itself. One prac-
tical drawback of constant memory is that it needs to

be defined as a static array, the size of which must be
known at compile time. Therefore, we impose a limit of
six double-precision floating-point numbers in the first
place, which corresponds to a quadrature order of 4 on
plane triangular boundary elements using a symmetric
Gauss triangle quadrature rule.

After the initialization process is completed, each de-
vice subdivides its work package further into chunks of
element pairs. In this way, the evaluation of unassem-
bled matrix entries on the GPU can be overlapped with
the host-side global assembly of elementary contribu-
tions to keep the available hardware busy and decrease
the total execution time.

The unassembled GPU results related to a chunk are
stored in zero-copy host memory. This type of mem-
ory is advantageous in this case, because only two re-
sult buffers of the size corresponding to one chunk need
to be allocated in the beginning of the process. Fur-
thermore, integral values are written back only once at
the end of the CUDA kernel in a coalesced fashion.
Thus, zero-copy memory is supposed to be the fastest
approach.

The chunks of element pairs are now processed suc-
cessively. In doing so, the numerical integration and the
global assembly procedure are considered as two dis-
tinct tasks, where the former is basically handled by
the GPU and the latter is assigned to the CPU. These
two tasks are part of a parallel TBB [20] task group and
can execute simultaneously. This means that one chunk
passes through the global assembly process on the CPU,
while the next bunch of element pairs is already inte-
grated on the device. This approach helps to keep all
available hardware as busy as possible.

Nevertheless, it turns out that either task necessarily
limits the overall performance. Obviously, results can
be assembled only after the computation of the corre-
sponding values has been completed. This is ensured
through a barrier between the integration step and the
assembly step associated with the same chunk.

The described procedure is summarized in Figure 2,
as well as in the pseudo code below:
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procedure Dense Assembly
Allocate result matrix A
Distribute integrals over devices
parfor all devices do

Initialize device
Set up parallel task group
for all chunks of integrals b do simult.

. Integrate bi on device and wait
parfor all integrals r j in bi do

r j ← GPU results
end parfor
. Assemble bi−1 into matrix A on host
parfor all integrals r j in bi−1 do

if r j is singular then
A← r̃ j (CPU results)

else if integral is regular then
A← r j (GPU results)

end if
end parfor

end for
Wait for last chunk to finish assembly

end parfor
return matrix A

end procedure

3.2.2. Global matrix assembly
During the global assembly procedure, the raw data

are finally merged, i.e. the contributions from individ-
ual boundary elements are added to the global degrees
of freedom. Since multiple parallel processes may at-
tempt to add their integral values to the same matrix
entry at the same time, the access to the correspond-
ing memory locations needs to be controlled via mu-
texes. With the aim to minimize the inactive times when
threads are waiting for their turn, every single matrix en-
try is protected by its own mutex variable. Alternative
strategies employ only one mutex for the whole matrix,
or column- and row-wise mutexes, respectively. How-
ever, our fine-grained approach has proven most effec-
tive. Note that this is not an issue with piecewise con-
stant basis functions. In this case, matrix entries are
assigned to exactly one pair of elements, thus parallel
threads do not influence each other.

3.2.3. Handling of different types of integrals
To obtain sufficiently accurate evaluations of the dis-

crete BEM kernels between test and trial elements suit-
able quadrature routines need to be chosen. If the test
and trial element are disjoint a standard Gauss triangle

GPU CPU

Assembly starts

Distribute integrals equally

over all available devices

Devices 1, 2, ...

initialize()

Process integrals in chunks (i)

integrate(0)

integrate(1)

integrate(2)

assemble(0)

assemble(1)

assemble(2)

Assembly finished

Figure 2: Dense weak-form assembly procedure

quadrature rule is sufficient. For neighboring triangles
(sharing a vertex or an edge) or in the case that the test
and trial element are identical, suitable transformations
need to be performed to remove the singularities. In our
implementation we use a fully numerical scheme pro-
posed by Erichsen and Sauter [21].

