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A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do
sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging
from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity.
Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision,
rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their
potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.
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Introduction
Under natural conditions, we constantly engage our sensory sys-
tems during a myriad of everyday active behaviors: finding food,
detecting threats, or exploring. Ideally, we would like to under-
stand neural processing during such active behaviors. Indeed,
when David Hubel invented the tungsten electrode, he first
recorded with chronically implanted electrodes from the visual
cortex of unanesthetized, unrestrained cats (Hubel, 1959). He
discovered that neurons in the visual cortex fired in surprising
ways: they were active even in darkness and their firing rate was
modulated by arousal. However, he could not track where the
cat’s eyes pointed, so he could only poorly define the visual stim-
ulus, making it difficult to characterize the neurons’ receptive
field (RF) properties. It was not until Hubel, together with Tor-
sten Wiesel, used acute experimental approaches with anesthe-
tized and paralyzed animals to obtain exquisite control of sensory

stimulation parameters and improved recording stability that
they could make their transformational discoveries on RF prop-
erties along the early visual system (Hubel, 1982; Wiesel, 1982).

The acute approach led to extremely successful and powerful
notions of a hierarchically organized brain with neurons that
serially extract behaviorally relevant features (Hubel and Wiesel,
1998). However, converging lines of recent evidence suggest that
cortical neurons receive multiple input types, each capable of
eliciting action potentials. For example, context-dependent
remapping of representations is commonly observed in the
hippocampus (Muller and Kubie, 1987), prefrontal cortex (PFC),
and posterior parietal cortex (Leutgeb et al., 2004; Azañón et al.,
2010; Hall and Colby, 2011; Zirnsak et al., 2014), suggesting that
RF properties can be dynamic and variable.

The variability of RF response properties can also be related to
changes in activity states that occur during wakefulness (Harris
and Thiele, 2011; McGinley et al., 2015b). In recent years, how
such active states influence sensory responses has received con-
siderable attention, fueled by the broad application of methods
allowing locomotion despite head fixation in combination with
cellular resolution large-scale population imaging, high-density
electrophysiological recordings, and detailed genetic perturbation
approaches. These advances allow the study of both behavioral-
state-dependent processing and sensorimotor integration and
navigation.

Here, we review emerging shifts in our understanding of neu-
ral processing during active, multidimensional behavior in dif-
ferent systems (fly vision, rodent somatosensation, vision,
audition) and at different processing levels (fly lobula plate,
mammalian thalamus, and cortex). We discuss the potential
sources of these behavior-dependent modulations with particu-
lar focus on the role of neuromodulators and inhibitory in-
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terneurons, followed by examples of the potential function of
such modulations in movement control, object detection, navi-
gation, and attentional tasks. We conclude by addressing open
questions and promising directions for future research.

Visual motion processing during active behaviors in the fly
We begin this review where this field first took shape (Buchner,
1976): the fly visual system. In flies, vision is critical for the con-
trol of active locomotor behavior; without it the capacity to main-
tain a straight course is jeopardized (Souman et al., 2009; Robie et
al., 2010). A prevailing idea is that optic flow, the pattern of image
flow generated by movement, is actively used to steer the body
(Srinivasan, 2001; Borst, 2014). Consistent with this idea, the fly
visual system has cells with activity that is tuned to optic flow
generated by specific movements: horizontal system (HS) cells to
rotations along the yaw and vertical system (VS) cells along the
pitch or roll body axes (Krapp et al., 2001; Borst, 2014; Silies et al.,
2014). Both HS and VS cells, which are found across different
flying species, are direction selective and tuned to a preferred
velocity of the visual stimuli (Hausen, 1982; Joesch et al., 2008;
Schnell et al., 2010). Because movement of the body through air
results from the combined effect of the moving medium (airflow)
and the animal’s locomotion, visual-flow-sensing mechanisms
are considered critical for steering control (Chapman et al.,
2011). Accordingly, HS and VS cells are thought to be part of a
stability reflex system that compensates for unintended body
movements due to airflow (Hausen and Wehrhahn, 1990).