Only results related to regular integrals of disjoint el-
ements are taken from the GPU computation. Other-
wise, element pairs assigned to threads of a warp may
choose different execution paths according to suitable
integration routines, which leads to branch divergence
on the device. This violates the SIMD paradigm of the
GPU hardware architecture, and therefore harms perfor-
mance. A possible remedy would be to presort the ele-
ment pairs with respect to their integration scheme, and
then call one CUDA kernel for each batch separately.
However, the necessary preparations are not only cum-
bersome, but also fragment the work package resulting
in multiple less efficient kernel calls. For this reason,
we forgo singular integration on the device in this work.
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Instead, values related to singular integrals are simply
overridden with cached results that have been evaluated
on the CPU in advance.

3.2.4. Data precision

Due to the often significantly higher single precision
performance on GPUs our implementation allows to
switch the data type on the device between single and
double precision. One argument is the restricted accu-
racy of the Gauss quadrature, which usually does not
exceed single-precision accuracy.

3.2.5. Treatment of complex numbers

The last comment concerns the handling of complex-
valued (Helmholtz) boundary integral operators. In this
case, the real and imaginary part of complex numbers
are consequently separated on the device. Although
complex data types are available in CUDA, for instance
as a part of the Thrust Parallel Algorithms Library [22],
Hawick and Playne [23] have already shown that cal-
culating and storing real and imaginary parts separately
should be preferred over a compound data type for the
sake of performance.

3.3. GPU implementation of the numerical integration
routine

In the implementation of the GPU integration routine,
the given task is split up into two subsequent steps, the
evaluation of kernel function values and the summation
procedure. These are processed within a single CUDA
kernel call, where one thread is assigned to one pair of
elements.

Since all element-related input data such as normal
vectors, global quadrature points, and Jacobian deter-
minants have been precalculated in advance, these in-
formation are simply loaded to thread-local memory.
The BEM kernel function is then evaluated for all pairs
of quadrature points, where the intermediate results are
stored locally. Afterwards, the actual numerical integra-
tion procedure is triggered. The kernel function values
are multiplied by quadrature weights, and basis func-
tions values are incorporated for the different combina-
tions of local degrees of freedom. Finally, the results
are written back to global device memory in a coalesced
fashion.

procedure Integral Evaluation (element pair (m, n))
Reconstruct test and trial element indices from

thread index
Load input data into thread-local device memory
for all pairs of Gaussian points (xm, yn) do

Evaluate kernel function g (xm, yn)
end for
for all combinations of local dofs (dm, en) do

Evaluate integral r (dm, en)
Store results b← r (dm, en)

end for
end procedure

4. GPU acceleration of the H-Matrix assembly

Implementing ACA-based H -Matrix compression
efficiently on the GPU is not straight forward. The it-
erative ACA scheme with per-block adaptive error con-
trol leads to bad load balancing and branch divergence
issues inside a warp. A possible solution is to per-
form only the actual integral evaluation on the GPU,
and keep the complex flow control on the CPU. How-
ever, this means sending only a single row or column
of a block to the device at a time, leading to excessive
kernel calls or underutilization. In [11] an approach is
suggested in which a thread traverses the H -Matrix tree
and adds blocks to a task list. Once a task list is suffi-
ciently large, another thread sends it to the GPU device
for processing. While this approach is effective, it is
implementationally difficult with significant bookkeep-
ing and thread management and requires reorganization
of the existing H -Matrix code, which we aim to avoid
here.

In our proposed GPU-accelerated H -Matrix assem-
bly each block is handled by one CPU thread. These
parallel threads send integration jobs directly to the de-
vice without switching the context such that all data
stays local to one CPU thread and any bookkeeping
is omitted. Traditionally, the kernel calls on the GPU
would have been serialized by the CUDA device and
then executed one after another, leading again to un-
derutilization problems as each thread only sends a row
or column. The solution is to make use of NVIDIA’s
Hyper-Q technology. Hyper-Q was introduced with the
Kepler generation of NVIDIA GPUs and increases the
number of hardware work queues from one to thirty-
two. This allows multiple CPU threads or processes to
send smaller amounts of data to the device whereas the
independent work queues ensure that device utilization
remains high.
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Moreover, inter-thread communication is avoided.
This approach is comparatively simple to implement
and it fits well with existing CPU-based H -Matrix im-
plementations which usually use threading to split up
blocks between different CPU cores. The implemen-
tation of the row and column computation can simply
build on the existing dense GPU integrator from Sec-
tion 3.