Explorative locomotion displays typical paths structured by
segments of stable course, referred as fixations, interrupted by
rapid changes in course direction, referred as saccades (Schilstra
and Hateren, 1999). Recordings performed in HS and VS cells
under fixations have shown that flight shifts the cells’ temporal
tuning toward high stimulus velocities (Jung et al., 2011; Suver et
al., 2012). In addition, flight increases HS and VS cells’ response
magnitude to visual stimuli (Maimon et al., 2010; Schnell et al.,
2014). In striking contrast to these modulations, saccades sup-
press visual responses in HS cells such that their direction-
selective responses are attenuated (Schnell et al., 2014; Kim et al.,
2015). The suppressive impact of saccades in VS cells scales with
the expected response amplitude that a saccade-induced visual
stimulus would generate (Kim et al., 2017). Therefore, flight flex-
ibly tunes the gain and the temporal processing characteristics of
an optic-flow-sensitive network to accommodate the physiolog-
ical requirements imposed by behavior.

In contrast to other fly species, in Drosophila, walking is as
important as flight because courtship in this genus occurs on
terrain. The first indication that behavior modulates the velocity
tuning of HS cells was in fact observed in head-fixed flies walking
on an air-suspended ball (Chiappe et al., 2010). Similar to flight,
HS cells’ visual responses are enhanced when walking, scaled
monotonically with speed (Chiappe et al., 2010; Longden et al.,
2014). Even when walking in the dark, HS cells are modulated by
three distinct, nonvisual signals (Fujiwara et al., 2017). First,
there is a nonspecific signal that depolarizes HS cells before the
onset of walking, grooming, or jumping, and outlasts the termi-
nation of any of these behaviors. Second, turning and forward
walking modulate HS cell activity. Finally, the direction of turn-
ing can excite or inhibit a given HS cell and always complements
the direction of visual motion to which the neuron is tuned (Fu-
jiwara et al., 2017). When HS cells are stimulated visually in walk-
ing flies, the response dynamics of the cells encode the combined
visual and turning velocities rather than their difference. As a
result, during fixation, HS cells encode the leg-based turning of

the fly faithfully even without visual input. This cooperative in-
teraction between leg-based turning and visual velocities during
fixations may be used to compute a calibrated estimate of self-
motion (Gu et al., 2008), suggesting that HS cells operate as self-
movement estimators rather than error detectors during walking.

In summary, behavior induces modulations in optic-flow-
processing cells that are common to stable flight, saccading flight,
and walking, and are also behavior specific. The modulation in
responses seems to be consistent with behavior-specific special-
izations: self-motion estimation while walking, error correction
during stable flight, and visual suppression during saccadic flight.
It remains unclear whether this behavior-specific specialization is
related to the medium through which the fly moves. Future work
must synthesize the plethora of phenomenon described here. For
this, it will be critical to identify how and where the behavioral-
related and visual signals are integrated within the optic-flow-
processing network.

Active behaviors modulate neural processing in rodent
sensory cortex
In rodents, the active state has been defined predominantly on
the basis of three parameters: whisking, locomotion, and pupil
dilation.

Somatosensory cortex
There is a long tradition of studies investigating state-dependent
neural processing in the rodent somatosensory cortex, in which
whisking has been used as indicator of active state. Pioneering
studies using whole-cell patch-clamp recordings in primary so-
matosensory cortex (barrel cortex, S1) of awake mice revealed
that, when mice explore their immediate environment actively by
rhythmic whisking, S1 layer 2/3 (L2/3) excitatory neurons signif-
icantly reduce slow-wave membrane potential fluctuations and
depolarize slightly (Crochet and Petersen, 2006; Poulet and Pe-
tersen, 2008; Gentet et al., 2010). In the active behavioral state,
sensory responses of S1 L2/3 neurons to passively applied whisker
stimulation are small (Crochet and Petersen, 2006). When mice
palpate an object actively with their whiskers, however, individ-
ual whisker– object contacts (active touches) evoke robust sub-
threshold sensory responses (Crochet and Petersen, 2006;
Crochet et al., 2011), inducing spikes in a subset of S1 neurons
(O’Connor et al., 2010; Crochet et al., 2011; Peron et al., 2015)
that are essential for perception of touch (O’Connor et al., 2013).

During whisker-related somatosensation, active behaviors influ-
ence S1 L2/3 excitatory neurons differentially and in a projection-
specific way (Yamashita et al., 2013). S1 L2/3 contains excitatory
neurons projecting either to ipsilateral secondary somatosensory
cortex (S2) or ipsilateral whisker primary motor cortex (M1)
(Aronoff et al., 2010). These S2-projecting (S2-p) and M1-
projecting (M1-p) neurons are spatially intermingled, largely
nonoverlapping populations (Sato and Svoboda, 2010; Chen et
al., 2013; Yamashita et al., 2013) with different gene-expression
profiles (Sorensen et al., 2015), different intrinsic membrane
properties, and different signatures of sensory-evoked postsyn-
aptic potentials (PSPs) (Yamashita et al., 2013). Specifically, S2-p
neurons receive slow, small, and less depressing PSPs that can be
summated during repetitive touch, allowing sustained signaling,
whereas M1-p neurons receive fast, large and strongly depressing
PSPs, giving only transient signaling (Yamashita et al., 2013).

Interestingly, associating a whisker stimulus with a reward
causes signals conveyed by S2-p and M1-p neurons to be further
tuned (Chen et al., 2013, 2015a; Kwon et al., 2016; Yamashita and
Petersen, 2016): Learning of an S1-dependent whisker deflection
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detection task (Sachidhanandam et al., 2013) induces choice-
related depolarization and firing in S2-p neurons, but not in
M1-p neurons (Yamashita and Petersen, 2016). Therefore, pro-
cessing of synaptic input by distinct projection neurons controls
large-scale routing of sensory information dynamically in mouse
sensorimotor cortex.

Although, so far, work in somatosensory cortex has mostly
defined active behavior based on the animal’s whisking, some
recent studies have begun to investigate somatosensory process-
ing during locomotion (Fu et al., 2014; Pluta et al., 2015; So-
froniew et al., 2015; Ayaz et al., 2016).

Visual cortex
Porting the method of fixating animals on air-cushioned balls
from flies to rodents (Hölscher et al., 2005; Dombeck et al., 2007)
allowed for remarkable progress on the signatures and neural
circuits underlying state-dependent processing based on loco-
motor activity in the visual cortex (Niell and Stryker, 2010). In
addition, inspired by attention research in humans (Bradshaw,
1967), several groups have recently started to read out changes in
behavioral state also from the mouse’s pupil, even in periods
when the animal is stationary (Reimer et al., 2014; McGinley et
al., 2015a; Vinck et al., 2015).

In the visual system, locomotion- or pupil-indexed increases
in arousal predispose the cortex toward robust visual encoding by
enhancing spiking responses (Niell and Stryker, 2010; Bennett et
al., 2013; Polack et al., 2013; Erisken et al., 2014; Lee et al., 2014;
Reimer et al., 2014; Vinck et al., 2015) in both multiplicative and
additive ways (Mineault et al., 2016; Dadarlat and Stryker, 2017),
and by generating gamma-band oscillations in the local field po-
tentials (Lee et al., 2014; Saleem et al., 2017; Storchi et al., 2017).
The response enhancements were first observed during measure-
ments of orientation-tuning of neurons in L2/3 of primary visual
cortex (V1), where median responses to optimal orientations can
be �2-fold higher during locomotion than stationary periods
without consistent changes in tuning width (Niell and Stryker,
2010). These V1-state-dependent modulations of gain seem to be
mediated, as in somatosensory cortex, by a locomotion-related depo-
larization of the membrane potential and a decrease in its vari-
ance (Bennett et al., 2013; Polack et al., 2013). Although increased
visual responses can be observed across all V1 layers, gain mod-
ulation seems to be strongest and most consistent in L2/3
(Erisken et al., 2014; Dadarlat and Stryker, 2017).

In addition to regulating response gain, locomotion and arousal
also modulate the selectivity of visual responses. First, locomotion
can control visual spatial integration (Ayaz et al., 2013; Erisken et
al., 2014) by reducing surround suppression and shifting the neu-
rons’ preference toward larger stimulus sizes. Second, locomo-
tion-related gain changes are particularly pronounced in neurons
preferring high spatial frequencies, leading to increased spatial
resolution during locomotion (Mineault et al., 2016). Third, in
V1 and extrastriate areas, locomotion increases peak speed by
shifting temporal frequency tuning to higher values (Andermann
et al., 2011). Fourth, in periods of high arousal, as indexed by
pupil dilation, but in the absence of running, saccadic eye move-
ments, or whisking, orientation tuning is sharpened (Reimer et
al., 2014).