4.1. Basic procedure
The GPU implementation of the H -Matrix weak-

form assembly comprises the following steps. First, the
tree-based block partitioning of the H -Matrix is gen-
erated on the CPU. This is a purely geometry-based
computation and is very fast. Then, the participating
GPUs are initialized. The grid data is copied to the de-
vice memory of the GPU, where element-related data is
precalculated and cached in the global device memory.
Afterwards, a thread-parallel loop over all H -Matrix
blocks is performed. Small non-admissible blocks in-
volving singular integrals are treated in dense mode on
the CPU. The remaining admissible blocks making up
the largest part are fed to the ACA algorithm. For
smaller blocks the ACA is completely performed on
the CPU as the memory transfer overhead would be too
large. The rows and columns of larger blocks are sent to
the GPU during the course of the ACA assembly. The
following pseudo code demonstrates this algorithm (see
also Figure 3.

procedure H-Matrix Assembly
Declare H-Matrix A
Generate block cluster tree
parfor all leaf blocks b do

if b is not admissible then
Evaluate block in dense mode on CPU

else if b is admissible then
Approximate block using ACA
if b is large enough then

Compute rows/columns of b on GPU
else if b is small then

Compute rows/columns of b on CPU
end if

end if
H-Matrix A← block b

end parfor
return H-Matrix A

end procedure

The advantage is that the code is very similar to an ex-
isting pure CPU thread-parallel ACA assembly routine.

Assembly starts

Get block

Admissible?

Large

enough?

Process on GPU

Process on CPU

Blocks left?

Assembly finished

Do in parallel

yes

no

yes

no

no

yes

Figure 3: H -Matrix weak-form assembly procedure

The difficult work of scheduling the rows and columns
on the GPU is automatically performed through the
hardware worker queues. Software management of the
workload is not necessary.

If multiple GPUs are used we employ a simple round-
robin strategy that passes the work packages around
the participating GPUs. The local H -Matrix assem-
bler works in a very similar way to the dense assem-
bler. First, the work package consisting of test-trial
element pairs is split up into smaller chunks if their
number exceeds a user-defined maximum. After that,
memory is allocated both on the host and on the de-
vice to store the unassembled results. In contrast to
the dense-matrix weak-form assembly, we use simple
pageable host memory and global device memory in
this case. Therefore, results need to be copied to the
host system explicitly, as we can not rely on the implicit
way in conjunction with pinned host memory and zero-
copy strategies. The reason for these different choices of
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host memory is that during the H -Matrix construction
memory is allocated and deallocated frequently, every
time a row or column of a block needs to be computed.
In the dense-matrix case this is done only once at the
beginning and at the end of the whole procedure. Since
allocation and deallocation of pinned host memory is
quite expensive, it is way more efficient to stick with
ordinary pageable host memory in this case.

Next, the test and trial element indices are copied
to the global device memory, and a parallel task group
is created to perform the numerical integration on the
device simultaneously with the assembly of previously
calculated values. A loop over all chunks finally con-
structs the requested part of a matrix block.

Note that the employed numerical integration rou-
tines are exactly the same as in the dense-matrix assem-
bly case. The corresponding CUDA kernel has been de-
scribed in detail in Section 3.3.

4.2. A remark on compiler parameters

It is important to add the
-default-stream per-thread compiler flag to
the nvcc command. This essentially enables the
Hyper-Q technology and ensures that each host thread
accessing a GPU creates its own default stream [24],
and thus multiple host-controlled calculations can be
performed on one device concurrently.

5. Realistic performance benchmarks

5.1. Hard- and software configuration

The benchmark tests are based on an experimental
GPU enabled version of Bempp 3.1 (www.bempp.com).
The code is run on a desktop workstation equipped with
two Intel Xeon processors E5-2670 v2 [14] operating
at 2.5 GHz processor base frequency, as well as two
NVIDIA GeForce GTX TITAN Black GPUs [15] with
a Kepler GK110 GPU each. We use the CUDA Toolkit
[12] version 8.0. The size of the system memory is
about 200 GB. We note that the aim of this section is
to perform realistic benchmark tests. Hence, we are not
interested in comparing the GPU setup against a single
CPU thread computation, but the overall performance of
the GPU setup compared to a modern dual Xeon work-
station that is typical for many BEM application scenar-
ios.