Importantly, periods of high arousal and motor activity are
also associated with decreased response variability. Locomotion
decreases trial-by-trial response variability of V1 subthreshold
membrane potentials (Bennett et al., 2013) and both locomotion
and arousal without locomotion decrease noise correlations in
the population (Erisken et al., 2014; Vinck et al., 2015; Dadarlat

and Stryker, 2017). Together with the locomotion-related en-
hanced visual responses (Niell and Stryker, 2010; Erisken et al.,
2014; Lee et al., 2014; Reimer et al., 2014; Vinck et al., 2015), this
likely contributes to the enhanced mutual information between
visual stimuli and V1 single neuron responses during locomotion
(Dadarlat and Stryker, 2017).

In addition to state-dependent modulation by arousal and
locomotion, neural representations in primary visual cortex can
be further shaped by more specific behaviors, such as focusing
attention (Roelfsema et al., 1998), timing of signals (Shuler and
Bear, 2006), anticipation of rewards (Poort et al., 2015), and
learning (Poort et al., 2015; Jurjut et al., 2017). Recent work sug-
gests that these active processes, which may include feedback projec-
tions providing top-down motor-related information or task-specific
regulation of targeted excitatory and inhibitory neurons (Zhang et
al., 2014; Vinck et al., 2015; Garcia-Junco-Clemente et al., 2017),
may regulate arousal-dependent visual processing transiently (dis-
cussed further in the “Circuit-level mechanisms underlying action-
dependent changes of neural processing” section).

Auditory cortex
In contrast to the overall enhancement of neural responses ob-
served in somatosensory and visual cortex, locomotion-indexed
active states are associated with a suppression of L2/3 excitatory
neuron spiking responses in primary auditory cortex (A1) (Zhou
et al., 2014; Schneider et al., 2014), mediated by a scaling down of
both excitatory and inhibitory synaptic inputs (Zhou et al., 2014).
Such suppression of sound responses is also observed during
engagement in more complex auditory tasks (Otazu et al., 2009;
Kuchibhotla et al., 2017). In addition to the sign of modulation in
auditory cortex being opposite to that observed in visual cortex,
the signal-to-noise ratio is also degraded (Zhou et al., 2014; McGin-
ley et al., 2015a), perhaps suggesting that the auditory system in
rodents is most effectively engaged during stillness.

Recent work has used pupil-indexed behavioral state to track
rapid changes of auditory cortex sound responses and perfor-
mance in auditory behavioral tasks (McGinley et al., 2015a).
When the pupil was small, layer 5 auditory cortical neurons were
engaged in slow (2–10 Hz) oscillations, membrane potential
responses and spiking responses to sounds were small and unre-
liable, and behavioral performance was poor. In this state, sharp
waves were prominent in the hippocampus, suggesting that
“drowsiness” associated with a constricted pupil was global across
the brain. At mid-sized pupil diameters, auditory cortical neurons
were in a tonically hyperpolarized state, sound responses were
large and reliable, and behavioral performance was optimal. Dur-
ing sustained large pupil diameters (usually associated with walk-
ing), neurons were tonically depolarized and sound responses
and behavioral performance were again degraded. Therefore, opti-
mal behavior and cortical processing of sounds occurs in a substate
of stillness, suggesting the need to parse brain and behavioral states
more finely than into stillness versus locomoting.

Active behaviors modulate neural processing in the thalamus
Modulations of neural responses by behavior are not restricted to
cortex, but already occur at the level of the thalamus. In fact,
beyond its classical role in relaying information to or between
cortical regions (Sherman and Guillery, 2001), the thalamus is
ideally suited via its extensive reciprocal cortical connections
through structurally diverse circuit motifs (Clascá et al., 2012) to
gate and modulate information processing and to control remap-
ping of cortical RF properties (Nakajima and Halassa, 2017).
Most thalamic nuclei receive putative driving inputs from the
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cortex rather than the periphery, particularly in primates (Rovó
et al., 2012). Intriguingly, these cortical inputs exhibit a high
degree of convergence in regions such as the pulvinar and the
mediodorsal thalamus (MD) (Rovó et al., 2012) and, across the
thalamus, principal neurons can exhibit a variety of structural
output patterns, with individual MD or pulvinar neurons, for
example, covering several millimeters of cortical space (Rock-
land, 2002; Kuramoto et al., 2017). Because sensory RFs in these
nuclei may either be large in space or ill defined, their sensory
representations are unlikely to be the proximal cause for cortical
sensory RFs.

Instead, multiple recent lines of evidence call for an expanded
view of the thalamus in cortical function and cognition. First,
beyond fundamental, well described state-dependent differences
in thalamic firing mode (for review, see McCormick and Bal,
1997), the activity of thalamic neurons signals diverse contextual
information. In the visual system, both the dorsolateral genicu-
late nucleus (dLGN; Erisken et al., 2014; Williamson et al., 2015;
Roth et al., 2016) and the lateral posterior nucleus (LP, the rodent
homolog of the pulvinar; Roth et al., 2016) carry locomotion
signals. For the dLGN, these locomotion signals seem to repre-
sent a combination of visual and running speed; for LP, these
signals indicate discrepancies between visual and self-motion
(Roth et al., 2016). Modulations of neural responses with pupil
size were also observed in auditory thalamus in the medial genic-
ulate (MG) body, particularly in association with walking (Mc-
Cormick et al., 2015; McGinley et al., 2015a; Williamson et al.,
2015; but see Zhou et al., 2014). In the auditory system, proprio-
ceptive input associated with walking may already suppress
sound responses in the inferior colliculus (Aitkin et al., 1978;
McGinley and McCormick, unpublished data) and locomotion
effects in auditory cortex may additionally result from top-down
corollary discharge influences (Schneider et al., 2014).

Second, a novel, currently emerging view is that the thalamus
affects the “computational state” of the cortex by controlling
functional connections within and across cortical areas (Naka-
jima and Halassa, 2017). This novel thalamic function would
enable remapping cortical RFs in a task-dependent manner. In
fact, rather than relaying task-category-specific signals them-
selves, certain circuits within the MD and pulvinar have been
shown to control effective connectivity within and/or across task-
relevant areas that they innervate (Schmitt et al., 2017). In a task
in which mice maintained abstract rules in mind over a delay,
Schmitt et al. (2017) found evidence that task rules were encoded
by specific PFC neuronal subpopulations via spike timing rela-
tionships normally associated with direct synaptic transmission,
that is, via local recurrence. Although MD of the thalamus lacked
task-specific local recurrence, optogenetic suppression of MD
diminished PFC rule representation and the ability of the mouse
to select its target appropriately. Enhancing MD spiking, in turn,
enhanced local PFC recurrence and behavioral performance.
Collectively, these experiments indicate that MD spiking cannot
be the proximal cause of PFC RFs in this task, but instead MD
spikes fulfill the computational role of shifting PFC RFs to a mode
in which the relevant inputs are those of their neighbors. A sim-
ilar function may explain the finding that neurons within the
inferior pulvinar reflect decision confidence rather than category
in a dot motion task (Komura et al., 2013), in contrast to what
their targets in parietal cortex are known to reflect (Kiani and
Shadlen, 2009). Overall, the idea that the thalamus encodes con-
textual signals to remap cortical RFs in a task-relevant manner
provides a unique mechanism for cognitive flexibility. Testing
this idea across different circuits and models will provide impor-

tant insights into the general role of the thalamus in cognitive
function.

Circuit-level mechanisms underlying action-dependent
changes of neural processing
The immense adaptivity of cortical circuits on fast timescales is
likely controlled by a combination of circuit-level mechanisms
that are beginning to be unraveled. One key mediator of brain state is
neuromodulation, which can regulate thalamocortical circuits (Mc-
Cormick and Prince, 1986; McCormick, 1989; Steriade, 2004) and
exert influence directly within the cortex (Newman and Symmes,
1974; Manunta and Edeline, 1999). Neuromodulatory inputs to cor-
tex may act on multiple targets, including thalamocortical terminals
(Kruglikov and Rudy, 2008), pyramidal neurons (McCormick and
Prince, 1986; Disney et al., 2007; Gulledge et al., 2007, 2009), and
diverse GABAergic interneurons (Kawaguchi, 1997; Porter et al.,
1999; Fanselow et al., 2008; Alitto and Dan, 2012; Chen et al., 2015b;
Batista-Brito et al., 2017; Muñoz et al., 2017).