5.2. Experimental setup and procedure

We determine the performance gains over the multi-
threaded CPU-optimized version of the code in terms of

a speed-up factor

S =
tCPU

tGPU
, (8)

where tCPU is the execution time of the CPU and tGPU
is the execution time for the GPU enabled algorithms
presented in the previous sections.

As benchmark problem we consider a unit sphere,
which is discretized with various numbers of plane tri-
angular boundary elements. Both the trial and the test
space are restricted to globally continuous, piecewise
linear basis functions. Note that basically all types of
boundary elements provided by the Bempp library are
supported on GPUs as a result of this work. How-
ever, other types of boundary elements do not introduce
any significantly new aspects here. The number of un-
knowns N arise from convenient mesh sizes h, where
the smallest value of h is chosen to exploit the available
resources (i.e. the host memory) as much as possible.
Our workstation features about 200 GB system memory.
We then compute the discretized weak formulations of
the three-dimensional Laplace and Helmholtz boundary
operators as introduced in Section 2, where both dense
and H -Matrices are employed. Each configuration is
run 5 times to give averaged performance results.

5.3. Dense-matrix weak-form assembly results

Figure 4 summarizes the computational results for the
dense-matrix assembly of boundary operators. Initially,
the speed-up rises steeply as the problem size grows,
since any fixed overhead arising from the involvement
of GPUs is spread over a larger number of unknowns.
Then, it gradually levels off, and even shows a slight
decrease in most cases. This can be ascribed to a re-
duced GPU clock frequency due to an increased mean
GPU temperature under load. As heat is known to ad-
versely affect performance when power consumption is
held constant [25], NVIDIAs GPU Boost 2.0 technol-
ogy [26] applies dynamic overclocking with a temper-
ature target of 80 ◦C. This feature can not be disabled
for GeForce GTX TITAN graphics cards operated un-
der Debian Linux to enforce a constant clock frequency.
The speed-up is likely to go up again when the GPUs
eventually operate at their base frequency. However,
due to memory limitations this can not be shown here.

As expected, GPU computations in single precision
perform significantly faster than in double precision.
This is particularly pronounced for complex-valued
(Helmholtz) boundary operators. Our graphics boards
provide three times as many single-precision floating-
point units per multiprocessor as double-precision
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Figure 4: Speed-up values S for the dense weak-form assembly of Laplace (left) and Helmholtz (right) boundary operators depending on the
number of unknowns N in single precision (dashed lines) and double precision (solid lines)

cores, which partly translates into the performance re-
sults. Issues of memory access and data transfer do not
allow for an equivalent speed-up factor, though.

In comparison with the SLP, DLP and ADLP bound-
ary operators, the HYPS boundary operator shows con-
siderably less satisfactory results. Unlike the other three
operators, the integral evaluation associated with the
hypersingular operator requires the computation of an
inner vector product at the lowest level of the nested
quadrature loops. Our kernel codes are not well adapted
to handle the corresponding memory access pattern,
since we have not optimized this further. The reason is
that we can exploit the weak-form shown in (4) to write
the HYPS operator in the form

D =

3∑
j=1

QT
j Ŝ Q j − k2

3∑
j=1

PT
j Ŝ P j, (9)

where Ŝ is the representation of the single-layer poten-
tial operator in a space of discontinuous, element-wise
linear basis functions, the matrices Q j are sparse matri-
ces that represent the j-th curl-component of the trial
functions, and the P j are sparse matrices that corre-
spond to the product of the basis functions with the j-th
component of the normal vector. While this formulation
is not interesting for dense assembly, it provides benefits
for the more application relevant H -Matrix assembly
since H -Matrix assembly of the single-layer operator
on a discontinuous space is in pure CPU experiments
already about twice as fast as the assembly of the matrix
D. However, the price is that the memory requirements
grow by about a factor six due to the increased overall
matrix size. More details to this approach and numerical
experiments can be found in [27].

5.4. H-Matrix weak-form assembly results

In the first part of this section we have focused on
the assembly of the discrete weak form represented by
a fully populated matrix. We now turn over to the
fast approximation of boundary operators based on H -
Matrices. As in the previous section, both the Laplace
and the Helmholtz equation are considered. The results
are depicted in Figure 5.