One of the most striking examples of the impact of neuro-
modulation is the dramatic shift observed in frequency tuning of
auditory cortex neurons during associative learning (Bakin and
Weinberger, 1990; Recanzone et al., 1993; Fritz et al., 2003; David
et al., 2012). These shifts seem to be critically related to the ap-
propriately timed release of acetylcholine (Metherate and Wein-
berger, 1989; Kilgard and Merzenich, 1998; Thiel et al., 2002;
Froemke et al., 2007) and norepinephrine (Manunta and Edeline,
1999; Martins and Froemke, 2015). More generally, the regula-
tion of auditory cortical responses during task engagement
seem to result in part from neuromodulation (Otazu et al.,
2009; Kuchibhotla et al., 2017).

Not surprisingly, acetylcholine and norepinephrine are also
two of the key neuromodulatory systems involved in modulations of
sensory processing across sensory systems during locomotion- and
pupil-indexed behaviors. GCaMP activity of cholinergic projec-
tions measured at the V1 and A1 surface seems coherent with
locomotor activity and the associated slower changes in pupil size
(Reimer et al., 2016). Accordingly, stimulation of cholinergic
neurons in basal forebrain (Pinto et al., 2013) or afferent projec-
tions from the midbrain locomotor region to the basal forebrain
(Lee et al., 2014) is sufficient to mimic some of the neural signa-
tures of locomotion in area V1. GCaMP activity of noradrenergic
projections to V1, in turn, is correlated with rapid changes in pupil
diameter (Reimer et al., 2014) and application of noradrenergic
receptor antagonists in V1 can markedly reduce locomotion-
dependent membrane depolarization (Polack et al., 2013). Other
neuromodulatory systems, including serotonin (5-HT) (Matias et
al., 2017), are also likely to play key roles in shaping cortical circuits
“online” during behavior.

Neuromodulation during active behavior, potentially inter-
acting with top-down excitatory feedback projections (Zhang et
al., 2014), might affect GABAergic interneurons preferentially.
Differential recruitment of GABAergic interneurons into the on-
going pattern of activity, in turn, may change the functional cor-
tical circuit (Fu et al., 2014; Pakan et al., 2016; see also Dipoppa et
al., 2016) and thereby shift the cortex from one processing mode
to another on a moment-to-moment basis during wakefulness. A
mechanism for circuit selection during behavior that has received
particular attention is the state-dependent cholinergic modula-
tion of the activity of vasoactive intestinal peptide (VIP)- and
somatostatin (SST)-expressing GABAergic interneurons (Fu et
al., 2014; Reimer et al., 2014; Pakan et al., 2016). VIP interneu-
rons express 5-HT3a and nACh receptors, are innervated by se-
rotonergic and cholinergic afferents (Lee et al., 2010, 2013; Fu et

Busse et al. • Sensation during Active Behaviors J. Neurosci., November 8, 2017 • 37(45):10826 –10834 • 10829



al., 2014; Kamigaki and Dan, 2017), and are activated by both
glutamatergic and neuromodulatory inputs (Porter et al., 1999;
Prönneke et al., 2015; Batista-Brito et al., 2017; Kuchibhotla et al.,
2017). VIP interneurons can regulate cortical excitatory activity
and sensory response gain (Lee et al., 2013; Pi et al., 2013; Fu et al.,
2014; Garcia-Junco-Clemente et al., 2017) through their prefer-
ential inhibition of SST interneurons (Pfeffer et al., 2013) and
consequent disinhibition of pyramidal cells. SST interneurons
themselves are also strongly regulated by cholinergic inputs via mus-
carinic ACh receptors (Fanselow et al., 2008; Chen et al., 2015b) and
PV interneurons may likewise be controlled by acetylcholine release
(Yi et al., 2014; Kuchibhotla et al., 2017). Cortical representations of
sensory information may thus be regulated by state-dependent
neuromodulatory sculpting of GABAergic participation in the
local circuit. Although disinhibition of pyramidal neurons via
cholinergic engagement of VIP interneurons is likely too simplis-
tic a model to fully capture the dynamics of state-dependent
cortical activity (Pakan et al., 2016), the rules by which neuro-
modulators control and modify sensory processing and percep-
tion are beginning to emerge.

Functions for action-dependent modulations in sensory
coding
As we have discussed throughout this review, neural populations
in sensory areas show diverse changes in their responses during
active behaviors, but what is the function of such changes? As
predicted by previous studies (Niell and Stryker, 2010; Reimer et
al., 2014; Vinck et al., 2015), the enhanced cortical signal-to-noise
ratio to sensory inputs during active states is translated into de-
creases in the perceptual threshold for visual (Bennett et al., 2013)
and auditory (McGinley et al., 2015a) detection.

Most studies access activity level as a binary state and compare
sensory processing between inactive and active states. The active
state, however, is likely multileveled depending on the degree of
activity or engagement (McGinley et al., 2015b). This would be
particularly relevant when an animal is using the sensory infor-
mation toward an active process. A few examples of such active
processes are feedback control, object detection, and navigation. In
feedback control, the animal can use sensory information to con-
trol its speed of movement. Consistent with this, 5–10% of neu-
rons in mouse V1 have been found to represent a sudden
perturbation of visual flow in conflict with the animal’s own
movements (Keller et al., 2012; Zmarz and Keller, 2016). In ad-
dition, �5% of V1 neurons may respond selectively to perturba-
tions of local optic flow (Zmarz and Keller, 2016), a signal that
may enhance detection of objects moving independently from
the animal.

The visual system can aid navigation in two ways: to track the
distance that an animal has moved through the environment and
to identify landmarks. To track distance, one would have to
maintain an estimate of one’s self-motion. Traditionally, the pri-
mary visual cortex was assumed to do this using only visual flow.
However, the running speed of the animal is represented in
mouse V1 even in the absence of any visual flow. Specifically, in
darkness, neurons have a varied representation of running speed,
from monotonically increasing or decreasing with speed, to being
tuned to specific speeds (Saleem et al., 2013). This running speed
information is then integrated with the speed detected based on
visual motion (Saleem et al., 2013), consistent with the possibility
that the speed encoded by a primary sensory area can inform navi-
gation. Running-speed-dependent activity has also been found in
visual thalamic nuclei dLGN and LP (Erisken et al., 2014; Roth et
al., 2016) and the somatosensory cortex (Sofroniew et al., 2015).

There is also growing evidence for encoding of visual land-
marks of the environment in primary visual cortex, where activity
is not just controlled by the visual stimuli hitting the retina, but
can also be modulated by the spatial context or position of the
animal in the environment (Fiser et al., 2016; Saleem et al., 2016;
Diamanti et al., 2017; Fournier et al., 2017), and the behavior of
the animal (Saleem et al., 2016). First, identical visual stimuli
presented in different positions of the environment elicit differ-
ent responses in individual neurons of the primary visual cortex
(Saleem et al., 2016; Diamanti et al., 2017). This spatial-context-
dependent modulation is further enhanced in higher visual areas
of the mouse brain (Diamanti et al., 2017). When an animal is
engaged in a navigational task, behavioral errors are correlated
with the errors in decoding the animal’s position from the visual
cortex (Saleem et al., 2016). Therefore, the primary visual cortex
also holds correlates of the animal’s behavior.

Future perspectives
In the last few years, there has been a growing understanding of
how sensory processing is modulated during active behaviors.
This has unraveled a whole new area of research with many open
questions and challenges, some of which we list below.

1. Mechanisms underlying action-dependent modulation
Despite substantial progress, our knowledge about the mecha-
nisms and circuits mediating activity-dependent modulation of
sensory processing remains rather coarse. Even within genetically
defined populations, behavior-dependent effects typically show
considerable variability and a broad distribution, but only a few
studies to date have succeeded in explaining some of this variabil-
ity by further subdividing the populations using additional mark-
ers such as projection targets or laminar location (Yamashita et
al., 2013; Erisken et al., 2014; Ayaz et al., 2016; Yamashita and
Petersen, 2016; Muñoz et al., 2017). The rapidly growing arsenal
of transgenic animals and viral tools for intersectional targeting
will allow refined investigations and more specific insights.