The kink in the line graphs substantiate the assump-
tions from the dense-assembly study that the slight
decline in the speed-ups in Figure 4 is a local phe-
nomenon, rather than a global trend for the GPU-
accelerated dense-matrix computation. The problem
sizes, for which the mentioned significant changes in
the underlying conditions occur (GPU clock rate), hap-
pen to coincide with the memory limit for dense-matrix
weak-form representations. Here, the local depression
is overcome, as much larger problems can be handled
by means of the H -Matrix approach.

Although the deviating behavior of the hypersingu-
lar operator has already been addressed in the course
of the first part of this section, it is very striking here
that the speed-ups related to single precision GPU com-
putations tend to be lower than the factors obtained in
the double precision case. This effect becomes stronger
for larger problem sizes. An explanation can be found
with a view to the number of iterations in the ACA al-
gorithm. It turns out that, unlike the other operators,
the HYPS operator is strongly affected by the precision
level of the numerical integration on the GPU in the
sense, that the approximation procedure for the admis-
sible leaf blocks converges more slowly. Therefore, the
total amount of work increases as more original matrix
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Figure 5: Speed-up values S for the H -Matrix weak-form assembly of Laplace (left) and Helmholtz (right) boundary operators depending on the
number of unknowns N in single precision (dashed lines) and double precision (solid lines)

entries need to be computed. This can not be compen-
sated by a faster numerical integration process in sin-
gle precision, thus the H -Matrix construction slows
down as a whole compared to double precision com-
putation. As a consequence, low precision numerical
integration should be generally avoided in conjunction
with hypersingular boundary operators where the weak
form is based on H -Matrices.

Note that the maximum speed-up that could be ob-
served in Figure 5 is limited by the number of unknowns
N, and therefore the size of the system memory in this
case. However, the shape of the curves suggest that way
higher factors can be realized for large-scale problems,
provided that enough memory is available to store the
H -Matrix weak form.

6. High-frequency scattering of a submarine hull

In order to demonstrate the benefits of our newly
developed GPU-accelerated H -Matrix BEM code to
complex real-world problems we consider an exterior
Helmholtz problem. In particular, we investigate the
high-frequency scattered field from a plane wave im-
pinging on a sound-hard submarine hull. To this end,
a special OSRC-preconditioned Burton-Miller formula-
tion [28, 29, 30] is applied to compute the bistatic tar-
get strength of the submarine. This quantity indicates
how detectable an object is with sonar in some distance,
where the angular position of the transmitter and the
receiver of the signal may differ. The ability to simu-
late the target strength characteristics is a prerequisite
to develop construction features that give the submarine
a desired low or high reflection coefficient already at an
early stage in the design process.

The incident plane wave can be modeled as

uinc (x) = u0 exp (ik〈d, x〉) , (10)

where u0 is the amplitude, d is the direction vector, k de-
notes the wave number, and x specifies a point in space.

The OSRC Burton-Miller formulation to compute the
missing Dirichlet boundary data of the total field Φ =

usct + uinc reads(
1
2

I − K − ṼNtDD
)
Φ = uinc − ṼNtD

∂uinc

∂nx
. (11)

Here, Ṽ is an on-surface approximation to the
Neumann-To-Dirichlet operator. Further details on this
OSRC preconditioning are given, for instance, by An-
toine and Darbas [28].

Using the double-layer potential operator K, the scat-
tered acoustic field simply yields

usct = KΦ . (12)

We define a measure for the deviation of the GPU re-
sults from the CPU values based on n evaluation points
in the far field as

∆sct =
1
n

n∑
i=1

||uGPU| − |uCPU||

|uCPU|
. (13)

Finally, the bistatic target strength is defined as

TSdB = 20 log10

(
R

∣∣∣∣∣∣usct

u0

∣∣∣∣∣∣
)
, (14)

with distance R from the geometrical center of the in-
vestigated object.