2. Cascade effects
As reviewed here, active behaviors affect sensory areas at different
levels. Modulations of thalamic processing can cascade to the
cortex or modulations of cortical processing can be carried over
from one cortical region to another via glutamatergic projections.
Therefore, such cascade effects likely also contribute to setting the
brain’s processing regime, potentially in a fast and spatially precise
way (for review, see Zagha and McCormick, 2014). Some open
questions include: How does a downstream area deal with such
changing input? And to which degree are effects of behavioral state
or modulations by more complex behaviors “reinvented” across
multiple processing stages or inherited?

3. Sensation during unrestrained movements
Most of the results that we have discussed have been performed in
head-restrained animals walking/running on treadmills. The key
limitation has been the inability to present controlled sensory
stimuli in unrestrained animals. Recent years have seen impor-
tant technological developments including eye tracking in freely
moving rats (Wallace et al., 2013) and virtual reality systems with
animal tracking and low-latency large-scale projections (Del
Grosso et al., 2017; Stowers et al., 2017). These developments can
help improve our ability to present controlled stimuli, and thus a
systematic analysis of sensory processing, in unrestrained animals.
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4. Behavioral-task-dependent processing
Spontaneous and natural behaviors such as whisking and loco-
motion have been a valuable tool in uncovering state-dependent
interactions in brain circuits of awake, behaving mice. However,
small, uncontrolled differences in environmental context, behav-
ioral state, stress or anxiety levels, and sensory stimulation across
studies may present challenges for understanding the detailed
relationship between behavioral state and processing. A higher
degree of experimental control and exquisite access to more com-
plex behavioral repertoires can be achieved by approaches in
which animals are trained over several weeks (Histed et al., 2012;
Glickfeld et al., 2013; Poort et al., 2015; Wimmer et al., 2015;
Burgess et al., 2017; Montijn et al., 2016; Takahashi et al., 2016;
Jurjut et al., 2017; Schmitt et al., 2017). Increasingly, efforts are
being made to consider the natural habitat of animals and the
evolutionary relevance of behaviors in the study of behavioral-
task-dependent processing (De Franceschi et al., 2016; Hoy et al.,
2016).

5. Naturalistic and complex behaviors
Natural behaviors are highly variable, context dependent, and
erratic. Here, traditional concepts such as repeated presentations
of an identical stimulus across trials become obsolete. Promising
technological developments have been made in terms of high-
dimensional data approaches such as detailed animal tracking
and automatic segmentation of behavioral states, which help us
delve into high-dimensional and complex naturalistic behaviors.
The future challenge will be to incorporate the analyses of such
spontaneous, high-dimensional, complex natural behaviors with
more abstract concepts of the behavior, including its functional
and evolutionary role (Krakauer et al., 2017).

6. Are modulations species dependent?
Until now, different types of behavior-dependent modulations of
neural processing have been mostly investigated in different spe-
cies: the circuit-level work on effects of locomotion has been
performed mostly in insects and rodents; questions of attentional
modulation of neural responses have been investigated mostly in
primates; and perceptual changes during locomotion have been
addressed in human psychophysics (Pelah and Barlow, 1996;
Prokop et al., 1997; Warren et al., 2001). It is therefore unclear
whether the observed behavior-dependent effects are universal to
all species. Alternately, the extrasensory influences on sensory
processing could be more prominent in the mouse, potentially
reflecting the flatter cortical hierarchy in mice compared with
monkeys or other evolutionary differences. More generally, ex-
trasensory influences could vary from species to species, reflect-
ing the ethological demands that are unique to each.

“The simple assumption that the perception of the world is
caused by stimuli from the world will not do” . . . “we look around,
walk up to something interesting and move around it so as to see it
from all sides, and go from one vista to another. That is natural
vision” –J.J. Gibson, 1904 –1979.

We have known for many years that studying sensation during
natural active behaviors is important, but we have not been in the
position to investigate it. Equipped with new techniques and bet-
ter background, we are at an exciting juncture to address many
unresolved questions.
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