11



In our example, we set the frequency of the incoming
wave to f = 1000 Hz and apply cwater = 1500 m s−1,
such that the wave number k ≈ 4.2. Assuming that
6 to 10 boundary elements per wavelength λ = c

f is
enough to ensure good accuracy, we obtain a mesh with
M = 230 000 linear plane triangles and N = 115 000 un-
knowns. This happens to be the largest problem that can
be treated on our workstation in terms of system mem-
ory. The incident plane wave of amplitude u0 = 1 N m−2

strikes the hull laterally at a θinc = 10◦ angle from the
submarine’s longitudinal axis, thus the direction vec-
tor is defined as d =

[
cos

(
θinc

)
, sin

(
θinc

)
, 0

]T
. Fur-

ther, we position 3600 evaluation points at a distance of
r = 20 km from the geometrical center of the submarine
model.

r = 20 km
θinc = 10◦

θsct

Figure 6: Experimental setup of the scattering submarine hull

The threshold for rows or columns of H -Matrix
blocks to be treated by graphics processors is set to
10 000 participating element pairs. All GPU compu-
tations are performed in single precision. The assem-
bly of the hypersingular operator D was implemented
as demonstrated in (9) through sparse transformations
of the single-layer boundary operator on a space of dis-
continuous linear functions. Direct assembly of the
HYPS operator did not yield sufficient results in single-
precision.
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Figure 7: Bistatic target strength TS depending on the angular position
θsct at a distance r = 20 km from the submarine’s center

Figure 7 shows the target strength of the submarine.

0.01 1.19 2.37

Figure 8: Dirichlet boundary data of the total field |Φ|

Figure 8 visualizes the absolute values of the Dirich-
let boundary data that has been solved for in equation
(11).

Using the GPU-accelerated assembly routines, the
setup of the equation system took only 1206 s, com-
pared to 2275 s with the multi-threaded CPU-optimized
code. This translates into a speed-up factor of 1.9 for the
discrete weak-form assembly of the required boundary
operators, while the deviation between GPU and CPU
results as defined by equation (13) yields a negligible
value of ∆sct = 0.0081 %. It is interesting to note how
the assembly speed-up translates into a speed-up for the
total application. The problem was solved in 18 iter-
ations due to the effectiveness of the OSRC precondi-
tioner in this application. The assembly of all sparse
operators and the solution of the iterative system were
performed purely on the CPU. The total time (exclud-
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ing reading the grid) including assembly, iterative solver
and evaluation of the bistatic target strength with the
GPU enabled code was 2473 s while the time for the
pure CPU code was 3397 s, a total speed-up of a fac-
tor of 1.4. Hence, the more the assembly dominates the
total solution time the more will an application benefit
from the simple GPU strategy described in this paper.

7. Conclusions

The aim of this paper was to develop a simple strategy
to benefit from accelerated GPU computations for exist-
ing BEM codes without requiring a substantial rewrite.
Indeed, only the core integration routines need to be re-
placed by corresponding GPU routines while the rest of
the H -Matrix assembly and surrounding code remains
mostly unchanged. This allows an easy upgrade path for
existing BEM codes to take advantage of GPU compute
capabilities.

The performance advantage is considerable. A setup
of gaming level dual Kepler generation boards outper-
formed a pure 20-core Xeon CPU workstation by a fac-
tor of 1.9. This means that with modest investments
in hardware and software development existing BEM
codes can achieve significant speed-ups for a wide range
of applications.

We note that while other authors have suggested
GPU-accelerated H -Matrix compression (see e.g.
[11]), the approach taken here achieves good perfor-
mance improvements without major rewrites by sim-
ply replacing the core assembly routines. The key dif-
ference is the availability of NVIDIA’s Hyper-Q tech-
nology which simplifies code design for GPUs signifi-
cantly. Moreover, we have provided a realistic applica-
tion study that demonstrates how the assembly speed-
up translates over from synthetic benchmarks to realis-
tic application problems that additionally involve sparse
operators and preconditioners, which are assembled on
the CPU.

Further acceleration can be achieved by translating
the complete tool chain including sparse operators and
iterative solvers to the GPU. However, this requires sub-
stantial investments in redesigning the software infras-
tructure while at the same time classical CPU work-
stations are also increasing their speed considerably
with modern high-end dual Xeon workstations provid-
ing over 50 physical CPU cores. We believe that the
proposed algorithm in this paper provides a good bal-
ance between modest investments in hardware and soft-
ware development while still achieving very good as-
sembly speed-ups that translate into a noticeable overall
application performance improvement.
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